1
|
Li Y, Li H, Chen W, O’Riordan K, Mani N, Qi Y, Liu T, Mani S, Ozcan A. Deep learning-based detection of bacterial swarm motion using a single image. Gut Microbes 2025; 17:2505115. [PMID: 40366861 PMCID: PMC12080278 DOI: 10.1080/19490976.2025.2505115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
Motility is a fundamental characteristic of bacteria. Distinguishing between swarming and swimming, the two principal forms of bacterial movement, holds significant conceptual and clinical relevance. Conventionally, the detection of bacterial swarming involves inoculating samples on an agar surface and observing colony expansion, which is qualitative, time-intensive, and requires additional testing to rule out other motility forms. A recent methodology that differentiates swarming and swimming motility in bacteria using circular confinement offers a rapid approach to detecting swarming. However, it still heavily depends on the observer's expertise, making the process labor-intensive, costly, slow, and susceptible to inevitable human bias. To address these limitations, we developed a deep learning-based swarming classifier that rapidly and autonomously predicts swarming probability using a single blurry image. Compared with traditional video-based, manually processed approaches, our method is particularly suited for high-throughput environments and provides objective, quantitative assessments of swarming probability. The swarming classifier demonstrated in our work was trained on Enterobacter sp. SM3 and showed good performance when blindly tested on new swarming (positive) and swimming (negative) test images of SM3, achieving a sensitivity of 97.44% and a specificity of 100%. Furthermore, this classifier demonstrated robust external generalization capabilities when applied to unseen bacterial species, such as Serratia marcescens DB10 and Citrobacter koseri H6. This competitive performance indicates the potential to adapt our approach for diagnostic applications through portable devices, which would facilitate rapid, objective, on-site screening for bacterial swarming motility, potentially enhancing the early detection and treatment assessment of various diseases, including inflammatory bowel diseases (IBD) and urinary tract infections (UTI).
Collapse
Affiliation(s)
- Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Hao Li
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weijie Chen
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keelan O’Riordan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- ‘Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - Neha Mani
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yuxuan Qi
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, CA, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Sridhar Mani
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
- Department of Surgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ahmed ME, Aljarbou A, Mohammed HA, Khan RA. Bacteriocin isolated from Ralstonia mannitolilytica and bacteriocin-capped silver nanoparticles: Comparative effects on biofilm formation and LuxS Gene's expressions by Proteus mirabilis as an approach to counter MDR catheter infection. Microb Pathog 2025; 204:107558. [PMID: 40210139 DOI: 10.1016/j.micpath.2025.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Among undesirables in treating certain infections and diseases is the contamination of catheters, especially of the microbes' resistance to drugs. The situation has necessitated the search for alternative antimicrobial agents. Bacteriocin category, antibiotic-originate, peptide-natured, Ralstonia mannitolilytica microbes-produced, bacteriocin material, and the semi-pure bacteriocin capped silver metal nanoparticles (AgNPs) were used for combating the MDR (multi drug resistance) organism, Proteus mirabilis, which is the third-most common cause of UTI (urinary tract infection), and that is linked to catheter use, are being recommended for clinical use with certain development. The crude microbial product was isolated from the microbial entity, Ralstonia mannitolilytica, which grows in crude petroleum-contaminated soil, and was semi-purified for use in the synthesis of the bacteriocin-capped AgNPs. The prepared nanoparticles were characterized using X-ray diffraction, indicating the silver element's presence; field emission scanning electron microscopy, revealing near-spherical but irregular shapes of the bacteriocin-capped AgNPs with a size range of 34-46 nm; and atomic force microscopic analysis, which demonstrated the nanoparticles surface characteristics. The DLS analysis established the negative charge, and an average hydrodynamic size of 51 nm, while the UV-Vis spectroscopic analysis showed the absorption maxima (λmax) at 454 nm. The P. mirabilis isolates were numbered according to MDR detection by the VITEK 2 system (A to J), and the microbes appeared as a pale-coloured colony on MacConkey agar. The biofilm formation screening revealed the highest biofilm-producing isolates, identified as A, B, C, and D. The treatments with both bacteriocin and the bacteriocin-capped AgNPs showed that bacteriocin inhibited the biofilm formation for isolates A, B, and C, but isolate D was less affected, while bacteriocin capped AgNPs inhibited the film formation in isolates A, C, and D more than the bacteriocin alone. However, the activity level was low to moderate. In addition, the LuxS gene-down-regulating effects of bacteriocin and bacteriocin-capped AgNPs were also observed. The expression of the LuxS gene in P. mirabilis was lowered by bacteriocin-capped AgNPs during biofilm formation, while the isolates B and C lowered their expressions of the LuxS gene more effectively when the bacteriocin was used. The study finds the use of bacteriocin and bacteriocin-capped AgNPs of value for developing these products, especially bacteriocin-capped AgNPs, for managing the catheter infections. The products need further development and clinical testings.
Collapse
Affiliation(s)
- Mais E Ahmed
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq.
| | - Ahmed Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| |
Collapse
|
3
|
Thabit ZA, AlShaheeb ZA, Jaafar MR, Al-Qaysi SAS, Al-Shimmary SMH. Multidrug resistance and virulence profile of the commensal Proteus mirabilis isolated from a native Iraqi frozen chicken carcass. J Genet Eng Biotechnol 2025; 23:100490. [PMID: 40390501 PMCID: PMC12059684 DOI: 10.1016/j.jgeb.2025.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/21/2025]
Abstract
This study aimed to determine the prevalence of Proteus mirabilis in frozen chicken carcass from local slaughterhouse. It assesses the activities of nine antimicrobial agents and the presence of antimicrobial resistance genes and virulence genes. Thirty samples were collected from five local Iraqi companies. and then the antibiotic-resistance genes and virulence factor-related genes were detected via polymerase chain reaction (PCR). The results revealed that Nine P. mirabilis isolates were recovered, and the majority of the isolates were resistant to both nalidixic acid and azithromycin at a ratio of (100 %), followed by trimethoprim-sulfamethoxazole (sul1) (88.8 %), whereas the isolates were susceptible to imipenem and meropenem, and both ceftazidime and cefotaxime were efficient at a ratio of (88.8 %). All the isolates (100 %) were resistant to at least three classes of antibiotics and were classified as multidrug resistant. The PCR results indicated that the most common resistance genes were DNA Gyrase Subunit A Gene (gyrA) (100 %), Dihydropteroate Synthase Gene (sul1) (88.8 %), and Florenicol Resistance Gene (floR) (88.8 %), followed by Aminoglycoside N-Acetyltransferase Gene (acc (6')-lb) (44.4 %) and Macrolide Phosphotransferase Gene (mphA) (33.3 %). In addition, the virulence genes Zinc Metalloprotease A Gene (zapA), Uridine Monophosphate Synthase Gene (uraC), Histone-Modifying Protein A Gene (hpmA), Flagellin A Gene (flaA), Anti-Sigma Factor RsbA Gene (rsbA), and Multidrug Resistance Protein A Gene (mrpA) were found in the same proportion (100 %) of all P. mirabilis isolates. Our study emphasized that Proteus mirabilis has a high frequency of antibiotic resistance as a multidrug resistance pattern and furthermore demonstrated a high level of virulence factor gene detection, which might be a threat to food safety and human health. The phylogenetic tree analysis of the P. mirabilis isolates from chicken meat revealed high similarity to the database strain.
Collapse
Affiliation(s)
- Zaid A Thabit
- Al-Nahrain University, Biotechnology Research Center, Baghdad, Iraq
| | | | - May Ridha Jaafar
- Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Safaa A S Al-Qaysi
- Biology Department, College of Science for Women/University of Baghdad, Baghdad, Iraq.
| | - Sana M H Al-Shimmary
- Biology Department, College of Science for Women/University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
4
|
Almarmouri C, El-Gamal MI, Haider M, Hamad M, Qumar S, Sebastian M, Ghemrawi R, Muhammad JS, Burucoa C, Khoder G. Anti-urease therapy: a targeted approach to mitigating antibiotic resistance in Helicobacter pylori while preserving the gut microflora. Gut Pathog 2025; 17:37. [PMID: 40437630 PMCID: PMC12121022 DOI: 10.1186/s13099-025-00708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 05/07/2025] [Indexed: 06/01/2025] Open
Abstract
The global rise in antibiotic resistance has posed significant challenges to the effective management of Helicobacter pylori (H. pylori), a gastric pathogen linked to chronic gastritis, peptic ulcers, and gastric cancer. Conventional antibiotic therapies, while effective, face significant challenges, such as increasing antibiotic resistance, high recurrence rates, and adverse effects such as gut microflora dysbiosis. These limitations have driven the exploration of alternative antibiotic-free therapies, including the use of plant-based compounds, probiotics, nanoparticles, phage therapy, antimicrobial peptides, and H. pylori vaccines. Among these, urease-targeted therapy has shown particular promise. Urease enables the survival and colonization of H. pylori by neutralizing stomach acidity. Targeting this urease without disrupting beneficial gut microflora offers a selective mechanism to impair H. pylori, due to the absence of this enzyme in most of the human gut microbiome. In this review, we highlight advancements and limitations in the field of antibiotic-free therapies, with a particular focus on anti-urease strategies. We explore the structural and functional characteristics of urease, its role in H. pylori pathogenesis, and its potential as a therapeutic target. For the first time, we provide a comprehensive analysis of natural, semisynthetic, and synthetic anti-urease compounds, emphasizing their mechanisms of action, efficacy, and safety profiles. Advances in silico, in vitro, and in vivo studies have identified several promising anti-urease compounds with high specificity and minimal toxicity. By focusing on urease inhibition as a targeted strategy, this review underscores its potential to overcome antibiotic resistance while minimizing gut dysbiosis and improving the outcomes of H. pylori infection treatment.
Collapse
Affiliation(s)
- Christina Almarmouri
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shamsul Qumar
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Merylin Sebastian
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Christophe Burucoa
- Laboratoire de Bactériologie, U1070 INSERM, CHU de Poitiers, Université de Poitiers, 86000, Poitiers, France
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Lyra de Holanda Fonseca D, Scheunemann GS, Fortes BN, Ishida K, Galhardo RS. Interaction of the SXT/R391 element ICE PmiJpn1 with its natural host Proteus mirabilis. Microbiol Spectr 2025:e0033925. [PMID: 40407375 DOI: 10.1128/spectrum.00339-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/30/2025] [Indexed: 06/11/2025] Open
Abstract
Integrative and conjugative elements (ICEs) of the SXT/R391 family are mobile genetic elements that integrate into the bacterial host chromosome and can be transferred horizontally, spreading antimicrobial resistance genes. Our study aimed to evaluate aspects of the relationship between ICEPmiJpn1, one of the most widespread SXT/R391 variants, with its natural host Proteus mirabilis. For this investigation, we used isogenic strains (containing or not the ICEPmiJpn1) that enabled us to evaluate the influence of this element on several physiological aspects of P. mirabilis as well as the effect of different P. mirabilis genetic backgrounds on the conjugative transmission of the element. ICEPmiJpn1 did not impact the fitness, self-recognition, swarming, pathogenicity, and persistence abilities of this bacterium but increased biofilm formation in one strain. Additionally, conjugative transfer of the element to Escherichia coli is widely variable when different P. mirabilis strains are used as donors in mating assays. Our results indicate that ICEPmiJpn1 has no adverse effects on the physiology or pathogenicity of P. mirabilis, reflecting a stable association between this element and its host. Furthermore, the findings support the notion that ICE transfer between bacteria is influenced not only by element-specific regulators but also by strain-specific factors.IMPORTANCEMobile genetic elements play a key role in the spread of antimicrobial resistance, raising concerns about multidrug-resistant bacteria, yet their interactions with bacterial hosts are not well characterized. This study explores the relationship between ICEPmiJpn1, a globally distributed SXT/R391 integrative and conjugative element (ICE), and its natural host Proteus mirabilis, revealing minimal effects on bacterial fitness and pathogenicity. Nevertheless, strain-specific factors significantly influence conjugative transfer. These findings highlight the need for further research on host-dependent regulatory mechanisms that drive the spread of these elements. Understanding these dynamics is essential for developing strategies to mitigate the dissemination of antibiotic resistance in clinically relevant bacterial populations.
