1
|
Kottom TJ, Carmona EM, Schaefbauer K, Stelzig KE, Pellegrino MR, Bindzus M, Limper AH. The importance of Fcγ and C-type lectin receptors in host immune responses during Pneumocystis pneumonia. Infect Immun 2025; 93:e0027624. [PMID: 39745390 PMCID: PMC11834440 DOI: 10.1128/iai.00276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 02/19/2025] Open
Abstract
Pneumocystis jirovecii pneumonia (PJP) remains a significant cause of morbidity and mortality during AIDS. In AIDS, the absence of CD4 immunity results in exuberant and often fatal PJP. In addition, organism clearance requires a balanced macrophage response since excessive inflammation promotes lung injury and respiratory failure. Corticosteroids given in addition to antibiotics significantly improve outcomes during PJP. However, concerns exist that corticosteroids further suppress immunity and increase co-infections. New strategies to promote killing and clearance of Pneumocystis while balancing lung inflammation are required. Prior studies have shown that innate immunity to Pneumocystis is mediated by C-type lectin receptors (CLRs) on macrophages and involves downstream CARD9 activation. CARD9 can be targeted by a novel specific small molecule inhibitor (BRD5529) that significantly reduces inflammatory signaling by macrophages. CARD9 serves as the central intracellular molecule through which Dectin-1, Dectin-2, Mincle, and other CLRs signal. Dectin-1 CLR is activated through its own intracytoplasmic domain, whereas other innate CLRs (e.g., Dectin-2 and Mincle) require interactions with a common Fc-gamma receptor (FcγR) accessory chain to mediate responses. We now observe that mice double deficient in both Dectin-1 and Fcer1g (which lack the FcγR gamma chain) exhibit markedly reduced organism clearance compared with Card9-/- infected animals. These mice also possess deficiencies in immunoglobulin (Ig) Fc receptors directly mediating antibody responses, further implicating altered humoral responses in Pneumocystis killing. We further demonstrate in the Pneumocystis pneumonia (PCP) mouse model that BRD5529 administration successfully suppresses inflammatory cytokines. Our data support that innate immune responses through the CLR-CARD9 axis and humoral response act together to mediate effective responses resulting in optimal organism killing and generation of host inflammatory responses. Furthermore, host lung inflammation during PCP may be successfully reduced with a novel CARD9 small molecule inhibitor.IMPORTANCEPneumocystis pneumonia (PCP) causes severe respiratory impairment in hosts with suppressed immunity, particularly those with CD4 deficiencies, such as HIV. In addition to lymphocytic immunity, both innate and humoral immunities also participate in host defense against Pneumocystis. In the current studies, we defined the relative roles of CLR receptor-mediated inflammation, as well as FcgR-related inflammation and clearance of Pneumocystis organisms. Our studies reveal important roles for CLR activities for inducing lung inflammation, which can be ameliorated with a novel small molecule inhibitor of the CARD9 adaptor protein that is necessary for CLR signaling. In contrast, FcgR has a dominant role in organism clearance, underscoring an integral role of humoral responses for the elimination of this infection.
Collapse
MESH Headings
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Animals
- Pneumonia, Pneumocystis/immunology
- Mice
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Pneumocystis carinii/immunology
- Immunity, Innate
- Mice, Inbred C57BL
- Macrophages/immunology
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- Disease Models, Animal
- Mice, Knockout
Collapse
Affiliation(s)
- Theodore J. Kottom
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kyle Schaefbauer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kimberly E. Stelzig
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Madeline R. Pellegrino
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marc Bindzus
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
3
|
Nev OA, Zamaraeva E, De Oliveira R, Ryzhkov I, Duvenage L, Abou-Jaoudé W, Ouattara DA, Hoving JC, Gudelj I, Brown AJP. Metabolic modelling as a powerful tool to identify critical components of Pneumocystis growth medium. PLoS Comput Biol 2024; 20:e1012545. [PMID: 39466836 PMCID: PMC11542897 DOI: 10.1371/journal.pcbi.1012545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Establishing suitable in vitro culture conditions for microorganisms is crucial for dissecting their biology and empowering potential applications. However, a significant number of bacterial and fungal species, including Pneumocystis jirovecii, remain unculturable, hampering research efforts. P. jirovecii is a deadly pathogen of humans that causes life-threatening pneumonia in immunocompromised individuals and transplant patients. Despite the major impact of Pneumocystis on human health, limited progress has been made in dissecting the pathobiology of this fungus. This is largely due to the fact that its experimental dissection has been constrained by the inability to culture the organism in vitro. We present a comprehensive in silico genome-scale metabolic model of Pneumocystis growth and metabolism, to identify metabolic requirements and imbalances that hinder growth in vitro. We utilise recently published genome data and available information in the literature as well as bioinformatics and software tools to develop and validate the model. In addition, we employ relaxed Flux Balance Analysis and Reinforcement Learning approaches to make predictions regarding metabolic fluxes and to identify critical components of the Pneumocystis growth medium. Our findings offer insights into the biology of Pneumocystis and provide a novel strategy to overcome the longstanding challenge of culturing this pathogen in vitro.
