1
|
Zhang Z, Liu P, Zhang B, Shen J, Wu J, Huang S, Chu X. De novo Biosynthesis of Caffeic Acid and Chlorogenic Acid in Escherichia coli via Enzyme Engineering and Pathway Engineering. ACS Synth Biol 2025; 14:1581-1593. [PMID: 40232288 DOI: 10.1021/acssynbio.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Caffeic acid (CA) and chlorogenic acid (CGA) have diverse health benefits, including hemostatic, antioxidant, and antiinflammatory, highlighting their potential for medical applications. However, the absence of high-performance production strains increases production costs, limiting their wider application. In this study, we engineered Escherichia coli for the de novo production of CA and CGA. To improve production, a highly efficient mutant tyrosine ammonia-lyase from Rhodotorula taiwanensis (RtTALT415M/Y458F) was identified using genome mining and protein engineering. By engineering the tyrosine biosynthetic pathway through the deletion of pheA and tyrR, along with the overexpression of aroGfbr and tyrAfbr, we developed an engineered E. coli strain, CA11, which produced 6.36 g/L of CA with a yield of 0.06 g/g glucose and a productivity of 0.18 g/L/h. This represents the highest titer reported for microbial synthesis of CA using glucose as the sole carbon source in E. coli. Based on strain CA11, we further developed strain CGA13, with optimized replicons, promoters, and ribosome-binding sites, which produced 1.53 g/L of CGA in fed-batch fermentation, highlighting its potential for industrial-scale production.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- ZhejiangYangtze River Delta Bio-Pharmaceutical Industry Technology Research Park, Deqing 313200, P. R. China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- ZhejiangYangtze River Delta Bio-Pharmaceutical Industry Technology Research Park, Deqing 313200, P. R. China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- ZhejiangYangtze River Delta Bio-Pharmaceutical Industry Technology Research Park, Deqing 313200, P. R. China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- ZhejiangYangtze River Delta Bio-Pharmaceutical Industry Technology Research Park, Deqing 313200, P. R. China
| | - Shusheng Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- ZhejiangYangtze River Delta Bio-Pharmaceutical Industry Technology Research Park, Deqing 313200, P. R. China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- ZhejiangYangtze River Delta Bio-Pharmaceutical Industry Technology Research Park, Deqing 313200, P. R. China
| |
Collapse
|
2
|
Yoffe G, Duer-Milner K, Nordheim TA, Halevy I, Kaspi Y. Fluorescent Biomolecules Detectable in Near-Surface Ice on Europa. ASTROBIOLOGY 2025; 25:359-366. [PMID: 40285325 DOI: 10.1089/ast.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Europa, Jupiter's second Galilean moon, is believed to host a subsurface ocean in contact with a rocky mantle, where hydrothermal activity may drive the synthesis of organic molecules. Among these possible organic molecules, abiotic synthesis of aromatic amino acids is unlikely, so their detection on planetary surfaces such as Europa suggests that they could be considered a potential biosignature. Fluorescence from aromatic amino acids, with characteristic emissions in the 200-400 nm wavelength range, can be induced by a laser and may be detectable where ocean material has been relatively recently emplaced on Europa's surface, as indicated by geologically young terrain and surface features. However, surface bombardment by charged particles from the jovian magnetosphere and solar ultraviolet (UV) radiation degrades organic molecules and limits their longevity. We model radiolysis and photolysis of aromatic amino acids embedded in ice. Our model shows dependencies on hemispheric and latitudinal patterns of charged particle bombardment and ice phase. We demonstrate that such molecules contained within freshly deposited ice in high-latitude regions on the surface of Europa are detectable using laser-induced UV fluorescence, even from an orbiting spacecraft.
Collapse
Affiliation(s)
- Gideon Yoffe
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Statistics and Data Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Keren Duer-Milner
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
- Leiden Observatory, Leiden, Netherlands
| | - Tom Andre Nordheim
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yohai Kaspi
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Kanda T, Sekijima T, Miyakoshi M. Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in Escherichia coli. Microbiol Spectr 2025; 13:e0203524. [PMID: 39868872 PMCID: PMC11878033 DOI: 10.1128/spectrum.02035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Escherichia coli synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. E. coli also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in E. coli, but the full extent of GcvB regulon is still underestimated. This study examined all genes involved in AAA biosynthesis and transport using translation reporter assay and qRT-PCR analysis. In addition to previously verified targets, aroC, aroP, and trpE, we identified new target genes that were significantly repressed by GcvB primarily via the R1 seed region. Exceptionally, GcvB strongly inhibits the expression of aroG, which encodes the major isozyme of the first reaction in the common pathway, through direct base pairing between the aroG translation initiation region and the GcvB R3 seed sequence. RNase E mediates the degradation of target mRNAs except aroC and aroP via its C-terminal domain. GcvB overexpression prolongs the lag phase and reduces the growth rate in minimal media supplemented with AAAs and confers resistance to an antibiotic compound, azaserine, by repressing AAA transporters.IMPORTANCEE. coli strains have been genetically modified in relevant transcription factors and biosynthetic enzymes for industrial use in the fermentative production of aromatic amino acids (AAAs) and their derivative compounds. This study focuses on GcvB small RNA, a global regulator of amino acid metabolism in E. coli, and identifies new GcvB targets involved in AAA biosynthesis and uptake. GcvB represses the expression of the first and last enzymes of the common pathway and the first enzymes of Trp and Phe terminal pathways. GcvB also limits import of AAAs. This paper documents the impact of RNA-mediated regulation on AAA metabolism in E. coli.
