1
|
Mukhopadhyay H, Bairagi A, Mukherjee A, Prasad AK, Roy AD, Nayak A. Multidrug resistant Acinetobacter baumannii: A study on its pathogenesis and therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100331. [PMID: 39802320 PMCID: PMC11718326 DOI: 10.1016/j.crmicr.2024.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The overuse of antibiotics has led to the global dissemination of Acinetobacter baumannii, an increasingly challenging nosocomial pathogen. This review explores the medical significance along with the diverse resistance ability of A. baumannii. Intensive care units (ICUs) serve as a breeding ground for A. baumannii, as these settings harbour vulnerable patients and facilitate the spread of opportunistic microorganisms. A. baumannii belongs to the ESKAPE group of bacterial pathogens that are major contributors to antibiotic-resistant infections. The pathogenic nature of A. baumannii is particularly evident in seriously ill patients, causing pneumonia, wound infections, and other healthcare-associated infections. Historically considered benign, A. baumannii is a global threat due to its propensity for rapid acquisition of multidrug resistance phenotypes. The genus Acinetobacter was formally recognized in 1968 following a comprehensive survey by Baumann et al., highlighting the relationship between previously identified species and consolidating them under the name Acinetobacter. A. baumannii is characterized by its Gram-negative nature, dependence on oxygen, positive catalase activity, lack of oxidase activity, inability to ferment sugars, and non-motility. The DNA G+C content of Acinetobacter species falls within a specific range. For diagnostic purposes, A. baumannii can be cultured on specific agar media, producing distinct colonies. The genus Acinetobacter comprises numerous species those are associated with bloodstream infections with high mortality rates. Therefore, A. baumannii poses a significant challenge to global healthcare due to its multidrug resistance and ability to cause various infections. A comprehensive understanding of the mechanisms underlying its resistance acquisition and pathogenicity is essential for combating this healthcare-associated pathogen effectively.
Collapse
Affiliation(s)
- Hridesh Mukhopadhyay
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal 700118, India
| | - Arnab Bairagi
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Anushka Mukherjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | | | - Arjama Dhar Roy
- Serampore Vivekananda Academy, Serampore, Hooghly 712203, West Bengal, India
| | - Aditi Nayak
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| |
Collapse
|
2
|
Li FJ, Starrs L, Mathur A, Enosi Tuipulotu D, Man SM, Burgio G. Interferon signalling and non-canonical inflammasome activation promote host protection against multidrug-resistant Acinetobacter baumannii. Commun Biol 2024; 7:1494. [PMID: 39533032 PMCID: PMC11557958 DOI: 10.1038/s42003-024-07204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii are of major concern worldwide due to their resistance to last resort carbapenem and polymyxin antibiotics. To develop an effective treatment strategy, it is critical to better understand how an A. baumannii MDR bacterium interacts with its mammalian host. Pattern-recognition receptors sense microbes, and activate the inflammasome pathway, leading to pro-inflammatory cytokine production and programmed cell death. Here, we examined the effects of a systemic MDR A. baumannii infection and found that MDR A. baumannii activate the NLRP3 inflammasome complex predominantly via the non-canonical caspase-11-dependent pathway. We show that caspase-1 and caspase-11-deficient mice are protected from a virulent MDR A. baumannii strain by maintaining a balance between protective and deleterious inflammation. Caspase-11-deficient mice also compromise between effector cell recruitment, phagocytosis, and programmed cell death in the lung during infection. Importantly, we found that cytosolic immunity - mediated by guanylate-binding protein 1 (GBP1) and type I interferon signalling - orchestrates caspase-11-dependent inflammasome activation. Together, our results suggest that non-canonical inflammasome activation via the (Interferon) IFN pathway plays a critical role in the host response against MDR A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora Starrs
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
3
|
Jackson-Litteken CD, Di Venanzio G, Janet-Maitre M, Castro ÍA, Mackel JJ, Rosen DA, López CB, Feldman MF. A chronic murine model of pulmonary Acinetobacter baumannii infection enabling the investigation of late virulence factors, long-term antibiotic treatments, and polymicrobial infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613469. [PMID: 39345519 PMCID: PMC11429896 DOI: 10.1101/2024.09.17.613469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Acinetobacter baumannii can cause prolonged infections that disproportionately affect immunocompromised populations. Our understanding of A. baumannii respiratory pathogenesis relies on an acute murine infection model with limited clinical relevance that employs an unnaturally high number of bacteria and requires the assessment of bacterial load at 24-36 hours post-infection. Here, we demonstrate that low intranasal inoculums in immunocompromised mice with a tlr4 mutation leads to reduced inflammation, allowing for persistent infections lasting at least 3 weeks. Using this "chronic infection model," we determined the adhesin InvL is an imperative virulence factor required during later stages of infection, despite being dispensable in the early phase. We also demonstrate that the chronic model enables the distinction between antibiotics that, although initially reduce bacterial burden, either lead to complete clearance or result in the formation of bacterial persisters. To illustrate how our model can be applied to study polymicrobial infections, we inoculated mice with an active A. baumannii infection with Staphylococcus aureus or Klebsiella pneumoniae. We found that S. aureus exacerbates the infection, while K. pneumoniae enhances A. baumannii clearance. In all, the chronic model overcomes some limitations of the acute pulmonary model, expanding our capabilities to study of A. baumannii pathogenesis and lays the groundwork for the development of similar models for other important opportunistic pathogens.
Collapse
Affiliation(s)
- Clay D Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Manon Janet-Maitre
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ítalo A Castro
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph J Mackel
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - David A Rosen
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Carolina B López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Hong Y, Lin X, Zhang C, Dong X, Lu M, Huang S, Huang L, Su C, Bai Z, Wu S. Initial indicators for the prognosis of Acinetobacter Baumannii bacteremia in children. BMC Infect Dis 2023; 23:640. [PMID: 37775747 PMCID: PMC10542241 DOI: 10.1186/s12879-023-08639-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Risk factors related to mortality due to Acinetobacter baumannii (AB) bacteremia have been unveiled previously, but early clinical manifestations of AB bacteremia based on prognosis remain uncovered. METHODS The demographic characteristics, clinical features, antibiotic susceptibility, and outcomes of 37 hospitalized children with laboratory-confirmed AB bacteremia from Suzhou, China, were collected and analyzed retrospectively. RESULTS Of the 37 children with AB bacteremia included in this study, 23 were males and 14 were females, with a median age of 4.83 (0.60 to 10.15) years. Among the children, 18 died (48.65%, 18/37) and 19 survived (51.35%, 19/37). The dead group had a significantly higher incidence of respiratory failure (p = 0.008), shock (P = 0.000), MODS (p = 0.000), neutropenia (< 1.5 × 109/L) (p = 0.000) and serious neutropenia (< 0.5 × 109/L) (p = 0.000) than those in the survival group. The death group had significantly more invasive procedures (2 or more) than that in the survival group at 2 weeks before onset (p = 0.005). The proportion of MDR-AB in the death group was significantly higher than that in the survival group (p = 0.000), while the PICS score was significantly lower in the survival group than that in the death group (p = 0.000). There was no significant difference in effective antibiotic use within 24 h between these two groups (p = 0.295). Among the 37 children with bloodstream infection of AB, 56.76% (21/37) of the underlying diseases were hematological diseases and oncology. Among them, 17 (81.00%) were died in the hospital. The proportion of white blood cells (p = 0.000), neutrophils (p = 0.042), eosinophils (p = 0.029), the ANC (p = 0.000) and lymphocyte (p = 0.000), the NLR(p = 0.011), hemoglobin (p = 0.001), platelets (p = 0.000), prealbumin (P = 0.000), LDH (p = 0.017), blood gas pH (p = 0.000), and serum potassium (p = 0.002) in the death group were significantly lower than those in the survival group. However, CRP (p = 0.000) and blood glucose(p = 0.036) were significantly higher in the death group than those in the survival group. By further multivariate analysis, CRP [OR (95% CI): 1.022(1.003, 1.041), p = 0.021] and neutropenia [OR (95% CI): 21.634 (2.05, 228.313, p = 0.011] within 24 h of infection were independent risk factors for death in children with AB bacteremia. When CRP was higher than 59.02 mg/L, the sensitivity of predicting mortality was 88.9%, and the specificity was 78.9%. And the sensitivity and specificity of neutropenia for predicting mortality were 83.3% and 84.2%. CONCLUSIONS AB bacteremia has a high mortality in children, especially in patients with hematological diseases and oncology. Many early indicators were associated with poor prognosis, while elevated CRP and neutropenia were the independent predictors for the 30-day mortality of children with laboratory-confirmed AB bacteremia.
