1
|
Sutter A, Landis D, Nugent K. Metformin has immunomodulatory effects which support its potential use as adjunctive therapy in tuberculosis. Indian J Tuberc 2024; 71:89-95. [PMID: 38296396 DOI: 10.1016/j.ijtb.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/30/2022] [Accepted: 05/15/2023] [Indexed: 02/08/2024]
Abstract
Metformin is the preferred oral medication for patients with type 2 diabetes mellitus, and this blood glucose-lowering and insulin-sensitizing drug has immunomodulatory effects that could contribute to the management of patients with various other autoimmune and infectious diseases. Tuberculosis is one such infection, and it remains prevalent worldwide, largely due to the successful evasion of the host's immune responses by the infecting pathogen, Mycobacterium tuberculosis. This review focuses on the possible mechanisms relevant to metformin's modulation of innate and adaptive immune responses to Mycobacterium tuberculosis and its potential use as an adjunctive drug in the treatment of tuberculosis. Current data suggest that metformin increases autophagy, phagocytosis, and mitochondrial reactive oxygen species production, while limiting excess inflammation and tissue destruction. This multifaceted drug also augments cell-mediated immune responses by maintaining CD8+ T cell metabolic homeostasis and improving immunological memory. Several murine models have demonstrated that metformin can reduce tuberculosis severity and tissue pathology, and two in vitro human studies confirmed enhanced immune responses in metformin-treated cells. These studies provide convincing evidence supporting the use of metformin to augment immune responses in patients with tuberculosis.
Collapse
Affiliation(s)
- Alex Sutter
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dylan Landis
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
2
|
Bobba S, Khader SA. Rifampicin drug resistance and host immunity in tuberculosis: more than meets the eye. Trends Immunol 2023; 44:712-723. [PMID: 37543504 PMCID: PMC11170062 DOI: 10.1016/j.it.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Tuberculosis (TB) is the leading cause of death due to an infectious agent, with more than 1.5 million deaths attributed to TB annually worldwide. The global dissemination of drug resistance across Mycobacterium tuberculosis (Mtb) strains, causative of TB, resulted in an estimated 450 000 cases of drug-resistant (DR) TB in 2021. Dysregulated immune responses have been observed in patients with multidrug resistant (MDR) TB, but the effects of drug resistance acquisition and impact on host immunity remain obscure. In this review, we compile studies that span aspects of altered host-pathogen interactions and highlight research that explores how drug resistance and immunity might intersect. Understanding the immune processes differentially induced during DR TB would aid the development of rational therapeutics and vaccines for patients with MDR TB.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Chen W, Huang J, Wang W, Wang Y, Chen H, Wang Q, Zhang Y, Liu Q, Yang D. Multi-tissue scRNA-seq reveals immune cell landscape of turbot ( Scophthalmus maximus). FUNDAMENTAL RESEARCH 2022; 2:550-561. [PMID: 38933994 PMCID: PMC11197760 DOI: 10.1016/j.fmre.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022] Open
Abstract
In vertebrates, bony fishes possess not only innate immune cells but also T and B cells that are equivalent to those in mammals. However, the precise sub-cluster of immune cells in teleost fish remains largely unknown. Herein, we developed a dynamic bacterial infection model in turbot (Scophthalmus maximus) and created a fish immune cell landscape (FICL) for a primary lymphoid organ (head kidney), a secondary lymphoid organ (spleen), and barrier tissues (gills and posterior intestine). Moreover, through comprehensive characterization of the expression profiles of 16 clusters, including dendritic cells-like (DCs-like), macrophages (MΦs), neutrophils, NK cells, as well as 12 sub-clusters of T and B cells, we found that CD8+ CTLs, CD4-CD8- T, Th17 and ILC3-2 like cells possess a bifunctional role associated with cytotoxicity and immunoregulation during bacterial infection. To our knowledge, these results could provide a useful resource for a better understanding of immune cells in teleost fish and could act as a comprehensive knowledge base for assessing the evolutionary mechanism of adaptive immunity in vertebrates.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianchang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
4
|
Charrier M, Lorant J, Contreras-Lopez R, Téjédor G, Blanquart C, Lieubeau B, Schleder C, Leroux I, Deshayes S, Fonteneau JF, Babarit C, Hamel A, Magot A, Péréon Y, Viau S, Delorme B, Luz-Crawford P, Lamirault G, Djouad F, Rouger K. Human MuStem cells repress T-cell proliferation and cytotoxicity through both paracrine and contact-dependent pathways. Stem Cell Res Ther 2022; 13:7. [PMID: 35012660 PMCID: PMC8751303 DOI: 10.1186/s13287-021-02681-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling. Methods The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity. Results Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one. Conclusions Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02681-3.
Collapse
Affiliation(s)
- Marine Charrier
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France.,L'institut du Thorax, INSERM, CNRS, UNIV Nantes, 44007, Nantes, France.,Université de Nantes, Nantes, France
| | - Judith Lorant
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Rafael Contreras-Lopez
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France.,Laboratorio de Immunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| | - Gautier Téjédor
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France
| | | | | | - Cindy Schleder
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Isabelle Leroux
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Sophie Deshayes
- CNRS, INSERM, CRCINA, Université de Nantes, 44000, Nantes, France
| | | | - Candice Babarit
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, 44093, Nantes, France
| | - Armelle Magot
- Laboratoire d'Explorations Fonctionnelles, Centre de Référence Maladies Neuromusculaires AOC, CHU Nantes, 44093, Nantes, France
| | - Yann Péréon
- Laboratoire d'Explorations Fonctionnelles, Centre de Référence Maladies Neuromusculaires AOC, CHU Nantes, 44093, Nantes, France
| | - Sabrina Viau
- Biotherapy Division, Macopharma, 59420, Mouvaux, France
| | - Bruno Delorme
- Biotherapy Division, Macopharma, 59420, Mouvaux, France
| | - Patricia Luz-Crawford
- Laboratorio de Immunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Farida Djouad
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France.
| | - Karl Rouger
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France.
| |
Collapse
|
5
|
Sutiwisesak R, Hicks ND, Boyce S, Murphy KC, Papavinasasundaram K, Carpenter SM, Boucau J, Joshi N, Le Gall S, Fortune SM, Sassetti CM, Behar SM. A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathog 2020; 16:e1009000. [PMID: 33075106 PMCID: PMC7597557 DOI: 10.1371/journal.ppat.1009000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/29/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
CD8 T cells provide limited protection against Mycobacterium
tuberculosis (Mtb) infection in the mouse model. As Mtb causes
chronic infection in mice and humans, we hypothesize that Mtb impairs T cell
responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in
people, nonhuman primates, and mice, which is encoded by the
esxH gene. In C57BL/6 mice, 30–50% of pulmonary CD8 T cells
recognize the TB10.44−11 epitope. However, TB10.4-specific CD8 T
cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits
immunodominant CD8 T cell responses to antigens that are inefficiently presented
by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here,
we leverage naturally occurring polymorphisms in esxH, which
frequently occur in lineage 1 strains, to test this “decoy hypothesis”. Using
the clinical isolate 667, which contains an EsxHA10T polymorphism, we
observe a drastic change in the hierarchy of CD8 T cells. Using isogenic
Erd.EsxHA10T and Erd.EsxHWT strains, we prove that
this polymorphism alters the hierarchy of immunodominant CD8 T cell responses.
Our data are best explained by immunodomination, a mechanism by which
competition for APC leads to dominant responses suppressing subdominant
responses. These results were surprising as the variant epitope can bind to
H2-Kb and is recognized by TB10.4-specific CD8 T cells. The
dramatic change in TB10.4-specific CD8 responses resulted from increased
proteolytic degradation of A10T variant, which destroyed the
TB10.44-11epitope. Importantly, this polymorphism affected T cell
priming and recognition of infected cells. These data support a model in which
nonprotective CD8 T cells become immunodominant and suppress subdominant
responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv
sequence-based vaccines could lead to a mismatch between T cells that are primed
by vaccines and the epitopes presented by infected cells. Reprograming host
immune responses should be considered in the future design of vaccines. An important question for vaccine developers is the relative potency of CD4 vs.