Collapse
Affiliation(s)
- Olga A. Nev
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Elena Zamaraeva
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM)
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Jennifer Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM)
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ivana Gudelj
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Kottom TJ, Carmona EM, Lepenies B, Limper AH. Metabolic modulation: Pneumocystis phosphoglucomutase is a target influencing host recognition. Cell Surf 2024; 11:100123. [PMID: 39022598 PMCID: PMC467086 DOI: 10.1016/j.tcsw.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 07/20/2024] Open
Abstract
Herein, this manuscript explores the significance of the phosphoglucomutase (PGM) enzyme in Pneumocystis spp., focusing on its role in fungal surface mannoprotein formation. Through expression of the Pneumocystis murina Pmpgm2 in a Saccharomyces cerevisiae pgm2Δ strain, we demonstrate restoration of binding to the mannose receptor (MR) and macrophages to wildtype yeast levels in this complemented strain. Gas Chromatography-Mass Spectroscopy (GC-MS) confirmed reduced mannose content in the pgm2Δ yeast strain compared to the wild-type and complemented Pmpgm2 cDNA-expressing strains. This study underscores fungal PGM function in dolichol glucosyl phosphate biosynthesis, crucial for proper cell wall mannoprotein formation. Furthermore, highlighting the conservation of targetable cysteine residues across fungal pathogens, PGM inhibition maybe a potential therapeutic strategy against a broad spectrum of fungal infections.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Eva M. Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrew H. Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Kottom TJ, Carmona EM, Limper AH. Characterization of the Pneumocystis jirovecii and Pneumocystis murina phosphoglucomutases (Pgm2s): a potential target for Pneumocystis therapy. Antimicrob Agents Chemother 2024; 68:e0075623. [PMID: 38259086 PMCID: PMC10916394 DOI: 10.1128/aac.00756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024] Open
Abstract
Pneumocystis cyst life forms contain abundant β-glucan carbohydrates, synthesized using β-1,3 and β-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for β-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Kottom TJ, Carmona EM, Limper AH. Targeting host tyrosine kinase receptor EphA2 signaling via small-molecule ALW-II-41-27 inhibits macrophage pro-inflammatory signaling responses to Pneumocystis carinii β-glucans. Antimicrob Agents Chemother 2024; 68:e0081123. [PMID: 38206037 PMCID: PMC10848750 DOI: 10.1128/aac.00811-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Pneumocystis jirovecii, the fungus that causes Pneumocystis jirovecii pneumonia (PJP), is a leading cause of morbidity and mortality in immunocompromised individuals. We have previously shown that lung epithelial cells can bind Pneumocystis spp. β-glucans via the EphA2 receptor, resulting in activation and release of proinflammatory cytokines. Herein, we show that in vivo Pneumocystis spp. β-glucans activation of the inflammatory signaling cascade in macrophages can be pharmacodynamically inhibited with the EphA2 receptor small-molecule inhibitor ALW-II-41-27. In vitro, when ALW-II-41-27 is administrated via intraperitoneal to mice prior to the administration of highly proinflammatory Saccharomyces cerevisiae β-glucans in the lung, a significant reduction in TNF-alpha release was noted in the ALW-II-41-27 pre-treated group. Taken together, our data suggest that targeting host lung macrophage activation via EphA2 receptor-fungal β-glucans interactions with ALW-II-41-27 or other EphA2 receptor kinase targeting inhibitors might be an attractive and viable strategy to reduce detrimental lung inflammation associated with PJP.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Kottom TJ, Carmona EM, Schaefbauer K, Limper AH. CLEC4A and CLEC12B C-type lectin receptors mediate interactions with Pneumocystis cell wall components. J Med Microbiol 2023; 72. [PMID: 37294293 DOI: 10.1099/jmm.0.001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Introduction. C-type lectin receptors (CLRs) are prominently expressed on myeloid cells where they perform multiple functions including serving as pattern recognition receptors (PRRs) to drive innate as well as adaptive immunity to pathogens. Depending on the presence of a tyrosine-based signalling motif, CLR-microbial pathogen engagement may result in either anti- or pro-inflammatory signalling.Impact statement. In this manuscript, we report our laboratory study of two novel CLRs that recognize Pneumocystis murina cell wall homogenates (CWH) and a purified Pneumocystis carinii cell wall fraction (CWF).Aim. To study the potential of newly generated hFc-CLR fusions on binding to Pneumocystis murina CWHs and P. carinii CWFs and subsequent downstream inflammatory signalling analysis.Methods. Newly generated hFc-CLR fusion CLEC4A and CLEC12B were screened against P. murina CWHs and P. carinii CWFs preparations via modified ELISA. Immunofluorescence assay (IFA) was utilized to visualize hFc-CLR fusion binding against intact fixed fungal life forms to verify results. Quantitative PCR (q-PCR) analysis of lung mRNA from the mouse immunosuppressed Pneumocystis pneumonia (PCP) model versus uninfected mice was employed to detect possible changes in the respective Clec4a and Clec12b transcripts. Lastly, siRNA technology of both CLRs was conducted to determine effects on downstream inflammatory events in mouse macrophages stimulated in the presence of P. carinii CWFs.Results. We determined that both CLEC4A and CLEC12B hFc-CLRs displayed significant binding with P. murina CWHs and P. carinii CWFs. Binding events showed significant binding to both curdlan and laminarin, both polysaccharides containing β-(1,3) glucans as well as N-acetylglucosamine (GlcNAc) residues and modest yet non-significant binding to the negative control carbohydrate dextran. IFA with both CLR hFc-fusions against whole P. murina life forms corroborated these findings. Lastly, we surveyed the mRNA expression profiles of both CLRs tested above in the mouse immunosuppressed Pneumocystis pneumonia (PCP) model and determined that both CLRs were significantly up regulated during infection. Lastly, siRNA of both CLRs in the mouse RAW macrophage cell line was conducted and results demonstrated that silencing of Clec4a resulted in no significant changes in TNF-alpha generation in P. carinii CWF stimulated macrophages. On the contrary, silencing of Clec12b CLR resulted in significant decreases in TNF-alpha in RAW cells stimulated with the same CWF.Conclusion. The data presented here provide new members of the CLRs family recognizing Pneumocystis. Future studies using CLEC4A and/or CLEC12B deficient mice in the PCP mouse model should provide further insights into the host immunological response to Pneumocystis.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Kyle Schaefbauer