Collapse
Affiliation(s)
- Yi Hong
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pediatrics, Changshu Hospital, Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Xiaochen Lin
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chunxu Zhang
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xingqiang Dong
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meihua Lu
- Department of Pediatrics, Changshu Hospital, Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Saihu Huang
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Huang
- Laboratory department, Children Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chunmei Su
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenjiang Bai
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Shuiyan Wu
- Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Islam A, Actis LA, Wilson TJ. Natural Antibodies Mediate Protection Against Acinetobacter baumannii Respiratory Infections. J Infect Dis 2023; 228:353-363. [PMID: 36951192 PMCID: PMC10420402 DOI: 10.1093/infdis/jiad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii causes a wide range of dangerous infections due to the emergence of pandrug-resistant strains. Therefore, there is a need for alternative therapeutics to treat these infections, including those targeting the host immune responses. However, immune responses, especially the humoral response against this pathogen, are poorly understood. METHODS This study investigated the lymphocyte-mediated innate immune resistance to A. baumannii AB5075 pulmonary infection using B- and T-cell-deficient (Rag2-/-) mice, the protective effect of natural antibodies (NAbs), and the expression of complement-mediated responses using a mouse pneumonia model. RESULTS Our results showed that intranasally infected Rag2-/- mice are impaired in clearing bacteria from lung, liver, and spleen at 24 hours postinfection compared to wildtype mice. Animal pretreatment with normal mouse serum or purified antibodies from naive mice rescued Rag2-/- mice from infection. Analysis of C3 complement protein binding demonstrated that NAbs increased C3 protein deposition on A. baumannii cells, indicating the activation of the classical complement pathway by NAbs. CONCLUSIONS Overall, our study shows that NAbs mediate innate immune resistance against A. baumannii, a finding that may lead to the development of effective therapies against human infections caused by this antibiotic-resistant A. baumannii.
Collapse
|
6
|
Zhou Y, Xiang C, Wang N, Zhang X, Xie Y, Yang H, Guo G, Liu K, Li Y, Shi Y. Acinetobacter baumannii reinforces the pathogenesis by promoting IL-17 production in a mouse pneumonia model. Med Microbiol Immunol 2023; 212:65-73. [PMID: 36463365 DOI: 10.1007/s00430-022-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Interleukin-17 (IL-17) is involved in host defense against bacterial infection. Little is known about the role of IL-17 in A. baumannii-infected pneumonia. Our objective was to investigate the role of IL-17 in pulmonary A. baumannii infection in a mouse model. We infected C57BL/6 mice intra-tracheally (i.t.) with A. baumannii to establish pneumonia model and found A. baumannii infection elevated IL-17 expression in lungs. IL-17-deficient (Il17-/-) mice were resistant to pulmonary A. baumannii infection, showing improved mice survival, reduced bacteria burdens, and alleviated lung inflammation. Further, treatment of A. baumannii-infected Il17-/- mice with IL-17 exacerbated the severity of pneumonia. These data suggest a pathogenic role of IL-17 in pulmonary A. baumannii infection. Further, the infiltration and phagocytic function of neutrophils in broncho-alveolar lavage fluid were detected by flow cytometry. The results showed that Il17-/- mice had increased neutrophil infiltration and enhanced phagocytosis in neutrophils at the early time of infection. Treatment of mice with IL-17 suppressed phagocytic function of neutrophils. All data suggest that IL-17 promotes susceptibility of mice to pulmonary A. baumannii infection by suppressing neutrophil phagocytosis at early time of infection. Targeting IL-17 might be a potential therapeutic strategy in controlling the outcome of A. baumannii pneumonia.
Collapse
Affiliation(s)
- Yangyang Zhou
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanying Xiang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Xie
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Yang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gang Guo
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kaiyun Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Bjanes E, Zhou J, Qayum T, Krishnan N, Zurich RH, Menon ND, Hoffman A, Fang RH, Zhang L, Nizet V. Outer Membrane Vesicle-Coated Nanoparticle Vaccine Protects Against Acinetobacter baumannii Pneumonia and Sepsis. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200130. [PMID: 37151210 PMCID: PMC10156090 DOI: 10.1002/anbr.202200130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The highly multidrug-resistant (MDR) Gram-negative bacterial pathogen Acinetobacter baumannii is a top global health priority where an effective vaccine could protect susceptible populations and limit resistance acquisition. Outer membrane vesicles (OMVs) shed from Gram-negative bacteria are enriched with virulence factors and membrane lipids but heterogeneous in size and cargo. We report a vaccine platform combining precise and replicable nanoparticle technology with immunogenic A. baumannii OMVs (Ab-OMVs). Gold nanoparticle cores coated with Ab-OMVs (Ab-NPs) induced robust IgG titers in rabbits that enhanced human neutrophil opsonophagocytic killing and passively protected against lethal A. baumannii sepsis in mice. Active Ab-NP immunization in mice protected against sepsis and pneumonia, accompanied by B cell recruitment to draining lymph nodes, activation of dendritic cell markers, improved splenic neutrophil responses, and mitigation of proinflammatory cytokine storm. Nanoparticles are an efficient and efficacious platform for OMV vaccine delivery against A. baumannii and perhaps other high-priority MDR pathogens.
Collapse
Affiliation(s)
- Elisabet Bjanes
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Jiarong Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Tariq Qayum
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Nishta Krishnan
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Raymond H. Zurich
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Nitasha D. Menon
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Alexandria Hoffman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
In Vitro Pharmacokinetics of LL-37 and Oncorhyncin II Combination Against Acinetobacter baumannii. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-131299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Multidrug-resistant (MDR) Acinetobacter baumannii is one of the most common nosocomial pathogens. Antimicrobial peptides (AMPs) have been introduced as a viable alternative to antibiotics in the treatment of MDR pathogens. Objectives: This study was designed to assess the in vitro pharmacokinetics of the combination of two potent AMPs, LL-37 and oncorhyncin II, against A. baumannii (ATCC19606). Methods: The synthesized genes of oncorhyncin II and LL-37 were introduced into Escherichia coli BL21 as the expression host. The minimum inhibitory concentration (MIC), time-kills, and growth kinetics of these peptides were used to evaluate their antimicrobial efficiencies against A. baumannii (ATCC19606). Results: LL-37 and oncorhyncin II recombinant peptides showed MIC of 30.6 and 95.87 µg/mL against A. baumannii, respectively. Additive action was confirmed by combining the generated AMPs at the checkerboard approach. The combination of LL-37 and oncorhyncin II at 2 × MIC resulted in a rapid drop in log10 CFU/mL of A. baumannii in the time-kill and growth kinetic findings studies. Conclusions: The combination of the produced LL-37 and oncorhyncin II synergizes the bioactivity of the individual peptides. Therefore, these peptides or their combinations might function as novel antibiotics and be used to develop and produce new antimicrobial drugs for the treatment of infections caused by A. baumannii.
Collapse
|
9
|
Argyropoulos CD, Skoulou V, Efthimiou G, Michopoulos AK. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:477-533. [PMID: 36467894 PMCID: PMC9703444 DOI: 10.1007/s11869-022-01286-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.
Collapse
Affiliation(s)
| | - Vasiliki Skoulou
- B3 Challenge Group, Chemical Engineering, School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Georgios Efthimiou
- Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Apostolos K. Michopoulos
- Energy & Environmental Design of Buildings Research Laboratory, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
10
|
Li FJ, Starrs L, Mathur A, Ishii H, Man SM, Burgio G. Differential activation of NLRP3 inflammasome by Acinetobacter baumannii strains. PLoS One 2022; 17:e0277019. [PMID: 36318583 PMCID: PMC9624416 DOI: 10.1371/journal.pone.0277019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance globally. A. baumannii has an exceptional ability to rapidly develop drug resistance. It is frequently responsible for ventilator-associated pneumonia in clinical settings and inflammation resulting in severe sepsis. The inflammatory response is mediated by host pattern-recognition receptors and the inflammasomes. Inflammasome activation triggers inflammatory responses, including the secretion of the pro-inflammatory cytokines IL-1β and IL-18, the recruitment of innate immune effectors against A. baumannii infection, and the induction programmed cell death by pyroptosis. An important knowledge gap is how variation among clinical isolates affects the host’s innate response and activation of the inflammasome during A. baumannii infection. In this study, we compared nine A. baumannii strains, including clinical locally-acquired isolates, in their ability to induce activation of the inflammasome and programmed cell death in primary macrophages, epithelial lung cell line and mice. We found a variation in survival outcomes of mice and bacterial dissemination in organs among three commercially available A. baumannii strains, likely due to the differences in virulence between strains. Interestingly, we found variability among A. baumannii strains in activation of the NLRP3 inflammasome, non-canonical Caspase-11 pathway, plasmatic secretion of the pro-inflammatory cytokine IL-1β and programmed cell death. Our study highlights the importance of utilising multiple bacterial strains and clinical isolates with different virulence to investigate the innate immune response to A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Lora Starrs
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Hikari Ishii
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
11
|
Zhou J, Ventura CJ, Yu Y, Gao W, Fang RH, Zhang L. Biomimetic Neutrophil Nanotoxoids Elicit Potent Immunity against Acinetobacter baumannii in Multiple Models of Infection. NANO LETTERS 2022; 22:7057-7065. [PMID: 35998891 PMCID: PMC9971251 DOI: 10.1021/acs.nanolett.2c01948] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acinetobacter baumannii is a leading cause of antibiotic-resistant nosocomial infections with high mortality rates, yet there is currently no clinically approved vaccine formulation. During the onset of A. baumannii infection, neutrophils are the primary responders and play a major role in resisting the pathogen. Here, we design a biomimetic nanotoxoid for antivirulence vaccination by using neutrophil membrane-coated nanoparticles to safely capture secreted A. baumannii factors. Vaccination with the nanotoxoid formulation rapidly mobilizes innate immune cells and promotes pathogen-specific adaptive immunity. In murine models of pneumonia, septicemia, and superficial wound infection, immunization with the nanovaccine offers significant protection, improving survival and reducing signs of acute inflammation. Lower bacterial burdens are observed in vaccinated animals regardless of the infection route. Altogether, neutrophil nanotoxoids represent an effective platform for eliciting multivalent immunity to protect against multidrug-resistant A. baumannii in a wide range of disease conditions.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Christian J. Ventura
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
12
|
Sheldon JR, Himmel LE, Kunkle DE, Monteith AJ, Maloney KN, Skaar EP. Lipocalin-2 is an essential component of the innate immune response to Acinetobacter baumannii infection. PLoS Pathog 2022; 18:e1010809. [PMID: 36054235 PMCID: PMC9477428 DOI: 10.1371/journal.ppat.1010809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen. A lack of therapeutic options has prompted the World Health Organization to designate multidrug-resistant Acinetobacter baumannii as its priority critical pathogen for research into new treatment strategies. The mechanisms employed by A. baumannii to cause disease and the host tactics exercised to constrain infection are not fully understood. Here, we further characterize the innate immune response to A. baumannii infection. We identify nutritional immunity, a process where the availability of nutrient metals is exploited to restrain bacterial growth, as being induced during infection. The gene encoding for lipocalin-2 (Lcn2), a protein that can impede iron uptake by bacteria, is highly upregulated in infected mice, and corresponds to robust LCN2 detection in the tissues. We find that LCN2 is crucial to reducing mortality from A. baumannii bacteremia and inhibits dissemination of the pathogen during pneumonia. In wild-type and Lcn2-deficient mice, broader transcriptional profiling reveals expression patterns consistent with the known response to Gram-negative bacteremia. Although the role of LCN2 in infection is likely multifactorial, we find its antimicrobial effects are at least partly exerted by impairing iron acquisition by A. baumannii. Facets of nutritional immunity, such as LCN2, may be exploited as novel therapeutics in combating A. baumannii infection.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lauren E. Himmel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gao CA, Morales-Nebreda L, Pickens CI. Gearing up for battle: Harnessing adaptive T cell immunity against gram-negative pneumonia. Front Cell Infect Microbiol 2022; 12:934671. [PMID: 36061870 PMCID: PMC9433749 DOI: 10.3389/fcimb.2022.934671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Pneumonia is one of the leading causes of morbidity and mortality worldwide and Gram-negative bacteria are a major cause of severe pneumonia. Despite advances in diagnosis and treatment, the rise of multidrug-resistant organisms and hypervirulent strains demonstrates that there will continue to be challenges with traditional treatment strategies using antibiotics. Hence, an alternative approach is to focus on the disease tolerance components that mediate immune resistance and enhance tissue resilience. Adaptive immunity plays a pivotal role in modulating these processes, thus affecting the incidence and severity of pneumonia. In this review, we focus on the adaptive T cell responses to pneumonia induced by Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We highlight key factors in these responses that have potential for therapeutic targeting, as well as the gaps in current knowledge to be focused on in future work.