Collapse
Affiliation(s)
- Takeshi Kanda
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Toshiko Sekijima
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of Tsukuba, Ibaraki, Japan
| | - Masatoshi Miyakoshi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Niraula A, Danesh A, Merindol N, Meddeb-Mouelhi F, Desgagné-Penix I. Aromatic Amino Acids: Exploring Microalgae as a Potential Biofactory. BIOTECH 2025; 14:6. [PMID: 39982273 PMCID: PMC11843938 DOI: 10.3390/biotech14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
In recent times, microalgae have emerged as powerful hosts for biotechnological applications, ranging from the production of lipids and specialized metabolites (SMs) of pharmaceutical interest to biofuels, nutraceutical supplements, and more. SM synthesis through bioengineered pathways relies on the availability of aromatic amino acids (AAAs) as an essential precursor. AAAs, phenylalanine, tyrosine, and tryptophan are also the building blocks of proteins, maintaining the structural and functional integrity of cells. Hence, they are crucial intermediates linking the primary and specialized metabolism. The biosynthesis pathway of AAAs in microbes and plants has been studied for decades, but not much is known about microalgae. The allosteric control present in this pathway has been targeted for metabolic engineering in microbes. This review focuses on the biosynthesis of AAAs in eukaryotic microalgae and engineering techniques for enhanced production. All the putative genes involved in AAA pathways in the model microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum are listed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (A.N.); (A.D.); (N.M.); (F.M.-M.)
| |
Collapse
|
5
|
Wang K, Chen TL, Zhang XX, Cao JB, Wang P, Wang M, Du JL, Mu Y, Tao R. Unveiling tryptophan dynamics and functions across model organisms via quantitative imaging. BMC Biol 2024; 22:258. [PMID: 39538250 PMCID: PMC11562630 DOI: 10.1186/s12915-024-02058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Tryptophan is an essential amino acid involved in critical cellular processes in vertebrates, serving as a precursor for serotonin and kynurenine, which are key neuromodulators to influence neural and immune functions. Systematic and quantitative measurement of tryptophan is vital to understanding these processes. RESULTS Here, we utilized a robust and highly responsive green ratiometric indicator for tryptophan (GRIT) to quantitatively measure tryptophan dynamics in bacteria, mitochondria of mammalian cell cultures, human serum, and intact zebrafish. At the cellular scale, these quantitative analyses uncovered differences in tryptophan dynamics across cell types and organelles. At the whole-organism scale, we revealed that inflammation-induced tryptophan concentration increases in zebrafish brain led to elevated serotonin and kynurenine levels, prolonged sleep duration, suggesting a novel metabolic connection between immune response and behavior. Moreover, GRIT's application in detecting reduced serum tryptophan levels in patients with inflammation symptoms suggests its potential as a high-throughput diagnostic tool. CONCLUSIONS In summary, this study introduces GRIT as a powerful method for studying tryptophan metabolism and its broader physiological implications, paving the way for new insights into the metabolic regulation of health and disease across multiple biological scales.
Collapse
Affiliation(s)
- Kui Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Tian-Lun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xin-Xin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai, 200031, China
| | - Jian-Bin Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Xi-Men Road, Zhejiang, 317000, China
| | - Pengcheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong-Jiang Road, Shanghai, 200092, China
| | - Mingcang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Xi-Men Road, Zhejiang, 317000, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai, 200031, China.
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China.
| | - Rongkun Tao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
6
|
Ross TD, Klausmeier CA, Venturelli OS. Metabolic interplay drives population cycles in a cross-feeding microbial community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618235. [PMID: 39463925 PMCID: PMC11507797 DOI: 10.1101/2024.10.14.618235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Population cycles are prevalent in ecosystems and play key roles in determining their functions1,2. While multiple mechanisms have been theoretically shown to generate population cycles3-6, there are limited examples of mutualisms driving self-sustained oscillations. Using an engineered microbial community that cross-feeds essential amino acids, we experimentally demonstrate cycles in strain abundance that are robust across environmental conditions. A nonlinear dynamical model that incorporates the experimentally observed cross-inhibition of amino acid production recapitulates the population cycles. The model shows that the cycles represent internally generated relaxation oscillations, which emerge when fast resource dynamics with positive feedback drive slow changes in strain abundance. Our findings highlight the critical role of resource dynamics and feedback in shaping population cycles in microbial communities and have implications for biotechnology.
Collapse
Affiliation(s)
- Tyler D. Ross
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison; Madison, WI 53706, USA
| | - Christopher A. Klausmeier
- W. K. Kellogg Biological Station, Michigan State University; Hickory Corners, MI 49060, USA
- Program in Ecology, Evolution and Behavior, Michigan State University; East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University; East Lansing, MI 48824, USA
- Department of Integrative Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Ophelia S. Venturelli
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| |
Collapse
|
7
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
8
|
Ahamed A, Hosea R, Wu S, Kasim V. The Emerging Roles of the Metabolic Regulator G6PD in Human Cancers. Int J Mol Sci 2023; 24:17238. [PMID: 38139067 PMCID: PMC10743588 DOI: 10.3390/ijms242417238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of glycolysis, that converts glucose-6-phosphate (G6P) into 6-phosphogluconolactone (6PGL). Furthermore, PPP produces ribose-5-phosphate (R5P), which provides sugar-phosphate backbones for nucleotide synthesis as well as nicotinamide adenine dinucleotide phosphate (NADPH), an important cellular reductant. Several studies have shown enhanced G6PD expression and PPP flux in various tumor cells, as well as their correlation with tumor progression through cancer hallmark regulation, especially reprogramming cellular metabolism, sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Inhibiting G6PD could suppress tumor cell proliferation, promote cell death, reverse chemoresistance, and inhibit metastasis, suggesting the potential of G6PD as a target for anti-tumor therapeutic strategies. Indeed, while challenges-including side effects-still remain, small-molecule G6PD inhibitors showing potential anti-tumor effect either when used alone or in combination with other anti-tumor drugs have been developed. This review provides an overview of the structural significance of G6PD, its role in and regulation of tumor development and progression, and the strategies explored in relation to G6PD-targeted therapy.