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| |
Collapse
|
8
|
Wang M, Zhang Z, Dong X, Zhu B. Targeting β-glucans, vital components of the Pneumocystis cell wall. Front Immunol 2023; 14:1094464. [PMID: 36845149 PMCID: PMC9947646 DOI: 10.3389/fimmu.2023.1094464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
β-glucan is the most abundant polysaccharide in the cell wall of Pneumocystis jirovecii, which has attracted extensive attention because of its unique immunobiological characteristics. β-glucan binds to various cell surface receptors, which produces an inflammatory response and accounts for its immune effects. A deeper comprehension of the processes by Pneumocystis β-glucan recognizes its receptors, activates related signaling pathways, and regulates immunity as required. Such understanding will provide a basis for developing new therapies against Pneumocystis. Herein, we briefly review the structural composition of β-glucans as a vital component of the Pneumocystis cell wall, the host immunity mediated by β-glucans after their recognition, and discuss opportunities for the development of new strategies to combat Pneumocystis.
Collapse
Affiliation(s)
- Mengyan Wang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China,Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongdong Zhang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Xiaotian Dong
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Biao Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Biao Zhu,
| |
Collapse
|
9
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
10
|
Glycoside Hydrolase family 30 harbors fungal subfamilies with distinct polysaccharide specificities. N Biotechnol 2021; 67:32-41. [PMID: 34952234 DOI: 10.1016/j.nbt.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022]
Abstract
Efficient bioconversion of agro-industrial side streams requires a wide range of enzyme activities. Glycoside Hydrolase family 30 (GH30) is a diverse family that contains various catalytic functions and has so far been divided into ten subfamilies (GH30_1-10). In this study, a GH30 phylogenetic tree using over 150 amino acid sequences was contructed. The members of GH30 cluster into four subfamilies and eleven candidates from these subfamilies were selected for biochemical characterization. Novel enzyme activities were identified in GH30. GH30_3 enzymes possess β-(1→6)-glucanase activity. GH30_5 targets β-(1→6)-galactan with mainly β-(1→6)-galactobiohydrolase catalytic behavior. β-(1→4)-Xylanolytic enzymes belong to GH30_7 targeting β-(1→4)-xylan with several activities (e.g. xylobiohydrolase, endoxylanase). Additionally, a new fungal subfamily in GH30 was proposed, i.e. GH30_11, which displays β-(1→6)-galactobiohydrolase. This study confirmed that GH30 fungal subfamilies harbor distinct polysaccharide specificity and have high potential for the production of short (non-digestible) di- and oligosaccharides.
Collapse
|
11
|
Kottom TJ, Carmona EM, Limper AH. Current State of Carbohydrate Recognition and C-Type Lectin Receptors in Pneumocystis Innate Immunity. Front Immunol 2021; 12:798214. [PMID: 34975910 PMCID: PMC8716372 DOI: 10.3389/fimmu.2021.798214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii is one of the most common fungal pathogens in immunocompromised individuals. Pneumocystis jirovecii pneumonia (PJP) causes a significant host immune response that is driven greatly by the organism’s cell wall components including β-glucans and major surface glycoprotein (Msg). These ligands interact with a number of C-type lectin receptors (CLRs) leading to downstream activation of proinflammatory signaling pathways. This minireview provides a brief overview summarizing known CLR/Pneumocystis interactions.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Theodore J. Kottom,
| | - Eva M. Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andrew H. Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Souza TN, Valdez AF, Rizzo J, Zamith-Miranda D, Guimarães AJ, Nosanchuk JD, Nimrichter L. Host cell membrane microdomains and fungal infection. Cell Microbiol 2021; 23:e13385. [PMID: 34392593 PMCID: PMC8664998 DOI: 10.1111/cmi.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 01/13/2023]
Abstract
Lipid microdomains or lipid rafts are dynamic and tightly ordered regions of the plasma membrane. In mammalian cells, they are enriched in cholesterol, glycosphingolipids, Glycosylphosphatidylinositol-anchored and signalling-related proteins. Several studies have suggested that mammalian pattern recognition receptors are concentrated or recruited to lipid domains during host-pathogen association to enhance the effectiveness of host effector processes. However, pathogens have also evolved strategies to exploit these domains to invade cells and survive. In fungal organisms, a complex cell wall network usually mediates the first contact with the host cells. This cell wall may contain virulence factors that interfere with the host membrane microdomains dynamics, potentially impacting the infection outcome. Indeed, the microdomain disruption can dampen fungus-host cell adhesion, phagocytosis and cellular immune responses. Here, we provide an overview of regulatory strategies employed by pathogenic fungi to engage with and potentially subvert the lipid microdomains of host cells. TAKE AWAY: Lipid microdomains are ordered regions of the plasma membrane enriched in cholesterol, glycosphingolipids (GSL), GPI-anchored and signalling-related proteins. Pathogen recognition by host immune cells can involve lipid microdomain participation. During this process, these domains can coalesce in larger complexes recruiting receptors and signalling proteins, significantly increasing their signalling abilities. The antifungal innate immune response is mediated by the engagement of pathogen-associated molecular patterns to pattern recognition receptors (PRRs) at the plasma membrane of innate immune cells. Lipid microdomains can concentrate or recruit PRRs during host cell-fungi association through a multi-interactive mechanism. This association can enhance the effectiveness of host effector processes. However, virulence factors at the fungal cell surface and extracellular vesicles can re-assembly these domains, compromising the downstream signalling and favouring the disease development. Lipid microdomains are therefore very attractive targets for novel drugs to combat fungal infections.