Collapse
Affiliation(s)
- Catherine A Gao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Luisa Morales-Nebreda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chiagozie I Pickens
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
14
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
15
|
Liu Z, Xu W. Neutrophil and Macrophage Response in Acinetobacter Baumannii Infection and Their Relationship to Lung Injury. Front Cell Infect Microbiol 2022; 12:890511. [PMID: 35873147 PMCID: PMC9298752 DOI: 10.3389/fcimb.2022.890511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Acinetobacter baumannii (AB) infection has become a threat to global public health. AB is one of the main pathogens causing nosocomial infections, especially ventilator-associated pneumonia. AB easily develops resistance against a variety of antibiotics, which makes the treatment of AB infections difficult. Therefore, it is necessary to study new treatment plans like anti-infection immunity. Both animal models of AB infection and in vitro cell experiments show that macrophages are activated in the early stage of the immune response and regulate the recruitment of neutrophils, thus playing a role in clearing AB. AB components and the immune responses they induce can lead to injury of the infected organ, mostly in the lungs. Understanding the response of innate immunity to ABs at different stages after infection and the relationship between the response and lung injury can help to develop new immunotherapy methods and prevent lung injury. This article provides a comprehensive review of the response of neutrophils and macrophages to AB infection and their association with lung injury to develop effective therapies for AB infection and prevent lung injury.
Collapse
Affiliation(s)
- Zhaojun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Tiku V. Acinetobacter baumannii: Virulence Strategies and Host Defense Mechanisms. DNA Cell Biol 2022; 41:43-48. [PMID: 34941456 PMCID: PMC8787692 DOI: 10.1089/dna.2021.0588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen known to cause severe life-threatening infections, including pneumonia, meningitis, and sepsis. Recent emergence of this bacterium as a serious nosocomial pathogen has led to categorization of A. baumannii as a "high-priority" pathogen by the World Health Organization (WHO), for which research efforts are urgently required to develop therapeutic interventions. Some of the properties that make A. baumannii a serious pathogen include its capacity to tolerate high levels of stress and enhanced expression of efflux pumps that enable high degrees of antibiotic resistance. Virulence mechanisms employed by A. baumannii to establish successful infection and host responses elicited against A. baumannii to counter the infection are discussed in detail in this article.
Collapse
Affiliation(s)
- Varnesh Tiku
- Vir Biotechnology, San Francisco, California, USA
| |
Collapse
|
17
|
Bergamini G, Perico ME, Di Palma S, Sabatini D, Andreetta F, Defazio R, Felici A, Ferrari L. Mouse pneumonia model by Acinetobacter baumannii multidrug resistant strains: Comparison between intranasal inoculation, intratracheal instillation and oropharyngeal aspiration techniques. PLoS One 2021; 16:e0260627. [PMID: 34855837 PMCID: PMC8638993 DOI: 10.1371/journal.pone.0260627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Infectious pneumonia induced by multidrug resistant (MDR) Acinetobacter baumannii strains is among the most common and deadly forms of healthcare acquired infections. Over the years, different strategies have been put in place to increase host susceptibility to MDR A. baumannii, since only a self-limiting pneumonia with no or limited local bacterial replication was frequently obtained in mouse models. Direct instillation into the trachea or intranasal inoculation of the bacterial suspension are the techniques used to induce the infection in most of the preclinical models of pneumonia developed to date. More recently, the oropharyngeal aspiration procedure has been widely described in the literature for a variety of purposes including pathogens administration. Aim of this study was to compare the oropharyngeal aspiration technique to the intranasal inoculation and intratracheal instillation in the ability of inducing a consistent lung infection with two MDR A. baumannii clinical isolates in immunocompromised mice. Moreover, pneumonia obtained by bacteria administration with two out of three techniques, intratracheal and oropharyngeal, was characterised in terms of histopathology of pulmonary lesions, biomarkers of inflammation level and leukocytes cells infiltration extent after mice treatment with either vehicle or the antibiotic tigecycline. The data generated clearly showed that both strains were not able to colonize the lungs when inoculated by intranasal route. By contrast, the bacterial load in lungs of mice intratracheally or oropharyngeally infected significantly increased during 26 hours of monitoring, thus highlighting the ability of these strains to generate the infection when directly instilled into the lower respiratory airways. Furthermore, the intragroup variability of mice was significantly reduced with respect to those intranasally administered. Tigecycline was efficacious in lung bacterial load and cytokines release reduction. Findings were supported by semi-quantitative histopathological evaluation of the pulmonary lesions and by inflammatory biomarkers analysis. To conclude, both intratracheal instillation and oropharyngeal aspiration techniques showed to be suitable methods for inducing a robust and consistent pneumonia infection in mice when difficult MDR A. baumannii clinical isolates were used. Noteworthy, oropharyngeal aspiration not requiring specific technical skills and dedicated equipment, was proven to be a safer, easier and faster technique in comparison to the intratracheal instillation.
Collapse
Affiliation(s)
- Gabriella Bergamini
- Translational Microbiology, Antibacterial Discovery, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
- * E-mail:
| | - Maria Elisa Perico
- In vitro Pharmacology, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
| | - Stefano Di Palma
- Pathology, Preclinical Development, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Daniela Sabatini
- In vitro Pharmacology, Microbiology Discovery, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Filippo Andreetta
- In vitro Pharmacology, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
| | - Rossella Defazio
- Pathology, Preclinical Development, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Antonio Felici
- In vitro Pharmacology, Microbiology Discovery, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Livia Ferrari
- Translational Microbiology, Antibacterial Discovery, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
| |
Collapse
|
18
|
Naghipour Erami A, Rasooli I, Jahangiri A, Darvish Alipour Astaneh S. Anti-Omp34 antibodies protect against Acinetobacter baumannii in a murine sepsis model. Microb Pathog 2021; 161:105291. [PMID: 34798280 DOI: 10.1016/j.micpath.2021.105291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
Acinetobacter baumannii, an opportunistic extracellular pathogen is one of the major causes of nosocomial infections. Omp34, also known as Omp33-36, is a bacterial porin protein involved in the virulence and fitness of this pathogen by adhesion to the host cell. This antigen nominated as an appropriate candidate for immunization against A. baumannii. In this study, the expression of the recombinant Omp34 (rOmp34) was carried out in E. coli BL21 (DE3). The immunogenicity of the rOmp34 in A. baumannii was studied in a murine sepsis model. Antibody response in mice injected with the recombinant protein was assessed using indirect ELISA. Bactericidal activity of rOmp34-immunized mice sera (1:10 dilution) against A. baumannii ATCC 19606 after 0, 1, 2, 4, and 8 h of incubation at 37 °C was assessed. In addition to survival rate, load of bacteria in liver and spleen of the infected mice were evaluated. A high titer of specific antibody equivalent to optical density of 1.54 ± 0.06 against rOmp34 was elicited in the immunized mice sera. Viability of the A. baumannii incubated 8 h with immunized mice sera was 64%. Homogenized liver and spleen samples of the control mice challenged with A. baumannii were loaded with 8 × 103 and 9 × 103 CFU per gram tissue respectively 48 h post-challenge as against complete clearance of A. baumannii in the immunized group. The protective immunity was achieved by challenging the mice groups with 5 × LD50 of live A. baumannii. Omp34 can be nominated as an immunogen that can bring about protection against Acinetobacter baumannii.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran-Qom Express Way, Iran; Molecular Microbiology Research Center, Shahed University, Tehran-Qom Express Way, Iran.