CD8 T cells against Mtb, as strategies differ for eliciting these different T
cell subsets. Despite robust antigen-specific pulmonary CD8 T cell responses,
CD4 T cells mediate more protection than CD8 T cells in the murine model. Most
CD8 T cells recognize a single antigen, TB10.4, which is encoded by the
esxH gene. Based on finding that
TB10.44−11-specific CD8 T cells poorly recognize Mtb-infected
macrophages, we hypothesized that Mtb evades detection by CD8 T cells and
focuses the CD8 T cell response on non-protective antigen. We termed these
antigens “decoy antigens.” To test this hypothesis, we took advantage of a
natural variant of the esxH gene, which contains an A10T
polymorphism within the TB10.44−11 epitope. This polymorphism
drastically alters the hierarchy of CD8 T cell responses elicited by Mtb. These
data suggest that immunodomination by the TB10.4 epitope acts to suppress
subdominant CD8 T cell responses to other Mtb antigens, impairing the CD8 T cell
response to other Mtb antigens, some of which might be presented by Mtb-infected
macrophages and be targets of protective immunity. Importantly, this single
amino acid polymorphism, which does not significantly alter MHC-binding or T
cell recognition, alters the half-life of the epitope and consequently, has a
profound effect on CD8 T cell priming and recognition of infected cells. These
data also provide a mechanism that could be exploited to manipulate the
hierarchy of immunodominant responses.
Collapse
Affiliation(s)
- Rujapak Sutiwisesak
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kenan C. Murphy
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Neelambari Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Christopher M. Sassetti
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
- * E-mail:
| |
Collapse
|
6
|
Russell SL, Lamprecht DA, Mandizvo T, Jones TT, Naidoo V, Addicott KW, Moodley C, Ngcobo B, Crossman DK, Wells G, Steyn AJC. Compromised Metabolic Reprogramming Is an Early Indicator of CD8 + T Cell Dysfunction during Chronic Mycobacterium tuberculosis Infection. Cell Rep 2020; 29:3564-3579.e5. [PMID: 31825836 PMCID: PMC6915325 DOI: 10.1016/j.celrep.2019.11.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
The immunometabolic mechanisms underlying suboptimal T cell immunity in tuberculosis remain undefined. Here, we examine how chronic Mycobacterium tuberculosis (Mtb) and M. bovis BCG infections rewire metabolic circuits and alter effector functions in lung CD8+ T cells. As Mtb infection progresses, mitochondrial metabolism deteriorates in CD8+ T cells, resulting in an increased dependency on glycolysis that potentiates inflammatory cytokine production. Over time, these cells develop bioenergetic deficiencies that reflect metabolic “quiescence.” This bioenergetic signature coincides with increased mitochondrial dysfunction and inhibitory receptor expression and was not observed in BCG infection. Remarkably, the Mtb-triggered decline in T cell bioenergetics can be reinvigorated by metformin, giving rise to an Mtb-specific CD8+ T cell population with improved metabolism. These findings provide insights into Mtb pathogenesis whereby glycolytic reprogramming and compromised mitochondrial function contribute to the breakdown of CD8+ T cell immunity during chronic disease, highlighting opportunities to reinvigorate immunity with metabolically targeted pharmacologic agents. T cells from Mtb and BCG infections have unique metabolic and functional signatures Mitochondrial metabolism deteriorates in effector T cells as Mtb infection persists Metformin rejuvenates mitochondrial metabolism in T cells from Mtb-infected mice The breakdown of Mtb immunity during chronic disease is linked to immunometabolism
Collapse
Affiliation(s)
| | | | | | - Terrence T Jones
- Health Science Center (UTHSC), Department of Medicine, University of Tennessee, Memphis, TN 38163, USA
| | - Vanessa Naidoo
- Africa Health Research Institute, Durban 4001, South Africa
| | | | | | - Bongani Ngcobo
- Africa Health Research Institute, Durban 4001, South Africa
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama, Birmingham, AL 35487, USA
| | - Gordon Wells
- Africa Health Research Institute, Durban 4001, South Africa
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban 4001, South Africa; Department of Microbiology, University of Alabama, Birmingham, AL 35487, USA; Center for AIDS Research (CFAR), University of Alabama, Birmingham, AL 35487, USA; Center for Free Radical Biology (CFRB), University of Alabama, Birmingham, AL 35487, USA.
| |
Collapse
|
7
|
Flynn JL. At the Interface of Microbiology and Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1413-1417. [PMID: 32152209 DOI: 10.4049/jimmunol.2090001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| |
Collapse
|
8
|
Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA, Vergara JA, Ashkin D, Cheng JH, Lundgren LM, Raabe VN, Kraft CS, Nieva JJ, Cheever MA, Nghiem PT, Sharon E. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med 2020; 11:11/475/eaat2702. [PMID: 30651320 DOI: 10.1126/scitranslmed.aat2702] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/02/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Because of the well-established therapeutic benefit of boosting antitumor responses through blockade of the T cell inhibitory receptor PD-1, it has been proposed that PD-1 blockade could also be useful in infectious disease settings, including Mycobacterium tuberculosis (Mtb) infection. However, in preclinical models, Mtb-infected PD-1-/- mice mount exaggerated TH1 responses that drive lethal immunopathology. Multiple cases of tuberculosis during PD-1 blockade have been observed in patients with cancer, but in humans little is understood about Mtb-specific immune responses during checkpoint blockade-associated tuberculosis. Here, we report two more cases. We describe a patient who succumbed to disseminated tuberculosis after PD-1 blockade for treatment of nasopharyngeal carcinoma, and we examine Mtb-specific immune responses in a patient with Merkel cell carcinoma who developed checkpoint blockade-associated tuberculosis and was successfully treated for the infection. After anti-PD-1 administration, interferon-γ-producing Mtb-specific CD4 T cells became more prevalent in the blood, and a tuberculoma developed a few months thereafter. Mtb-specific TH17 cells, CD8 T cells, regulatory T cells, and antibody abundance did not change before the appearance of the granuloma. These results are consistent with the murine model data and suggest that boosting TH1 function with PD-1 blockade may increase the risk or severity of tuberculosis in humans.
Collapse
Affiliation(s)
- Daniel L Barber
- T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Shunsuke Sakai
- T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ragini R Kudchadkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Steven P Fling
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Tracey A Day
- Clinical Immunology Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Julie A Vergara
- Clinical Immunology Group, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - David Ashkin
- Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jonathan H Cheng
- Norris Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa M Lundgren
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Vanessa N Raabe
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Colleen S Kraft
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA 30322, USA
| | - Jorge J Nieva
- Norris Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Martin A Cheever
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul T Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
10
|
Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, Marino S, Cilfone NA, Mattila JT, Linderman JJ, Kirschner DE. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 2018; 285:147-167. [PMID: 30129209 PMCID: PMC6292442 DOI: 10.1111/imr.12671] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune responses to pathogens are complex and not well understood in many diseases, and this is especially true for infections by persistent pathogens. One mechanism that allows for long-term control of infection while also preventing an over-zealous inflammatory response from causing extensive tissue damage is for the immune system to balance pro- and anti-inflammatory cells and signals. This balance is dynamic and the immune system responds to cues from both host and pathogen, maintaining a steady state across multiple scales through continuous feedback. Identifying the signals, cells, cytokines, and other immune response factors that mediate this balance over time has been difficult using traditional research strategies. Computational modeling studies based on data from traditional systems can identify how this balance contributes to immunity. Here we provide evidence from both experimental and mathematical/computational studies to support the concept of a dynamic balance operating during persistent and other infection scenarios. We focus mainly on tuberculosis, currently the leading cause of death due to infectious disease in the world, and also provide evidence for other infections. A better understanding of the dynamically balanced immune response can help shape treatment strategies that utilize both drugs and host-directed therapies.