Collapse
Affiliation(s)
- Alfar Ahamed
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rendy Hosea
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
9
|
Harrison SA, Webb WL, Rammu H, Lane N. Prebiotic Synthesis of Aspartate Using Life's Metabolism as a Guide. Life (Basel) 2023; 13:life13051177. [PMID: 37240822 DOI: 10.3390/life13051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A protometabolic approach to the origins of life assumes that the conserved biochemistry of metabolism has direct continuity with prebiotic chemistry. One of the most important amino acids in modern biology is aspartic acid, serving as a nodal metabolite for the synthesis of many other essential biomolecules. Aspartate's prebiotic synthesis is complicated by the instability of its precursor, oxaloacetate. In this paper, we show that the use of the biologically relevant cofactor pyridoxamine, supported by metal ion catalysis, is sufficiently fast to offset oxaloacetate's degradation. Cu2+-catalysed transamination of oxaloacetate by pyridoxamine achieves around a 5% yield within 1 h, and can operate across a broad range of pH, temperature, and pressure. In addition, the synthesis of the downstream product β-alanine may also take place in the same reaction system at very low yields, directly mimicking an archaeal synthesis route. Amino group transfer supported by pyridoxal is shown to take place from aspartate to alanine, but the reverse reaction (alanine to aspartate) shows a poor yield. Overall, our results show that the nodal metabolite aspartate and related amino acids can indeed be synthesised via protometabolic pathways that foreshadow modern metabolism in the presence of the simple cofactor pyridoxamine and metal ions.
Collapse
Affiliation(s)
- Stuart A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - William L Webb
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Hanadi Rammu
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
Sheng Q, Yi L, Zhong B, Wu X, Liu L, Zhang B. Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnol Adv 2023; 62:108073. [PMID: 36464143 DOI: 10.1016/j.biotechadv.2022.108073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.
Collapse
Affiliation(s)
- Qi Sheng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
11
|
A Molecular Dynamic Model of Tryptophan Overproduction in Escherichia coli. FERMENTATION 2022. [DOI: 10.3390/fermentation8100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several deterministic models simulate the main molecular biology interactions among the numerous mechanisms controlling the dynamics of the tryptophan operon in native strains. However, no models exist to investigate bacterial tryptophan production from a biotechnological point of view. Here, we modified tryptophan models for native production to propose a biotechnological working model that incorporates the activity of tryptophan secretion systems and genetic modifications made in two reported E. coli strains. The resultant deterministic model could emulate the production of tryptophan in the same order of magnitude as those quantified experimentally by the genetically engineered E. coli strains GPT1001 and GPT1002 in shake flasks. We hope this work may contribute to the rational development of biological models that define and include the main parameters and molecular components for designing and engineering efficient biotechnological chassis to produce valuable chemicals.
Collapse
|
12
|
Petrova YD, Mahenthiralingam E. Discovery, mode of action and secretion of Burkholderia sensu lato key antimicrobial specialised metabolites. Cell Surf 2022; 8:100081. [PMID: 36277081 PMCID: PMC9579380 DOI: 10.1016/j.tcsw.2022.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Burkholderia sensu lato bacteria have genomes rich in biosynthetic gene clusters (BGCs) encoding for multiple bioactive specialised metabolites. Diverse classes of antimicrobial natural products have been isolated from Burkholderia, including polyynes, shikimate pathway derivatives, polyketides, non-ribosomal peptides and hybrid polyketide non-ribosomal peptides. We highlight examples of Burkholderia metabolites, overviewing their biosynthesis, bioactivity, mechanisms of action and secretion.
Collapse
|
13
|
Wan Y, Zuo T, Xu Z, Zhang F, Zhan H, Chan D, Leung TF, Yeoh YK, Chan FKL, Chan R, Ng SC. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut 2022; 71:910-918. [PMID: 34312160 DOI: 10.1136/gutjnl-2020-324015] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The gut microbiota has been suggested to play a role in autism spectrum disorder (ASD). We postulate that children with ASD harbour an altered developmental profile of the gut microbiota distinct from that of typically developing (TD) children. Here, we aimed to characterise compositional and functional alterations in gut microbiome in association with age in children with ASD and to identify novel faecal bacterial markers for predicting ASD. DESIGN We performed deep metagenomic sequencing in faecal samples of 146 Chinese children (72 ASD and 74 TD children). We compared gut microbial composition and functions between children with ASD and TD children. Candidate bacteria markers were identified and validated by metagenomic analysis. Gut microbiota development in relation to chronological age was assessed using random forest model. RESULTS ASD and chronological age had the most significant and largest impacts on children's faecal microbiome while diet showed no correlation. Children with ASD had significant alterations in faecal microbiome composition compared with TD children characterised by increased bacterial richness (p=0.021) and altered microbiome composition (p<0.05). Five bacterial species were identified to distinguish gut microbes in ASD and TD children, with areas under the receiver operating curve (AUC) of 82.6% and 76.2% in the discovery cohort and validation cohort, respectively. Multiple neurotransmitter biosynthesis related pathways in the gut microbiome were depleted in children with ASD compared with TD children (p<0.05). Developing dynamics of growth-associated gut bacteria (age-discriminatory species) seen in TD children were lost in children with ASD across the early-life age spectrum. CONCLUSIONS Gut microbiome in Chinese children with ASD was altered in composition, ecological network and functionality compared with TD children. We identified novel bacterial markers for prediction of ASD and demonstrated persistent underdevelopment of the gut microbiota in children with ASD which lagged behind their respective age-matched peers.