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
19
|
Wijers CDM, Pham L, Menon S, Boyd KL, Noel HR, Skaar EP, Gaddy JA, Palmer LD, Noto MJ. Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infect Immun 2021; 89:e0045421. [PMID: 34460288 PMCID: PMC8594612 DOI: 10.1128/iai.00454-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1β) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1β production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.
Collapse
Affiliation(s)
- Christiaan D. M. Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, Kerala, India
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael J. Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Allemailem KS, Almatroudi A, Alrumaihi F, Aljaghwani A, Alnuqaydan AM, Khalilullah H, Younus H, El-Kady AM, Aldakheel FM, Khan AA, Khan A, Khan MA. Antimicrobial, Immunomodulatory and Anti-Inflammatory Potential of Liposomal Thymoquinone: Implications in the Treatment of Bacterial Pneumonia in Immunocompromised Mice. Biomedicines 2021; 9:1673. [PMID: 34829902 PMCID: PMC8615793 DOI: 10.3390/biomedicines9111673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii has recently been increasing as an aggressive pathogen in immunocompromised persons. In the present study, we determined the in vitro antibacterial and anti-biofilm activity of thymoquinone (TQ) against A. baumannii. A liposomal formulation of TQ (Lip-TQ) was prepared and its therapeutic potential was investigated in the treatment of A. baumannii infection in immunocompromised mice. Leukopenia was induced in mice by injecting cyclophosphamide (CYP) at a dose of 200 mg/kg and the leukopenic mice were infected with 1 × 106 CFUs of A. baumannii. The effectiveness of free TQ or Lip-TQ against A. baumannii infection was assessed by analyzing the survival rate and bacterial burden. Moreover, the efficacy of Lip-TQ was also studied by examining the systemic inflammatory markers and the histological changes in the lung tissues. The results showed that the mice in the group treated with Lip-TQ at a dose of 10 mg/kg exhibited a 60% survival rate on day 40 post-infection, whereas all the mice treated with free TQ at the same dose died within this duration. Likewise, the lowest bacterial burden was found in the lung tissue of mice treated with Lip-TQ (10 mg/kg). Besides, Lip-TQ treatment remarkably alleviated the infection-associated inflammation, oxidative stress, and histological changes in the lung tissues. Based on the findings of the present study, we recommend considering Lip-TQ as a valuable therapeutic formulation in the treatment of A. baumannii-associated pneumonia in immunocompromised subjects.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| | - Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| |
Collapse
|
21
|
Kamuyu G, Suen Cheng Y, Willcocks S, Kewcharoenwong C, Kiratisin P, Taylor PW, Wren BW, Lertmemongkolchai G, Stabler RA, Brown J. Sequential Vaccination With Heterologous Acinetobacter baumannii Strains Induces Broadly Reactive Antibody Responses. Front Immunol 2021; 12:705533. [PMID: 34394105 PMCID: PMC8363311 DOI: 10.3389/fimmu.2021.705533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Antibody therapy may be an alternative treatment option for infections caused by the multi-drug resistant (MDR) bacterium Acinetobacter baumannii. As A. baumannii has multiple capsular serotypes, a universal antibody therapy would need to target conserved protein antigens rather than the capsular polysaccharides. We have immunized mice with single or multiple A. baumannii strains to induce antibody responses to protein antigens, and then assessed whether these responses provide cross-protection against a collection of genetically diverse clinical A. baumannii isolates. Immunized mice developed antibody responses to multiple protein antigens. Flow cytometry IgG binding assays and immunoblots demonstrated improved recognition of both homologous and heterologous clinical strains in sera from mice immunized with multiple strains compared to a single strain. The capsule partially inhibited bacterial recognition by IgG and the promotion of phagocytosis by human neutrophils. However, after immunization with multiple strains, serum antibodies to protein antigens promoted neutrophil phagocytosis of heterologous A. baumannii strains. In an infection model, mice immunized with multiple strains had lower bacterial counts in the spleen and liver following challenge with a heterologous strain. These data demonstrate that antibodies targeting protein antigens can improve immune recognition and protection against diverse A. baumannii strains, providing support for their use as an antibody therapy.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- Centre for Inflammation and Tissue Repair, University College London (UCL) Respiratory, London, United Kingdom
| | - Yat Suen Cheng
- Centre for Inflammation and Tissue Repair, University College London (UCL) Respiratory, London, United Kingdom
| | - Sam Willcocks
- London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, Department of Infection Biology, London, United Kingdom
| | - Chidchamai Kewcharoenwong
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok, Thailand
| | - Peter W Taylor
- School of Pharmacy, University College London, London, United Kingdom
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, Department of Infection Biology, London, United Kingdom
| | - Ganjana Lertmemongkolchai
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Richard A Stabler
- London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, Department of Infection Biology, London, United Kingdom
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, University College London (UCL) Respiratory, London, United Kingdom
| |
Collapse
|
22
|
Li X, Liu X, Horvatovich P, Hu Y, Zhang J. Proteomics Landscape of Host-Pathogen Interaction in Acinetobacter baumannii Infected Mouse Lung. Front Genet 2021; 12:563516. [PMID: 34025711 PMCID: PMC8138179 DOI: 10.3389/fgene.2021.563516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen of nosocomial infection worldwide, which can primarily cause pneumonia, bloodstream infection, and urinary tract infection. The increasing drug resistance rate of A. baumannii and the slow development of new antibacterial drugs brought great challenges for clinical treatment. Host immunity is crucial to the defense of A. baumannii infection, and understanding the mechanisms of immune response can facilitate the development of new therapeutic strategies. To characterize the system-level changes of host proteome in immune response, we used tandem mass tag (TMT) labeling quantitative proteomics to compare the proteome changes of lungs from A. baumannii infected mice with control mice 6 h after infection. A total of 6,218 proteins were identified in which 6,172 could be quantified. With threshold p < 0.05 and relative expression fold change > 1.2 or < 0.83, we found 120 differentially expressed proteins. Bioinformatics analysis showed that differentially expressed proteins after infection were associated with receptor recognition, NADPH oxidase (NOX) activation and antimicrobial peptides. These differentially expressed proteins were involved in the pathways including leukocyte transendothelial migration, phagocyte, neutrophil degranulation, and antimicrobial peptides. In conclusion, our study showed proteome changes in mouse lung tissue due to A. baumannii infection and suggested the important roles of NOX, neutrophils, and antimicrobial peptides in host response. Our results provide a potential list of protein candidates for the further study of host-bacteria interaction in A. baumannii infection. Data are available via ProteomeXchange with identifier PXD020640.
Collapse
Affiliation(s)
- Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Efficacy of Lysophosphatidylcholine as Direct Treatment in Combination with Colistin against Acinetobacter baumannii in Murine Severe Infections Models. Antibiotics (Basel) 2021; 10:antibiotics10020194. [PMID: 33671416 PMCID: PMC7922394 DOI: 10.3390/antibiotics10020194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 01/28/2023] Open
Abstract
The stimulation of the immune response to prevent the progression of an infection may be an adjuvant to antimicrobial treatment. Here, we aimed to evaluate the efficacy of lysophosphatidylcholine (LPC) treatment in combination with colistin in murine experimental models of severe infections by Acinetobacter baumannii. We used the A. baumannii Ab9 strain, susceptible to colistin and most of the antibiotics used in clinical settings, and the A. baumannii Ab186 strain, susceptible to colistin but presenting a multidrug-resistant (MDR) pattern. The therapeutic efficacies of one and two LPC doses (25 mg/kg/d) and colistin (20 mg/kg/8 h), alone or in combination, were assessed against Ab9 and Ab186 in murine peritoneal sepsis and pneumonia models. One and two LPC doses combined with colistin and colistin monotherapy enhanced Ab9 and Ab186 clearance from spleen, lungs and blood and reduced mice mortality compared with those of the non-treated mice group in both experimental models. Moreover, one and two LPC doses reduced the bacterial concentration in tissues and blood in both models and increased mice survival in the peritoneal sepsis model for both strains compared with those of the colistin monotherapy group. LPC used as an adjuvant of colistin treatment may be helpful to reduce the severity and the resolution of the MDR A. baumannii infection.