Collapse
Affiliation(s)
- Taiane N Souza
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F Valdez
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia-MIP, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Survey of the Transcription Factor Responses of Mouse Lung Alveolar Macrophages to Pneumocystis murina. Pathogens 2021; 10:pathogens10050569. [PMID: 34066663 PMCID: PMC8151842 DOI: 10.3390/pathogens10050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Pneumocystis jirovecii is a fungal pathogen that can cause life-threatening infections in individuals who are immunocompromised. Acquired via inhalation, upon entering the respiratory tract, the fungi first encounter innate immune cells such as alveolar macrophages (AMs). Relatively little is known about the AM cellular responses to the organism, and particularly transcription factor (TF) profiles leading to early host responses during infection. Utilizing the Mouse Transcription Factors RT2 Profiler™ PCR Array, we report an initial TF survey of these macrophage and Pneumocystis interactions. Expression levels of a panel of mouse TFs were compared between unstimulated and Pneumocystis murina-stimulated AMs. Interestingly, a number of TFs previously implicated in pathogen–host cell interactions were highly up- or downregulated, including hif1a and Pparg. qPCR experiments were further conducted to verify the results of these surveyed transcripts. Furthermore, with immunoblotting, we show that HIF-1A and PPAR-γ are indeed significantly upregulated and downregulated, respectively. Lastly, and importantly, we report that in the mouse model of Pneumocystis pneumonia (PCP), which mimics human Pneumocystis jirovecii pneumonia (PJP), qPCR analysis of Pneumocystis murina lungs also mimic the initial TF profile analysis, suggesting an importance for these TFs in immunocompromised hosts with Pneumocystis pneumonia. These data demonstrate the use of TF profiling in host AMs and Pneumocystis organism interactions that may lead to a better understanding of the specific inflammatory responses of the host to Pneumocystis pneumonia and may inform novel strategies for potential therapeutics.
Collapse
|
14
|
Targeting CARD9 with Small-Molecule Therapeutics Inhibits Innate Immune Signaling and Inflammatory Response to Pneumocystis carinii β-Glucans. Antimicrob Agents Chemother 2020; 64:AAC.01210-20. [PMID: 32839216 DOI: 10.1128/aac.01210-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/15/2020] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis jirovecii, the opportunistic fungus that causes Pneumocystis pneumonia (PCP) in humans, is a significant contributor to morbidity and mortality in immunocompromised patients. Given the profound deleterious inflammatory effects of the major β-glucan cell wall carbohydrate constituents of Pneumocystis through Dectin-1 engagement and downstream caspase recruitment domain-containing protein 9 (CARD9) immune activation, we sought to determine whether the pharmacodynamic activity of the known CARD9 inhibitor BRD5529 might have a therapeutic effect on macrophage innate immune signaling and subsequent downstream anti-inflammatory activity. The small-molecule inhibitor BRD5529 was able to significantly reduce both phospho-p38 and phospho-pERK1 signaling and tumor necrosis factor alpha (TNF-α) release during stimulation of macrophages with Pneumocystis cell wall β-glucans.
Collapse
|
15
|
Kottom TJ, Hebrink DM, Carmona EM, Limper AH. Pneumocystis carinii Major Surface Glycoprotein Dampens Macrophage Inflammatory Responses to Fungal β-Glucan. J Infect Dis 2020; 222:1213-1221. [PMID: 32363390 DOI: 10.1093/infdis/jiaa218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pneumocystis major surface glycoprotein (Msg) is a 120-kD surface protein complex on the organism with importance in adhesion and immune recognition. In this study, we show that Msg significantly impairs tumor necrosis factor (TNF)-α secretion by macrophages induced by Saccharomyces cerevisiae and Pneumocystis carinii (Pc) β-glucans. METHODS Major surface glycoprotein was shown to greatly reduce β-glucan-induced Dectin-1 immunoreceptor tyrosine-based activating motif (ITAM) phosphorylation. Major surface glycoprotein also down regulated Dectin-1 receptor messenger ribonucleic acid (mRNA) expression in the macrophages. It is interesting that Msg incubation with macrophages resulted in significant mRNA upregulation of both C-type lectin receptors (CLR) Mincle and MCL in Msg protein presence alone but to even greater amounts in the presence of Pc β-glucan. RESULTS The silencing of MCL and Mincle resulted in TNF-α secretions similar to that of macrophages treated with Pneumocystis β-glucan alone, which is suggestive of an inhibitory role for these 2 CLRs in Msg-suppressive effects on host cell immune response. CONCLUSIONS Taken together, these data indicate that the Pneumocystis Msg surface protein complex can act to suppress host macrophage inflammatory responses to the proinflammatory β -glucan components of the organisms.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance. mBio 2020; 11:mBio.03225-19. [PMID: 32184254 PMCID: PMC7078483 DOI: 10.1128/mbio.03225-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans. Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency. The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.