Collapse
Affiliation(s)
- Joseph M. Cicchese
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caitlin Hult
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Louis R. Joslyn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Wessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jess A. Millar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas A. Cilfone
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Kirschner D, Pienaar E, Marino S, Linderman JJ. A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 3:170-185. [PMID: 30714019 PMCID: PMC6354243 DOI: 10.1016/j.coisb.2017.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberculosis (TB) is an ancient and deadly disease characterized by complex host-pathogen dynamics playing out over multiple time and length scales and physiological compartments. Computational modeling can be used to integrate various types of experimental data and suggest new hypotheses, mechanisms, and therapeutic approaches to TB. Here, we offer a first-time comprehensive review of work on within-host TB models that describe the immune response of the host to infection, including the formation of lung granulomas. The models include systems of ordinary and partial differential equations and agent-based models as well as hybrid and multi-scale models that are combinations of these. Many aspects of M. tuberculosis infection, including host dynamics in the lung (typical site of infection for TB), granuloma formation, roles of cytokine and chemokine dynamics, and bacterial nutrient availability have been explored. Finally, we survey applications of these within-host models to TB therapy and prevention and suggest future directions to impact this global disease.
Collapse
Affiliation(s)
- Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Elsje Pienaar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
12
|
Dura B, Servos MM, Barry RM, Ploegh HL, Dougan SK, Voldman J. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. Proc Natl Acad Sci U S A 2016; 113:E3599-608. [PMID: 27303033 PMCID: PMC4932925 DOI: 10.1073/pnas.1515364113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Resolving how the early signaling events initiated by cell-cell interactions are transduced into diverse functional outcomes necessitates correlated measurements at various stages. Typical approaches that rely on bulk cocultures and population-wide correlations, however, only reveal these relationships broadly at the population level, not within each individual cell. Here, we present a microfluidics-based cell-cell interaction assay that enables longitudinal investigation of lymphocyte interactions at the single-cell level through microfluidic cell pairing, on-chip culture, and multiparameter assays, and allows recovery of desired cell pairs by micromanipulation for off-chip culture and analyses. Well-defined initiation of interactions enables probing cellular responses from the very onset, permitting single-cell correlation analyses between early signaling dynamics and later-stage functional outcomes within same cells. We demonstrate the utility of this microfluidic assay with natural killer cells interacting with tumor cells, and our findings suggest a possible role for the strength of early calcium signaling in selective coordination of subsequent cytotoxicity and IFN-gamma production. Collectively, our experiments demonstrate that this new approach is well-suited for resolving the relationships between complex immune responses within each individual cell.
Collapse
Affiliation(s)
- Burak Dura
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139; Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Mariah M Servos
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Rachel M Barry
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Stephanie K Dougan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142; Division of Immunology, Harvard Medical School, Boston, MA 02115
| | - Joel Voldman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139; Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
13
|
Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, Barber DL. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathog 2016; 12:e1005667. [PMID: 27244558 PMCID: PMC4887085 DOI: 10.1371/journal.ppat.1005667] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
IFN-γ–producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but >80% of control in the spleen. Moreover, increasing the IFN-γ–producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology. The development of novel tuberculosis vaccines has been hindered by the poor understanding of the mechanisms of host-protection. It has been long-held that IFN-γ is the principle effector of CD4 T cell-mediated resistance to Mtb infection, but Mtb-specific CD4 T cells produce low amounts of IFN-γ in vivo, leading to the possibility that increasing IFN-γ production by Th1 cells might enhance control of Mtb infection. However, the precise contribution of IFN-γ to CD4 T cell-dependent protection and the outcome of increasing IFN-γ production by CD4 T cells have not been evaluated. Here we show that IFN-γ accounts for only ~30% of the cumulative CD4 T cell-mediated reduction in lung bacterial loads over the first 1.5 months of infection. Moreover, we find that increasing the per capita production of IFN-γ by CD4 T cells leads to the early death of the host. Lastly, we show that suppression of CD4 T cell-derived IFN-γ by the inhibitory receptor PD-1 is essential to prevent lethal disease. Therefore, poor control Mtb infection does not result from defective production of IFN-γ, and strategies to selectively boost it are unwarranted. Furthermore, identifying the primary mechanisms of CD4 T cell-dependent control of Mtb infection should be a priority.
Collapse
Affiliation(s)
- Shunsuke Sakai
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Keith D. Kauffman
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michelle A. Sallin
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Arlene H. Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Howard A. Young
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Daniel L. Barber
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Waters WR, Palmer MV. Mycobacterium bovis Infection of Cattle and White-Tailed Deer: Translational Research of Relevance to Human Tuberculosis. ILAR J 2016; 56:26-43. [PMID: 25991696 DOI: 10.1093/ilar/ilv001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) is a premier example of a disease complex with pathogens primarily affecting humans (i.e., Mycobacterium tuberculosis) or livestock and wildlife (i.e., Mycobacterium bovis) and with a long history of inclusive collaborations between physicians and veterinarians. Advances in the study of bovine TB have been applied to human TB, and vice versa. For instance, landmark discoveries on the use of Koch's tuberculin and interferon-γ release assays for diagnostic purposes, as well as Calmette and Guérin's attenuated M. bovis strain as a vaccine, were first evaluated in cattle for control of bovine TB prior to wide-scale use in humans. Likewise, recent discoveries on the role of effector/memory T cell subsets and polyfunctional T cells in the immune response to human TB, particularly as related to vaccine efficacy, have paved the way for similar studies in cattle. Over the past 15 years, substantial funding for development of human TB vaccines has led to the emergence of multiple promising candidates now in human clinical trials. Several of these vaccines are being tested for immunogenicity and efficacy in cattle. Also, the development of population-based vaccination strategies for control of M. bovis infection in wildlife reservoirs will undoubtedly have an impact on our understanding of herd immunity with relevance to the control of both bovine and human TB in regions of the world with high prevalence of TB. Thus, the one-health approach to research on TB is mutually beneficial for our understanding and control of TB in humans, livestock, and wildlife.
Collapse
Affiliation(s)
- W Ray Waters
- Dr. W. Ray Waters, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, and a collaborator/assistant professor of veterinary microbiology and preventive medicine at Iowa State University, Ames, Iowa. Dr. Mitchell V. Palmer, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, and a collaborator/assistant professor of veterinary pathology at Iowa State University, Ames, Iowa
| | - Mitchell V Palmer
- Dr. W. Ray Waters, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, and a collaborator/assistant professor of veterinary microbiology and preventive medicine at Iowa State University, Ames, Iowa. Dr. Mitchell V. Palmer, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, and a collaborator/assistant professor of veterinary pathology at Iowa State University, Ames, Iowa
| |
Collapse
|
15
|
Flynn JL, Gideon HP, Mattila JT, Lin PL. Immunology studies in non-human primate models of tuberculosis. Immunol Rev 2015; 264:60-73. [PMID: 25703552 DOI: 10.1111/imr.12258] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-human primates, primarily macaques, have been used to study tuberculosis for decades. However, in the last 15 years, this model has been refined substantially to allow careful investigations of the immune response and host-pathogen interactions in Mycobacterium tuberculosis infection. Low-dose challenge with fully virulent strains in cynomolgus macaques result in the full clinical spectrum seen in humans, including latent and active infection. Reagents from humans are usually cross-reactive with macaques, further facilitating the use of this model system to study tuberculosis. Finally, macaques develop the spectrum of granuloma types seen in humans, providing a unique opportunity to investigate bacterial and host factors at the local (lung and lymph node) level. Here, we review the past decade of immunology and pathology studies in macaque models of tuberculosis.