Collapse
|
24
|
Innate Immune Effectors Play Essential Roles in Acute Respiratory Infection Caused by Klebsiella pneumoniae. J Immunol Res 2020; 2020:5291714. [PMID: 33163539 PMCID: PMC7607282 DOI: 10.1155/2020/5291714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/16/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Innate immune effectors constitute the first line of host defense against pathogens. However, the roles of these effectors are not clearly defined during Klebsiella pneumoniae (K. pneumoniae) respiratory infection. In the current study, we established an acute pneumonia model of K. pneumoniae respiratory infection in mice and confirmed that the injury was most severe 48 h post infection. Flow cytometric assay demonstrated that alveolar macrophages were the predominant cells in BALF before infection, and neutrophils were quickly recruited after infection, and this was in consistent with the kinetics of chemokine expression. Further, we depleted neutrophils, macrophages, and complement pathways in vivo and challenged these mice with a sublethal dose of K. pneumonia, the result showed that 80%, 60%, and 40% of mice were died in these groups, respectively, while no deaths occurred in the control group. Besides, innate immune effector depleted mice showed higher bacterial burdens in lungs and blood, companied with more severe lung damage and increased levels of cytokine/chemokine expression. These results demonstrated that the innate immune effectors are critical in the early controlling of K. pneumoniae infection, and neutrophils are the most important. Thus, alternative strategies targeting these innate immune effectors may be effective in controlling of K. pneumoniae respiratory infection.
Collapse
|
25
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
26
|
Weidensdorfer M, Ishikawa M, Hori K, Linke D, Djahanschiri B, Iruegas R, Ebersberger I, Riedel-Christ S, Enders G, Leukert L, Kraiczy P, Rothweiler F, Cinatl J, Berger J, Hipp K, Kempf VAJ, Göttig S. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii. Virulence 2020; 10:68-81. [PMID: 31874074 PMCID: PMC6363060 DOI: 10.1080/21505594.2018.1558693] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that causes a multitude of nosocomial infections. The Acinetobacter trimeric autotransporter adhesin (Ata) belongs to the superfamily of trimeric autotransporter adhesins which are important virulence factors in many Gram-negative species. Phylogenetic profiling revealed that ata is present in 78% of all sequenced A. baumannii isolates but only in 2% of the closely related species A. calcoaceticus and A. pittii. Employing a markerless ata deletion mutant of A. baumannii ATCC 19606 we show that adhesion to and invasion into human endothelial and epithelial cells depend on Ata. Infection of primary human umbilical cord vein endothelial cells (HUVECs) with A. baumannii led to the secretion of interleukin (IL)-6 and IL-8 in a time- and Ata-dependent manner. Furthermore, infection of HUVECs by WT A. baumannii was associated with higher rates of apoptosis via activation of caspases-3 and caspase-7, but not necrosis, in comparison to ∆ata. Ata deletion mutants were furthermore attenuated in their ability to kill larvae of Galleria mellonella and to survive in larvae when injected at sublethal doses. This indicates that Ata is an important multifunctional virulence factor in A. baumannii that mediates adhesion and invasion, induces apoptosis and contributes to pathogenicity in vivo.
Collapse
Affiliation(s)
- Marko Weidensdorfer
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Bardya Djahanschiri
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ruben Iruegas
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt, Germany
| | - Sara Riedel-Christ
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Giulia Enders
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Laura Leukert
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Florian Rothweiler
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jürgen Berger
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
27
|
Depletion of Alveolar Macrophages Increases Pulmonary Neutrophil Infiltration, Tissue Damage, and Sepsis in a Murine Model of Acinetobacter baumannii Pneumonia. Infect Immun 2020; 88:IAI.00128-20. [PMID: 32366576 DOI: 10.1128/iai.00128-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii has emerged as an important etiological agent of hospital-related infections, especially nosocomial pneumonia. The virulence factors of this bacterium and their interactions with the cells and molecules of the immune system just recently began to be extensively studied. Here, we investigated the impact of alveolar macrophages on A. baumannii pneumonia using a mouse model of infection and a flexible tissue culture system. We hypothesized that depletion of macrophages would enhance sepsis and severity of A. baumannii disease. We showed that macrophages are important for modulating the antibacterial function of neutrophils and play an important role in eradicating A. baumannii infection in vivo Our findings suggest that in the absence of macrophages in the lungs, A. baumannii replicates significantly, and host proinflammatory cytokines are considerably reduced. Neutrophils are abundantly recruited to pulmonary tissue, releasing high amounts of reactive oxygen species and causing extensive tissue damage. The ability of A. baumannii to form biofilms and resist oxidative stress in the respiratory tract facilitates systemic dissemination and ultimately death of infected C57BL/6 mice. These results provide novel information regarding A. baumannii pathogenesis and may be important for the development of therapies aimed at reducing morbidity and mortality associated with this emerging bacterial pathogen.
Collapse
|
28
|
Zeng X, Gu H, Peng L, Yang Y, Wang N, Shi Y, Zou Q. Transcriptome Profiling of Lung Innate Immune Responses Potentially Associated With the Pathogenesis of Acinetobacter baumannii Acute Lethal Pneumonia. Front Immunol 2020; 11:708. [PMID: 32391015 PMCID: PMC7188829 DOI: 10.3389/fimmu.2020.00708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii is one of the dominating causes of nosocomial pneumonia, however, very little is known about the host immune response associated with pathogenesis of A. baumannii infection. Here, we used a hypervirulent A. baumannii to establish an acute lethal pneumonia, supported by high bacterial burdens, severe inflammatory cells infiltration and lung damage. The lung transcriptome changes in response to A. baumannii lethal pneumonia were detected by RNA sequencing. The results showed that 6,288 host genes changed expression, with 3,313 upregulated genes and 2,975 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that genes related to TNF, cytokine-cytokine receptor interaction, Toll-like receptor, NOD-like receptor, NF-κB, Jak-STAT, HIF-1 signaling pathways, apoptosis, and phagosome were significantly upregulated. Whereas, genes associated with PI3K-AKT signaling pathway, glycolysis/gluconeogenesis, amino acid and fatty acid metabolism were downregulated. Immune cell typing highlighted the inflammatory response of innate immune cells headed by neutrophils. The reliability of RNA sequencing results were verified with selected differentially expressed genes by real-time PCR. This work provides an insight into the pathogenesis of lethal A. baumannii lung infection.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China
| | - Hao Gu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China.,Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinical Laboratory, 971st Hospital of People's Liberation Army, Qingdao, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ning Wang
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Shi
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Coakley JD, Breen EP, Moreno-Olivera A, Al-Harbi AI, Melo AM, O’Connell B, McManus R, Doherty DG, Ryan T. Dysregulated T helper type 1 (Th1) and Th17 responses in elderly hospitalised patients with infection and sepsis. PLoS One 2019; 14:e0224276. [PMID: 31658288 PMCID: PMC6816565 DOI: 10.1371/journal.pone.0224276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The role of Th1 and Th17 lymphocyte responses in human infection and sepsis of elderly patients has yet to be clarified. DESIGN A prospective observational study of patients with sepsis, infection only and healthy controls. SETTING The acute medical wards and intensive care units in a 1000 bed university hospital. PATIENTS 32 patients with sepsis, 20 patients with infection, and 20 healthy controls. Patients and controls were older than 65 years of age. Patients with recognised underlying immune compromise were excluded. METHODS Phenotype, differentiation status and cytokine production by T lymphocytes were determined by flow cytometry. MEASUREMENTS The differentiation states of circulating CD3+, CD4+, and CD8+ T cells were characterised as naive (CD45RA+, CD197+), central memory (CD45RA-, CD197+), effector memory (CD45RA-, CD197-), or terminally differentated (CD45RA+, CD197-). Expression of IL-12 and IL-23 receptors, and the transcription factors T-bet and RORγt, was analysed in circulating T lymphocytes. Expression of interferon- γ and IL-17A were analysed following stimulation in vitro. RESULTS CD4+ T cells from patients with infection predominantly expressed effector-memory or terminally differentiated phenotypes but CD4+ T cells from patients with severe sepsis predominantly expressed naive phenotypes (p<0.0001). CD4+ T cells expressing IL-23 receptor were lower in patients with sepsis compared to patients with infection alone (p = 0.007). RORγt expression by CD4+ T cells was less frequent in patients with sepsis (p<0.001), whereas T-bet expressing CD8+ T cells that do not express RORγt was lower in the sepsis patients. HLA-DR expression by monocytes was lower in patients with sepsis. In septic patients fewer monocytes expressed IL-23. CONCLUSION Persistent failure of T cell activation was observed in patients with sepsis. Sepsis was associated with attenuated CD8+Th1 and CD4+Th17 based lymphocyte response.