Collapse
Affiliation(s)
| | - Gaby Soares Scheunemann
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Nakanishi Fortes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Obeng-Nkrumah N, Kwao P, Owusu E, Tawiah-Abrokwa GD, Dzidzornu-Gomez J, Baidoo D, Duah FNA, Saidu S, Labi AK. Houseflies as Vectors of ESBL-Producing Enterobacterales: Insights from Hospital Settings in a Low- to Middle-Income Country. Foodborne Pathog Dis 2025. [PMID: 40402869 DOI: 10.1089/fpd.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025] Open
Abstract
The spread of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) in communities has been facilitated by direct contact with humans or animal carriers and insects such as houseflies. Houseflies may have an increased risk of human exposure to antimicrobial-resistant pathogens, including ESBL-E. In this study, we determined the presence of ESBL-E in houseflies and ready-to-eat food samples from selected food vending sites in five health care facilities in Greater Accra, Ghana. Sixty (60) food vending sites were included in this study. Flies (10) were pooled, and food (5 g) was macerated and homogenized aseptically in brain-heart infusion agar. Suspensions were cultured on MacConkey agar supplemented with 4 µg/mL cefotaxime for ∼18 h. Phenotypic and molecular characterization of ESBL-E was performed using a combination disk diffusion method, multiplex polymerase chain reaction, and direct nucleotide sequencing. Of the 60 food vending sites, 62% (37) of the food vendors had flies within their premises that carried ESBL-E, and 15% (9) of the food samples collected from the vendors were contaminated with ESBL-E. The most predominant ESBL-producing Enterobacterales from housefly samples was Proteus vulgaris (54%) and that of food samples were P. vulgaris (22.5%) and Escherichia coli (22.5%). All Enterobacterales from flies and food samples harbored an ESBL gene with blaCTX-M, mostly blaCTX-M-15, being the predominant gene and gene type, respectively. Houseflies may be potential contributors to the spread of ESBL-producing Enterobacterales in Ghana.
Collapse
Affiliation(s)
- Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Paul Kwao
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Enid Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Gloria Della Tawiah-Abrokwa
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jerry Dzidzornu-Gomez
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - David Baidoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Francisca Nana Afua Duah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Sarah Saidu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Appiah-Korang Labi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Prinster T, Harrison A, Dick C, Horvath DJ, Li B, Sievers G, Madamsetty R, Zhang J, Mason KM, Khoo C, Justice SS. Cranberry constituents prevent SOS-mediated filamentation of uropathogenic Escherichia coli. Infect Immun 2025; 93:e0060024. [PMID: 40208062 PMCID: PMC12070744 DOI: 10.1128/iai.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The diameter, length, and shape of bacteria are maintained with such high fidelity that these parameters are classically used as metrics in the distinction of bacterial species. Increasing evidence indicates that bacteria transiently shift their shapes into distinctive morphologies in response to environmental changes. Elongation of bacterial length into a filamentous shape provides unique survival advantages for many bacterial species. Analysis of 42 clinical isolates of uropathogenic Escherichia coli (UPEC) revealed that filamentation to host-derived antimicrobials is a conserved phenotype. Therefore, we hypothesize that filamentation represents a conserved mechanism of pathogenic bacterial persistence that can be targeted for narrow-spectrum, anti-virulence therapies. We demonstrate that cranberries prevent SulA-mediated filamentation of UPEC. Furthermore, we identify multiple fractions of cranberries that retain anti-filamentation properties. These studies provide mechanistic insight into the clinical efficacy of cranberry for patients with recurrent urinary tract infections. Inhibition of filamentation represents a novel approach to promote bacterial pathogen susceptibility to immune and antibiotic-mediated clearance to attenuate disease.
Collapse
Affiliation(s)
- Tracy Prinster
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Christopher Dick
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Dennis J. Horvath
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Birong Li
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Grace Sievers
- The College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | | | - Jingwen Zhang
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Christina Khoo
- Ocean Spray Cranberries, Inc, Lakeville, Massachusetts, USA
| | - Sheryl S. Justice
- The College of Nursing, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Zhang S, Li Q, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, He Y, Wu Z, Cheng A. Genomic analysis of Proteus mirabilis: Unraveling global epidemiology and antimicrobial resistance dissemination - emerging challenges for public health and biosecurity. ENVIRONMENT INTERNATIONAL 2025; 199:109487. [PMID: 40273554 DOI: 10.1016/j.envint.2025.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Given the escalating public health threat posed byProteus mirabilis(P. mirabilis) and its rapidly evolving drug resistance, it is imperative to elucidate its global epidemiology and resistance mechanisms through a comprehensive genomic lens. As of August 2024, 3,403 high-qualityP. mirabilisgenomes were retrieved from public databases (total 3,752), spanning 58 countries/regions, with the United States showing the highest report rate (52.51 %). Human-derived isolates, particularly from urine (34.47 %), were the primary source. A total of 239 antibiotic resistance genes (ARGs) were identified in P. mirabilis, with β-lactamase and carbapenemase genes being particularly widespread and isolates from China harboring the highest ARG counts. Globally,P. mirabilisisolates were categorized into 17 distinct clusters, with U.S. isolates showing the widest phylogenetic spread. Minimal SNP variations among isolates from different countries and hosts suggest transnational and cross-host clonal propagation. Frequent clonal transmission was also observed among diverse hosts and clinical sources.P. mirabiliscarries numerous integrative and conjugative elements (ICEs), some facilitating ARG dissemination (n = 215). Prophages, though ubiquitous, contributed minimally to ARG spread. Spearman's analysis revealed significant correlations between ARGs and insertion sequences (ISs), replicons, and ICEs. Ancestral state analysis indicated prophages were mainly acquired horizontally, while other mobile genetic elements (MGEs) were largely clonally transmitted. This study provides the first comprehensive genomic analysis ofP. mirabilis's global resistance landscape, highlighting the need to designate it as a novel antimicrobial resistance indicator and implement long-term surveillance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Qianlong Li
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, PR China.
| |
Collapse
|
9
|
Gracheva AS, Kuzovlev AN, Salnikova LE. Observational Study of Microbial Colonization and Infection in Neurological Intensive Care Patients Based on Electronic Health Records. Biomedicines 2025; 13:858. [PMID: 40299463 PMCID: PMC12025255 DOI: 10.3390/biomedicines13040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Patients with central nervous system injuries who are hospitalized in intensive care units (ICUs) are at high risk for nosocomial infections. Limited data are available on the incidence and patterns of microbial colonization and infection in this patient population. Methods: To fill this gap, we performed an electronic health record-based study of 1614 chronic patients with brain injury admitted to the ICU from 2017 to 2023. Results: Among the infectious complications, pneumonia was the most common (n = 879; 54.46%). Sepsis was diagnosed in 54 patients, of whom 46 (85%) were diagnosed with pneumonia. The only pathogen that showed an association with the development of pneumonia and sepsis in colonized patients was Pseudomonas aeruginosa (pneumonia: p = 7.2 × 10-9; sepsis: p = 1.7 × 10-5). Bacterial isolates from patients with and without pneumonia did not differ in pathogen titer or dynamics, but patients with monomicrobial culture were more likely to develop pneumonia than patients with polymicrobial culture (1 vs. 2 pathogens, p = 0.014; 1 + 2 pathogens vs. 3 + 4 pathogens, p = 2.8 × 10-6), although the pathogen titer was lower in monoculture than in polyculture. Bacterial isolates from all patients and all culture sites showed high levels of multidrug resistance (Gram-negative bacteria: 88-100%; Gram-positive bacteria: 48-97%), with no differences in multidrug-resistant organism (MDRO) colonization and infection rates. Conclusions: Our results highlight the high burden of MDROs in neurological ICUs and provide novel ecosystem-based insights into mono- and polymicrobial colonization and infection development. These findings may be useful for developing strategies to protect against infections.
Collapse
Affiliation(s)
- Alesya S. Gracheva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.S.G.); (A.N.K.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.S.G.); (A.N.K.)
| | - Lyubov E. Salnikova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.S.G.); (A.N.K.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
10
|
Zegadło K, Drzewiecka D, Czerwonka G. Unraveling the genome of Proteus mirabilis strain representing the O78 serogroup: Insights into the unique features of the O-antigen biosynthesis gene cluster. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105730. [PMID: 39999940 DOI: 10.1016/j.meegid.2025.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Lipopolysaccharide (LPS), the outermost component of Gram-negative bacterial cells, is critical to bacterial pathogenicity, functioning as an endotoxin that activates the human immune system and induces an inflammatory response during infection. LPS comprises three primary components: lipid A, the oligosaccharide core, and the O-antigen. The O-antigen, in particular, is highly variable and strain-specific, playing a pivotal role in how the host immune system recognizes bacterial cells. This study focuses on the Proteus mirabilis 1B-m strain, belonging to serogroup O78, the most prevalent serogroup in hospitals in Lodz, Poland. Given the increasing hospitalization rates, particularly among the elderly and catheterized patients, understanding the common strains and their virulence factors is crucial. This work presents bioinformatics analyses based on next-generation sequencing data (both short and long reads), aimed at elucidating the structure of the gene cluster responsible for O-antigen biosynthesis in the 1B-m strain. Our results suggest the presence of a unique wzx flippase in the strain, alongside the characterization of role of the licD gene, which was most often assigned a role in the phosphocholine decoration process of LPS. The function of licD in this strain appears to be linked to the ispD gene, potentially involved in the biosynthesis of CDP-ribitol. Additionally, we explored other genomic features, including the strain's genetic similarity to closely related microorganisms, the presence of antimicrobial resistance genes, and prophage elements. This study provides valuable insights into the genetic factors underlying the pathogenicity of the P. mirabilis 1B-m strain and its potential implications for hospital-acquired infections.
Collapse
Affiliation(s)
- Katarzyna Zegadło
- Division of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, Kielce, Poland
| | - Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Grzegorz Czerwonka
- Division of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, Kielce, Poland.
| |
Collapse
|
11
|
González-Fandos E, Martínez Laorden A, Condón Usón S, Serrano Andrés MJ. Growth and Diversity of Spoiling and Foodborne Bacteria in Poultry Hamburgers in Modified Atmosphere and with Sulfites During Shelf Life. Microorganisms 2025; 13:754. [PMID: 40284591 PMCID: PMC12029653 DOI: 10.3390/microorganisms13040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Poultry meat is the most consumed meat worldwide due to its low fat content, sensory qualities, and affordability. However, its rapid spoilage, especially when minced for products like hamburgers, is a challenge. Strategies such as sulfite addition or modified-atmosphere packaging (MAP) can help control spoilage and microbial growth. This study evaluated both approaches by analyzing bacterial development in poultry hamburgers through total viable counts and MALDI-TOF identification, combining food-pathogens detection. The addition of 5 mg/kg sulfites had a limited effect, whereas increasing CO2 levels in the packaging significantly extended the shelf life by reducing the bacterial growth rates and prolonging the lag phases. The most affected bacteria were aerobic mesophilic and psychrotrophic bacteria, as well as Brochothrix thermosphacta. Carnobacterium spp. dominated the aerobic mesophilic group, while Enterobacter spp. was prevalent in Enterobacteriaceae and aerobic mesophilic isolates, highlighting its role in spoilage. Hafnia alvei was also relevant in the final spoilage stages. These results suggest the importance of these bacteria in poultry hamburger decay and demonstrate that MAP is an effective method to delay spoilage.
Collapse
Affiliation(s)
- Elena González-Fandos
- Department of Food Technology, CIVA Research Center, University of La Rioja, de la Paz Avenue, 26006 Logroño, Spain; (E.G.-F.); (A.M.L.)
| | - Alba Martínez Laorden
- Department of Food Technology, CIVA Research Center, University of La Rioja, de la Paz Avenue, 26006 Logroño, Spain; (E.G.-F.); (A.M.L.)
| | - Santiago Condón Usón
- Food Science and Technology Department, Instituto Agroalimentario de Aragón IA2, Universidad de Zaragoza, Miguel Servet St. 177, 50013 Zaragoza, Spain;
| | - María Jesús Serrano Andrés
- Instituto Agroalimentario de Aragón IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Miguel Servet St. 177, 50013 Zaragoza, Spain
| |
Collapse
|
12
|
Odindo DA, Ochieng B, Onduru F, Ouma C, Onguru D, Awandu SS. Etiology of asymptomatic bacteriuria, antimicrobial susceptibility patterns and associated risk factors among pregnant women attending antenatal clinic in western Kenya. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004347. [PMID: 40112276 PMCID: PMC11925459 DOI: 10.1371/journal.pgph.0004347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Approximately 11.1% of pregnant women in Africa experience asymptomatic bacteriuria (ASB), and its proper understanding is critical due to its risks, including pyelonephritis in mothers and fetal mortality. However, a significant gap remains in understanding the optimal screening and treatment protocols for ASB in pregnant women. We assessed the etiology of asymptomatic bacteriuria, antimicrobial susceptibility patterns, and associated risk factors among pregnant women attending an antenatal clinic in western Kenya. Using a cross-sectional quantitative design, 285 asymptomatic pregnant women were recruited, interviewed using a questionnaire and provided urine for culture. Microbial susceptibility was tested using the Kirby Bauer disk diffusion technique and interpreted based on the Clinical and Laboratory Standards Institute guidelines. Asymptomatic bacteriuria prevalence was 16.3% (44/270), and increased with gestational age for trimester 1, 2 and 3 at 12%, 17.7% and 19.3%, respectively. Of the ASB cases, 45.5% (20/44) were caused by gram-negative bacteria, and 56.8% (25/44) by gram-positive bacteria. Isolated gram-negative bacteria were Escherichia coli (80%), Klebsiella pneumoniae (10%), Proteus mirabilis (5%) and Pseudomonas aeruginosa (5%), while the isolated gram-positive bacteria were coagulase-negative Staphylococcus species (52%), Enterococcus species (20%), Staphylococcus aureus (16%) and Streptococcus agalactiae (8%). Antibiotics with high sensitivity by gram-negative bacteria were azithromycin, meropenem, and tobramycin (100% susceptibility), while all isolates (100%) were resistant to trimethoprim-sulfamethoxazole. Gram-positive isolates were highly (100%) sensitive to gentamicin, ofloxacin, clindamycin and ampicillin, and 56% were resistant to trimethoprim-sulfamethoxazole. Women with at least a secondary school education had 2.47 times higher odds of getting asymptomatic bacteriuria (AOR = 2.47, 95% CI [1.09, 5.98], p = 0.036), while women between 25-34 years of age were at 2.23 times higher odds of ASB (AOR = 2.23, 95% CI [1.07, 4.63], p = 0.030). There is a need for extensive antimicrobial susceptibility testing to identify safe and effective antibiotics for treating ASB.