Collapse
Affiliation(s)
- Yating Wan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Tao Zuo
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Fen Zhang
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Hui Zhan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Dorothy Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China.,Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Ruth Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Siew C Ng
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| |
Collapse
|
14
|
Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Appl Environ Microbiol 2022; 88:e0243021. [PMID: 35285712 DOI: 10.1128/aem.02430-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 has long been studied for its diverse and robust metabolisms, yet many genes and proteins imparting these growth capacities remain uncharacterized. Using pooled mutant fitness assays, we identified genes and proteins involved in the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosynthesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, significant fitness phenotypes were elicited in 672 different genes including 100 transcriptional regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and propose assimilatory pathways for the compounds based on this wealth of genetic data. To complement these data, we characterize the substrate range of three promiscuous aminotransferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the specificity of five transcriptional regulators, explaining some fitness data results and exploring their potential to be developed into useful synthetic biology tools. In addition, we use manifold learning to create an interactive visualization tool for interpreting our BarSeq data, which will improve the accessibility and utility of this work to other researchers. IMPORTANCE Understanding the genetic basis of P. putida's diverse metabolism is imperative for us to reach its full potential as a host for metabolic engineering. Many target molecules of the bioeconomy and their precursors contain nitrogen. This study provides functional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous compounds, and provides an interactive tool for visualizing these data. We further characterize several aminotransferases, lactamases, and regulators, which are of particular interest for metabolic engineering.
Collapse
|
15
|
Miyakoshi M, Okayama H, Lejars M, Kanda T, Tanaka Y, Itaya K, Okuno M, Itoh T, Iwai N, Wachi M. Mining RNA-seq data reveals the massive regulon of GcvB small RNA and its physiological significance in maintaining amino acid homeostasis in Escherichia coli. Mol Microbiol 2022; 117:160-178. [PMID: 34543491 PMCID: PMC9299463 DOI: 10.1111/mmi.14814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs regulate the expression of multiple genes through imperfect base-pairing with target mRNAs mediated by RNA chaperone proteins such as Hfq. GcvB is the master sRNA regulator of amino acid metabolism and transport in a wide range of Gram-negative bacteria. Recently, independent RNA-seq approaches identified a plethora of transcripts interacting with GcvB in Escherichia coli. In this study, the compilation of RIL-seq, CLASH, and MAPS data sets allowed us to identify GcvB targets with high accuracy. We validated 21 new GcvB targets repressed at the posttranscriptional level, raising the number of direct targets to >50 genes in E. coli. Among its multiple seed sequences, GcvB utilizes either R1 or R3 to regulate most of these targets. Furthermore, we demonstrated that both R1 and R3 seed sequences are required to fully repress the expression of gdhA, cstA, and sucC genes. In contrast, the ilvLXGMEDA polycistronic mRNA is targeted by GcvB through at least four individual binding sites in the mRNA. Finally, we revealed that GcvB is involved in the susceptibility of peptidase-deficient E. coli strain (Δpeps) to Ala-Gln dipeptide by regulating both Dpp dipeptide importer and YdeE dipeptide exporter via R1 and R3 seed sequences, respectively.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Haruna Okayama
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Maxence Lejars
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takeshi Kanda
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yuki Tanaka
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kaori Itaya
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Miki Okuno
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Present address:
School of MedicineKurume UniversityKurumeJapan
| | - Takehiko Itoh
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Noritaka Iwai
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Masaaki Wachi
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
16
|
Coulson TJD, Malenfant RM, Patten CL. Characterization of the TyrR Regulon in the Rhizobacterium Enterobacter ludwigii UW5 Reveals Overlap with the CpxR Envelope Stress Response. J Bacteriol 2020; 203:e00313-20. [PMID: 33046562 PMCID: PMC7723952 DOI: 10.1128/jb.00313-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The TyrR transcription factor controls the expression of genes for the uptake and biosynthesis of aromatic amino acids in Escherichia coli In the plant-associated and clinically significant proteobacterium Enterobacter ludwigii UW5, the TyrR orthologue was previously shown to regulate genes that encode enzymes for synthesis of the plant hormone indole-3-acetic acid and for gluconeogenesis, indicating a broader function for the transcription factor. This study aimed to delineate the TyrR regulon of E. ludwigii by comparing the transcriptomes of the wild type and a tyrR deletion strain. In E. ludwigii, TyrR positively or negatively regulates the expression of over 150 genes. TyrR downregulated expression of envelope stress response regulators CpxR and CpxP through interaction with a DNA binding site in the intergenic region between divergently transcribed cpxP and cpxR Repression of cpxP was alleviated by tyrosine. Methyltransferase gene dmpM, which is possibly involved in antibiotic synthesis, was strongly activated in the presence of tyrosine and phenylalanine by TyrR binding to its promoter region. TyrR also regulated expression of genes for aromatic catabolism and anaerobic respiration. Our findings suggest that the E. ludwigii TyrR regulon has diverged from that of E. coli to include genes for survival in the diverse environments that this bacterium inhabits and illustrate the expansion and plasticity of transcription factor regulons.IMPORTANCE Genome-wide RNA sequencing revealed a broader regulatory role for the TyrR transcription factor in the ecologically versatile bacterium Enterobacter ludwigii beyond that of aromatic amino acid synthesis and transport that constitute the role of the TyrR regulon of E. coli In E. ludwigii, a plant symbiont and human gut commensal, the TyrR regulon is expanded to include genes that are beneficial for plant interactions and response to stresses. Identification of the genes regulated by TyrR provides insight into the mechanisms by which the bacterium adapts to its environment.