Collapse
Affiliation(s)
- John D. Coakley
- Department of Intensive Care Medicine, St James’s Hospital, Dublin, Ireland
- * E-mail:
| | - Eamon P. Breen
- Trinity Translational Medicine Institute, St James’s Hospital, Dublin, Ireland
| | - Ana Moreno-Olivera
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Alhanouf I. Al-Harbi
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Ashanty M. Melo
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Brian O’Connell
- Department of Clinical Microbiology, St James’s Hospital, Dublin, Ireland
| | - Ross McManus
- Department of Clinical Medicine and Genetics, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Thomas Ryan
- Department of Intensive Care Medicine, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
30
|
Potential Mechanisms of Mucin-Enhanced Acinetobacter baumannii Virulence in the Mouse Model of Intraperitoneal Infection. Infect Immun 2019; 87:IAI.00591-19. [PMID: 31405959 DOI: 10.1128/iai.00591-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine mucin has been commonly used to enhance the infectivity of bacterial pathogens, including Acinetobacter baumannii, in animal models, but the mechanisms for enhancement by mucin remain relatively unknown. In this study, using the mouse model of intraperitoneal (i.p.) mucin-enhanced A. baumannii infection, we characterized the kinetics of bacterial replication and dissemination and the host innate immune responses, as well as their potential contribution to mucin-enhanced bacterial virulence. We found that mucin, either admixed with or separately injected with the challenge bacterial inoculum, was able to enhance the tissue and blood burdens of A. baumannii strains of different virulence. Intraperitoneal injection of A. baumannii-mucin or mucin alone induced a significant but comparable reduction of peritoneal macrophages and lymphocytes, accompanied by a significant neutrophil recruitment and early interleukin-10 (IL-10) responses, suggesting that the resulting inflammatory cellular and cytokine responses were largely induced by the mucin. Depletion of peritoneal macrophages or neutralization of endogenous IL-10 activities showed no effect on the mucin-enhanced infectivity. However, pretreatment of mucin with iron chelator DIBI, but not deferoxamine, partially abolished its virulence enhancement ability, and replacement of mucin with iron significantly enhanced the bacterial burdens in the peritoneal cavity and lung. Taken together, our results favor the hypothesis that iron at least partially contributes to the mucin-enhanced infectivity of A. baumannii in this model.
Collapse
|
31
|
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601. [PMID: 31379771 PMCID: PMC6650576 DOI: 10.3389/fmicb.2019.01601] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated a significant insurgence in the prevalence of infections over recent decades. With only a limited number of “traditional” virulence factors, the mechanisms underlying the success of this pathogen remain of great interest. Major advances have been made in the tools, reagents, and models to study A. baumannii pathogenesis, and this has resulted in a substantial increase in knowledge. This article provides a comprehensive review of the bacterial virulence factors, the host immune responses, and animal models applicable for the study of this important human pathogen. Collating the most recent evidence characterizing bacterial virulence factors, their cellular targets and genetic regulation, we have encompassed numerous aspects important to the success of this pathogen, including membrane proteins and cell surface adaptations promoting immune evasion, mechanisms for nutrient acquisition and community interactions. The role of innate and adaptive immune responses is reviewed and areas of paucity in our understanding are highlighted. Finally, with the vast expansion of available animal models over recent years, we have evaluated those suitable for use in the study of Acinetobacter disease, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Faye C Morris
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carina Dexter
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xenia Kostoulias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Muhammad Ikhtear Uddin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
May HC, Yu JJ, Zhang H, Wang Y, Cap AP, Chambers JP, Guentzel MN, Arulanandam BP. Thioredoxin-A is a virulence factor and mediator of the type IV pilus system in Acinetobacter baumannii. PLoS One 2019; 14:e0218505. [PMID: 31265467 PMCID: PMC6605650 DOI: 10.1371/journal.pone.0218505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
The Gram-negative pathogen, Acinetobacter baumannii has emerged as a global nosocomial health threat affecting the majority of hospitals in the U.S. and abroad. The redox protein thioredoxin has been shown to play several roles in modulation of cellular functions affecting various virulence factors in Gram-negative pathogens. This study aims to explore the role of thioredoxin-A protein (TrxA) in A. baumannii virulence. We determined that deletion of the TrxA gene did not significantly affect resistance to environmental stressors such as temperature, salt, and pH. However, TrxA was critical for survival in the presence of elevated levels of hydrogen peroxide. Lack of TrxA was associated with decreased expression of type IV pili related genes and an inability to undergo normal twitching motility. Interestingly, the TrxA-null mutant was able to form biofilms better than the wildtype (WT) and was observed to be significantly less virulent than the WT in a pulmonary infection model. These results are supportive of thioredoxin playing a key role in A. baumannii virulence.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Hao Zhang
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Yufeng Wang
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Andrew P. Cap
- Coagulation and Blood Research Program, US Army Institute for Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Harris G, KuoLee R, Xu HH, Chen W. Acute intraperitoneal infection with a hypervirulent Acinetobacter baumannii isolate in mice. Sci Rep 2019; 9:6538. [PMID: 31024025 PMCID: PMC6484084 DOI: 10.1038/s41598-019-43000-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii infection has become a major cause of healthcare-associated infection and a critical pathogen in the WHO antimicrobial resistance research and development priority list. Catheter-related septicemia is one of the major clinical manifestations of A. baumannii infection associated with high morbidity and mortality. In this study, we used a clinical A. baumannii strain (LAC-4) that is hypervirulent to immunocompetent C57BL/6 and BALB/c mice and established a mouse model of intraperitoneal (i.p.) A. baumannii infection. Our study showed that i.p. LAC-4 infection of C57BL/6 and BALB/c mice induces a lethal or sublethal infection with high bacterial burdens in peritoneal cavity, blood and tissues and the infected mice either succumbed to the infection within 24 hours or completely recovered from the infection. The infection induces acute peritoneal recruitment of neutrophils and other innate immune cells, and the local and systemic production of proinflammatory cytokines and chemokines (IL-1β, IL-5, IL-6, TNF-α, RANTES, MIP-1β, MCP-1, KC and IL-10). Mechanistic studies suggest an important role of macrophages in the host innate defense in this model in that in vitro stimulation of peritoneal macrophages with killed LAC-4 induced a similar pattern of cytokine/chemokine responses to those in the infected mice, and depletion of peritoneal macrophages rendered the mice significantly more susceptible to the infection. Thus, this mouse infection model will provide an alternative and useful tool for future pathogenesis studies of A. baumannii-associated septicemia and identification and characterization of important virulence factors, as well as serve as a surrogate model for rapid evaluation of novel therapeutics and vaccines for this emerging infectious agent.
Collapse
Affiliation(s)
- Greg Harris
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Rhonda KuoLee
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada. .,Department of Biology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
34
|
Neutrophils Dampen Adaptive Immunity in Brucellosis. Infect Immun 2019; 87:IAI.00118-19. [PMID: 30804100 PMCID: PMC6479033 DOI: 10.1128/iai.00118-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
Brucella organisms are intracellular stealth pathogens of animals and humans. The bacteria overcome the assault of innate immunity at early stages of an infection. Brucella organisms are intracellular stealth pathogens of animals and humans. The bacteria overcome the assault of innate immunity at early stages of an infection. Removal of polymorphonuclear neutrophils (PMNs) at the onset of adaptive immunity against Brucella abortus favored bacterial elimination in mice. This was associated with higher levels of interferon gamma (IFN-γ) and a higher proportion of cells expressing interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), compatible with M1 macrophages, in PMN-depleted B. abortus-infected (PMNd-Br) mice. At later times in the acute infection phase, the amounts of IFN-γ fell while IL-6, IL-10, and IL-12 became the predominant cytokines in PMNd-Br mice. IL-4, IL-1β, and tumor necrosis factor alpha (TNF-α) remained at background levels at all times of the infection. Depletion of PMNs at the acute stages of infection promoted the premature resolution of spleen inflammation. The efficient removal of bacteria in the PMNd-Br mice was not due to an increase of antibodies, since the immunoglobulin isotype responses to Brucella antigens were dampened. Anti-Brucella antibodies abrogated the production of IL-6, IL-10, and IL-12 but did not affect the levels of IFN-γ at later stages of infection in PMNd-Br mice. These results demonstrate that PMNs have an active role in modulating the course of B. abortus infection after the adaptive immune response has already developed.
Collapse
|
35
|
Pires S, Parker D. Innate Immune Responses to Acinetobacter baumannii in the Airway. J Interferon Cytokine Res 2019; 39:441-449. [PMID: 31013462 DOI: 10.1089/jir.2019.0008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic pathogen that has risen to become a serious global threat, prevalent in health care settings and the community, which results in high morbidity and mortality rates. Its alarming expansion of antibiotic resistance is one of the most problematic traits of A. baumannii and as so, this bacterium has been classified as a serious threat and high priority target by the CDC. The most common types of infections induced by this pathogen include pneumonia (both hospital and community acquired), bacteremia, skin and soft tissue, urinary tract infections, endocarditis, and meningitis. Nosocomial pneumonia is the most prevalent of these. This review summarizes the current state of the signaling and innate immune components activated in response to A. baumannii infection in the airway.
Collapse
Affiliation(s)
- Sílvia Pires
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Dane Parker
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
36
|
Chen Y, Guo J, Shi D, Fang D, Chen C, Li L. Ascitic Bacterial Composition Is Associated With Clinical Outcomes in Cirrhotic Patients With Culture-Negative and Non-neutrocytic Ascites. Front Cell Infect Microbiol 2018; 8:420. [PMID: 30555804 PMCID: PMC6284044 DOI: 10.3389/fcimb.2018.00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Ascites bacterial burden is associated with poor clinical outcomes in patients with end-stage liver disease. However, the impact of ascitic microbial composition on clinical course was still not clear. In this study, the ascitic microbiota composition of 100 cirrhotic patients with culture-negative and non-neutrocytic ascites were researched with 16S rRNA pyrosequencing and enterotype-like cluster analysis. Results: By characterizing the ascitic microbial composition, two distinct microbial clusters were observed, Cluster 1 (86 patients) and Cluster 2 (14 patients). Cluster 1 showed lower microbial richness than Cluster 2. At the phylum level, Cluster 1 had greater abundance of Bacteroidetes and Firmicutes, but less abundance of Proteobacteria and Actinobacteria than Cluster 2. At the family level, family Bacteroidales S24-7 group, Prevotellaceae, Lachnospiraceae, Lactobacillaceae, Rikenellaceae, and Vibrionaceae were found over-represented in Cluster 1. And family Acetobacteraceae, Erysipelotrichaceae, Rickettsiaceae, and Streptococcaceae were found enriched in Cluster 2. The levels of plasma cytokine IL-17A, IL-7, and PDGF-BB were found significantly higher in Cluster 1 than in Cluster 2. There were four OTUs closely correlated with plasma cytokines, which were OTU 140 and OTU 271 (both from Bacteroidales S24-7 group), OTU 68 (Veillonellaceae), and OTU 53 (Helicobacteraceae). Patients from Cluster 1 showed significant higher short-term mortality than patients from Cluster 2. Conclusion: Our study demonstrated that the microbial composition of culture-negative and non-neutrocytic ascites in cirrhotic patients is associated with short-term clinical outcomes. The results here offer a rational for the identification of patients with high risk, and provide references for selective use of prophylactic methods.