Collapse
Affiliation(s)
- Dorothy Atieno Odindo
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Benjamin Ochieng
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fredrick Onduru
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Caroline Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daniel Onguru
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Shehu Shagari Awandu
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| |
Collapse
|
13
|
Jaidane N, Tilouche L, Oueslati S, Girlich D, Azaiez S, Jacquemin A, Dortet L, Naija W, Trabelsi A, Naas T, Mansour W, Bonnin RA. Clonal Dissemination of NDM-Producing Proteus mirabilis in a Teaching Hospital in Sousse, Tunisia. Pathogens 2025; 14:298. [PMID: 40137783 PMCID: PMC11946351 DOI: 10.3390/pathogens14030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Proteus mirabilis (P. mirabilis) is an opportunistic pathogen involved in urinary tract infections as well as various nosocomial infections. Emerging resistances to beta-lactams in this species complicates potential treatment since it is intrinsically resistant to colistin. Eleven isolates of carbapenem-non-susceptible P. mirabilis were identified in Sousse Hospital, Tunisia, from January 2018 to December 2022. MICs were determined and isolates were sequenced to determine their resistomes, sequence types, virulence factors, and their clonal relationships. Susceptibility testing showed that all isolates were resistant to carbapenems, aminoglycosides, fluoroquinolones, chloramphenicol, and the trimethoprim/sulfamethoxazole combination. They remained susceptible to the aztreonam/avibactam combination. All isolates produced NDM-1 carbapenemase and ArmA 16S rRNA methylase. In addition, one isolate co-produced the blaVEB-6 gene. All isolates belonged to ST135, and phylogenetic analysis revealed that they were closely related. This study described the first outbreak of NDM-1-producing P. mirabilis in Tunisia.
Collapse
Affiliation(s)
- Nadia Jaidane
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse 4000, Tunisia; (N.J.)
- Clinical Microbiology Laboratory, University Hospital of Sahloul, Sousse 4002, Tunisia
- Team ‘Resist’, UMR1184 ‘Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)’, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; (S.O.); (D.G.); (L.D.)
| | - Lamia Tilouche
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse 4000, Tunisia; (N.J.)
- Clinical Microbiology Laboratory, University Hospital of Sahloul, Sousse 4002, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Saoussen Oueslati
- Team ‘Resist’, UMR1184 ‘Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)’, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; (S.O.); (D.G.); (L.D.)
| | - Delphine Girlich
- Team ‘Resist’, UMR1184 ‘Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)’, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; (S.O.); (D.G.); (L.D.)
| | - Sana Azaiez
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse 4000, Tunisia; (N.J.)
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse 4000, Tunisia
| | - Aymeric Jacquemin
- Team ‘Resist’, UMR1184 ‘Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)’, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; (S.O.); (D.G.); (L.D.)
| | - Laurent Dortet
- Team ‘Resist’, UMR1184 ‘Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)’, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; (S.O.); (D.G.); (L.D.)
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, 94270 Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Walid Naija
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse 4000, Tunisia
- Department of Anesthesia and Intensive Care, University Hospital Sahloul, Sousse 4002, Tunisia
| | - Abdelhalim Trabelsi
- Clinical Microbiology Laboratory, University Hospital of Sahloul, Sousse 4002, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Thierry Naas
- Team ‘Resist’, UMR1184 ‘Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)’, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; (S.O.); (D.G.); (L.D.)
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, 94270 Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Wejdene Mansour
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Department of Biophysics, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse 4000, Tunisia; (N.J.)
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse 4000, Tunisia
| | - Rémy A. Bonnin
- Team ‘Resist’, UMR1184 ‘Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)’, INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France; (S.O.); (D.G.); (L.D.)
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, 94270 Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
14
|
Krishnakumar KA, Remya Babu R, Sugathan S, Lankalapalli RS. KRN7000 analogues as biofilm disrupting agents against Streptococcus pyogenes and Proteus mirabilis. J Antibiot (Tokyo) 2025; 78:246-255. [PMID: 39953285 DOI: 10.1038/s41429-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
In this study, three KRN7000 analogues with variations in the sugar and glycosidic linkage were synthesised to assess their efficacy in disrupting the biofilms of S. pyogenes and P. mirabilis. All three analogues exhibited antibacterial activity, with the effects being more prominent at lower concentrations in S. pyogenes. The N-alkylated, 1-deoxy analogue emerged as the most effective, significantly reducing biofilm formation and extracellular polymeric substances (EPS) in both organisms. Microscopic analysis revealed notable disruption of biofilm structure by the analogue, resulting in a significant reduction in EPS for both organisms and decreasing cell surface hydrophobicity. These results position the KRN7000 analogue as a promising candidate for developing glycolipid-based antibiofilm agents.
Collapse
Affiliation(s)
- K A Krishnakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - R Remya Babu
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, 695581, India
| | - Shiburaj Sugathan
- Department of Botany, University of Kerala, Thiruvananthapuram, 695581, India.
| | - Ravi S Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Findlay J, Nordmann P, Stephan R, Poirel L. Detection of OXA-23-producing Proteus mirabilis in Switzerland. Eur J Clin Microbiol Infect Dis 2025; 44:759-762. [PMID: 39708275 DOI: 10.1007/s10096-024-04972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/26/2024] [Indexed: 12/23/2024]
Abstract
Proteus mirabilis is a Gram-negative bacterium found in the environment and also forms part of the commensal flora in the gastrointestinal tract of both humans and animals. P. mirabilis can cause a wide variety of infections, however it does not harbor any intrinsic β-lactamase genes and as such usually exhibits full susceptibility to β-lactams with the exception of imipenem, to which it is naturally resistant. OXA-23 enzymes are carbapenem-hydrolyzing class D β-lactamases and are usually the main cause of acquired resistance to carbapenems in Acinetobacter baumannii but have recently been reported in P. mirabilis in France. In this report we describe the emergence of OXA-23-producing P. mirabilis clinical isolates from Switzerland.
Collapse
Affiliation(s)
- Jacqueline Findlay
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, Zurich, CH-8057, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
16
|
de Almeida LKS, Silva LC, Guidone GHM, de Oliva BHD, do Nascimento AB, Faustino G, da Silva Pimenta J, Vespero EC, Rocha SPD. Impact of COVID-19 pandemic on antimicrobial resistance of Proteus mirabilis in a Brazilian hospital. Braz J Microbiol 2025; 56:499-510. [PMID: 39630218 PMCID: PMC11885744 DOI: 10.1007/s42770-024-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/07/2024] [Indexed: 03/09/2025] Open
Abstract
This study analyzes the resistance and virulence profiles of Proteus mirabilis isolates obtained from patients admitted to the University Hospital of Londrina, Paraná, between 2019 and 2022. We evaluated the antimicrobial resistance phenotypes, genes associated with resistance, biofilm formation through a phenotypic assay, and the presence of specific virulence genes. When comparing the "pre-pandemic" (2019) and "pandemic" (2020-2022) periods, we observed an increase in resistance rates to all tested antimicrobials. Multidrug-resistant (MDR) pathogens producing extended-spectrum β-lactamase (ESBL) phenotypes were isolated in both periods, but their occurrence was significantly higher during the pandemic. We also observed an increase in the frequency of nearly all studied resistance genes. The virulence profiles remained largely unchanged. Analysis of patients' clinical and demographic data revealed that those hospitalized during the pandemic were older, required longer hospital stays, and had a higher usage of invasive devices. These findings suggest that the recent COVID-19 pandemic has impacted the antimicrobial resistance of P. mirabilis, a bacterium of significant clinical interest associated with urinary tract infections (UTIs) and healthcare-associated infections (HAIs).
Collapse
Affiliation(s)
- Luana Karolyne Salomão de Almeida
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Gabriela Faustino
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Julia da Silva Pimenta
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Londrina, Paraná, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Londrina, Paraná, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil.
| |
Collapse
|
17
|
Gmiter D, Omelaniuk A, Sasal W, Petruńko L, Musiał K, Nawrot S, Pacak I, Kaca W. In silico investigation and expression analysis of two-component regulatory systems in Proteus mirabilis. Mol Biol Rep 2025; 52:192. [PMID: 39903367 DOI: 10.1007/s11033-025-10268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Proteus mirabilis (P. mirabilis), a Gram-negative bacterium from the Morganellaceae family, exists in various habitats, ranging from natural environmental sources to animal and human host. Two-component systems (TCSs) are involved in sensing various types of stimuli present in the environment, including antimicrobial chemotherapeutics. Moreover, TCSs regulate bacterial virulence. The 16 sets of genes encoding TCSs proteins have been identified in genome of P. mirabilis HI4320 reference strain, but their role remains understudied. METHODS AND RESULTS In the presented work, a comparative in silico analysis of TCSs proteins encoded by the genome sequences of P. mirabilis strains obtained from public databases was performed. Additionally, the expression of genes encoding regulatory proteins in response to polymyxin B and H2O2 was analyzed using RT-qPCR. The obtained results revealed a relative conservatism of TCSs among P. mirabilis isolates, indicating, however, differences that might result in strains phenotypic diversity. Moreover, constitutive expression of genes coding regulatory proteins from studied TCSs was observed under laboratory conditions. CONCLUSIONS Presented study shed light on the role of TCSs in P. mirabilis. Further deepen research in this area might provide more effective means for controlling P. mirabilis infections.
Collapse
Affiliation(s)
- Dawid Gmiter
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland.
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Aleksandra Omelaniuk
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Wanesa Sasal
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Leon Petruńko
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Klaudia Musiał
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Sylwia Nawrot
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Ilona Pacak
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Wiesław Kaca
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University of Kielce, Kielce, Poland
| |
Collapse
|
18
|
Sarwar A, Aslam B, Mahmood S, Muzammil S, Siddique AB, Sarwar F, Khurshid M, Rasool MH, Sasanya J, Aljasir SF. Distribution of multidrug-resistant Proteus mirabilis in poultry, livestock, fish, and the related environment: One Health heed. Vet World 2025; 18:446-454. [PMID: 40182804 PMCID: PMC11963587 DOI: 10.14202/vetworld.2025.446-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim The emergence of multidrug-resistant (MDR) Proteus mirabilis in food-producing animals and their associated environments is a growing public health concern. The indiscriminate use of antimicrobials in animal husbandry exacerbates resistance development, posing significant threats to food safety and sustainability. This study investigates the distribution, antibiotic resistance patterns, and virulence-associated genes (VAGs) of P. mirabilis isolated from poultry, livestock, fish, and their environments in Pakistan under a One Health perspective. Materials and Methods A total of 225 samples were collected from poultry (n = 100), livestock (n = 75), and aquatic sources (n = 50) from March 2023 to September 2024. Standard microbiological methods were employed for the isolation and identification of P. mirabilis. Polymerase chain reaction (PCR)-based detection of antibiotic resistance genes and VAGs was performed using specific primers. Antibiotic susceptibility was assessed through the disk diffusion method following Clinical and Laboratory Standards Institute 2022 guidelines. Statistical analyses, including analysis of variance and correlation models, were applied to assess the relationships between variables. Results P. mirabilis was detected in 28.44% (64/225) of the total samples, with the highest occurrence observed in poultry (38%), followed by livestock (22.67%) and aquatic sources (18%). Resistance to ampicillin (100%), chloramphenicol (82%), cefepime (75%), and ciprofloxacin (75%) was widespread. PCR analysis revealed a high occurrence of extended-spectrum beta-lactamase-producing P. mirabilis carrying bla CTX-M (49%), bla OXA (54%), and bla TEM (25.67%) genes. In addition, VAGs such as zapA (39.53%), ucaA (34.88%), and hpmA (32.55%) were frequently identified. The presence of MDR P. mirabilis in fish and related environments (18%) is alarming, highlighting potential zoonotic and foodborne transmission risks. Conclusion The study underscores the widespread distribution of MDR P. mirabilis in animal-based food sources, raising significant concerns regarding food safety and antimicrobial resistance. The findings reinforce the need for stringent monitoring and regulatory policies to mitigate MDR bacterial dissemination across the food supply chain. Future research should employ metagenomic approaches for comprehensive surveillance and risk assessment.