Collapse
Affiliation(s)
- JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
16
|
Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol 2015; 37:239-49. [PMID: 25917388 PMCID: PMC4439333 DOI: 10.1007/s00281-015-0490-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022]
Abstract
Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection. In humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Division of Infectious Disease, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | | |
Collapse
|
17
|
Silva-Sánchez A, Meza-Pérez S, Flores-Langarica A, Donis-Maturano L, Estrada-García I, Calderón-Amador J, Hernández-Pando R, Idoyaga J, Steinman RM, Flores-Romo L. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis. PLoS One 2015; 10:e0124828. [PMID: 25915045 PMCID: PMC4411092 DOI: 10.1371/journal.pone.0124828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antigen-Presenting Cells/immunology
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Bacterial Load
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cell Line
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Flow Cytometry
- Immunization
- Interferon-gamma/biosynthesis
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Mice
- Minor Histocompatibility Antigens
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Peptides/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Aarón Silva-Sánchez
- Department of Cell Biology, Cinvestav-IPN, Ciudad de México, Mexico
- Department of Immunology, ENCB-IPN, Ciudad de México, Mexico
| | - Selene Meza-Pérez
- Department of Cell Biology, Cinvestav-IPN, Ciudad de México, Mexico
- Department of Immunology, ENCB-IPN, Ciudad de México, Mexico
| | - Adriana Flores-Langarica
- Physiology and Cell Biology, Rockefeller University, New York, New York, United States of America
| | | | | | | | | | - Juliana Idoyaga
- Physiology and Cell Biology, Rockefeller University, New York, New York, United States of America
| | - Ralph M. Steinman
- Physiology and Cell Biology, Rockefeller University, New York, New York, United States of America
| | | |
Collapse
|
18
|
Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin Immunol 2014; 26:559-77. [PMID: 25311810 DOI: 10.1016/j.smim.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Abstract
Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage.
Collapse
|
19
|
Mensah GI, Addo KK, Tetteh JA, Sowah S, Loescher T, Geldmacher C, Jackson-Sillah D. Cytokine response to selected MTB antigens in Ghanaian TB patients, before and at 2 weeks of anti-TB therapy is characterized by high expression of IFN-γ and Granzyme B and inter- individual variation. BMC Infect Dis 2014; 14:495. [PMID: 25209422 PMCID: PMC4180837 DOI: 10.1186/1471-2334-14-495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/02/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There has been a long held belief that patients with drug-susceptible TB are non-infectious after two weeks of therapy. Recent microbiological and epidemiological evidence has challenged this dogma, however, the nature of the Mtb-specific cellular immune response during this period has not been adequately investigated. This knowledge could be exploited in the development of immunological biomarkers of early treatment response. METHODS Cellular response to four Mtb infection phase-dependent antigens, ESAT-6/CFP-10 fusion protein and three DosR encoded proteins (Rv1733c, Rv2029c, Rv2628) were evaluated in a Ghanaian TB cohort (n=20) before and after 2 weeks of anti TB therapy. After 6-days in vitro stimulation, Peripheral blood mononuclear cell (PBMC) culture supernatant was harvested and the concentration of IFN-γ, Granzyme B, IL-10, IL-17, sIL2Rα and TNF-α were determined in a 6-plex Luminex assay. Frequencies of IFN-γ + CD4 and CD8 T cells were also determined in an intracellular cytokine assay. RESULTS All antigens induced higher levels of IFN-γ, followed by Granzyme B, TNF-α and IL-17 and low levels of IL-10 and sIL-2R-α in PBMC before treatment and after 2 weeks of treatment. Median cytokine levels of IFN-γ, Granzyme B, IL-17 and sIL-2R-α increased during week two, but it was significant for only Rv1733-specific production of Granzyme B (P = 0. 013). The median frequency of antigen specific IFN-γ + CD4 T cells increased at week two; however, only the increase in the ESAT-6/CFP-10-specific response was significant (P = 0. 0008). In contrast, the median frequency of ESAT-6/CFP-10- specific IFN-γ + CD8 T cell responses declined during week two (P = 0. 0024). Additionally, wide inter-individual variation with three distinct patterns were observed; increase in all cytokine levels, decrease in all cytokine levels and fluctuating cytokine levels after 2 weeks of treatment. CONCLUSION The second week of effective chemotherapy was characterized by a general increase in cytokine response to Mtb-specific antigens suggestive of an improvement in cellular response with therapy. However, the wide inter-individual variation observed would limit the utility of cytokine biomarkers during this period.
Collapse
Affiliation(s)
- Gloria Ivy Mensah
- />Noguchi Memorial Institute for Medical Research, University of Ghana, Legon Accra, Ghana
- />Centre for International Health, Ludwig Maximillians University, Munich, Germany
| | - Kennedy Kwasi Addo
- />Noguchi Memorial Institute for Medical Research, University of Ghana, Legon Accra, Ghana
| | - John Amissah Tetteh
- />Noguchi Memorial Institute for Medical Research, University of Ghana, Legon Accra, Ghana
| | - Sandra Sowah
- />Noguchi Memorial Institute for Medical Research, University of Ghana, Legon Accra, Ghana
| | - Thomas Loescher
- />Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Christof Geldmacher
- />Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
- />German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Dolly Jackson-Sillah
- />Noguchi Memorial Institute for Medical Research, University of Ghana, Legon Accra, Ghana
| |
Collapse
|
20
|
The subcellular location of ovalbumin in Plasmodium berghei blood stages influences the magnitude of T-cell responses. Infect Immun 2014; 82:4654-65. [PMID: 25156724 DOI: 10.1128/iai.01940-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Model antigens are frequently introduced into pathogens to study determinants that influence T-cell responses to infections. To address whether an antigen's subcellular location influences the nature and magnitude of antigen-specific T-cell responses, we generated Plasmodium berghei parasites expressing the model antigen ovalbumin (OVA) either in the parasite cytoplasm or on the parasitophorous vacuole membrane (PVM). For cytosolic expression, OVA alone or conjugated to mCherry was expressed from a strong constitutive promoter (OVAhsp70 or OVA::mCherryhsp70); for PVM expression, OVA was fused to HEP17/EXP1 (OVA::Hep17hep17). Unexpectedly, OVA expression in OVAhsp70 parasites was very low, but when OVA was fused to mCherry (OVA::mCherryhsp70), it was highly expressed. OVA expression in OVA::Hep17hep17 parasites was strong but significantly less than that in OVA::mCherryhsp70 parasites. These transgenic parasites were used to examine the effects of antigen subcellular location and expression level on the development of T-cell responses during blood-stage infections. While all OVA-expressing parasites induced activation and proliferation of OVA-specific CD8(+) T cells (OT-I) and CD4(+) T cells (OT-II), the level of activation varied: OVA::Hep17hep17 parasites induced significantly stronger splenic and intracerebral OT-I and OT-II responses than those of OVA::mCherryhsp70 parasites, but OVA::mCherryhsp70 parasites promoted stronger OT-I and OT-II responses than those of OVAhsp70 parasites. Despite lower OVA expression levels, OVA::Hep17hep17 parasites induced stronger T-cell responses than those of OVA::mCherryhsp70 parasites. These results indicate that unconjugated cytosolic OVA is not stably expressed in Plasmodium parasites and, importantly, that its cellular location and expression level influence both the induction and magnitude of parasite-specific T-cell responses. These parasites represent useful tools for studying the development and function of antigen-specific T-cell responses during malaria infection.
Collapse
|
21
|
De Pascalis R, Chou AY, Ryden P, Kennett NJ, Sjöstedt A, Elkins KL. Models derived from in vitro analyses of spleen, liver, and lung leukocyte functions predict vaccine efficacy against the Francisella tularensis Live Vaccine Strain (LVS). mBio 2014; 5:e00936. [PMID: 24713322 PMCID: PMC3993856 DOI: 10.1128/mbio.00936-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Currently, there are no licensed vaccines and no correlates of protection against Francisella tularensis, which causes tularemia. We recently demonstrated that measuring in vitro control of intramacrophage bacterial growth by murine F. tularensis-immune splenocytes, as well as transcriptional analyses, discriminated Francisella vaccines of different efficacies. Further, we identified potential correlates of protection against systemic challenge. Here, we extended this approach by studying leukocytes derived from lungs and livers of mice immunized by parenteral and respiratory routes with F. tularensis vaccines. Liver and lung leukocytes derived from intradermally and intranasally vaccinated mice controlled in vitro Francisella Live Vaccine Strain (LVS) intramacrophage replication in patterns similar to those of splenocytes. Gene expression analyses of potential correlates also revealed similar patterns in liver cells and splenocytes. In some cases (e.g., tumor necrosis factor alpha [TNF-α], interleukin 22 [IL-22], and granulocyte-macrophage colony-stimulating factor [GM-CSF]), liver cells exhibited even higher relative gene expression, whereas fewer genes exhibited differential expression in lung cells. In contrast with their strong ability to control LVS replication, splenocytes from intranasally vaccinated mice expressed few genes with a hierarchy of expression similar to that of splenocytes from intradermally vaccinated mice. Thus, the relative levels of gene expression vary between cell types from different organs and by vaccination route. Most importantly, because studies comparing cell sources and routes of vaccination supported the predictive validity of this coculture and gene quantification approach, we combined in vitro LVS replication with gene expression data to develop analytical models that discriminated between vaccine groups and successfully predicted the degree of vaccine efficacy. Thus, this strategy remains a promising means of identifying and quantifying correlative T cell responses. IMPORTANCE Identifying and quantifying correlates of protection is especially challenging for intracellular bacteria, including Francisella tularensis. F. tularensis is classified as a category A bioterrorism agent, and no vaccines have been licensed in the United States, but tularemia is a rare disease. Therefore, clinical trials to test promising vaccines are impractical. In this report, we further evaluated a novel approach to developing correlates by assessing T cell immune responses in lungs and livers of differentially vaccinated mice; these nonprofessional immune tissues are colonized by Francisella. The relative degree of vaccine efficacy against systemic challenge was reflected by the ability of immune T cells, particularly liver T cells, to control the intramacrophage replication of bacteria in vitro and by relative gene expression of several immunological mediators. We therefore developed analytical models that combined bacterial replication data and gene expression data. Several resulting models provided excellent discrimination between vaccines of different efficacies.