Collapse
Affiliation(s)
- Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chunlei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii. Pathog Dis 2018; 76:4822137. [PMID: 29370365 DOI: 10.1093/femspd/fty007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/22/2018] [Indexed: 01/28/2023] Open
Abstract
Increasing multidrug resistance (MDR) in Acinetobacter baumannii warrants therapeutic alternatives, and the bactericidal nature of antimicrobial peptides (AMPs) offers a possible approach. In this study, we examined the interaction of cathelicidin AMPs WAM-1, a marsupial AMP, and LL-37, a human AMP, with A. baumannii clinical isolates. We characterized the antibiotic resistance of the isolates, the bacteriostatic and bactericidal effects of these AMPs, synergistic activity with antibiotics, and their effects on biofilm formation and dispersal. All clinical isolates were resistant to commonly prescribed antibiotics, with four of seven isolates showing MDR. WAM-1 and LL-37 showed variable activity in clinical isolates, with WAM-1 having a stronger bacteriostatic effect than LL-37 and showing rapid bactericidal activity against clinical isolates. Furthermore, synergistic bactericidal activity was observed with WAM-1 and commonly prescribed antibiotics. Both peptides were able to inhibit biofilm formation in all clinical isolates at some concentrations, and WAM-1 dispersed mature biofilm in most isolates. LL-37 was unable to disperse mature biofilms in any strains. Further studies must be done to elucidate the true value of these alternative treatments, but these results suggest that MDR A. baumannii's susceptibility to AMPs may result in innovative therapeutics to prevent or treat these infections.
Collapse
Affiliation(s)
- John J Spencer
- Department of Biology, Columbus State University, 4225 University Avenue, Columbus, GA 31907, USA
| | - Rowan E Pitts
- Department of Biology, Columbus State University, 4225 University Avenue, Columbus, GA 31907, USA
| | - Rachel A Pearson
- Department of Biology, Columbus State University, 4225 University Avenue, Columbus, GA 31907, USA
| | - Lauren B King
- Department of Biology, Columbus State University, 4225 University Avenue, Columbus, GA 31907, USA
| |
Collapse
|
38
|
Kamoshida G, Kikuchi-Ueda T, Nishida S, Tansho-Nagakawa S, Ubagai T, Ono Y. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion. Front Immunol 2018; 9:178. [PMID: 29467765 PMCID: PMC5808340 DOI: 10.3389/fimmu.2018.00178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs), has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA), and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Satoshi Nishida
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
39
|
Dikshit N, Kale SD, Khameneh HJ, Balamuralidhar V, Tang CY, Kumar P, Lim TP, Tan TT, Kwa AL, Mortellaro A, Sukumaran B. NLRP3 inflammasome pathway has a critical role in the host immunity against clinically relevant Acinetobacter baumannii pulmonary infection. Mucosal Immunol 2018; 11:257-272. [PMID: 28612844 DOI: 10.1038/mi.2017.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/15/2017] [Indexed: 02/04/2023]
Abstract
The opportunistic Gram-negative bacterium Acinetobacter baumannii (AB) is a leading cause of life-threatening nosocomial pneumonia. Outbreaks of multidrug resistant (MDR)-AB belonging to international clones (ICs) I and II with limited treatment options are major global health threats. However, the pathogenesis mechanisms of various AB clonal groups are understudied. Although inflammation-associated interleukin-1β (IL-1β) levels and IL-1 receptor antagonist polymorphisms were previously implicated in MDR-AB-related pneumonia in patients, whether inflammasomes has any role in the host defense and/or pathogenesis of clinically relevant A. baumannii infection is unknown. Using a sublethal mouse pneumonia model, we demonstrate that an extensively drug-resistant clinical isolate (ICII) of A. baumannii exhibits reduced/delayed early pulmonary neutrophil recruitment, higher lung persistence, and, most importantly, elicits enhanced IL-1β/IL-18 production and lung damage through NLRP3 inflammasome, in comparison with A. baumannii-type strain. A. baumannii infection-induced IL-1β/IL-18 production is entirely dependent on NLRP3-ASC-caspase-1/caspase-11 pathway. Using Nlrp3-/- mice infection models, we further show that while NLRP3 inflammasome pathway contributes to host defense against A. baumannii clinical isolate, it is dispensable for protection against A. baumannii-type strain. Our study reveals a novel differential role for NLRP3 inflammasome pathway in the immunity against clinically relevant A. baumannii infections, and highlights inflammasome pathway as a potential immunomodulatory target.
Collapse
Affiliation(s)
- N Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - S D Kale
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - H J Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - V Balamuralidhar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - C Y Tang
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - P Kumar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - T P Lim
- Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore
| | - T T Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - A L Kwa
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - A Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - B Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
40
|
Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2017; 16:91-102. [PMID: 29249812 DOI: 10.1038/nrmicro.2017.148] [Citation(s) in RCA: 644] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acinetobacter baumannii is a nosocomial pathogen that causes ventilator-associated as well as bloodstream infections in critically ill patients, and the spread of multidrug-resistant Acinetobacter strains is cause for concern. Much of the success of A. baumannii can be directly attributed to its plastic genome, which rapidly mutates when faced with adversity and stress. However, fundamental virulence mechanisms beyond canonical drug resistance were recently uncovered that enable A. baumannii and, to a limited extent, other medically relevant Acinetobacter species to successfully thrive in the health-care environment. In this Review, we explore the molecular features that promote environmental persistence, including desiccation resistance, biofilm formation and motility, and we discuss the most recently identified virulence factors, such as secretion systems, surface glycoconjugates and micronutrient acquisition systems that collectively enable these pathogens to successfully infect their hosts.
Collapse
Affiliation(s)
- Christian M Harding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA.,VaxNewMo LLC, St. Louis, Missouri 63108, USA
| | - Seth W Hennon
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA.,VaxNewMo LLC, St. Louis, Missouri 63108, USA
| |
Collapse
|
41
|
Kale SD, Dikshit N, Kumar P, Balamuralidhar V, Khameneh HJ, Bin Abdul Malik N, Koh TH, Tan GGY, Tan TT, Mortellaro A, Sukumaran B. Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs. Sci Rep 2017; 7:17429. [PMID: 29234083 PMCID: PMC5727160 DOI: 10.1038/s41598-017-17653-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a significant cause of severe nosocomial pneumonia in immunocompromised individuals world-wide. With limited treatment options available, a better understanding of host immnity to A. baumannii infection is critical to devise alternative control strategies. Our previous study has identified that intracellular Nod1/Nod2 signaling pathway is required for the immune control of A. baumannii in airway epithelial cells in vitro. In the current study, using Nod2−/− mice and an in vivo sublethal model of pulmonary infection, we show that Nod2 contributes to the early lung defense against A. baumannii infection through reactive oxygen species (ROS)/reactive nitrogen species (RNS) production as Nod2−/− mice showed significantly reduced production of ROS/RNS in the lungs following A. baumannii infection. Consistent with the higher bacterial load, A. baumannii-induced neutrophil recruitment, cytokine/chemokine response and lung pathology was also exacerbated in Nod2−/− mice at early time points post-infection. Finally, we show that administration of Nod2 ligand muramyl dipeptide (MDP) prior to infection protected the wild- type mice from A. baumannii pulmonary challenge. Collectively, Nod2 is an important player in the early lung immunity against A. baumannii and modulating Nod2 pathway could be considered as a viable therapeutic strategy to control A. baumannii pulmonary infection.