Collapse
Affiliation(s)
- Thomas J D Coulson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - René M Malenfant
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Cheryl L Patten
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
17
|
Krause JL, Haange SB, Schäpe SS, Engelmann B, Rolle-Kampczyk U, Fritz-Wallace K, Wang Z, Jehmlich N, Türkowsky D, Schubert K, Pöppe J, Bote K, Rösler U, Herberth G, von Bergen M. The glyphosate formulation Roundup® LB plus influences the global metabolome of pig gut microbiota in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140932. [PMID: 32731069 DOI: 10.1016/j.scitotenv.2020.140932] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 05/20/2023]
Abstract
Glyphosate is the world's most widely used herbicide, and its potential side effects on the intestinal microbiota of various animals, from honeybees to livestock and humans, are currently under discussion. Pigs are among the most abundant livestock animals worldwide and an impact of glyphosate on their intestinal microbiota function can have serious consequences on their health, not to mention the economic effects. Recent studies that addressed microbiota-disrupting effects focused on microbial taxonomy but lacked functional information. Therefore, we chose an experimental design with a short incubation time in which effects on the community structure are not expected, but functional effects can be detected. We cultivated intestinal microbiota derived from pig colon in chemostats and investigated the acute effect of 228 mg/d glyphosate acid equivalents from Roundup® LB plus, a frequently applied glyphosate formulation. The applied glyphosate concentration resembles a worst-case scenario for an 8-9 week-old pig and relates to the maximum residue levels of glyphosate on animal fodder. The effects were determined on the functional level by metaproteomics, targeted and untargeted meta-metabolomics, while variations in community structure were analyzed by 16S rRNA gene profiling and on the single cell level by microbiota flow cytometry. Roundup® LB plus did not affect the community taxonomy or the enzymatic repertoire of the cultivated microbiota in general or on the expression of the glyphosate target enzyme 5-enolpyruvylshikimate-3-phosphate synthase in detail. On the functional level, targeted metabolite analysis of short chain fatty acids (SCFAs), free amino acids and bile acids did not reveal significant changes, whereas untargeted meta-metabolomics did identify some effects on the functional level. This multi-omics approach provides evidence for subtle metabolic effects of Roundup® LB plus under the conditions applied.
Collapse
Affiliation(s)
- Jannike L Krause
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany.
| | - Sven-Bastiaan Haange
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Stephanie S Schäpe
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Beatrice Engelmann
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Katarina Fritz-Wallace
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; National Center for Tumor Diseases - NCT, Dresden, Germany
| | - Zhipeng Wang
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Dominique Türkowsky
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Kristin Schubert
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Judith Pöppe
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Katrin Bote
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Uwe Rösler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Gunda Herberth
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Germany.
| |
Collapse
|
18
|
Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K, Palsson BO, Galagan JE, Collado-Vides J. Redefining fundamental concepts of transcription initiation in bacteria. Nat Rev Genet 2020; 21:699-714. [PMID: 32665585 PMCID: PMC7990032 DOI: 10.1038/s41576-020-0254-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.
Collapse
Affiliation(s)
- Citlalli Mejía-Almonte
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | | | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jacques van Helden
- Aix-Marseille University, INSERM UMR S 1090, Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
19
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
20
|
Walker DM, Freddolino PL, Harshey RM. A Well-Mixed E. coli Genome: Widespread Contacts Revealed by Tracking Mu Transposition. Cell 2020; 180:703-716.e18. [PMID: 32059782 DOI: 10.1016/j.cell.2020.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/21/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
The three-dimensional structures of chromosomes are increasingly being recognized as playing a major role in cellular regulatory states. The efficiency and promiscuity of phage Mu transposition was exploited to directly measure in vivo interactions between genomic loci in E. coli. Two global organizing principles have emerged: first, the chromosome is well-mixed and uncompartmentalized, with transpositions occurring freely between all measured loci; second, several gene families/regions show "clustering": strong three-dimensional co-localization regardless of linear genomic distance. The activities of the SMC/condensin protein MukB and nucleoid-compacting protein subunit HU-α are essential for the well-mixed state; HU-α is also needed for clustering of 6/7 ribosomal RNA-encoding loci. The data are explained by a model in which the chromosomal structure is driven by dynamic competition between DNA replication and chromosomal relaxation, providing a foundation for determining how region-specific properties contribute to both chromosomal structure and gene regulation.
Collapse
Affiliation(s)
- David M Walker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
21
|
Integrated Metabolomics and Transcriptomics Suggest the Global Metabolic Response to 2-Aminoacrylate Stress in Salmonella enterica. Metabolites 2019; 10:metabo10010012. [PMID: 31878179 PMCID: PMC7023182 DOI: 10.3390/metabo10010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, 2-aminoacrylate (2AA) is a reactive enamine intermediate generated during a number of biochemical reactions. When the 2-iminobutanoate/2-iminopropanoate deaminase (RidA; EC: 3.5.99.10) is eliminated, 2AA accumulates and inhibits the activity of multiple pyridoxal 5’-phosphate(PLP)-dependent enzymes. In this study, untargeted proton nuclear magnetic resonance (1H NMR) metabolomics and transcriptomics data were used to uncover the global metabolic response of S. enterica to the accumulation of 2AA. The data showed that elimination of RidA perturbed folate and branched chain amino acid metabolism. Many of the resulting perturbations were consistent with the known effect of 2AA stress, while other results suggested additional potential enzyme targets of 2AA-dependent damage. The majority of transcriptional and metabolic changes appeared to be the consequence of downstream effects on the metabolic network, since they were not directly attributable to a PLP-dependent enzyme. In total, the results highlighted the complexity of changes stemming from multiple perturbations of the metabolic network, and suggested hypotheses that will be valuable in future studies of the RidA paradigm of endogenous 2AA stress.