Collapse
Affiliation(s)
- Roberto De Pascalis
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA
| | - Alicia Y. Chou
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA
| | - Patrik Ryden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Nikki J. Kennett
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karen L. Elkins
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Waters WR, Maggioli MF, McGill JL, Lyashchenko KP, Palmer MV. Relevance of bovine tuberculosis research to the understanding of human disease: historical perspectives, approaches, and immunologic mechanisms. Vet Immunol Immunopathol 2014; 159:113-32. [PMID: 24636301 DOI: 10.1016/j.vetimm.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, demonstrating a profound relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. Early studies with cattle were instrumental in the development of the use of Koch's tuberculin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-γ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB eradication program. More recently, M. bovis infection and vaccine efficacy studies with cattle have demonstrated a correlation of vaccine-elicited T cell central memory (TCM) responses to vaccine efficacy, correlation of specific antibody to mycobacterial burden and lesion severity, and detection of antigen-specific IL-17 responses to vaccination and infection. Additionally, positive prognostic indicators of bovine TB vaccine efficacy (i.e., responses measured after infection) include: reduced antigen-specific IFN-γ, iNOS, IL-4, and MIP1-α responses; reduced antigen-specific expansion of CD4(+) T cells; and a diminished activation profile on T cells within antigen stimulated cultures. Delayed type hypersensitivity and IFN-γ responses correlate with infection but do not necessarily correlate with lesion severity whereas antibody responses generally correlate with lesion severity. Recently, serologic tests have emerged for the detection of tuberculous animals, particularly elephants, captive cervids, and camelids. B cell aggregates are consistently detected within tuberculous lesions of humans, cattle, mice and various other species, suggesting a role for B cells in the immunopathogenesis of TB. Comparative immunology studies including partnerships of researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in both man and animals.
Collapse
Affiliation(s)
- W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States.
| | - Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States
| | | | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
23
|
Savolainen LE, Koskivirta P, Kantele A, Valleala H, Pusa L, Tuompo R, Westerlund-Wikström B, Tuuminen T. Cytotoxic response persists in subjects treated for tuberculosis decades ago. BMC Infect Dis 2013; 13:573. [PMID: 24308801 PMCID: PMC4029532 DOI: 10.1186/1471-2334-13-573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/04/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Data exploring the potential use of effector molecules produced by cytotoxic T lymphocytes (CTLs) in the immunodiagnostics of tuberculosis (TB) are scarce. The present study focused a) to gain an insight into the discriminatory power of CTLs in patients with acute pulmonary or extra-pulmonary TB, or latent tuberculosis infection (LTBI); and b) to evaluate the influence of various anti-TB therapeutic schemes on the immunological profiles of residual CTLs. METHODS Immunological signatures of antigen-specific CTLs were explored in patients with active pulmonary and extra-pulmonary TB, LTBI and in those treated for TB decades ago by using ELISPOT, intracellular flow cytometry and extracellular CD107a detection. RESULTS No difference was seen between active TB, LTBI or any of those treated for TB in the ELISPOT analysis of antigen-specific Granzyme B (GrB), Perforin (Prf) and interferon-gamma (IFN-γ) producing lymphocytes, the FACS analysis of the intracellular expression of IFN-γ, or the surface expression of CD107a degranulation factor of both CD8+ and CD4+ antigen-specific T cell subsets. The effector memory (TEM) phenotype proved predominant in the surface marker profiling both in active TB and LTBI. The proportion of the CD107a degranulation factor proved higher in the central memory (TCM) than in the other cell subsets in all the study groups. Interestingly, functionally and phenotypically similar CTLs profiles were observed in active TB, LTBI and in all the three groups treated for TB. CONCLUSION The phenotypic and functional profiling of CTLs has a limited potential in the immunodiagnostics of active TB. Antigen-specific CTLs persist in patients treated for TB decades ago regardless of the efficacy of implemented and completed anti-TB therapy.
Collapse
Affiliation(s)
- Laura E Savolainen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
| | - Pekka Koskivirta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
| | - Anu Kantele
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Valleala
- Division of Rheumatology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Liana Pusa
- Länsi-Uusimaa Hospital, Tammisaari, Finland
| | - Riitta Tuompo
- Division of Rheumatology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Tamara Tuuminen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, PL 21, Helsinki 00014, Finland
- Eastern Finland Laboratory Centre Joint Authority Enterprise, Mikkeli, Finland
| |
Collapse
|
24
|
Cayabyab MJ, Qin L, Kashino SS, Izzo A, Campos-Neto A. An unbiased peptide-wide discovery approach to select Mycobacterium tuberculosis antigens that target CD8+ T cell response during infection. Vaccine 2013; 31:4834-40. [PMID: 23933335 DOI: 10.1016/j.vaccine.2013.07.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 07/30/2013] [Indexed: 12/13/2022]
Abstract
Accruing data strongly support the possible role of CD8+ T cells in immunity against tuberculosis (TB). Multivalent vaccines against Mycobacterium tuberculosis (Mtb) that incorporate CD8+ T cell antigens with those that elicit CD4+ T cells are therefore highly desirable. To screen for potential CD8+ T cell antigens that are produced by Mtb during infection, we isolated pathogen-derived peptides that bound to MHC Class I molecules expressed in adherent splenocytes obtained from Mtb-infected mice. Mass spectroscopy analysis revealed the following four nonamer peptides that had 100% homology with Mtb proteins: DGYVGAPAH (MT_0401), TTMPLFAD (MT_1164), RSGAATPVR (MT_2160.1) and LAAVVGVVL (MT_0078). The gene MT_0401 codes the protein 5'-phosphoribosylglycinamide transformylase 2 and the other three genes code for hypothetical proteins with unknown function. The NCBI/Blast analysis showed that among the four peptides DGYVGAPAH had the highest maximum alignment score and lowest E value (number of alignments expected by chance). Therefore, we assessed whether MT_0401 expressed in two genetic vaccine formulations was capable of stimulating CD8+ T cell response that is specific to DGYVGAPAH peptide. When mice were immunized with a recombinant plasmid DNA and an E1/E3-deleted Adenovirus 5 expressing MT0401 protein, using both homologous and heterologous prime-boost protocols, they developed strong DGYVGAPAH-specific CD8+ T cell response as well as antibody and CD4+ specific T cell response to the full length MT0401 protein. Equally important was the observation that mice infected with Mtb developed DGYVGAPAH-specific CD8+ T cell responses in both spleen and lungs. These results demonstrate that Mtb antigens that are processed and presented via MHC Class I machinery can be readily identified by the described approach and may be useful candidate antigens to stimulate specific CD8+ T cell responses in vaccine development programs.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Global Infectious Disease Research Center, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Subbian S, Tsenova L, Yang G, O'Brien P, Parsons S, Peixoto B, Taylor L, Fallows D, Kaplan G. Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol 2013; 1:110016. [PMID: 22645653 PMCID: PMC3352086 DOI: 10.1098/rsob.110016] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/17/2011] [Indexed: 01/05/2023] Open
Abstract
The molecular determinants of the immune response to Mycobacterium tuberculosis HN878 infection in a rabbit model of pulmonary cavitary tuberculosis were studied. Aerosol infection of rabbits resulted in a highly differentially expressed global transcriptome in the lungs at 2 weeks, which dropped at 4 weeks and then gradually increased. While IFNγ was progressively upregulated throughout the infection, several other genes in the IFNγ network were not. T-cell activation network genes were gradually upregulated and maximally induced at 12 weeks. Similarly, the IL4 and B-cell activation networks were progressively upregulated, many reaching high levels between 12 and 16 weeks. Delayed peak expression of genes associated with macrophage activation and Th1 type immunity was noted. Although spleen CD4(+) and CD8(+) T cells showed maximal tuberculosis antigen-specific activation by 8 weeks, macrophage activation in lungs, lymph nodes and spleen did not peak until 12 weeks. In the lungs, infecting bacilli grew exponentially up to 4 weeks, followed by a steady-state high bacillary load to 12 weeks that moderately increased during cavitation at 16 weeks. Thus, the outcome of HN878 infection of rabbits was determined early during infection by a suboptimal activation of innate immunity and delayed T-cell activation.