Collapse
Affiliation(s)
- Sandeep D Kale
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Pankaj Kumar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | | | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Najib Bin Abdul Malik
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | | | - Thuan Tong Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Bindu Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
42
|
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017; 30:409-447. [PMID: 27974412 DOI: 10.1128/cmr.00058-16] [Citation(s) in RCA: 734] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
Collapse
|
43
|
Harris G, KuoLee R, Xu HH, Chen W. Mouse Models of Acinetobacter baumannii Infection. ACTA ACUST UNITED AC 2017; 46:6G.3.1-6G.3.23. [PMID: 28800159 DOI: 10.1002/cpmc.36] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This unit describes basic protocols for infecting mice through intranasal and intraperitoneal routes with Acinetobacter baumannii to induce associated pneumonia and sepsis, the two most common manifestations of clinical infections with this pathogen. By selecting the appropriate protocols and bacterial strains of different virulence, these mouse models provide an opportunity to study the infection pathogenesis and host-immune responses, and to evaluate the efficacies of prophylactic and therapeutic anti-A. baumannii candidates. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Greg Harris
- Human Health and Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rhonda KuoLee
- Human Health and Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, California
| | - Wangxue Chen
- Human Health and Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada.,Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
44
|
Lázaro-Díez M, Chapartegui-González I, Redondo-Salvo S, Leigh C, Merino D, Segundo DS, Fernández A, Navas J, Icardo JM, Acosta F, Ocampo-Sosa A, Martínez-Martínez L, Ramos-Vivas J. Human neutrophils phagocytose and kill Acinetobacter baumannii and A. pittii. Sci Rep 2017; 7:4571. [PMID: 28676640 PMCID: PMC5496873 DOI: 10.1038/s41598-017-04870-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii is a common cause of health care associated infections worldwide. A. pittii is an opportunistic pathogen also frequently isolated from Acinetobacter infections other than those from A. baumannii. Knowledge of Acinetobacter virulence factors and their role in pathogenesis is scarce. Also, there are no detailed published reports on the interactions between A. pittii and human phagocytic cells. Using confocal laser and scanning electron microscopy, immunofluorescence, and live-cell imaging, our study shows that immediately after bacteria-cell contact, neutrophils rapidly and continuously engulf and kill bacteria during at least 4 hours of infection in vitro. After 3 h of infection, neutrophils start to release neutrophil extracellular traps (NETs) against Acinetobacter. DNA in NETs colocalizes well with human histone H3 and with the specific neutrophil elastase. We have observed that human neutrophils use large filopodia as cellular tentacles to sense local environment but also to detect and retain bacteria during phagocytosis. Furthermore, co-cultivation of neutrophils with human differentiated macrophages before infections shows that human neutrophils, but not macrophages, are key immune cells to control Acinetobacter. Although macrophages were largely activated by both bacterial species, they lack the phagocytic activity demonstrated by neutrophils.
Collapse
Affiliation(s)
- María Lázaro-Díez
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Itziar Chapartegui-González
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | | | - Chike Leigh
- New York University School of Medicine, New York, 10003, USA
| | - David Merino
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | - David San Segundo
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | - Adrián Fernández
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
| | - Jesús Navas
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, 39011, Spain
| | - José Manuel Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, 39011, Spain
| | - Félix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Gran Canaria, 35214, Spain
| | - Alain Ocampo-Sosa
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Luis Martínez-Martínez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Unidad de Gestión Clínica de Microbiología, Hospital Universitario Reina Sofía, Córdoba, 14004, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, 14004, Spain
| | - José Ramos-Vivas
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain.
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain.
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
45
|
García-Patiño MG, García-Contreras R, Licona-Limón P. The Immune Response against Acinetobacter baumannii, an Emerging Pathogen in Nosocomial Infections. Front Immunol 2017; 8:441. [PMID: 28446911 PMCID: PMC5388700 DOI: 10.3389/fimmu.2017.00441] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/29/2017] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii is the etiologic agent of a wide range of nosocomial infections, including pneumonia, bacteremia, and skin infections. Over the last 45 years, an alarming increase in the antibiotic resistance of this opportunistic microorganism has been reported, a situation that hinders effective treatments. In order to develop effective therapies against A. baumannii it is crucial to understand the basis of host–bacterium interactions, especially those concerning the immune response of the host. Different innate immune cells such as monocytes, macrophages, dendritic cells, and natural killer cells have been identified as important effectors in the defense against A. baumannii; among them, neutrophils represent a key immune cell indispensable for the control of the infection. Several immune strategies to combat A. baumannii have been identified such as recognition of the bacteria by immune cells through pattern recognition receptors, specifically toll-like receptors, which trigger bactericidal mechanisms including oxidative burst and cytokine and chemokine production to amplify the immune response against the pathogen. However, a complete picture of the protective immune strategies activated by this bacteria and its potential therapeutic use remains to be determined and explored.
Collapse
Affiliation(s)
- María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rodolfo García-Contreras
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
46
|
Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proc Natl Acad Sci U S A 2016; 113:9599-604. [PMID: 27506797 DOI: 10.1073/pnas.1523116113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Innate cellular immune responses are a critical first-line defense against invading bacterial pathogens. Leukocyte migration from the bloodstream to a site of infection is mediated by chemotactic factors that are often host-derived. More recently, there has been a greater appreciation of the importance of bacterial factors driving neutrophil movement during infection. Here, we describe the development of a zebrafish infection model to study Acinetobacter baumannii pathogenesis. By using isogenic A. baumannii mutants lacking expression of virulence effector proteins, we demonstrated that bacterial drivers of disease severity are conserved between zebrafish and mammals. By using transgenic zebrafish with fluorescent phagocytes, we showed that a mutation of an established A. baumannii global virulence regulator led to marked changes in neutrophil behavior involving rapid neutrophil influx to a localized site of infection, followed by prolonged neutrophil dwelling. This neutrophilic response augmented bacterial clearance and was secondary to an impaired A. baumannii phenylacetic acid catabolism pathway, which led to accumulation of phenylacetate. Purified phenylacetate was confirmed to be a neutrophil chemoattractant. These data identify a previously unknown mechanism of bacterial-guided neutrophil chemotaxis in vivo, providing insight into the role of bacterial metabolism in host innate immune evasion. Furthermore, the work provides a potentially new therapeutic paradigm of targeting a bacterial metabolic pathway to augment host innate immune responses and attenuate disease.
Collapse
|
47
|
Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models. Antimicrob Agents Chemother 2016; 60:4464-70. [PMID: 27161639 DOI: 10.1128/aac.02708-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/28/2016] [Indexed: 11/20/2022] Open
Abstract
Immune response stimulation to prevent infection progression may be an adjuvant to antimicrobial treatment. Lysophosphatidylcholine (LPC) is an immunomodulator involved in immune cell recruitment and activation. In this study, we aimed to evaluate the efficacy of LPC in combination with colistin, tigecycline, or imipenem in experimental murine models of peritoneal sepsis and pneumonia. We used Acinetobacter baumannii strain Ab9, which is susceptible to colistin, tigecycline, and imipenem, and multidrug-resistant strain Ab186, which is susceptible to colistin and resistant to tigecycline and imipenem. Pharmacokinetic and pharmacodynamic parameters for colistin, tigecycline, and imipenem and the 100% minimal lethal dose (MLD100) were determined for both strains. The therapeutic efficacies of LPC, colistin (60 mg/kg of body weight/day), tigecycline (10 mg/kg/day), and imipenem (180 mg/kg/day), alone or in combination, were assessed against Ab9 and Ab186 at the MLD100 in murine peritoneal sepsis and pneumonia models. The levels of pro- and anti-inflammatory cytokines, i.e., tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay (ELISA) for the same experimental models after inoculating mice with the MLD of both strains. LPC in combination with colistin, tigecycline, or imipenem markedly enhanced the bacterial clearance of Ab9 and Ab186 from the spleen and lungs and reduced bacteremia and mouse mortality rates (P < 0.05) compared with those for colistin, tigecycline, and imipenem monotherapies. Moreover, at 4 h post-bacterial infection, Ab9 induced higher TNF-α and lower IL-10 levels than those with Ab186 (4 μg/ml versus 3 μg/ml [P < 0.05] and 2 μg/ml versus 3.4 μg/ml [P < 0.05], respectively). LPC treatment combined with colistin, tigecycline, or imipenem modestly reduced the severity of infection by A. baumannii strains with different resistance phenotypes compared to LPC monotherapy in both experimental models.
Collapse
|
48
|
Kamoshida G, Tansho-Nagakawa S, Kikuchi-Ueda T, Nakano R, Hikosaka K, Nishida S, Ubagai T, Higashi S, Ono Y. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8. J Leukoc Biol 2016; 100:1405-1412. [PMID: 27365529 DOI: 10.1189/jlb.4ab0116-023rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan;
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan.,Department of Microbiology and Infectious Diseases, Nara Medical University, Nara, Japan
| | - Kenji Hikosaka
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan.,Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shouichi Higashi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Chen W. Current advances and challenges in the development of Acinetobacter vaccines. Hum Vaccin Immunother 2016; 11:2495-500. [PMID: 26158773 DOI: 10.1080/21645515.2015.1052354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a major cause of healthcare-associated infections worldwide with high morbidity and mortality. The clinical treatment of A. baumannii infections has become increasingly difficult because of the rapid emerging of multidrug and extremely drug resistant strains. Thus, there is an urgent need for the development of novel intervention strategies to combat this multidrug-resistant pathogen. Vaccine is one of the most effective medical measures for infection control and is likely to overcome the development of multidrug resistance by A. baumannii. Here we discussed the recent advances and potential challenges in development of A. baumannii vaccines with a focus on the 3 most important steps in the preclinical vaccine development: antigen selection, immune correlates of protection, and animal models for efficacy evaluation.
Collapse
Affiliation(s)
- Wangxue Chen
- a Human Health Therapeutics; National Research Council Canada ; Ottawa, Ontario , Canada.,b Department of Biology ; Brock University ; St. Catharines , Ontario , Canada
| |
Collapse
|
50
|
Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:3913-20. [PMID: 27067330 DOI: 10.1128/aac.02831-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B (t1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of -1.25, -1.43, -2.84, -2.84, and -3.40 log10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an fAUC0-24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections.
Collapse
|