Collapse
|
22
|
Choi SS, Seo SY, Park SO, Lee HN, Song JS, Kim JY, Park JH, Kim S, Lee SJ, Chun GT, Kim ES. Cell Factory Design and Culture Process Optimization for Dehydroshikimate Biosynthesis in Escherichia coli. Front Bioeng Biotechnol 2019; 7:241. [PMID: 31649923 PMCID: PMC6795058 DOI: 10.3389/fbioe.2019.00241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
3-Dehydroshikimate (DHS) is a useful starting metabolite for the biosynthesis of muconic acid (MA) and shikimic acid (SA), which are precursors of various valuable polymers and drugs. Although DHS biosynthesis has been previously reported in several bacteria, the engineered strains were far from satisfactory, due to their low DHS titers. Here, we created an engineered Escherichia coli cell factory to produce a high titer of DHS as well as an efficient system for the conversion DHS into MA. First, the genes showing negative effects on DHS accumulation in E. coli, such as tyrR (tyrosine dependent transcriptional regulator), ptsG (glucose specific sugar: phosphoenolpyruvate phosphotransferase), and pykA (pyruvate kinase 2), were disrupted. In addition, the genes involved in DHS biosynthesis, such as aroB (DHQ synthase), aroD (DHQ dehydratase), ppsA (phosphoenolpyruvate synthase), galP (D-galactose transporter), aroG (DAHP synthase), and aroF (DAHP synthase), were overexpressed to increase the glucose uptake and flux of intermediates. The redesigned DHS-overproducing E. coli strain grown in an optimized medium produced ~117 g/L DHS in 7-L fed-batch fermentation, which is the highest level of DHS production demonstrated in E. coli. To accomplish the DHS-to-MA conversion, which is originally absent in E. coli, a codon-optimized heterologous gene cassette containing asbF, aroY, and catA was expressed as a single operon under a strong promoter in a DHS-overproducing E. coli strain. This redesigned E. coli grown in an optimized medium produced about 64.5 g/L MA in 7-L fed-batch fermentation, suggesting that the rational cell factory design of DHS and MA biosynthesis could be a feasible way to complement petrochemical-based chemical processes.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Chuncheon-si, South Korea.,Department of Molecular Bio-Science, Kangwon National University, Chuncheon-si, South Korea
| | - Sun-Ok Park
- STR Biotech Co., Ltd., Chuncheon-si, South Korea
| | - Han-Na Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea.,STR Biotech Co., Ltd., Chuncheon-si, South Korea
| | - Ji-Soo Song
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Ji-Yeon Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Ji-Hoon Park
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Sangyong Kim
- Green Chemistry and Materials Group, Korea Institute of Industrial Technology, Cheonan-si, South Korea.,Green Process and System Engineering Major, Korea University of Science and Technology (UST), Daejeon, South Korea
| | | | - Gie-Taek Chun
- Department of Molecular Bio-Science, Kangwon National University, Chuncheon-si, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
23
|
Metabolic engineering for improving l-tryptophan production in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:55-65. [DOI: 10.1007/s10295-018-2106-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/03/2018] [Indexed: 11/26/2022]
Abstract
Abstract
l-Tryptophan is an important aromatic amino acid that is used widely in the food, chemical, and pharmaceutical industries. Compared with the traditional synthetic methods, production of l-tryptophan by microbes is environmentally friendly and has low production costs, and feed stocks are renewable. With the development of metabolic engineering, highly efficient production of l-tryptophan in Escherichia coli has been achieved by eliminating negative regulation factors, improving the intracellular level of precursors, engineering of transport systems and overexpression of rate-limiting enzymes. However, challenges remain for l-tryptophan biosynthesis to be cost-competitive. In this review, successful and applicable strategies derived from metabolic engineering for increasing l-tryptophan accumulation in E. coli are summarized. In addition, perspectives for further efficient production of l-tryptophan are discussed.
Collapse
|
24
|
Miller DV, Rauch BJ, Harich K, Xu H, Perona JJ, White RH. Promiscuity of methionine salvage pathway enzymes in Methanocaldococcus jannaschii. MICROBIOLOGY-SGM 2018; 164:969-981. [PMID: 29877790 DOI: 10.1099/mic.0.000670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The methionine salvage pathway (MSP) is critical for regeneration of S-adenosyl-l-methionine (SAM), a widely used cofactor involved in many essential metabolic reactions. The MSP has been completely elucidated in aerobic organisms, and found to rely on molecular oxygen. Since anaerobic organisms do not use O2, an alternative pathway(s) must be operating. We sought to evaluate whether the functions of two annotated MSP enzymes from Methanocaldococcus jannaschii, a methylthioinosine phosphorylase (MTIP) and a methylthioribose 1-phosphate isomerase (MTRI), are consistent with functioning in a modified anaerobic MSP (AnMSP). We show here that recombinant MTIP is active with six different purine nucleosides, consistent with its function as a general purine nucleoside phosphorylase for both AnMSP and purine salvage. Recombinant MTRI is active with both 5-methylthioribose 1-phosphate and 5-deoxyribose 1-phosphate as substrates, which are generated from phosphororolysis of 5'-methylthioinosine and 5'-deoxyinosine by MTIP, respectively. Together, these data suggest that MTIP and MTRI may function in a novel pathway for recycling the 5'-deoxyadenosine moiety of SAM in M. jannaschii. These enzymes may also enable biosynthesis of 6-deoxy-5-ketofructose 1-phosphate (DKFP), an essential intermediate in aromatic amino acid biosynthesis. Finally, we utilized a homocysteine auxotrophic strain of Methanosarcina acetivorans Δma1821-22Δoahs (HcyAux) to identify potential AnMSP intermediates in vivo. Growth recovery experiments of the M. acetivorans HcyAux were performed with known and proposed intermediates for the AnMSP. Only one metabolite, 2-keto-(4-methylthio)butyric acid, rescued growth of M. acetivorans HcyAux in the absence of homocysteine. This observation may indicate that AnMSP pathways substantially differ among methanogens from phylogenetically divergent genera.