Collapse
Affiliation(s)
- Ayesha Sarwar
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sara Mahmood
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Fatima Sarwar
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | | | | | - Sulaiman F. Aljasir
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Timm MR, Russell SK, Hultgren SJ. Urinary tract infections: pathogenesis, host susceptibility and emerging therapeutics. Nat Rev Microbiol 2025; 23:72-86. [PMID: 39251839 DOI: 10.1038/s41579-024-01092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/11/2024]
Abstract
Urinary tract infections (UTIs), which include any infection of the urethra, bladder or kidneys, account for an estimated 400 million infections and billions of dollars in health-care spending per year. The most common bacterium implicated in UTI is uropathogenic Escherichia coli, but diverse pathogens including Klebsiella, Enterococcus, Pseudomonas, Staphylococcus and even yeast such as Candida species can also cause UTIs. UTIs occur in both women and men and in both healthy and immunocompromised patients. However, certain patient factors predispose to disease: for example, female sex, history of prior UTI, or the presence of a urinary catheter or other urinary tract abnormality. The current clinical paradigm for the treatment of UTIs involves the use of antibiotics. Unfortunately, the efficacy of this approach is dwindling as the prevalence of antimicrobial resistance rises among UTI isolates, and the immense quantity of antibiotics prescribed annually for these infections contributes to the emergence of resistant pathogens. Therefore, there is an urgent need for new antibiotics and non-antibiotic treatment and prevention strategies. In this Review, we discuss how recent studies of bacterial pathogenesis, recurrence, persistence, host-pathogen interactions and host susceptibility factors have elucidated new and promising targets for the treatment and prevention of UTIs.
Collapse
Affiliation(s)
- Morgan R Timm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Seongmi K Russell
- Department of Paediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
Fritzenwanker M, Falgenhauer J, Hain T, Imirzalioglu C, Chakraborty T, Yao Y. The Detection of Extensively Drug-Resistant Proteus mirabilis Strains Harboring Both VIM-4 and VIM-75 Metallo-β-Lactamases from Patients in Germany. Microorganisms 2025; 13:266. [PMID: 40005633 PMCID: PMC11857796 DOI: 10.3390/microorganisms13020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Proteus mirabilis is a well-known opportunistic pathogen predominantly associated with urinary tract infections. It exhibits natural resistance to multiple antibiotics, including last-resort options like colistin. The emergence and spread of multidrug-resistant P. mirabilis isolates, including those producing ESBLs, AmpC cephalosporinases, and carbapenemases, are now more frequently reported. The most common carbapenemase types found in P. mirabilis are KPC-2, IMP, VIM, NDM, and OXA-48. We sequenced the genomes of three carbapenem-resistant P. mirabilis isolates harboring both blaVIM-4 and blaVIM-75 from Germany using both short-read and long-read sequencing techniques. We found that the isolates were only distantly related genetically. Both blaVIM-4 and blaVIM-75 genes were located on a class I integron, which in two cases was located on the chromosome and in one case on a plasmid. This is the first report on the complete genomes of P. mirabilis strains harboring a rare genetic element encoding both blaVIM-4 and blaVIM-75. Our results emphasize a key role for class 1 integrons in the transmission of VIM carbapenemases in P. mirabilis.
Collapse
Affiliation(s)
- Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (M.F.); (J.F.); (T.H.); (C.I.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Jane Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (M.F.); (J.F.); (T.H.); (C.I.); (T.C.)
- Institute for Hygiene and Environmental Medicine, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (M.F.); (J.F.); (T.H.); (C.I.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (M.F.); (J.F.); (T.H.); (C.I.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (M.F.); (J.F.); (T.H.); (C.I.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Yancheng Yao
- Institute of Medical Microbiology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (M.F.); (J.F.); (T.H.); (C.I.); (T.C.)
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
21
|
Xu Y, Ji X, Chen X, Gui G, He T, Xiao Y, Lv L, Lyu W. Characterisation of Proteus mirabilis isolates from the poultry production chain in Zhejiang Province, China: antimicrobial resistance, virulence factors and genotypic profiling. Br Poult Sci 2025:1-10. [PMID: 39853207 DOI: 10.1080/00071668.2024.2436995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 01/26/2025]
Abstract
1. This study investigated antimicrobial resistance, virulence factors and genotypic profiling among Proteus mirabilis isolated from three sources (poultry farms, slaughterhouses and retail markets) in the poultry production chain in Zhejiang Province, China, to assess its potential risk to public health.2. A total of 112 P. mirabilis strains were isolated from 409 samples, including 35 from poultry farms, 35 from slaughterhouses and 42 from retail markets. Antimicrobial susceptibility was tested using 18 antimicrobials in 9 categories, in which 110 (98.2%) strains were considered multidrug-resistant (MDR). These strains carried numerous antimicrobial resistance genes, with the sulphonamide resistance gene (sul1) having the highest rate (100%) and the polymyxin resistance gene (mcr-1) the lowest (3.6%).3. These isolates were validated to carry virulence genes pmfA, mrpA, atfC, rsbA, atfA, ureC and ucaA with the high prevalence of 96.4, 92.9, 92.0, 85.7, 85.7, 57.1 and 46.4%, respectively. Genotyping results using the ERIC-PCR indicated that the genetic similarity of all the isolates was 68.6% to 100% which fell into 4 clusters.4. The P. mirabilis isolates from the slaughterhouses exhibited higher levels of antibiotic resistance and a more pronounced MDR phenomenon than those from poultry farms and retail markets. The proportion of isolates carrying the most commonly detected resistant and virulence genes was higher in samples from poultry farms and slaughterhouses as opposed to retail markets. Importantly, there was genetic similarity and heterogeneity among P. mirabilis isolates from the three sources and genotypic diversity was the highest among isolates from retail markets, followed by slaughterhouses and poultry farms.
Collapse
Affiliation(s)
- Y Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - X Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - X Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - G Gui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - T He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
Florêncio GP, Xavier AR, Natal ACDC, Sadoyama LP, Röder DVDDB, Menezes RDP, Sadoyama Leal G, Patrizzi LJ, Pena GDG. Synergistic Effects of Probiotics and Lifestyle Interventions on Intestinal Microbiota Composition and Clinical Outcomes in Obese Adults. Metabolites 2025; 15:70. [PMID: 39997695 PMCID: PMC11857521 DOI: 10.3390/metabo15020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Obesity is a growing global epidemic. The composition of the intestinal microbiota can be influenced by several factors. Studies highlight the role of intestinal bacteria in the pathophysiology of obesity. So, the objective of this study was to investigate whether the use of probiotics, together with healthy lifestyle habits, contributes to weight reduction in obese individuals by analyzing the intestinal microbiota profile. METHODS A prospective study was carried out with 45 adults with obesity. Participants underwent guidance on healthy lifestyle habits, received a probiotic component containing different microbiological strains and were followed for 60 days. Clinical parameters, body composition, biochemical analysis, and intestinal microbiota assessment were performed before and after treatment. After 60 days, it was observed that the bacterial strains present in the probiotic were present in the patients' intestinal microbiota. Participants also showed improvements in physical activity, sleep quality, and anxiety management, as well as changes in some eating habits, such as a reduction in the consumption of processed foods and a significant increase in water intake. RESULTS A reduction in BMI, fasting glucose, insulin, HOMA-IR, LDL cholesterol, and triglycerides was observed, in addition to an increase in HDL cholesterol, improvement in bowel movement frequency, and stool consistency. Analysis of the intestinal microbiota revealed an increase in microbial diversity and a better balance between the bacterial phyla Firmicutes and Bacteroidetes. CONCLUSIONS The changes related to improving the composition of the intestinal microbiota, dietary habits, increased physical activity, reduced anxiety, and better sleep quality have significantly contributed to weight loss and improvements in physiological parameters in obese individuals.
Collapse
Affiliation(s)
- Glauber Pimentel Florêncio
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Analicy Rodrigues Xavier
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Ana Catarina de Castro Natal
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Lorena Prado Sadoyama
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | | | - Ralciane de Paula Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-318, MG, Brazil;
| | - Geraldo Sadoyama Leal
- Institute of Biotechnology, Federal University of Catalão, Catalão 75704-020, GO, Brazil;
| | - Lislei Jorge Patrizzi
- Department of Physiotherapy, Federal University of Triângulo Mineiro, Uberaba 38025-350, MG, Brazil;
| | - Geórgia das Graças Pena
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| |
Collapse
|
23
|
Salama LA, Saleh HH, Abdel-Rhman SH, Barwa R, Hassan R. Assessment of typing methods, virulence genes profile and antimicrobial susceptibility for clinical isolates of Proteus mirabilis. Ann Clin Microbiol Antimicrob 2025; 24:4. [PMID: 39815271 PMCID: PMC11734338 DOI: 10.1186/s12941-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated. Sixty P. mirabilis isolated undergo antibiotic susceptibility test by standard Kirby Bauer method. They showed high resistance to nitrofurantoin and trimethoprim/sulfamethoxazole that appear mainly in 3rd age group. The 2nd age group comprised most of the resistant isolates to the tested antibiotics. A total of 73.33% of isolates were classified as multi drug resistance (MDR) and 78.3% of isolates were distributed in several antibiotypes with MAR index over 0.2. Twenty-one isolates were strong biofilm-producers and they were significantly related to MDR. Different virulence factors as protease, urease and hemolysin production are detected. Detection of several virulence genes by PCR; zapA and ureC were harbored by all isolates, followed by rsbA (95%), ureA and flaA (93%), hpmA (91.7%) and mrpA (73.3%). Determination of genetic diversity between isolates was performed by different methods (RAPD, ISSR, ERIC, BOX-AIR and REP-PCR) by using several parameters as typeability and discriminatory power indicating that ERIC-PCR was the best method followed by REP-PCR 1R. Rand's & Wallace coefficients were used for calculating the congruence among typing methods. Conclusions: The results obtained from both conventional and molecular typing methods indicated that molecular methods are superior to conventional methods in the discrimination of isolates. ERIC-PCR and Rep-PCR provide high discrimination ability among P. mirabilis clinical isolates contributing to epidemiological studies.
Collapse
Affiliation(s)
- Lamiaa A Salama
- Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | | | - Shaymaa H Abdel-Rhman
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
24
|
Ciudin A, Padulles B, Manasia P, Alcoberro J, Toma C, Popescu R, Persu C, Aguilar A. Reshaping Resistance: How Autovaccine Therapy Alters the Course of Recurrent Multidrug-Resistant Urinary Tract Infections. Life (Basel) 2025; 15:50. [PMID: 39859990 PMCID: PMC11766521 DOI: 10.3390/life15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Urinary tract infections (UTIs) caused by multidrug-resistant (MDR) bacteria pose a considerable challenge due to high treatment failure rates and associated healthcare costs. This pioneering study evaluates the effectiveness of personalized autovaccine therapy in managing recurrent UTIs in patients with MDR bacteria, aiming to offer an innovative treatment that reduces antibiotic resistance and hospitalizations. METHODS In this prospective, single-center study, 40 patients with recurrent MDR UTIs received personalized sublingual autovaccines derived from their own bacterial isolates. The study assessed UTI recurrence rates, changes in antibiotic use, and hospitalization days over 12 months. RESULTS The autovaccine therapy significantly reduced UTI recurrence, with 67.5% of patients experiencing fewer infections. Antibiotic usage decreased by 74.4%, and total hospitalization days annually reduced from 400 to 216. A significant shift was observed from MDR to multi-susceptible bacterial profiles among participants. CONCLUSIONS This study is the first to demonstrate that autovaccine therapy is a safe and effective approach for managing recurrent UTIs caused by MDR bacteria, significantly lowering infection frequency, antibiotic needs, and hospitalization. These findings support integrating autovaccine therapy into standard UTI management to combat antibiotic resistance and lessen healthcare burdens.
Collapse
Affiliation(s)
- Alexandru Ciudin
- Urology Department, Hospital Universitari de Mollet, 08100 Barcelona, Spain; (B.P.); (P.M.); (J.A.); (A.A.)
| | - Bernat Padulles
- Urology Department, Hospital Universitari de Mollet, 08100 Barcelona, Spain; (B.P.); (P.M.); (J.A.); (A.A.)
| | - Pasqualino Manasia
- Urology Department, Hospital Universitari de Mollet, 08100 Barcelona, Spain; (B.P.); (P.M.); (J.A.); (A.A.)
| | - Josep Alcoberro
- Urology Department, Hospital Universitari de Mollet, 08100 Barcelona, Spain; (B.P.); (P.M.); (J.A.); (A.A.)
| | - Cristian Toma
- Urology Department, Spitalul Clinic “Prof. Dr. Th. Burghele”, 061344 Bucuresti, Romania; (R.P.); (C.P.)
| | - Răzvan Popescu
- Urology Department, Spitalul Clinic “Prof. Dr. Th. Burghele”, 061344 Bucuresti, Romania; (R.P.); (C.P.)
| | - Cristian Persu
- Urology Department, Spitalul Clinic “Prof. Dr. Th. Burghele”, 061344 Bucuresti, Romania; (R.P.); (C.P.)
| | - Antonio Aguilar
- Urology Department, Hospital Universitari de Mollet, 08100 Barcelona, Spain; (B.P.); (P.M.); (J.A.); (A.A.)
| |
Collapse
|
25
|
Viana LPS, Pinheiro LR, Petrillo LW, Medeiros IG, Rizo TG, Modolo LV, da Silva CM, de Fatima Â. Hydroxamic Acids Derivatives: Greener Synthesis, Antiureolytic Properties and Potential Medicinal Chemistry Applications - A Concise Review. Curr Top Med Chem 2025; 25:141-161. [PMID: 39484765 DOI: 10.2174/0115680266322401241021073138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024]
Abstract
Hydroxamic acids (HAs) are chemical compounds characterized by the general structure RCONR'OH, where R and R' can denote hydrogen, aryl, or alkyl groups. Recognized for their exceptional chelating capabilities, HAs can form mono or bidentate complexes through oxygen and nitrogen atoms, rendering them remarkably versatile. These distinctive structural attributes have paved the way for a broad spectrum of medicinal applications for HAs, among which their pivotal role as inhibitors of essential Ni(II) and Zn(II)-containing metalloenzymes. In 1962, a significant breakthrough occurred when Kobashi and colleagues identified hydroxamic acids (HAs) as potent urease inhibitors. Subsequent research has increasingly underscored their capability in combatting infections induced by ureolytic microorganisms, including Helicobacter pylori and Proteus mirabilis. However, comprehensive reviews exploring their potential applications in treating infections caused by ureolytic microorganisms remain scarce in the scientific literature. Thus, this minireview aims to bridge this gap by offering a systematic exploration of the subject. Furthermore, it seeks to explore the significant advancements in obtaining hydroxamic acid derivatives through environmentally sustainable methodologies.