Collapse
Affiliation(s)
- Selvakumar Subbian
- Laboratory of Mycobacterial Immunity and Pathogenesis, The Public Health Research Institute (PHRI) Center at the University of Medicine and Dentistry of New Jersey (UMDNJ) , Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Henderson MA, Yong CSM, Duong CPM, Davenport AJ, John LB, Devaud C, Neeson P, Westwood JA, Darcy PK, Kershaw MH. Chimeric antigen receptor-redirected T cells display multifunctional capacity and enhanced tumor-specific cytokine secretion upon secondary ligation of chimeric receptor. Immunotherapy 2013; 5:577-90. [DOI: 10.2217/imt.13.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The aim of the current study was to fully elucidate the functions of T cells genetically modified with an erbB2-specific chimeric antigen receptor (CAR). Material & methods: In this study, key functional parameters of CAR T cells were examined following antigen-specific stimulation of the chimeric anti-erbB2 receptor. Results: Gene-modified T cells produced the cytokines IFN-γ, IL-2, IL-4, IL-10, TNF-α and IL-17, and the chemokine RANTES upon CAR ligation. A multifunctional capacity of these CAR T cells was also demonstrated, where 13.7% of cells were found to simultaneously express IFN-γ and CD107a, indicative of cytolytic granule release. In addition, the CAR T cells were able to respond to a greater degree on the second ligation of CAR, which has not been previously shown. IFN-γ secretion levels were significantly higher on second ligation than those secreted following initial ligation. CAR-expressing T cells were also demonstrated to lyze erbB2-expressing tumor cells in the absence of activity against bystander cells not expressing the erbB2 antigen, thereby demonstrating exquisite specificity. Conclusion: This study demonstrates the specificity of CAR gene-engineered T cells and their capacity to deliver a wide range of functions against tumor cells with an enhanced response capability after initial receptor engagement.
Collapse
Affiliation(s)
- Melissa A Henderson
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Carmen SM Yong
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Connie PM Duong
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alexander J Davenport
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liza B John
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christel Devaud
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul Neeson
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jennifer A Westwood
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Phillip K Darcy
- Department of Immunology, Monash University, Prahran Victoria 3181, Australia
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael H Kershaw
- Department of Immunology, Monash University, Prahran Victoria 3181, Australia
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
Parlane NA, Rehm BHA, Wedlock DN, Buddle BM. Novel particulate vaccines utilizing polyester nanoparticles (bio-beads) for protection against Mycobacterium bovis infection - a review. Vet Immunol Immunopathol 2013; 158:8-13. [PMID: 23707076 DOI: 10.1016/j.vetimm.2013.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/05/2013] [Indexed: 11/20/2022]
Abstract
Bovine tuberculosis (TB) continues to be a major health problem in cattle and development of a safe effective vaccine to control TB in cattle would be very useful. This paper reviews progress and provides new data in development of a TB bio-bead vaccine based on polyester nanoparticle inclusions which were produced by bioengineered bacteria. Polyhydroxybutyrate (PHB) biopolyester nanoparticles (bio-beads) have been produced which displayed mycobacterial antigens, Ag85A and ESAT-6, on the surface of the bio-beads for use as vaccines for the control of tuberculosis. Bio-beads were purified from the host production bacteria, Escherichia coli and the generally regarded as safe (GRAS) bacterium, Lactococcus lactis. Previous published studies showed that vaccination with Ag85A/ESAT-6 bio-beads induced antigen-specific IFN-γ, IL-17A, IL-6, TNF-α and IL-2 in splenocytes, but no significant increase in IL-4, IL-5 or IL-10. New results showed that antigen-specific IFN-γ release was induced by both CD4 and CD8 T cells in mice vaccinated with the Ag85A/ESAT-6 bio-beads. Mice vaccinated with Ag85A/ESAT-6 bio-beads alone or in combination with BCG had significantly lower bacterial counts from the lungs and spleen following aerosol challenge with Mycobacterium bovis compared to control groups. This unique approach to the design and production of bacterial-derived bio-beads displaying antigens enables a cost-effective way to express a diverse antigen repertoire for use as vaccines to combat TB or other diseases.
Collapse
Affiliation(s)
- Natalie A Parlane
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University, Palmerston North, New Zealand
| | - D Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand.
| |
Collapse
|
28
|
Myers AJ, Marino S, Kirschner DE, Flynn JL. Inoculation dose of Mycobacterium tuberculosis does not influence priming of T cell responses in lymph nodes. THE JOURNAL OF IMMUNOLOGY 2013; 190:4707-16. [PMID: 23547119 DOI: 10.4049/jimmunol.1203465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of Mycobacterium tuberculosis inocula size on T cell priming in the lymph node and effector T cells in the lung remains controversial. In this study, we used a naive mouse model, without the transfer of transgenic T cells, in conjunction with mathematical model to test whether infection with higher aerosolized inocula would lead to increased priming of M. tuberculosis-specific T cells in the lung-draining lymph node. Our data do not support that inoculum size has a measurable influence on T cell priming in the lymph nodes but is associated with more cells overall in the lung, including T cells. To account for increased T cells in the lungs, we tested several possible mechanisms, and recruitment of T cells to the lungs was most influenced by inoculum dose. We also identified IL-10 as a possible mechanism to explain the lack of influence of inoculum dose on priming of T cells in the lymph node.
Collapse
Affiliation(s)
- Amy J Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
29
|
Duan ZL, Wang ZB, Guo JL, Liu WQ, Hu J, Li J, Wang SN, Li Q, Wen JS. Two novel squamous cell carcinoma antigen-derived HLA-A*0201-binding peptides induce in vitro and in vivo CD8+ cytotoxic T lymphocyte responses. Int J Oncol 2013; 42:1482-92. [PMID: 23426430 DOI: 10.3892/ijo.2013.1834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/28/2013] [Indexed: 11/05/2022] Open
Abstract
Squamous cell carcinoma antigen (SCCA) is overexpressed in many squamous cell cancers and SCCA‑derived peptide-specific CD8(+) cytotoxic T lymphocytes can display cytotoxicity against tumor cells. In the present study, we screened the SCCA amino acid sequence for potential HLA-A*0201-binding CD8(+) T‑cell epitopes using two predictive computational algorithms. Seven epitope candidates were selected of which SCCA(246-254)(llpneidgl), SCCA(223-231)(sledvqakv), SCCA(328‑336)(vlhkafvev) and SCCA(324‑332)(vlsgvlhka) significantly stabilized HLA-A*0201 molecules on T2 cells. Both SCCA(328‑336) and SCCA(324-332) induced CD8(+) IFN-γ(+) T‑cell responses in HLA-A*0201-positive peripheral blood mononuclear cells as assessed by intracellular cytokine staining. Consistent with this, immunization with either SCCA(328-336) or SCCA(324‑332) effectively elicited CD8(+) IFN-γ(+) T cells in HLA-A*0201 transgenic mice as visualized by IFN-γ ELISPOT assay and intracellular cytokine staining. Furthermore, CD8(+) T cells induced in vitro or in vivo by SCCA(328-336) or SCCA(324-332) demonstrated in vitro cytotoxicity against peptide-pulsed T2 cells and splenocytes, respectively. These novel SCCA‑derived CD8(+) T‑cell epitopes described, herein, may be potentially important components for diagnostic reagents and immunotherapeutic vaccines for the treatment of squamous cell carcinomas.