Collapse
|
17
|
Kottom TJ, Hebrink DM, Monteiro JT, Lepenies B, Carmona EM, Wuethrich M, Santo Dias LD, Limper AH. Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. J Med Microbiol 2019; 68:1649-1654. [PMID: 31609198 DOI: 10.1099/jmm.0.001062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are innate immune recognition molecules that bind to microorganisms via their carbohydrate recognition domains. In this study, we utilized a library of CLRs that recognize fungal mannans. We used this library to screen against Pneumocystis carinii (Pc) homogenates or purified Pc major surface glycoprotein (Msg) present on Pneumocystis. The results demonstrated that all of the mammalian CLR hFc-fusions tested displayed significant interaction/binding with Pc organisms, and furthermore to isolated Msg. Highest Pc organism and Msg binding activities were with CLR members Mincle, Dectin-2, DC-SIGN and MCL. An immunofluorescence assay with the respective CLR hFc-fusions against whole Pc life forms corroborated these findings. Although some of these CLRs have been implicated previously as important for Pneumocystis pathogenesis (Dectin-1/Dectin-2/Mincle), this is the first analysis of head-to-head comparison of known fungal mannan binding CLR-hFc fusions with Pc. Lastly, heat treatment resulted in reducted CLR binding.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Joao T Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Germany, Hannover
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Germany, Hannover
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Lucas Dos Santo Dias
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
18
|
Otieno-Odhiambo P, Wasserman S, Hoving JC. The Contribution of Host Cells to Pneumocystis Immunity: An Update. Pathogens 2019; 8:pathogens8020052. [PMID: 31010170 PMCID: PMC6631015 DOI: 10.3390/pathogens8020052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023] Open
Abstract
Pneumocystis is a ubiquitous atypical fungus that is distributed globally. The genus comprises morphologically similar but genetically heterogeneous species that have co-evolved with specific mammalian hosts as obligate intra-pulmonary pathogens. In humans, Pneumocystis jirovecii is the causative organism of Pneumocystis pneumonia (PCP) in immunocompromised individuals, a serious illness frequently leading to life-threatening respiratory failure. Initially observed in acquired immunodeficiency syndrome (AIDS) patients, PCP is increasingly observed in immunocompromised non-AIDS patients. The evolving epidemiology and persistently poor outcomes of this common infection will require new strategies for diagnosis and treatment. A deeper understanding of host immune responses and of the cells that mediate them will improve the chance of developing new treatment strategies. This brief review provides an update on recent studies on the role of host immunity against Pneumocystis.
Collapse
Affiliation(s)
- Patricia Otieno-Odhiambo
- AFGrica Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa.
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - J Claire Hoving
- AFGrica Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
19
|
Evans HM, Garvy BA. The trophic life cycle stage of Pneumocystis species induces protective adaptive responses without inflammation-mediated progression to pneumonia. Med Mycol 2019; 56:994-1005. [PMID: 29267980 DOI: 10.1093/mmy/myx145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis species are fungal pathogens that cause pneumonia in immunocompromised hosts. Lung damage during Pneumocystis pneumonia is predominately due to the inflammatory immune response. Pneumocystis species have a biphasic life cycle. Optimal innate immune responses to Pneumocystis species are dependent on stimulation with the cyst life cycle stage. Conversely, the trophic life cycle stage broadly suppresses proinflammatory responses to multiple pathogen-associated molecular patterns (PAMPs), including β-1,3-glucan. Little is known about the contribution of these life cycle stages to the development of protective adaptive responses to Pneumocystis infection. Here we report that CD4+ T cells primed in the presence of trophic forms are sufficient to mediate clearance of trophic forms and cysts. In addition, primary infection with trophic forms is sufficient to prime B-cell memory responses capable of clearing a secondary infection with Pneumocystis following CD4+ T cell depletion. While trophic forms are sufficient for initiation of adaptive immune responses in immunocompetent mice, infection of immunocompromised recombination-activating gene 2 knockout (RAG2-/-) mice with trophic forms in the absence of cysts does not lead to the severe weight loss and infiltration of innate immune cells associated with the development of Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Heather M Evans
- Department of Microbiology, Immunology, and Molecular Genetics
| | - Beth A Garvy
- Department of Microbiology, Immunology, and Molecular Genetics.,Division of Infectious Diseases, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Gene Expression of Pneumocystis murina after Treatment with Anidulafungin Results in Strong Signals for Sexual Reproduction, Cell Wall Integrity, and Cell Cycle Arrest, Indicating a Requirement for Ascus Formation for Proliferation. Antimicrob Agents Chemother 2018; 62:AAC.02513-17. [PMID: 29463544 PMCID: PMC5923105 DOI: 10.1128/aac.02513-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/10/2018] [Indexed: 01/03/2023] Open
Abstract
The echinocandins are a class of antifungal agents that target β-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina β-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis-specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis, and BG may be needed to facilitate progression through the life cycle via sexual replication.