Collapse
Affiliation(s)
- Luciana P S Viana
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luan R Pinheiro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lorenzo W Petrillo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabela G Medeiros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Taina G Rizo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleiton M da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fatima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Quraishi MI, Rowley MA, Fulks D, Atkins A. Multiple Gas-Containing Renal Stones: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e946317. [PMID: 39791377 PMCID: PMC11694769 DOI: 10.12659/ajcr.946317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Emphysematous urinary tract infections are rare and serious conditions that are often multifactorial in etiology and may be associated with the presence of renal stones. Diagnosis can be made by finding gas within the renal collecting system or parenchyma. However, the radiographic finding of gas within a renal stone is rare and little has been published to describe the significance of this finding, its promoting factors, and management. While finding a single gas-containing renal stone is rare, we present a patient with multiple gas-containing stones. CASE REPORT A 63-year-old woman with a history of diabetes and recurrent nephrolithiasis was found to have multiple gas-containing renal stones during a workup of gross hematuria. She was currently being treated for a urinary tract infection. Imaging revealed multiple stones with central encapsulated air and hydronephrosis. She underwent subsequent lithotripsy and stent placement due to this concerning finding, but developed sepsis 2 days following treatment. Cultures from the lithotripsy isolated Proteus mirabilis. It is hypothesized that lithotripsy resulted in endotoxin-mediated sepsis. CONCLUSIONS Proper management of gas-containing renal stones in the setting of urinary tract infections includes broad-spectrum antibiotics (carbapenem plus vancomycin if obstruction is present) followed by drainage via percutaneous nephrostomy and then stone removal. Immediate lithotripsy should be avoided in cases of emphysematous pyelonephritis as it can result in endotoxin-mediates sepsis.
Collapse
|
27
|
Zabłotni A, Schmidt M, Siwińska M. The SOS Response Activation and the Risk of Antibiotic Resistance Enhancement in Proteus spp. Strains Exposed to Subinhibitory Concentrations of Ciprofloxacin. Int J Mol Sci 2024; 26:119. [PMID: 39795976 PMCID: PMC11720175 DOI: 10.3390/ijms26010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The widespread and inappropriate use of antibiotics, for therapeutic and prophylactic purposes, has contributed to a global crisis of rapidly increasing antimicrobial resistance of microorganisms. This resistance is often associated with elevated mutagenesis induced by the presence of antibiotics. Additionally, subinhibitory concentrations of antibiotics can trigger stress responses in bacteria, further exacerbating this problem. In the present study, we investigated the effect of low doses of ciprofloxacin on the induction of the SOS response and the subsequent development of antibiotic resistance in Proteus spp. strains. Our findings revealed an increase in mutation frequencies within the studied strains, accompanied by a significant upregulation of recA expression. These observations were consistent across experiments involving two subinhibitory concentrations of ciprofloxacin. To establish mutation frequencies and assess gene expression changes, we utilized the RifS-to-RifR forward mutagenesis assay and RT-qPCR analysis, respectively. Furthermore, employing the microdilution method, we demonstrated that these changes could promote cross-resistance to multiple classes of antibiotics in Proteus spp. clinical strains. This, combined with the recurrent nature of Proteus-associated infections, poses a substantial risk of therapeutic failure. In conclusion, exposure to low doses of ciprofloxacin can significantly impact the susceptibility of Proteus bacilli, not only reducing their sensitivity to ciprofloxacin itself but also fostering resistance to other antibiotic classes. These findings underscore the importance of cautious antibiotic use and highlight the potential consequences of subinhibitory antibiotic exposure in clinical and environmental settings.
Collapse
Affiliation(s)
- Agnieszka Zabłotni
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.S.); (M.S.)
| | | | | |
Collapse
|
28
|
Drzewiecka D, Levina EA, Shashkov AS, Kalinchuk NA, Knirel YA. Structural and Serological Characterization of Yet Another New O Antigen, O86, in Proteus mirabilis Clinical Strains. Int J Mol Sci 2024; 25:13642. [PMID: 39769403 PMCID: PMC11728032 DOI: 10.3390/ijms252413642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Bacteria from the genus Proteus are facultative human pathogens, primarily attacking the urinary tract and wounds. A total of 85 O serogroups have been identified so far among these bacilli. P. mirabilis Bprz 86 was isolated from the fistula of a patient in Łódź, Poland. Enzyme-Linked Immunosorbent Assay (ELISA) and Western blotting studies involving the P. mirabilis Bprz 86 lipopolysaccharide (LPS) and the strain-specific rabbit antiserum indicated that the strain, which does not belong to any of the O1-O85 serogroups, shares a common epitope with Proteus O17 antigens and is identical to another clinical P. mirabilis strain, Sm 120, isolated from the urine of a patient in the area. The O-specific polysaccharide (O antigen) was obtained from P. mirabilis Bprz 86 LPS through mild acid degradation, and the six-constituent structure of its repeating unit was determined using chemical analyses and 1D and 2D 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy. It includes (R)-3-hydroxybutanoyl, which, along with fucosamine and glucose residues, forms a fragment also present in the O17 antigens. Based on the obtained serological and chemical data, the two studied P. mirabilis isolates were proposed as candidates for a new successive O serogroup in the genus Proteus, O86.
Collapse
Affiliation(s)
- Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Evgeniya A. Levina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexander S. Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
| | - Nadezhda A. Kalinchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.L.); (A.S.S.); (N.A.K.); (Y.A.K.)
| |
Collapse
|
29
|
Karpenko A, Shelenkov A, Petrova L, Gusarov V, Zamyatin M, Mikhaylova Y, Akimkin V. Two multidrug-resistant Proteus mirabilis clones carrying extended spectrum beta-lactamases revealed in a single hospital department by whole genome sequencing. Heliyon 2024; 10:e40821. [PMID: 39687096 PMCID: PMC11648881 DOI: 10.1016/j.heliyon.2024.e40821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Proteus mirabilis bacteria is a component of normal intestinal microflora of humans and animals, but can also be found in hospital settings causing urinary tract infections and sepsis. The problem of treating such infections is complicated by multidrug-resistant isolates producing extended spectrum beta-lactamases (ESBL), and the number of ESBL-carrying P. mirabilis strains has significantly increased recently. This study presents a detailed analysis of 12 multidrug-resistant P. mirabilis isolates obtained from the wounds of different patients in one surgical department of a multidisciplinary hospital in Moscow, Russia, using the short- and long-read whole genome sequencing. The isolates under investigation divided into two clusters (clones) C1 and C2 based on their genomic profiles and carried antimicrobial resistance (AMR) genes corresponding well with phenotypic profiles, which was the first case of reporting two different P. mirabilis clones obtained simultaneously from the same specimens at one hospital, to the best of our knowledge. Some genes, including ESBL encoding ones, were specific for either C1 or C2 (aac(6')-Ib10, ant(2″)-Ia, qnrA1, bla VEB-6 and fosA3, bla CTX -M-65 , correspondingly). Additionally, the Salmonella genomic islands 1 were found that differed in composition of multiple antibiotic resistance regions between C1 and C2 groups. CRISPR-Cas system type I-E was revealed only in C2 isolates, while the same set of virulence factors was determined for both P. mirabilis clones. Diversity of all genetic factors found in case of simultaneous existence of two clones collected from the same source at one department indicates high pathogenic potential of P. mirabilis and poses a requirement of proper spreading monitoring. The data obtained will facilitate the understanding of AMR transfer and dynamics within clinical P. mirabilis isolates and contribute to epidemiological surveillance of this pathogen.
Collapse
Affiliation(s)
- Anna Karpenko
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Lyudmila Petrova
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Vitaly Gusarov
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Mikhail Zamyatin
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Yulia Mikhaylova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| |
Collapse
|
30
|
Hunt BC, Brix V, Vath J, Guterman LB, Taddei SM, Deka N, Learman BS, Brauer AL, Shen S, Qu J, Armbruster CE. Metabolic interplay between Proteus mirabilis and Enterococcus faecalis facilitates polymicrobial biofilm formation and invasive disease. mBio 2024; 15:e0216424. [PMID: 39475232 PMCID: PMC11640290 DOI: 10.1128/mbio.02164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Biofilms play an important role in the development and pathogenesis of catheter-associated urinary tract infection (CAUTI). Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and examine the contribution to CAUTI severity. Through compositional and proteomic biofilm analyses, we determined that the increase in biofilm biomass stems from an increase in the protein fraction of the polymicrobial biofilm. We further observed an enrichment in proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared with single-species biofilms. We show that arginine/ornithine antiport by E. faecalis promotes arginine biosynthesis and metabolism in P. mirabilis, ultimately driving the increase in polymicrobial biofilm protein content without affecting viability of either species. We further show that disrupting E. faecalis ornithine antiport alters the metabolic profile of polymicrobial biofilms and prevents enhancement, and this defect was complemented by supplementation with exogenous ornithine. In a murine model of CAUTI, ornithine antiport did not contribute to E. faecalis colonization but was required for the increased incidence of urinary stone formation and bacteremia that occurs during polymicrobial CAUTI with P. mirabilis. Thus, disrupting metabolic interplay between common co-colonizing species may represent a viable strategy for reducing risk of bacteremia.IMPORTANCEChronic infections often involve the formation of antibiotic-resistant biofilm communities that include multiple different microbes, which pose a challenge for effective treatment. In the catheterized urinary tract, potential pathogens persistently co-colonize for long periods of time and the interactions between them can lead to more severe disease outcomes. In this study, we identified the metabolite L-ornithine as a key mediator of disease-enhancing interactions between two common and challenging pathogens, Enterococcus faecalis and Proteus mirabilis. Disrupting ornithine-mediated interactions may therefore represent a strategy to prevent polymicrobial biofilm formation and decrease risk of severe disease.
Collapse
Affiliation(s)
- Benjamin C. Hunt
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Vitus Brix
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Joseph Vath
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Lauren Beryl Guterman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Steven M. Taddei
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Namrata Deka
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Brian S. Learman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Aimee L. Brauer
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Shichen Shen
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Jun Qu
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
- NYS Center of
Excellence in Bioinformatics and Life
Sciences, Buffalo, New
York, USA
| | - Chelsie E. Armbruster
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| |
Collapse
|
31
|
Zdubek A, Maliszewska I, Grabowiecka A, Kowalczyk R, Turek B. Enhancement of 5-Aminolevulinic Acid-Mediated Photodynamic Inactivation of Proteus mirabilis Using Phosphoric and Bisaminophosphinic Acids as Permeabilizing Agents. ACS OMEGA 2024; 9:48629-48641. [PMID: 39676993 PMCID: PMC11635689 DOI: 10.1021/acsomega.4c07696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024]
Abstract
The purpose of this work was to examine the effect of phosphoric and bisaminophosphinic acids on the effectiveness of photoinactivation of Proteus mirabilis with 5-aminolevulinic acid (5-ALA) as a precursor of protoporphyrin IX. Two diode lasers λ = 404 nm (radiation intensity 26 mW cm-2) and λ = 630 nm (radiation intensity 55 mW cm-2) were used as sources of light. The most effective agent was (R)-(-)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate, and a significant improvement in bactericidal effect of 5-ALA-aPDI was achieved by pretreating P. mirabilis with this compound at nontoxic concentrations of 0.368 mM. It was found that 15 min of blue light illumination was enough to achieve bacterial cell mortality of 99.999%. Photoelimination of this pathogen using red light was less effective, and the required killing effect (at least 99.99%) was not achieved until 45 min of exposure. The mechanism of increased pathogen destruction by the examined acids is multifaceted and includes not only the destabilization of the outer bacterial cell membrane by organophosphates but also an increase in the level of protoporphyrin IX in cells due to chelation of iron ions. Furthermore, a synergistic effect of intracellular photosensitizers and (R)-(-)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate acting as an additional blue/red light-induced photosensitizer cannot be excluded.