Collapse
Affiliation(s)
- Zhi-Liang Duan
- Department of Microbiology and Immunology, Wenzhou Medical College, Wenzhou 325000, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Behar SM. Antigen-specific CD8(+) T cells and protective immunity to tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:141-63. [PMID: 23468108 DOI: 10.1007/978-1-4614-6111-1_8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continuing HIV/AIDS epidemic and the spread of multi-drug resistant Mycobacterium tuberculosis has led to the perpetuation of the worldwide tuberculosis epidemic. While M. bovis BCG is widely used as a vaccine, it lacks efficacy in preventing pulmonary tuberculosis in adults [1]. To combat this ongoing scourge, vaccine development for tuberculosis is a global priority. Most infected individuals develop long-lived protective immunity, which controls and contains M. tuberculosis in a T cell-dependent manner. An effective T cells response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions, and evaluating whether vaccination can elicit these T cells subsets and induce protective immunity. CD4(+) T cells are critical for resistance to M. tuberculosis in both humans and rodent models. CD4(+) T cells are required to control the initial infection as well as to prevent recrudescence in both humans and mice [2]. While it is generally accepted that class II MHC-restricted CD4(+) T cells are essential for immunity to tuberculosis, M. tuberculosis infection elicits CD8(+) T cells responses in both people and in experimental animals. CD8(+) T cells are also recruited to the lung during M. tuberculosis infection and are found in the granulomas of infected people. Thus, how CD8(+) T cells contribute to overall immunity to tuberculosis and whether antigens recognized by CD8(+) T cells would enhance the efficacy of vaccine strategies continue to be important questions.
Collapse
Affiliation(s)
- Samuel M Behar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
31
|
Green AM, Difazio R, Flynn JL. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2012; 190:270-7. [PMID: 23233724 DOI: 10.4049/jimmunol.1200061] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IFN-γ is necessary in both humans and mice for control of Mycobacterium tuberculosis. CD4 T cells are a significant source of IFN-γ during acute infection in mice and are required for control of bacterial growth and host survival. However, several other types of cells can and do produce IFN-γ during the course of the infection. We sought to determine whether IFN-γ from sources other than CD4 T cells was sufficient to control M. tuberculosis infection and whether CD4 T cells had a role in addition to IFN-γ production. To investigate the role of IFN-γ from CD4 T cells, a murine adoptive transfer model was developed in which all cells were capable of producing IFN-γ, with the exception of CD4 T cells. Our data in this system support that CD4 T cells are essential for control of infection, but also that IFN-γ from CD4 T cells is necessary for host survival and optimal long-term control of bacterial burden. In addition, IFN-γ from CD4 T cells was required for a robust CD8 T cell response. IFN-γ from T cells inhibited intracellular replication of M. tuberculosis in macrophages, suggesting IFN-γ may be necessary for intracellular bactericidal activity. Thus, although CD4 T cells play additional roles in the control of M. tuberculosis infection, IFN-γ is a major function by which these cells participate in resistance to tuberculosis.
Collapse
Affiliation(s)
- Angela M Green
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
32
|
Rybakin V, Gascoigne NRJ. Negative selection assay based on stimulation of T cell receptor transgenic thymocytes with peptide-MHC tetramers. PLoS One 2012; 7:e43191. [PMID: 22900100 PMCID: PMC3416795 DOI: 10.1371/journal.pone.0043191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/20/2012] [Indexed: 02/04/2023] Open
Abstract
Thymocyte negative selection is a requirement for the development of self tolerance. Although it is possible to assay the induction of cell death in thymocytes in vitro using antibody cross-linking, this stimulus is much stronger than the normal range of T cell receptor ligands that could be encountered during normal development. Signaling in thymocytes is finely balanced between positive and negative selection stimuli, where a negative selecting ligand can be only marginally higher affinity than a positive selecting ligand. We have therefore developed an assay for the induction of negative selection that can distinguish such cases, and that is amenable to high-throughput analysis. The assay is based on the induction of activated caspase 3 in thymocytes expressing a defined T cell receptor, after stimulation with MHC-peptide tetramers in vitro for 24 hours or less.
Collapse
Affiliation(s)
- Vasily Rybakin
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| | - Nicholas R. J. Gascoigne
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| |
Collapse
|
33
|
Cytotoxic T lymphocytes from cattle immunized against Theileria parva exhibit pronounced cross-reactivity among different strain-specific epitopes of the Tp1 antigen. Vet Immunol Immunopathol 2012; 145:571-81. [DOI: 10.1016/j.vetimm.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 11/16/2022]
|
34
|
Snook AE, Magee MS, Marszalowicz GP, Schulz S, Waldman SA. Epitope-targeted cytotoxic T cells mediate lineage-specific antitumor efficacy induced by the cancer mucosa antigen GUCY2C. Cancer Immunol Immunother 2011; 61:713-23. [PMID: 22057677 DOI: 10.1007/s00262-011-1133-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/18/2011] [Indexed: 12/11/2022]
Abstract
Guanylyl cyclase C (GUCY2C) is the index cancer mucosa antigen, an emerging class of immunotherapeutic targets for the prevention of recurrent metastases originating in visceral epithelia. GUCY2C is an autoantigen principally expressed by intestinal epithelium, and universally by primary and metastatic colorectal tumors. Immunization with adenovirus expressing the structurally unique GUCY2C extracellular domain (GUCY2C(ECD); Ad5-GUCY2C) produces prophylactic and therapeutic protection against GUCY2C-expressing colon cancer metastases in mice, without collateral autoimmunity. GUCY2C antitumor efficacy is mediated by a unique immunological mechanism involving lineage-specific induction of antigen-targeted CD8(+) T cells, without CD4(+) T cells or B cells. Here, the unusual lineage specificity of this response was explored by integrating high-throughput peptide screening and bioinformatics, revealing the role for GUCY2C-directed CD8(+) T cells targeting specific epitopes in antitumor efficacy. In BALB/c mice vaccinated with Ad5-GUCY2C, CD8(+) T cells recognize the dominant GUCY2C(254-262) epitope in the context of H-2K(d), driving critical effector functions including interferon gamma secretion, cytolysis ex vivo and in vivo, and antitumor efficacy. The ability of GUCY2C to induce lineage-specific responses targeted to cytotoxic CD8(+) T cells recognizing a single epitope mediating antitumor efficacy without autoimmunity highlights the immediate translational potential of cancer mucosa antigen-based vaccines for preventing metastases of mucosa-derived cancers.