Collapse
|
22
|
Kottom TJ, Hebrink DM, Jenson PE, Marsolek PL, Wüthrich M, Wang H, Klein B, Yamasaki S, Limper AH. Dectin-2 Is a C-Type Lectin Receptor that Recognizes Pneumocystis and Participates in Innate Immune Responses. Am J Respir Cell Mol Biol 2018; 58:232-240. [PMID: 28886250 DOI: 10.1165/rcmb.2016-0335oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pneumocystis is an important fungal pathogen that causes life-threatening pneumonia in patients with AIDS and malignancy. Lung fungal pathogens are recognized by C-type lectin receptors (CLRs), which bind specific ligands and stimulate innate immune responses. The CLR Dectin-1 was previously shown to mediate immune responses to Pneumocystis spp. For this reason, we investigated a potential role for Dectin-2. Rats with Pneumocystis pneumonia (PCP) exhibited elevated Dectin-2 mRNA levels. Soluble Dectin-2 carbohydrate-recognition domain fusion protein showed binding to intact Pneumocystis carinii (Pc) and to native Pneumocystis major surface glycoprotein/glycoprotein A (Msg/gpA). RAW macrophage cells expressing V5-tagged Dectin-2 displayed enhanced binding to Pc and increased protein tyrosine phosphorylation. Furthermore, the binding of Pc to Dectin-2 resulted in Fc receptor-γ-mediated intracellular signaling. Alveolar macrophages from Dectin-2-deficient mice (Dectin-2-/-) showed significant decreases in phospho-Syk activation after challenge with Pc cell wall components. Stimulation of Dectin-2-/- alveolar macrophages with Pc components showed significant decreases in the proinflammatory cytokines IL-6 and TNF-α. Finally, during infection with Pneumocystis murina, Dectin-2-/- mice displayed downregulated mRNA expression profiles of other CLRs implicated in fungal immunity. Although Dectin-2-/- alveolar macrophages had reduced proinflammatory cytokine release in vitro, Dectin-2-/- deficiency did not reduce the overall resistance of these mice in the PCP model, and organism burdens were statistically similar in the long-term immunocompromised and short-term immunocompetent PCP models. These results suggest that Dectin-2 participates in the initial innate immune signaling response to Pneumocystis, but its deficiency does not impair resistance to the organism.
Collapse
Affiliation(s)
- Theodore J Kottom
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Deanne M Hebrink
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Paige E Jenson
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Paige L Marsolek
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | - Bruce Klein
- 2 Department of Pediatrics.,3 Department of Internal Medicine, and.,4 Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, Wisconsin; and
| | - Sho Yamasaki
- 5 Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Andrew H Limper
- 1 Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
23
|
Affiliation(s)
- Jennifer Claire Hoving
- Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. Synthesis of 3-aminopropyl β-(1 → 6)-d-glucotetraoside and its biotinylated derivative. Carbohydr Res 2017; 455:18-22. [PMID: 29156224 DOI: 10.1016/j.carres.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
3-Aminopropyl β-(1 → 6)-d-glucotetraoside has been synthesized from 3-benzyloxycarbonylaminopropanol and 6-O-acetyl-2,3,4-tri-O-benzoyl-d-glucopyranosyl trichloroacetimidate by successive attachment of one monosaccharide unit in total yield of 22%. Free aminopropyl glycoside was converted into a biotin derivative that can be used for controlled immobilization of the oligosaccharide on streptavidin-coated ELISA plates and for tracing carbohydrate binding molecules.
Collapse
Affiliation(s)
- Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
25
|
The Trophic Life Cycle Stage of the Opportunistic Fungal Pathogen Pneumocystis murina Hinders the Ability of Dendritic Cells To Stimulate CD4 + T Cell Responses. Infect Immun 2017; 85:IAI.00396-17. [PMID: 28694293 DOI: 10.1128/iai.00396-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells.
Collapse
|
26
|
Kottom TJ, Hebrink DM, Jenson PE, Ramirez-Prado JH, Limper AH. Characterization of N-Acetylglucosamine Biosynthesis in Pneumocystis species. A New Potential Target for Therapy. Am J Respir Cell Mol Biol 2017; 56:213-222. [PMID: 27632412 DOI: 10.1165/rcmb.2016-0155oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
N-acetylglucosamine (GlcNAc) serves as an essential structural sugar on the cell surface of organisms. For example, GlcNAc is a major component of bacterial peptidoglycan, it is an important building block of fungal cell walls, including a major constituent of chitin and mannoproteins, and it is also required for extracellular matrix generation by animal cells. Herein, we provide evidence for a uridine diphospho (UDP)-GlcNAc pathway in Pneumocystis species. Using an in silico search of the Pneumocystis jirovecii and P. murina (Pm) genomic databases, we determined the presence of at least four proteins implicated in the Saccharomyces cerevisiae UDP-GlcNAc biosynthetic pathway. These genes, termed GFA1, GNA1, AGM1, and UDP-GlcNAc pyrophosphorylase (UAP1), were either confirmed to be present in the Pneumocystis genomes by PCR, or, in the case of Pm uap1 (Pmuap1), functionally confirmed by direct enzymatic activity assay. Expression analysis using quantitative PCR of Pneumocystis pneumonia in mice demonstrated abundant expression of the Pm uap1 transcript. A GlcNAc-binding recombinant protein and a novel GlcNAc-binding immune detection method both verified the presence of GlcNAc in P. carinii (Pc) lysates. Studies of Pc cell wall fractions using high-performance gas chromatography/mass spectrometry documented the presence of GlcNAc glycosyl residues. Pc was shown to synthesize GlcNAc in vitro. The competitive UDP-GlcNAc substrate synthetic inhibitor, nikkomycin Z, suppressed incorporation of GlcNAc by Pc preparations. Finally, treatment of rats with Pneumocystis pneumonia using nikkomycin Z significantly reduced organism burdens. Taken together, these data support an important role for GlcNAc generation in the cell surface of Pneumocystis organisms.