Collapse
Affiliation(s)
- Anna Zdubek
- Department
of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Irena Maliszewska
- Department
of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kowalczyk
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Bartosz Turek
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
32
|
Wójcik-Fatla A, Farian E, Kowalczyk K, Sroka J, Skowron P, Siebielec G, Zdybel JM, Jadczyszyn T, Cencek T. Enterobacteriaceae in Sewage Sludge and Digestate Intended for Soil Fertilization. Pathogens 2024; 13:1056. [PMID: 39770316 PMCID: PMC11728692 DOI: 10.3390/pathogens13121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Substances of organic origin are seeing increasing use in agriculture as rich sources of nutrients for plants. The aim of this study was to determine the microbiological contamination of sewage sludge and digestate to assess their safe use as fertilizers in Poland. The assessment of microbial soil, sewage sludge and digestate contamination was based on the total number of mesophilic bacteria and Gram-negative bacteria from the Enterobacteriaceae family. The presence of Escherichia coli and Salmonella spp. was identified via culture and the presence of Enterobacteriaceae species was determined via biochemical and molecular methods. In laboratory conditions, the survival of E. coli in soil fertilized with sewage sludge or digestate inoculated with a reference strain was determined. The average concentration of Enterobacteriaceae in soil, sewage sludge and digestate samples was 1.1 × 104 CFU/g, 9.4 × 105 CFU/g and 5.6 × 106 CFU/g, respectively. Escherichia coli was detected in all sample types. From the soil samples, Serratia, Enterobacter, Pantoea, Citrobacter and Pseudomonas genera were identified the most frequently, while in sewage sludge and digestate, E. coli was predominant. Based on the results of our laboratory experiment, it can be concluded that after three weeks, fertilization with organic waste in acceptable doses does not significantly increase soil contamination with Enterobacteriaceae.
Collapse
Affiliation(s)
- Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Ewelina Farian
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Katarzyna Kowalczyk
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (E.F.); (K.K.)
| | - Jacek Sroka
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| | - Piotr Skowron
- Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (P.S.); (T.J.)
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Jolanta Małgorzata Zdybel
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| | - Tamara Jadczyszyn
- Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (P.S.); (T.J.)
| | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute-State Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland; (J.S.); (J.M.Z.); (T.C.)
| |
Collapse
|
33
|
Liu W, Tao YH, Chen J, Lu CP, Zhang L, Lin ZH. Transcriptomic analysis of liver immune response in Chinese spiny frog ( Quasipaa spinosa) infected with Proteus mirabilis. Open Life Sci 2024; 19:20221003. [PMID: 39588112 PMCID: PMC11588007 DOI: 10.1515/biol-2022-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
The expansion of Chinese spiny frog (Quasipaa spinosa) aquaculture has increased the prevalence and severity of diseases such as "skin rot" disease, which is triggered by harmful bacteria. Previous studies have mainly focused on pathogen identification and vaccine development. However, frog immune responses following pathogenic bacterial infection have hardly been investigated. We thus examined the immune response of Chinese spiny frog to skin rot disease caused by Proteus mirabilis. The liver transcriptomes of Chinese spiny frog infected with P. mirabilis were sequenced using the MGISEQ-2000 platform. We identified a total of 138,936 unigenes, of which 32.35% were known genes. After infection with P. mirabilis, 801 genes showed differential expression, with 507 upregulated and 294 downregulated genes. These differentially expressed genes were enriched in pathways related to cytokine-cytokine receptor interaction, TNF signaling, and toll-like receptor signaling, according to Kyoto Encyclopedia of Genes and Genomes analysis. Following P. mirabilis infection, immune genes, including H2-Aa, hamp1, LYZ, CXCL10, and IRAK3, were significantly upregulated, while NLRP3, ADAM19, TYK2, FETUB, and MSR1 were significantly downregulated. The results provide important information on how the immune system of Chinese spiny frog responds to P. mirabilis infection and help understand the development of skin rot in cultured frog species.
Collapse
Affiliation(s)
- Wei Liu
- College of Medicine, Lishui University, Lishui, 323000, China
- Lishui City Forestry Bureau,
Lishui, 323000, China
| | - Yu-Hui Tao
- Jinyun County Forestry Bureau,
Lishui, 321400, China
| | - Jie Chen
- College of Ecology, Lishui University,
Lishui, 323000, China
| | - Cheng-Pu Lu
- College of Ecology, Lishui University,
Lishui, 323000, China
| | - Le Zhang
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University,
Lishui, 323000, China
| |
Collapse
|
34
|
Petrilla A, Nemeth P, Fauszt P, Szilagyi-Racz A, Mikolas M, Szilagyi-Tolnai E, David P, Stagel A, Gal F, Gal K, Sohajda R, Pham T, Stundl L, Biro S, Remenyik J, Paholcsek M. Comparative analysis of the postadmission and antemortem oropharyngeal and rectal swab microbiota of ICU patients. Sci Rep 2024; 14:27179. [PMID: 39516251 PMCID: PMC11549221 DOI: 10.1038/s41598-024-78102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Shotgun metabarcoding was conducted to examine the microbiota in a total of 48 samples from 12 critically ill patients, analyzing samples from both the oropharynx and rectum. We aimed to compare their postadmission microbiota, characterized as moderately dysbiotic, with the severely dysbiotic antemortem microbiota associated with patients' deaths. We found that, compared with postadmission samples, patient antemortem swab samples presented moderate but not significantly decreased diversity indices. The antemortem oropharyngeal samples presented an increase in biofilm-forming bacteria, including Streptococcus oralis, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis. Although the septic shock rate was 67%, no significant differences were detected in the potential pathogen ratios when the microbiota was analyzed. A notable strain-sharing rate between the oropharynx and intestine was noted. By comparing postadmission and antemortem samples, microbial biomarkers of severe dysbiosis were pinpointed through the analysis of differentially abundant and uniquely emerging species in both oropharyngeal and rectal swabs. Demonstrating strong interconnectivity along the oral-intestinal axis, these biomarkers could serve as indicators of the progression of dysbiosis. Furthermore, the microbial networks of the oropharyngeal microbiota in deceased patients presented the lowest modularity, suggesting a vulnerable community structure. Our data also highlight the critical importance of introducing treatments aimed at enhancing the resilience of the oral cavity microbiome, thereby contributing to better patient outcomes.
Collapse
Affiliation(s)
- Annamaria Petrilla
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Nemeth
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Fauszt
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Anna Szilagyi-Racz
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Maja Mikolas
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Emese Szilagyi-Tolnai
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Peter David
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Ferenc Gal
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Kristof Gal
- Department of Oncoradiology, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Reka Sohajda
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Trinh Pham
- Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520, Turku, Finland
| | - Laszlo Stundl
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
35
|
González MJ, Navarro N, Cruz E, Sánchez S, Morales JO, Zunino P, Robino L, Lima A, Scavone P. First report on the physicochemical and proteomic characterization of Proteus mirabilis outer membrane vesicles under urine-mimicking growth conditions: comparative analysis with Escherichia coli. Front Microbiol 2024; 15:1493859. [PMID: 39568990 PMCID: PMC11578119 DOI: 10.3389/fmicb.2024.1493859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Uropathogenic bacteria employ multiple strategies to colonize the urinary tract, including biofilm formation, invasion of urothelial cells, and the production of adhesins, toxins, and siderophores. Among the most prevalent pathogens causing urinary tract infections (UTIs) are Uropathogenic Escherichia coli and Proteus mirabilis. A notable feature of Gram-negative bacteria is their ability to produce outer membrane vesicles (OMVs), which play critical roles in bacterial survival, virulence, and host-pathogen interactions, including UTIs. Methods In this study, OMVs were isolated and characterized from two clinical strains, E. coli U144 and P. mirabilis 2,921, cultured in both Luria-Bertani broth and artificial urine. Result and discussion The OMVs ranged in size from 85 to 260 nm, with the largest vesicles observed in artificial urine. Proteomic analysis allowed the identification of 282 proteins in OMVs from E. coli and 353 proteins from P. mirabilis when cultured LB medium, while 215 were identified from E. coli and 103 from P. mirabilis when cultured in artificial urine. The majority of these proteins originated from the bacterial envelope, while others were linked to motility and adhesion. Notably, the protein composition of OMVs varied depending on the growth medium, and proteins associated with zinc and iron uptake being more prominent in artificial urine, suggesting their importance in the urinary environment. Crucially, this is the first report to characterize P. mirabilis OMVs under different culture conditions, offering novel insights into the role of OMVs in UTI pathogenesis. These findings provide a deeper understanding of the molecular mechanisms by which OMVs contribute to bacterial virulence, establishing the foundation for potential therapeutic interventions targeting OMV-mediated processes in UTIs.
Collapse
Affiliation(s)
- María José González
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicolás Navarro
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Erlen Cruz
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Sofía Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Pablo Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Luciana Robino
- Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Scavone
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
36
|
Yamagishi Y, Nakayama N, Doke A, Iwame S, Nishida Y, Arakawa Y, Mikamo H. Rapid screening of positive blood cultures for extended-spectrum β-lactamases and metallo-β-lactamases using a drug susceptibility testing microfluidic method. J Infect Chemother 2024; 30:1128-1133. [PMID: 38697390 DOI: 10.1016/j.jiac.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES An increasing number of drug-resistant bacteria have been identified recently. In particular, drug-resistant bacteria have been linked to unfavorable prognoses in patients with bacteremia, highlighting the need for rapid testing. Our previous studies have focused on the utility of a drug susceptibility testing microfluidic (DSTM) method using microfluidic channels. A system with this DSTM method for screening for β-lactamases can rapidly detect extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs). In this study, we have evaluated the clinical utility of pre-treatment for screening positive blood cultures using the DSTM method. METHODS A total of 178 positive blood cultures and five simulated samples of MBL-producing bacteria were prepared at Kochi University Hospital, Japan. The pretreatment consisted of a two-step centrifugation. The obtained sediments were screened with the DSTM method for the production of β-lactamase based on morphological changes in the bacteria after 3 h of incubation. RESULTS The pretreatment functioned properly for all samples. Of the 25 ESBL samples, 21 were positive for ESBLs. Four false-negative samples, all obtained from the same patient, contained CTX-M-2 enzyme-producing Proteus mirabilis and showed insusceptibility to an ESBL inhibitor. The simulated samples prepared for MBL screening were positive for MBLs. CONCLUSIONS When combined with a method for rapidly identifying bacterial species, DSTM may enable patients with bloodstream infections to start receiving appropriate treatment within 4 h after positive blood cultures are screened.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Kochi, Japan.
| | | | - Akito Doke
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Saya Iwame
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Yoshie Nishida
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Yu Arakawa
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Kochi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| |
Collapse
|
37
|
Harding-Crooks R, Jones AL, Smith DL, Fanning S, Fox EM. Profiling the Enterobacterales Community Isolated from Retail Foods in England. J Food Prot 2024; 87:100369. [PMID: 39366658 DOI: 10.1016/j.jfp.2024.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/21/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Enterobacterales include foodborne pathogens of importance to public health and are often targeted in food surveillance programs as both safety and hygiene indicators. Furthermore, Enterobacterales are important in the context of antimicrobial resistance dissemination, also impacting infection treatment efficacy. In this study, the prevalence and characteristics of Enterobacterales in UK retail foods were examined. From 110 retail food samples, 253 Enterobacterales were recovered, with 16S rRNA sequencing revealing a diverse species community, including enteropathogens; the most common were Proteus mirabilis and Escherichia coli (18% each). Antimicrobial resistance was common, with 160/253 (63%) isolates being resistant to at least 1 antimicrobial. Resistance to all tested antimicrobials was observed. Thirteen percent of isolates were multidrug resistant, including 2 isolates each resistant to 8 or 9 of 9 antimicrobials tested. Klebsiella isolates possessed relatively higher levels of antimicrobial resistance to other species. Hafnia, Kluyvera, and Proteus isolates produced significantly higher biofilm biomass than Klebsiella (p = 0.038, 0.028, and 0.042, respectively) or Escherichia (p = 0.001, 0.008, and 0.001, respectively). Simultaneous curli fimbriae and cellulose production was noted in 7% of isolates at 37 °C, but not at 15 °C. This research demonstrates a high diversity of Enterobacterales within UK retail foods, alongside notable antimicrobial resistance phenotypes in enteropathogenic species, highlighting the need for effective surveillance and interventions.