Collapse
Affiliation(s)
- Danielle V Miller
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Present address: Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Benjamin J Rauch
- Department of Chemistry, Portland State University, Portland, OR, USA.,Present address: Zymergen, Inc., 1650 65th Street, Emeryville, CA 94608, USA
| | - Kim Harich
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - John J Perona
- Department of Chemistry, Portland State University, Portland, OR, USA.,Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - Robert H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
25
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
26
|
Price MN, Zane GM, Kuehl JV, Melnyk RA, Wall JD, Deutschbauer AM, Arkin AP. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics. PLoS Genet 2018; 14:e1007147. [PMID: 29324779 PMCID: PMC5764234 DOI: 10.1371/journal.pgen.1007147] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/10/2017] [Indexed: 11/18/2022] Open
Abstract
For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine) by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes. For a few bacteria, it is well known how they can make all 20 of the standard amino acids (the building blocks of proteins). For many other bacteria, their genome sequence implies that there are gaps in these biosynthetic pathways, so that the bacteria cannot make all of the amino acids and would need to take up some of them from their environment instead. But many bacteria can grow in minimal media (without any amino acids) despite these apparent gaps. We studied 10 bacteria with predicted gaps in amino acid biosynthesis that nevertheless grow in minimal media. Most of these gaps were spurious, but 11 of the gaps were genuine and could not be explained by current knowledge. Using high-throughput genetics, we systematically identified genes that were required for growth in minimal media and identified the biosynthetic genes that fill 9 of the 11 gaps. We hope that this approach can be applied to many more bacteria and will eventually allow us to accurately predict the nutritional requirements of a bacterium from its genome sequence.
Collapse
Affiliation(s)
- Morgan N. Price
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail: (MNP); (AMD); (APA)
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer V. Kuehl
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ryan A. Melnyk
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail: (MNP); (AMD); (APA)
| | - Adam P. Arkin
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail: (MNP); (AMD); (APA)
| |
Collapse
|
27
|
Burschowsky D, Thorbjørnsrud HV, Heim JB, Fahrig-Kamarauskaitė JR, Würth-Roderer K, Kast P, Krengel U. Inter-Enzyme Allosteric Regulation of Chorismate Mutase in Corynebacterium glutamicum: Structural Basis of Feedback Activation by Trp. Biochemistry 2017; 57:557-573. [PMID: 29178787 DOI: 10.1021/acs.biochem.7b01018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corynebacterium glutamicum is widely used for the industrial production of amino acids, nucleotides, and vitamins. The shikimate pathway enzymes DAHP synthase (CgDS, Cg2391) and chorismate mutase (CgCM, Cgl0853) play a key role in the biosynthesis of aromatic compounds. Here we show that CgCM requires the formation of a complex with CgDS to achieve full activity, and that both CgCM and CgDS are feedback regulated by aromatic amino acids binding to CgDS. Kinetic analysis showed that Phe and Tyr inhibit CgCM activity by inter-enzyme allostery, whereas binding of Trp to CgDS strongly activates CgCM. Mechanistic insights were gained from crystal structures of the CgCM homodimer, tetrameric CgDS, and the heterooctameric CgCM-CgDS complex, refined to 1.1, 2.5, and 2.2 Å resolution, respectively. Structural details from the allosteric binding sites reveal that DAHP synthase is recruited as the dominant regulatory platform to control the shikimate pathway, similar to the corresponding enzyme complex from Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | | | - Joel B Heim
- Department of Chemistry, University of Oslo , NO-0315 Oslo, Norway
| | | | | | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich , CH-8093 Zurich, Switzerland
| | - Ute Krengel
- Department of Chemistry, University of Oslo , NO-0315 Oslo, Norway
| |
Collapse
|
28
|
Diene SM, François P, Zbinden A, Entenza JM, Resch G. Comparative Genomics Analysis of Streptococcus tigurinus Strains Identifies Genetic Elements Specifically and Uniquely Present in Highly Virulent Strains. PLoS One 2016; 11:e0160554. [PMID: 27505001 PMCID: PMC4978470 DOI: 10.1371/journal.pone.0160554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Streptococcus tigurinus is responsible for severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. As described, S. tigurinus isolates AZ_3aT and AZ_14 were highly virulent (HV phenotype) in an experimental model of infective endocarditis and showed enhanced adherence and invasion of human endothelial cells when compared to low virulent S. tigurinus isolate AZ_8 (LV phenotype). Here, we sought whether genetic determinants could explain the higher virulence of AZ_3aT and AZ_14 isolates. Several genetic determinants specific to the HV strains were identified through extensive comparative genomics amongst which some were thought to be highly relevant for the observed HV phenotype. These included i) an iron uptake and metabolism operon, ii) an ascorbate assimilation operon, iii) a newly acquired PI-2-like pilus islets described for the first time in S. tigurinus, iv) a hyaluronate metabolism operon, v) an Entner-Doudoroff pathway of carbohydrates metabolism, and vi) an alternate pathways for indole biosynthesis. We believe that the identified genomic features could largely explain the phenotype of high infectivity of the two HV S. tigurinus strains. Indeed, these features include determinants that could be involved at different stages of the disease such as survival of S. tigurinus in blood (iron uptake and ascorbate metabolism operons), initial attachment of bacterial pathogen to the damaged cardiac tissue and/or vegetation that formed on site (PI-2-like pilus islets), tissue invasion (hyaluronate operon and Entner-Doudoroff pathway) and regulation of pathogenicity (indole biosynthesis pathway).