Collapse
Affiliation(s)
- Theodore J Kottom
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Deanne M Hebrink
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Paige E Jenson
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Jorge H Ramirez-Prado
- 2 Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan, Asociación Civil, Merida, Yucatan, Mexico
| | - Andrew H Limper
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| |
Collapse
|
27
|
Kottom TJ, Hebrink DM, Jenson PE, Nandakumar V, Wüthrich M, Wang H, Klein B, Yamasaki S, Lepenies B, Limper AH. The Interaction of Pneumocystis with the C-Type Lectin Receptor Mincle Exerts a Significant Role in Host Defense against Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3515-3525. [PMID: 28298521 DOI: 10.4049/jimmunol.1600744] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
Abstract
Pneumocystis pneumonia (PCP) remains a major cause of morbidity and mortality within immunocompromised patients. In this study, we examined the potential role of macrophage-inducible C-type lectin (Mincle) for host defense against Pneumocystis Binding assays implementing soluble Mincle carbohydrate recognition domain fusion proteins demonstrated binding to intact Pneumocystis carinii as well as to organism homogenates, and they purified major surface glycoprotein/glycoprotein A derived from the organism. Additional experiments showed that rats with PCP expressed increased Mincle mRNA levels. Mouse macrophages overexpressing Mincle displayed increased binding to P. carinii life forms and enhanced protein tyrosine phosphorylation. The binding of P. carinii to Mincle resulted in activation of FcRγ-mediated cell signaling. RNA silencing of Mincle in mouse macrophages resulted in decreased activation of Syk kinase after P. carinii challenge, critical in downstream inflammatory signaling. Mincle-deficient CD4-depleted (Mincle-/-) mice showed a significant defect in organism clearance from the lungs with higher organism burdens and altered lung cytokine responses during Pneumocystis murina pneumonia. Interestingly, Mincle-/- mice did not demonstrate worsened survival during PCP compared with wild-type mice, despite the markedly increased organism burdens. This may be related to increased expression of anti-inflammatory factors such as IL-1Ra during infection in the Mincle-/- mice. Of note, the P. murina-infected Mincle-/- mice demonstrated increased expression of known C-type lectin receptors Dectin-1, Dectin-2, and MCL compared with infected wild-type mice. Taken together, these data support a significant role for Mincle in Pneumocystis modulating host defense during infection.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Paige E Jenson
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Vijayalakshmi Nandakumar
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905.,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Huafeng Wang
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792.,Department of Internal Medicine, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792.,Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; and
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905; .,Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
28
|
Luraschi A, Cissé OH, Pagni M, Hauser PM. Identification and Functional Ascertainment of the Pneumocystis jirovecii Potential Drug Targets Gsc1 and Kre6 Involved in Glucan Synthesis. J Eukaryot Microbiol 2016; 64:481-490. [PMID: 27859907 DOI: 10.1111/jeu.12385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/23/2022]
Abstract
The most efficient drug against the human pathogenic fungus Pneumocystis jirovecii is cotrimoxazole targeting the folate biosynthesis. However, resistance toward it is emerging and adverse effects occur in some patients. Studies in rodent models suggested that echinocandins could be useful to treat Pneumocystis pneumonia. Echinocandins inhibit the catalytic subunit Gsc1 of the enzymatic complex ensuring the synthesis of 1,3-β glucan, an essential constituent of cell walls of most fungi. Besides, inhibitors of the enzyme Kre6 involved in the synthesis of 1,6-β glucan, another essential component of fungal walls, were recently described. We identified and functionally characterized these two potential drug targets in the human pathogen P. jirovecii by rescue of the null allele of the orthologous gene in Saccharomyces cerevisiae. The P. jirovecii proteins Gsc1 and Kre6 identified using those of the relative Pneumocystis carinii as the query sequence showed high sequence identity to the putative fungal orthologs (53-97% in conserved functional domains). The expression of their encoding genes on plasmid rescued the increased sensitivity to, respectively, caspofungin or calcofluor white of the corresponding S. cerevisiae null allele. The uniqueness and likely essentiality of these proteins suggest that they are potential good drug targets.