Collapse
Affiliation(s)
- Richard Harding-Crooks
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Amanda L Jones
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Darren L Smith
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin D04 N2E5, Ireland; Institute for Global Food Security, Queen's University Belfast, Chlorine Gardens, Belfast BT5 6AG, United Kingdom
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
38
|
Dalvi H, De Nisco NJ. The evolving world of the urinary microbiome. Curr Opin Urol 2024; 34:422-427. [PMID: 39224916 DOI: 10.1097/mou.0000000000001222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW The existence of urinary microbiome in healthy individuals is now widely accepted as the longstanding belief in urinary tract sterility was disproved over a decade ago. The urinary microbiome has since been implicated in multiple urologic conditions including urinary tract infection (UTI), urinary incontinence, and bladder cancer. This review relays new findings of urinary microbiome compositional changes associated with aging and UTI susceptibility. RECENT FINDINGS Recent advancements have established how the urinary microbiome changes over the lifespan. Studies finding distinct urinary microbiomes in prepubescent, reproductive age, and postmenopausal females have identified sex hormones as potential modulators of urinary microbiome composition and have identified prevalent species that may be markers of dysbiosis. Research in male children finds a cultivable urinary microbiota that varies with age or urologic history but not delivery mode. Emerging research also addresses the function of the urinary microbiota, including genetic factors associated with urinary tract colonization and interactions with uropathogens. SUMMARY The urinary microbiome is a promising therapeutic target for urologic disease. However, a more functional understanding is necessary for the development of microbiome-based therapies. Future research should develop accurate animal models and explore functional relationships between the urinary microbiome and the host environment.
Collapse
Affiliation(s)
- Hrishikesh Dalvi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Gorgojo-Martínez JJ, Górriz JL, Cebrián-Cuenca A, Castro Conde A, Velasco Arribas M. Clinical Recommendations for Managing Genitourinary Adverse Effects in Patients Treated with SGLT-2 Inhibitors: A Multidisciplinary Expert Consensus. J Clin Med 2024; 13:6509. [PMID: 39518647 PMCID: PMC11546491 DOI: 10.3390/jcm13216509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background: SGLT-2 inhibitors (SGLT-2is) are considered to be a first-line treatment for common conditions like type 2 diabetes, chronic kidney disease, and heart failure due to their proven ability to reduce cardiovascular and renal morbidity and mortality. Despite these benefits, SGLT-2is are associated with certain adverse effects (AEs), particularly genitourinary (GU) events, which can lead to treatment discontinuation in some patients. Preventing these AEs is essential for maintaining the cardiorenal benefits of SGLT-2is. Methods: A multidisciplinary panel of experts from various medical specialties reviewed the best available evidence on GU AEs associated with SGLT-2i therapy. The panel focused on the prevention and management of genital mycotic infections, urinary tract infections, and lower urinary tract symptoms in both the general population and high-risk groups, such as renal and cardiac transplant recipients. Results: The panel found that permanent discontinuation of SGLT-2is results in a rapid loss of cardiorenal benefits. Preventive strategies, including identifying high-risk patients before initiating therapy, are critical for minimizing GU AEs. Clinical trials show that most GU infections linked to SGLT-2i therapy are mild to moderate in severity and typically respond to standard antimicrobial treatment, without the need for discontinuation. Conclusions: Routine discontinuation of SGLT-2is due to GU AEs is not recommended. Therapy should be resumed as soon as possible, unless severe or persistent conditions contraindicate their use, in order to preserve the significant benefits of SGLT-2is in reducing cardiovascular and renal events.
Collapse
Affiliation(s)
- Juan J. Gorgojo-Martínez
- Department of Endocrinology and Nutrition, Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - José L. Górriz
- Department of Nephrology, Valencia Clinic University Hospital, Instituto de Investigación Sanitaria (INCLIVA), Universitat de València, 46010 Valencia, Spain;
| | - Ana Cebrián-Cuenca
- Health Centre Casco Antiguo Cartagena, Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB), 30201 Cartagena, Murcia, Spain;
| | - Almudena Castro Conde
- Department of Cardiology, University Hospital La Paz, IdiPAZ, Biomedical Research Center-Cardiovascular Diseases (CIBERCV-ISCIII), 28046 Madrid, Spain;
| | - María Velasco Arribas
- Department of Infectious Diseases, Research Department, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain;
| |
Collapse
|
40
|
Hernández Santamaría S, García Figuera N, Maldonado MacCrohon M, Jordano Luna L, Laiseca García A, Álvarez Barrio MT. Post-surgical endophthalmitis with secondary meningitis. About a case. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2024:S2173-5794(24)00168-3. [PMID: 39424134 DOI: 10.1016/j.oftale.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 10/21/2024]
Abstract
A 61-year-old man presented hyperacute endophthalmitis due to Proteus mirabilis after a pars plana vitrectomy. In the first examination (24 h after surgery), visual acuity (VA) was of hand movement, biomicroscopy showed edematous cornea, Tyndall ++++ and fibrin membrane, with vitritis and impossibility of visualizing retina details. Treatment with intravitreal injections was performed. Despite the treatment, the patient's symptoms worsened, and he began with poor general condition, fever, and leukocytosis, requiring hospitalization and intravenous treatment because of a diagnosis of secondary meningitis due to post-surgical endophthalmitis. The patient required enucleation of the affected eye without prosthesis placement. Even though post-surgical bacterial endophthalmitis is usually an infection confined to the eye, this clinical case demonstrates the possibility of the infection spreading to the rest of the body, potentially endangering the patient's life.
Collapse
Affiliation(s)
| | - N García Figuera
- Servicio de Oftalmología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | | | - L Jordano Luna
- Servicio de Oftalmología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - A Laiseca García
- Servicio de Oftalmología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - M T Álvarez Barrio
- Servicio de Oftalmología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| |
Collapse
|
41
|
Szczerbiec D, Glińska S, Kamińska J, Drzewiecka D. Outer Membrane Vesicles Formed by Clinical Proteus mirabilis Strains May Be Incorporated into the Outer Membrane of Other P. mirabilis Cells and Demonstrate Lytic Properties. Molecules 2024; 29:4836. [PMID: 39459204 PMCID: PMC11509992 DOI: 10.3390/molecules29204836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Outer membrane vesicles (OMVs) are extracellular structures, ranging in size from 10 to 300 nm, produced by Gram-negative bacteria. They can be incorporated into the outer membrane of a recipient's cells, which may enable the transfer of substances with lytic properties. Due to the scarce information regarding the OMVs produced by Proteus mirabilis, the aim of this study was to test the blebbing abilities of the clinical P. mirabilis O77 and O78 strains and to determine the blebs' interactions with bacterial cells, including their possible bactericidal activities. The production of OMVs was visualised by Transmission electron microscopy (TEM). The presence of OMVs in the obtained samples as well as the phenomenon of OMV fusion to recipient cells were confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA) and Western blotting assays. The bacteriolytic activity of the OMVs was examined against P. mirabilis clinical strains and reference Staphylococcus aureus and Escherichia coli strains. It was shown that each of the two tested P. mirabilis strains could produce OMVs which were able to fuse into the cells of the other strain. The lytic properties of the O78 OMVs against another P. mirabilis O78 strain were also demonstrated. This promising result may help in the future to better understand the mechanisms of the pathogenesis and to treat the infections caused by P. mirabilis.
Collapse
Affiliation(s)
- Dominika Szczerbiec
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Justyna Kamińska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| | - Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| |
Collapse
|
42
|
Abouzayed FI, Fathy RM, Hussien SG, El-Sayyad GS, Abouel-Enein SA. Synthesis, theoretical studies, antibacterial, and antibiofilm activities of novel azo-azomethine chelates against the pathogenic bacterium Proteus mirabilis. Biometals 2024; 37:1255-1278. [PMID: 38811521 DOI: 10.1007/s10534-024-00608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
2-((1-(4-((2,4,6-trioxohexahydropyrimidin-5-yl)diazenyl) phenyl) ethylidene) amino) benzoic acid (H3L), and its V(IV), Co(II), Ni(II), Cu(II), Pd(II) and Ag(I) chelates were synthesized. They were defined using multiple spectral and analytical techniques. With the exception of Ag(I) chelate, all chelates possessed non-electrolytic character. Square pyramidal shape was proposed for V(IV) chelate and Square planar for the other chelates. The analysis of functional group bands of H3L and its coordination compounds alludes that H3L chelated as neutral tetradentate via nitrogen atoms of azo and azomethine groups, oxygen atom of carbonyl of barbituric acid and OH of the carboxylic group. TG/DTG predicted the thermal behaviors of all compounds. The antibacterial activity of H3L and its coordination compounds was conducted against Proteus mirabilis at concentrations of 250, 500, and 1000 µg/mL. Ag(I) at 1000 µg/mL, showed the most inhibiting potency against P. mirabilis and registered zone of inhibition of 28.33 ± 0.84 mm and highest biofilm inhibition of 70.31%. At 50 Gy of gamma irradiation, the reducing effect of Ag(I) chelate was improved. The protein interruption of P. mirabilis was greatly interrupted by increasing the concentration of the chaletes. Also, Ag(I) showed the highest cytotoxicity with IC50 value of 11.5 µg/ mL. The novelty of this study is the synthesis of a new azo-Schiff base and this is almost the first publication of the effect of azo-Schiff ligands against that bacterial strain P. mirabilis.
Collapse
Affiliation(s)
- Fatma I Abouzayed
- Chemistry Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Rasha Mohammad Fathy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Shimaa G Hussien
- Chemistry Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Saeyda A Abouel-Enein
- Chemistry Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt.
| |
Collapse
|
43
|
McLaughlin RW, Wang Y, Zhang S, Xie H, Wan X, Liu H, Hao Y, Wang C, Zheng J. Proteus faecis: a potentially pathogenic bacterium isolated from the freshwater Yangtze finless porpoise. Antonie Van Leeuwenhoek 2024; 118:7. [PMID: 39305395 DOI: 10.1007/s10482-024-02023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/12/2024] [Indexed: 01/18/2025]
Abstract
Proteus faecis is a gram-negative facultative anaerobic rod-shaped bacterium capable of swarming motility. It has been isolated from numerous sources such as humans, animals, and refuse and is considered potentially pathogenic towards humans. In this study, bacteria were isolated from the blowhole of a Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in captivity in China. One bacterium, P. faecis porpoise, was isolated and whole genome sequencing done. Biofilm formation, motility and antimicrobial resistance were also investigated. To find putative virulence factors, the genome of P. faecis strain porpoise was compared to the genomic sequences of eight other P. faecis isolates using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) ( https://www.bv-brc.org/ ). The goal of this study was to initially characterize the pathogenicity of this bacterium isolated from a cetacean species using both pathogenomics and conventional approaches.
Collapse
Affiliation(s)
- Richard William McLaughlin
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Liberal Arts & Sciences, Gateway Technical College, Kenosha, WI, 53144, USA
| | - YaLu Wang
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - ShuYa Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - HaiXia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - XiaoLing Wan
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hui Liu
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - YuJiang Hao
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - ChaoQun Wang
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - JinSong Zheng
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
44
|
Wu R, Dong Z, Liu Y, Xin J, Duan Y, Zheng H, Yang Y, Fu H, Zhong Z, Liu H, Zhou Z, Huang Y, Peng G. Bacteriophage P2-71: a promising therapeutic against multidrug-resistant Proteus mirabilis in urinary tract infections. Front Vet Sci 2024; 11:1445264. [PMID: 39376913 PMCID: PMC11457703 DOI: 10.3389/fvets.2024.1445264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Proteus mirabilis is a Gram-negative, rod-shaped bacterium widely found in natural environments. It is known for causing a range of severe illnesses in mammals, particularly urinary tract infections (UTIs). This study evaluates the therapeutic efficacy of phage P2-71 against Proteus mirabilis in vivo and in vitro environments. Methods The in vitro therapeutic potential of bacteriophage P2-71 was assessed through the ability of phage to kill Proteus mirabilis by using a plate counting assay, and biofilm inhibition and biofilm lysis assays using a microtitre plate method. Additionally, an in vivo UTI model in C57BL/6Jmice was developed via urethral inoculation of the bacterium. Phage therapy was administered through urethral injection over a period of 5 days. Therapeutic outcomes were measured by analyzing bacterial load, phage titer, inflammatory markers, and histopathological changes in the urine, urogenital tissues, and spleen. Results In vitro, bacteriophage P2-71 achieved significant reductions in P. mirabilis concentrations, with log reductions of 1.537 and 0.7009 CFU/mL in laboratory and urine environments, respectively (p < 0.001). The phage also decreased biofilm formation by 34-49% and lysed 15-25% of mature biofilms at various multiplicities of infection (MOIs) (p < 0.001). In vivo, phage treatment significantly lowered bacterial concentrations in the urine on Days 1 and 3 (p < 0.0001), achieving a maximum reduction of 4.602 log₁₀ CFU/mL; however, its effectiveness diminished by Day 5 (p > 0.05). Concurrently, phage titers decreased over time. Importantly, phage treatment notably reduced bacterial load in the bladder, kidneys, and spleen (p < 0.001). Inflammatory markers such as IL-6, IL-1β, and TNF-α were significantly lower in the treatment group, especially in the bladder (p < 0.0001), indicating an effective reduction in inflammation. Histopathological analysis showed significant mitigation of tissue damage. Conclusion The results demonstrated that bacteriophage P2-71 is a promising alternative therapy for UTIs caused by MDR Proteus mirabilis. This bacteriophage therapy offers a viable strategy for managing infections where traditional antimicrobials fail, highlighting its potential in clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
45
|
Heylen RA, Cusick N, White T, Owen EJ, Patenall BL, Alm M, Thomsen P, Laabei M, Jenkins ATA. Rational design and in vitro testing of new urease inhibitors to prevent urinary catheter blockage. RSC Med Chem 2024; 15:d4md00378k. [PMID: 39281800 PMCID: PMC11391341 DOI: 10.1039/d4md00378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
Catheter associated urinary tract infections (CAUTI) caused by urease-positive organisms can lead to catheter blockage: urease metabolizes urea in urine to ammonia causing an increase in pH and hence precipitation of struvite and apatite salts into the catheter lumen and bladder leading to blockage. Acetohydroxamic acid (AHA) is the only urease inhibitor currently approved for patient use, however, it is rarely used owing to its side effects. Here, we report the identification and development of new urease inhibitors discovered using a rational in silico drug design approach. A series of compounds were designed, the compounds were screened and filtered to identify three compounds which were tested in in vitro urease activity assays. N,N'-Bis(3-pyridinylmethyl)thiourea (Bis-TU) outperformed AHA in activity assays and was tested in an in vitro bladder model, where it significantly extended the lifetime of the catheter compared to AHA. Bis-TU was delivered via a diffusible balloon catheter directly to the site of activity, thus demonstrating localized drug delivery. This cost-effective drug design approach allowed the identification of a potent urease inhibitor, which could be improved through iterative repeats of the method, and the process of design could be utilized to target other diseases.