Collapse
Affiliation(s)
- Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
35
|
Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O'rie T, Pienaar B, de Kock M, Kaplan G, Mahomed H, Dheda K, Hanekom WA. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. THE JOURNAL OF IMMUNOLOGY 2011; 187:2222-32. [PMID: 21775682 DOI: 10.4049/jimmunol.1101122] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High Ag load in chronic viral infections has been associated with impairment of Ag-specific T cell responses; however, the relationship between Ag load in chronic Mycobacterium tuberculosis infection and functional capacity of M. tuberculosis-specific T cells in humans is not clear. We compared M. tuberculosis-specific T cell-associated cytokine production and proliferative capacity in peripheral blood from adults with progressively higher mycobacterial loads-that is, persons with latent M. tuberculosis infection (LTBI), with smear-negative pulmonary tuberculosis (TB), and smear-positive TB. Patients with smear-positive TB had decreased polyfunctional IFN-γ(+)IL-2(+)TNF-α(+) and IL-2-producing specific CD4 T cells and increased TNF-α single-positive cells, when compared with smear-negative TB and LTBI. TB patients also had increased frequencies of M. tuberculosis-specific CD8 T cells, compared with LTBI. M. tuberculosis-specific CD4 and CD8 T cell proliferative capacity was profoundly impaired in individuals with smear-positive TB, and correlated positively with ex vivo IFN-γ(+)IL-2(+)TNF-α(+) CD4 T cells, and inversely with TNF-α single-positive CD4 T cells. During 6 mo of anti-TB treatment, specific IFN-γ(+)IL-2(+)TNF-α(+) CD4 and CD8 T cells increased, whereas TNF-α and IFN-γ single-positive T cells decreased. These results suggest progressive impairment of M. tuberculosis-specific T cell responses with increasing mycobacterial load and recovery of responses during therapy. Furthermore, these data provide a link between specific cytokine-producing subsets and functional capacity of M. tuberculosis-specific T cells, and between the presence of specific CD8 T cells ex vivo and active TB disease. These data have potentially significant applications for the diagnosis of TB and for the identification of T cell correlates of TB disease progression.
Collapse
Affiliation(s)
- Cheryl L Day
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Orme IM. Development of new vaccines and drugs for TB: limitations and potential strategic errors. Future Microbiol 2011; 6:161-77. [PMID: 21366417 DOI: 10.2217/fmb.10.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The concomitant HIV and TB epidemics pose an enormous threat to humanity. After invading the host Mycobacterium tuberculosis initially behaves as an intracellular pathogen, which elicits the emergence of acquired specific resistance in the form of a T-helper-1 T-cell response, and involves the secretion of a myriad of cytokines and chemokines to drive protective immunity and granuloma formation. However, after that, a second phase of the disease process involves survival of bacilli in an extracellular state that is still poorly understood. This article briefly reviews the various strategies currently being used to improve both vaccination and drug therapy of TB, and attempts to make the argument that current viewpoints that dominate [both the field and the current literature] may be seriously flawed. This includes both the choice of new vaccine and drug candidates, and also the ways these are being tested in animal models, which in the opinion of the author run the risk of driving the field backwards rather than forward.
Collapse
Affiliation(s)
- Ian M Orme
- Department of Microbiology, Immunology & Pathology, Colorado State University, Colorado, CO 80523, USA.
| |
Collapse
|
37
|
Mattila JT, Diedrich CR, Lin PL, Phuah J, Flynn JL. Simian immunodeficiency virus-induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. THE JOURNAL OF IMMUNOLOGY 2011; 186:3527-37. [PMID: 21317393 DOI: 10.4049/jimmunol.1003773] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the early immunologic events accompanying reactivated tuberculosis (TB) in HIV-infected individuals may yield insight into causes of reactivation and improve treatment modalities. We used the cynomolgus macaque (Macaca fascicularis) model of HIV-Mycobacterium tuberculosis coinfection to investigate the dynamics of multifunctional T cell responses and granuloma T cell phenotypes in reactivated TB. CD4(+) and CD8(+) T cells expressing Th1 cytokines (IFN-γ, IL-2, TNF) and Th2 cytokines (IL-4 and IL-10) were followed from latent M. tuberculosis infection to reactivation after coinfection with a pathogenic SIV. Coinfected animals experienced increased Th1 cytokine responses to M. tuberculosis Ags above the latent-response baseline 3-5 wk post-SIV infection that corresponded with peak plasma viremia. Th2 cytokine expression was not Ag specific, but strong, transient IL-4 expression was noted 4-7 wk post-SIV infection. Animals reactivating <17 wk post-SIV infection had significantly more multifunctional CD4(+) T cells 3-5 wk post-SIV infection and more Th2-polarized and fewer Th0-, Th1-polarized CD8(+) T cells during weeks 1-10 post-SIV infection than animals reactivating >26 wk post-SIV infection. Granuloma T cells included Th0-, Th1-, and Th2-polarized phenotypes but were particularly rich in cytolytic (CD107(+)) T cells. When combined with the changes in peripheral blood T cells, these factors indicate that events during acute HIV infection are likely to include distortions in proinflammatory and anti-inflammatory T cell responses within the granuloma that have significant effects on reactivation of latent TB. Moreover, it appears that mycobacteria-specific multifunctional T cells are better correlates of Ag load (i.e., disease status) than of protection.
Collapse
Affiliation(s)
- Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
38
|
Woodworth JS, Shin D, Volman M, Nunes-Alves C, Fortune SM, Behar SM. Mycobacterium tuberculosis directs immunofocusing of CD8+ T cell responses despite vaccination. THE JOURNAL OF IMMUNOLOGY 2010; 186:1627-37. [PMID: 21178003 DOI: 10.4049/jimmunol.1002911] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vaccines that elicit T cell responses try to mimic protective memory T cell immunity after infection by increasing the frequency of Ag-specific T cells in the immune repertoire. However, the factors that determine immunodominance during infection and after vaccination and the relation between immunodominance and protection are incompletely understood. We previously identified TB10.4(20-28) as an immunodominant epitope recognized by H2-K(d)-restricted CD8(+) T cells after M. tuberculosis infection. Here we report a second epitope, EspA(150-158), that is recognized by a substantial number of pulmonary CD8(+) T cells. The relative abundance of these T cells in the naive repertoire only partially predicts their relative frequency after M. tuberculosis infection. Furthermore, although vaccination with recombinant vaccinia virus expressing these epitopes changes their relative immunodominance in the preinfection T cell repertoire, this change is transient after challenge with M. tuberculosis. We speculate that factors intrinsic to the chronic nature of M. tuberculosis infection establishes the hierarchy of immunodominance and may explain the failure of some vaccines to provide protection.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Genetic immunization in the lung induces potent local and systemic immune responses. Proc Natl Acad Sci U S A 2010; 107:22213-8. [PMID: 21135247 DOI: 10.1073/pnas.1015536108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Successful vaccination against respiratory infections requires elicitation of high levels of potent and durable humoral and cellular responses in the lower airways. To accomplish this goal, we used a fine aerosol that targets the entire lung surface through normal respiration to deliver replication-incompetent recombinant adenoviral vectors expressing gene products from several infectious pathogens. We show that this regimen induced remarkably high and stable lung T-cell responses in nonhuman primates and that it also generated systemic and respiratory tract humoral responses of both IgA and IgG isotypes. Moreover, strong immunogenicity was achieved even in animals with preexisting antiadenoviral immunity, overcoming a critical hurdle to the use of these vectors in humans, who commonly are immune to adenoviruses. The immunogenicity profile elicited with this regimen, which is distinct from either intramuscular or intranasal delivery, has highly desirable properties for protection against respiratory pathogens. We show that it can be used repeatedly to generate mucosal humoral, CD4, and CD8 T-cell responses and as such may be applicable to other mucosally transmitted pathogens such as HIV. Indeed, in a lethal challenge model, we show that aerosolized recombinant adenoviral immunization completely protects ferrets against H5N1 highly pathogenic avian influenza virus. Thus, genetic immunization in the lung offers a powerful platform approach to generating protective immune responses against respiratory pathogens.
Collapse
|
40
|
Rueda CM, Marín ND, García LF, Rojas M. Characterization of CD4 and CD8 T cells producing IFN-γ in human latent and active tuberculosis. Tuberculosis (Edinb) 2010; 90:346-53. [DOI: 10.1016/j.tube.2010.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
41
|
Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. THE JOURNAL OF IMMUNOLOGY 2010; 185:15-22. [PMID: 20562268 DOI: 10.4049/jimmunol.0903856] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tuberculosis (TB) remains a threat to the health of people worldwide. Infection with Mycobacterium tuberculosis can result in active TB or, more commonly, latent infection. Latently infected persons, of which there are estimated to be approximately 2 billion in the world, represent an enormous reservoir of potential reactivation TB, which can spread to other people. The immunology of TB is complex and multifaceted. Identifying the immune mechanisms that lead to control of initial infection and prevent reactivation of latent infection is crucial to combating this disease.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | | |
Collapse
|