Collapse
Affiliation(s)
- Amanda Luraschi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Ousmane H Cissé
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| |
Collapse
|
29
|
The life cycle stages of Pneumocystis murina have opposing effects on the immune response to this opportunistic, fungal pathogen. Infect Immun 2016; 84:3195-3205. [PMID: 27572330 PMCID: PMC5067752 DOI: 10.1128/iai.00519-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The cyst cell wall β-glucans of Pneumocystis have been shown to stimulate immune responses in lung epithelial cells, dendritic cells, and alveolar macrophages. Little is known about how the trophic life forms, which do not have a fungal cell wall, interact with these innate immune cells. Here, we report differences in the responses of both neonatal and adult mice to the trophic and cystic life cycle stages of Pneumocystis murina The adult and neonatal immune responses to infection with Pneumocystis murina trophic forms were less robust than the response to infection with a physiologically normal mixture of cysts and trophic forms. Cysts promoted the recruitment of nonresident innate immune cells and T and B cells into the lungs. Cysts, but not trophic forms, stimulated increased IFN-γ cytokine concentrations in the alveolar spaces, and an increase in IFN-γ-producing CD4+ T cells. In vitro, bone marrow-derived dendritic cells (BMDCs) stimulated with cysts produced the proinflammatory cytokines IL-1β and IL-6. In contrast, trophic forms suppressed β-glucan-, LTA-, and LPS-induced IL-1β, IL-6, and TNFα production by BMDCs and antigen presentation to CD4+ T cells. The negative effects of trophic forms were not due to ligation of mannose receptor. Our results indicate that optimal innate and adaptive immune responses to Pneumocystis species are dependent on stimulation with the cyst life cycle stage. Conversely, trophic forms suppress β-glucan-induced proinflammatory responses in vitro, suggesting that the trophic forms dampen cyst-induced inflammation in vivo.
Collapse
|
30
|
Mycoplasma agalactiae Secretion of β-(1→6)-Glucan, a Rare Polysaccharide in Prokaryotes, Is Governed by High-Frequency Phase Variation. Appl Environ Microbiol 2016; 82:3370-3383. [PMID: 27037120 DOI: 10.1128/aem.00274-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/24/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Mycoplasmas are minimal, wall-less bacteria but have retained the ability to secrete complex carbohydrate polymers that constitute a glycocalyx. In members of the Mycoplasma mycoides cluster, which are important ruminant pathogens, the glycocalyx includes both cell-attached and cell-free polysaccharides. This report explores the potential secretion of polysaccharides by M. agalactiae, another ruminant pathogen that belongs to a distant phylogenetic group. Comparative genomic analyses showed that M. agalactiae possesses all the genes required for polysaccharide secretion. Notably, a putative synthase gene (gsmA) was identified, by in silico reconstruction of the biosynthetic pathway, that could be involved in both polymerization and export of the carbohydrate polymers. M. agalactiae polysaccharides were then purified in vitro and found to be mainly cell attached, with a linear β-(1→6)-glucopyranose structure [β-(1→6)-glucan]. Secretion of β-(1→6)-glucan was further shown to rely on the presence of a functional gsmA gene, whose expression is subjected to high-frequency phase variation. This event is governed by the spontaneous intraclonal variation in length of a poly(G) tract located in the gsmA coding sequence and was shown to occur in most of the M. agalactiae clinical isolates tested in this study. M. agalactiae susceptibility to serum-killing activity appeared to be dictated by ON/OFF switching of β-(1→6)-glucan secretion, suggesting a role of this phenomenon in survival of the pathogen when it invades the host bloodstream. Finally, β-(1→6)-glucan secretion was not restricted to M. agalactiae but was detected also in M. mycoides subsp. capri PG3(T), another pathogen of small ruminants. IMPORTANCE Many if not all bacteria are able to secrete polysaccharides, either attached to the cell surface or exported unbound into the extracellular environment. Both types of polysaccharides can play a role in bacterium-host interactions. Mycoplasmas are no exception despite their poor overall metabolic capacity. We showed here that M. agalactiae secretes a capsular β-(1→6)-glucopyranose thanks to a specific glycosyltransferase with synthase activity. This secretion is governed by high-frequency ON/OFF phase variation that might be crucial in mycoplasma host dissemination, as cell-attached β-(1→6)-glucopyranose increases serum-killing susceptibility. Our results provide functional genetic data about mycoplasmal glycosyltransferases with dual functions, i.e., assembly and export of the sugar polymers across the cell membrane. Furthermore, we demonstrated that nonprotein epitopes can be subjected to surface antigenic variation in mycoplasmas. Finally, the present report contributes to unravel the role of secreted polysaccharides in the virulence and pathogenicity of these peculiar bacteria.
Collapse
|
31
|
Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, Macdonald P, Melnikov A, Raley C, Sassi M, Sherman BT, Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA, Kovacs JA. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 2016; 7:10740. [PMID: 26899007 PMCID: PMC4764891 DOI: 10.1038/ncomms10740] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Zehua Chen
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Da Wei Huang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Honghui Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Amr Abouelleil
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Emma Davey
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Rebecca Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Lin Fan
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Giovanna Fantoni
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Michael Fitzgerald
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Emile Gogineni
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Jonathan M. Goldberg
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Grace Handley
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xiaojun Hu
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Charles Huber
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Xiaoli Jiao
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Kristine Jones
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Joshua Z. Levin
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Pendexter Macdonald
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Alexandre Melnikov
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Castle Raley
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Brad T. Sherman
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Xiaohong Song
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Sean Sykes
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bao Tran
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Laura Walsh
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Yun Xia
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Jun Yang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Sarah Young
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Xin Zheng
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Robert Stephens
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Chad Nusbaum
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bruce W. Birren
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Richard A. Lempicki
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Christina A. Cuomo
- Genome Sequencing and Analysis Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Skalski JH, Kottom TJ, Limper AH. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 2015; 15:fov046. [PMID: 26071598 DOI: 10.1093/femsyr/fov046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/28/2022] Open
Abstract
Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.
Collapse
Affiliation(s)
- Joseph H Skalski
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|