Collapse
Affiliation(s)
| | - Nicola Cusick
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Tom White
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Emily J Owen
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | | | - Martin Alm
- Biomodics ApS Fjeldhammervej 15 2610 Rødovre Denmark
| | - Peter Thomsen
- Biomodics ApS Fjeldhammervej 15 2610 Rødovre Denmark
| | - Maisem Laabei
- School of Cellular and Molecular Medicine, University of Bristol BS8 1TD Bristol UK
| | | |
Collapse
|
46
|
Kanti SPY, Mukhtar M, Cseh M, Orosz L, Burián K, Ambrus R, Jójárt-Laczkovich O, Csóka I. Investigation of Chlorhexidine and Chitosan Gel-Based Coatings for the Prevention of Intravascular Catheter-Associated Infections Following Quality by Design Approach. Biomedicines 2024; 12:2032. [PMID: 39335546 PMCID: PMC11429402 DOI: 10.3390/biomedicines12092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Intravascular catheter-associated infections pose a significant threat to the health of patients because of biofilm formation. Hence, it is imperative to exploit cost-effective approaches to improve patient compliance. With this aim, our present study reported the potential of an antimicrobial polymeric gel coating of chitosan (CS) and chlorhexidine (CHX) on the marketed urinary catheters to minimize the risk of biofilm formation. The study involved the implementation of the Quality by Design (QbD) approach by identifying the critical parameters that can affect the coating of the catheter's surface in any possible way. Later, design of experiments (DoE) analysis affirmed the lack of linearity in the model for the studied responses in a holistic manner. Moreover, in vitro studies were conducted for the evaluation of various parameters followed by the antibiofilm study. The coating exhibited promising release of CHX in the artificial urinary media together with retention of the coating on the catheter's surface. Therefore, this study aims to emphasize the importance of a systematic and quality-focused approach by contributing to the development of a safe, effective, and reliable catheter coating to enhance intravascular catheter safety.
Collapse
Affiliation(s)
- S P Yamini Kanti
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (M.M.); (R.A.); (I.C.)
| | - Mahwash Mukhtar
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (M.M.); (R.A.); (I.C.)
| | - Martin Cseh
- Center of Excellence for Interdisciplinary Research, Development and Innovation, 3D Centre University of Szeged, 6722 Szeged, Hungary;
| | - László Orosz
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (L.O.); (K.B.)
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (L.O.); (K.B.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (M.M.); (R.A.); (I.C.)
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (M.M.); (R.A.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (M.M.); (R.A.); (I.C.)
| |
Collapse
|
47
|
Soliman S, Abdalla S, Zedan A, Enany S. Genomic profiling of pan-drug resistant proteus mirabilis Isolates reveals antimicrobial resistance and virulence gene landscape. Funct Integr Genomics 2024; 24:154. [PMID: 39223360 PMCID: PMC11369002 DOI: 10.1007/s10142-024-01419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Proteus mirabilis is a gram-negative pathogen that caused significant opportunistic infections. In this study we aimed to identify antimicrobial resistance (AMR) genes and virulence determinants in two pan-drug resistant isolate "Bacteria_11" and "Bacteria_27" using whole genome sequencing. Proteus mirabilis "Bacteria_11" and "Bacteria_27" were isolated from two different hospitalized patients in Egypt. Antimicrobial susceptibility determined using Vitek 2 system, then whole genome sequencing (WGS) using MinION nanopore sequencing was done. Antimicrobial resistant genes and virulence determinants were identified using ResFinder, CADR AMR database, Abricate tool and VF analyzer were used respectively. Multiple sequence alignment was performed using MAFFT and FastTree, respectively. All genes were present within bacterial chromosome and no plasmid was detected. "Bacteria_11" and "Bacteria_27" had sizes of approximately 4,128,657 bp and 4,120,646 bp respectively, with GC content of 39.15% and 39.09%. "Bacteria_11" and "Bacteria_27" harbored 43 and 42 antimicrobial resistance genes respectively with different resistance mechanisms, and up to 55 and 59 virulence genes respectively. Different resistance mechanisms were identified: antibiotic inactivation, antibiotic efflux, antibiotic target replacement, and antibiotic target change. We identified several genes associated with aminoglycoside resistance, sulfonamide resistance. trimethoprim resistance tetracycline resistance proteins. Also, those responsible for chloramphenicol resistance. For beta-lactam resistance, only blaVEB and blaCMY-2 genes were detected. Genome analysis revealed several virulence factors contribution in isolates pathogenicity and bacterial adaptation. As well as numerous typical secretion systems (TSSs) were present in the two isolates, including T6SS and T3SS. Whole genome sequencing of both isolates identify their genetic context of antimicrobial resistant genes and virulence determinants. This genomic analysis offers detailed representation of resistant mechanisms. Also, it clarifies P. mirabilis ability to acquire resistance and highlights the emergence of extensive drug resistant (XDR) and pan-drug resistant (PDR) strains. This may help in choosing the most appropriate antibiotic treatment and limiting broad spectrum antibiotic use.
Collapse
Affiliation(s)
- Sarah Soliman
- Trauma Intensive Care Unit, Zagazig University Hospitals, Zagazig, Egypt
| | - Salah Abdalla
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya, Egypt
| | - Amal Zedan
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
- Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| |
Collapse
|
48
|
Kong N, Hu Y, Lan C, Bi S. A novel PCR-based genotyping method for Proteus mirabilis - Intergenic region polymorphism analysis. J Microbiol Methods 2024; 224:107008. [PMID: 39103095 DOI: 10.1016/j.mimet.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Proteus mirabilis is a predominant species in cases of food poisoning associated with meat products and is also an opportunistic pathogen causing numerous infections in humans. This study aimed to differentiate P. mirabilis isolates using intergenic region polymorphism analysis (IRPA). The IRPA typing scheme was developed to amplify polymorphic fragments in intergenic regions (IGRs). The presence, absence, or size change of amplified products were identified and utilized as genetic markers for rapid differentiation of strains. A total of 75 P. mirabilis isolates were isolated from 63 fresh poultry and pork samples were subtyped using the IRPA and ERIC-PCR methods, and their antibiotic resistance profiles were tested. The majority of P. mirabilis isolates showed resistance to tetracycline (85.3%), doxycycline (93.3%), chloramphenicol (82.7%), streptomycin (92.0%), spectinomycin (80.0%), trimethoprim (97.3%); trimethoprim-sulfalleth (82.7%), and erythromycin (100.0%). In contrast, resistance rates to ceftriaxon, cefoxitin, cefepime, and cefotaxim were lower at only 17.3%, 5.3%, 6.7%, and 13.3%, respectively, among P. mirabilis isolates. Eleven loci were selected for analysis of the genetic diversity of 75 P. mirabilis isolates. A combination of 4 loci was determined as the optimal combination. The results compared to those obtained using ERIC-PCR for the same isolates. The Simpson's index of diversity was 0.999 for IRPA and 0.923 for ERIC-PCR, indicating that IRPA has a higher discriminatory power than ERIC-PCR. The concordance between IRPA and ERIC-PCR methods was low, primarily because IRPA classified isolates from the same ERIC cluster into separate clusters due to its high resolution. The IRPA method presented in this study offers a rapid, simple, reproducible, and economical approach for genotyping P. mirabilis.
Collapse
Affiliation(s)
- Nianqing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China; Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, Guangdong 510600, China
| | - Yilin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Chenglu Lan
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Shuilian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China.
| |
Collapse
|
49
|
Razi A, Ghiaei A, Dolatabadi FK, Haghighi R. Unraveling the association of bacteria and urinary stones in patients with urolithiasis: an update review article. Front Med (Lausanne) 2024; 11:1401808. [PMID: 39281813 PMCID: PMC11392849 DOI: 10.3389/fmed.2024.1401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Urinary stone disease (USD) is a prevalent urological condition, ranking as one of the most common urinary tract disorders globally. Various risk factors influence the formation of kidney stones, and recent research indicates a rising prevalence of urolithiasis worldwide, particularly in developing countries. While the morbidity associated with urinary stones has decreased in recent years, long-term complications such as stone recurrence, kidney failure, and uremia continue to burden patients. Understanding the etiologies of urolithiasis, including the role of bacteria, is crucial as they can contribute to stone recurrence. The incidence of urinary tract infection (UTI) stones can be attributed to specific infectious risk factors, socio-demographic factors, and comorbid metabolic disorders. This review article explores the emerging evidence suggesting the involvement of bacteria in USD. It discusses the potential role of microorganisms in non-infection stones and highlights the association between UTIs and urolithiasis. Furthermore, it surveys the relationship between kidney stones and recurrent UTIs and the formation of bacterial biofilms in UTIs. Considering various risk factors, including biochemical stone analysis and the presence of bacteria, is essential for treating patients with infectious stones optimally. This review aims to provide an updated understanding of the association between bacteria and urinary stones in patients with urolithiasis, shedding light on the pathophysiology of urinary stone formation, urinary stone characteristics, and the urinary microbiome in urinary stones.
Collapse
Affiliation(s)
- Abdolah Razi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azita Ghiaei
- Department of Microbiology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Fahimeh Kamali Dolatabadi
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
50
|
Elsafi SH, Al Zahrani EM, Al Zaid RF, Alshagifi SA, Farghal TA, Alshamuse KB, Albalawi AS, Alkhalaf F, Sumaily AA, Almusabi S, George SK. Antibiotic-resistant bacteria contaminating leafy vegetables in Saudi Arabia's eastern region. BMC Microbiol 2024; 24:303. [PMID: 39135186 PMCID: PMC11321146 DOI: 10.1186/s12866-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Food-associated antibiotic-resistant bacteria can cause infections that may critically impact human health. The objectives of this study were to determine the microbial contamination level of green leafy vegetables and their antibiotic resistance pattern. METHODS Sixty-three samples of leafy vegetables were collected from Dammam Central Fruit and Vegetables Market from January to June 2023. The vegetables included lettuce (Lactuca sativa), parsley (Petroselinum crispum), and watercress (Nasturtium officinale). Samples were tested by standard microbiological techniques for identification and antibiotic susceptibility testing. RESULT Eight types of bacteria belonging to six different genera were detected. Enterobacteriaceae family was represented by four genera: Klebsiella, Proteus, Morganella, and Enterobacter. The other two genera were Pseudomonas and Aeromonas. Enterobacter cloacae was the most abundant organism, followed by Pseudomonas putida and Aeromonas sobria. On the other hand, Morganella morganii, Aeromonas hydrophila, and Proteus mirabilis were the least abundant. The three vegetable types had different levels of bacterial contamination. All isolated organisms were sensitive to penicillin, cephalosporin, aminoglycoside, and fluoroquinolone. However, Klebsiella oxytoca, M. morganii, and K. pneumonia showed resistance to ampicillin. A. hydrophila, Morganella morganii, and E. cloacae showed resistance to amoxicillin. M. morganii and E. cloacae were found to be resistant to cefalotin. Moreover, A. hydrophila, M. morganii, and E. cloacae were resistant to cefoxitin. Again, A. hydrophila was found to be resistant to imipenem. Only M. morganii was resistant to Ciprofloxacin. Two isolates, P. mirabilis and M. morganii were resistant to tigecycline. Another two, M. morganii and P. mirabilis were resistant to Nitrofurantoin. Only M. morganii was found to be resistant to trimethoprim. CONCLUSION This study aligns with the broad consensus in the literature about the significance of bacterial contamination in vegetables and the public health implications. The unique focus on antibiotic resistance patterns adds an essential dimension to the existing body of knowledge.
Collapse
Affiliation(s)
- Salah H Elsafi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia.
| | - Eidan M Al Zahrani
- Physical Therapy Department, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Raneem F Al Zaid
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Shahad A Alshagifi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Taif A Farghal
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Khlood B Alshamuse
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Aseel S Albalawi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Faisal Alkhalaf
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Amr A Sumaily
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Saleh Almusabi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Siju K George
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| |
Collapse
|