Collapse
Affiliation(s)
- Seydina M. Diene
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - José Manuel Entenza
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Leyn SA, Suvorova IA, Kazakov AE, Ravcheev DA, Stepanova VV, Novichkov PS, Rodionov DA. Comparative genomics and evolution of transcriptional regulons in Proteobacteria. Microb Genom 2016; 2:e000061. [PMID: 28348857 PMCID: PMC5343134 DOI: 10.1099/mgen.0.000061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022] Open
Abstract
Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target genes for 1896 TFs constituting the studied orthologous groups of regulators. These include a set of orthologues for 21 metabolism-associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more taxonomic groups and several additional TFs that represent non-orthologous substitutions of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents of the reconstructed regulons, we identified the core, taxonomy-specific and genome-specific TF regulon members and classified them by their metabolic functions. Detailed analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino-acid-specific regulons demonstrated remarkable differences in regulatory strategies used by various lineages of Proteobacteria. The obtained genomic collection of in silico reconstructed TF regulons contains a large number of new regulatory interactions that await future experimental validation. The collection provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative metabolic transporters and enzymes that are abundant in the reconstructed regulons.
Collapse
Affiliation(s)
- Semen A Leyn
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inna A Suvorova
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alexey E Kazakov
- 2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Vita V Stepanova
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry A Rodionov
- 4Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Waschina S, D'Souza G, Kost C, Kaleta C. Metabolic network architecture and carbon source determine metabolite production costs. FEBS J 2016; 283:2149-63. [PMID: 27029764 DOI: 10.1111/febs.13727] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/04/2016] [Accepted: 03/30/2016] [Indexed: 11/28/2022]
Abstract
Metabolism is essential to organismal life, because it provides energy and building block metabolites. Even though it is known that the biosynthesis of metabolites consumes a significant proportion of the resources available to a cell, the factors that determine their production costs remain less well understood. In this context, it is especially unclear how the nutritional environment affects the costs of metabolite production. Here, we use the amino acid metabolism of Escherichia coli as a model to show that the point at which a carbon source enters central metabolic pathways is a major determinant of individual metabolite production costs. Growth rates of auxotrophic genotypes, which in the presence of the required amino acid save biosynthetic costs, were compared to the growth rates that prototrophic cells achieved under the same conditions. The experimental results showed a strong concordance with computationally estimated biosynthetic costs, which allowed us, for the first time, to systematically quantify carbon source-dependent metabolite production costs. Thus, we demonstrate that the nutritional environment in combination with network architecture is an important but hitherto underestimated factor influencing biosynthetic costs and thus microbial growth. Our observations are highly relevant for the optimization of biotechnological processes as well as for understanding the ecology of microorganisms in their natural environments.
Collapse
Affiliation(s)
- Silvio Waschina
- Research Group Theoretical Systems Biology, Friedrich Schiller University Jena, Jena, Germany.,Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.,Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Glen D'Souza
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christoph Kaleta
- Research Group Theoretical Systems Biology, Friedrich Schiller University Jena, Jena, Germany.,Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
31
|
Microbial Factories for the Production of Benzylisoquinoline Alkaloids. Trends Biotechnol 2016; 34:228-241. [DOI: 10.1016/j.tibtech.2015.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
|
32
|
Kuepper J, Dickler J, Biggel M, Behnken S, Jäger G, Wierckx N, Blank LM. Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose. Front Microbiol 2015; 6:1310. [PMID: 26635771 PMCID: PMC4656820 DOI: 10.3389/fmicb.2015.01310] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
The Pseudomonas putida KT2440 strain was engineered in order to produce anthranilate (oAB, ortho-aminobenzoate), a precursor of the aromatic amino acid tryptophan, from glucose as sole carbon source. To enable the production of the metabolic intermediate oAB, the trpDC operon encoding an anthranilate phosphoribosyltransferase (TrpD) and an indole-3-glycerol phosphate synthase (TrpC), were deleted. In addition, the chorismate mutase (pheA) responsible for the conversion of chorismate over prephenate to phenylpyruvate was deleted in the background of the deletion of trpDC to circumvent a potential drain of precursor. To further increase the oAB production, a feedback insensitive version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by the aroG (D146N) gene and an anthranilate synthase (trpE (S40F) G) were overexpressed separately and simultaneously in the deletion mutants. With optimized production conditions in a tryptophan-limited fed-batch process a maximum of 1.54 ± 0.3 g L(-1) (11.23 mM) oAB was obtained with the best performing engineered P. putida KT2440 strain (P. putida ΔtrpDC pSEVA234_aroG (D146N) _trpE (S40F) G).
Collapse
Affiliation(s)
- Jannis Kuepper
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), Rheinisch-Westfälische Technische Hochschule Aachen UniversityAachen, Germany
| | - Jasmin Dickler
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), Rheinisch-Westfälische Technische Hochschule Aachen UniversityAachen, Germany
| | - Michael Biggel
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), Rheinisch-Westfälische Technische Hochschule Aachen UniversityAachen, Germany
| | | | | | - Nick Wierckx
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), Rheinisch-Westfälische Technische Hochschule Aachen UniversityAachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), Rheinisch-Westfälische Technische Hochschule Aachen UniversityAachen, Germany
| |
Collapse
|
33
|
Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 2014; 13:126. [PMID: 25200799 PMCID: PMC4174253 DOI: 10.1186/s12934-014-0126-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/17/2014] [Indexed: 11/10/2022] Open
Abstract
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.
Collapse
|