1
|
Ahmad JN, Sebo P. cAMP signaling of Bordetella adenylate cyclase toxin blocks M-CSF triggered upregulation of iron acquisition receptors on differentiating CD14 + monocytes. mSphere 2024; 9:e0040724. [PMID: 39078132 PMCID: PMC11351043 DOI: 10.1128/msphere.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Bordetella pertussis infects the upper airways of humans and disarms host defense by the potent immuno-subversive activities of its pertussis (PT) and adenylate cyclase (CyaA) toxins. CyaA action near-instantly ablates the bactericidal activities of sentinel CR3-expressing myeloid phagocytes by hijacking cellular signaling pathways through the unregulated production of cAMP. Moreover, CyaA-elicited cAMP signaling also inhibits the macrophage colony-stimulating factor (M-CSF)-induced differentiation of incoming inflammatory monocytes into bactericidal macrophages. We show that CyaA/cAMP signaling via protein kinase A (PKA) downregulates the M-CSF-elicited expression of monocyte receptors for transferrin (CD71) and hemoglobin-haptoglobin (CD163), as well as the expression of heme oxygenase-1 (HO-1) involved in iron liberation from internalized heme. The impact of CyaA action on CD71 and CD163 levels in differentiating monocytes is largely alleviated by the histone deacetylase inhibitor trichostatin A (TSA), indicating that CyaA/cAMP signaling triggers epigenetic silencing of genes for micronutrient acquisition receptors. These results suggest a new mechanism by which B. pertussis evades host sentinel phagocytes to achieve proliferation on airway mucosa.IMPORTANCETo establish a productive infection of the nasopharyngeal mucosa and proliferate to sufficiently high numbers that trigger rhinitis and aerosol-mediated transmission, the pertussis agent Bordetella pertussis deploys several immunosuppressive protein toxins that compromise the sentinel functions of mucosa patrolling phagocytes. We show that cAMP signaling elicited by very low concentrations (22 pM) of Bordetella adenylate cyclase toxin downregulates the iron acquisition systems of CD14+ monocytes. The resulting iron deprivation of iron, a key micronutrient, then represents an additional aspect of CyaA toxin action involved in the inhibition of differentiation of monocytes into the enlarged bactericidal macrophage cells. This corroborates the newly discovered paradigm of host defense evasion mechanisms employed by bacterial pathogens, where manipulation of cellular cAMP levels blocks monocyte to macrophage transition and replenishment of exhausted phagocytes, thereby contributing to the formation of a safe niche for pathogen proliferation and dissemination.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Wolf MA, O'Hara JM, Bitzer GJ, Narayanan E, Boehm DT, Bevere JR, DeJong MA, Hall JM, Wong TY, Falcone S, Deal CE, Richards A, Green S, Nguyen B, King E, Ogega C, Russo L, Sen-Kilic E, Plante O, Himansu S, Barbier M, Carfi A, Damron FH. Multivalent mRNA-DTP vaccines are immunogenic and provide protection from Bordetella pertussis challenge in mice. NPJ Vaccines 2024; 9:103. [PMID: 38858423 PMCID: PMC11164898 DOI: 10.1038/s41541-024-00890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Acellular multivalent vaccines for pertussis (DTaP and Tdap) prevent symptomatic disease and infant mortality, but immunity to Bordetella pertussis infection wanes significantly over time resulting in cyclic epidemics of pertussis. The messenger RNA (mRNA) vaccine platform provides an opportunity to address complex bacterial infections with an adaptable approach providing Th1-biased responses. In this study, immunogenicity and challenge models were used to evaluate the mRNA platform with multivalent vaccine formulations targeting both B. pertussis antigens and diphtheria and tetanus toxoids. Immunization with mRNA formulations were immunogenetic, induced antigen specific antibodies, as well as Th1 T cell responses. Upon challenge with either historical or contemporary B. pertussis strains, 6 and 10 valent mRNA DTP vaccine provided protection equal to that of 1/20th human doses of either DTaP or whole cell pertussis vaccines. mRNA DTP immunized mice were also protected from pertussis toxin challenge as measured by prevention of lymphocytosis and leukocytosis. Collectively these pre-clinical mouse studies illustrate the potential of the mRNA platform for multivalent bacterial pathogen vaccines.
Collapse
Affiliation(s)
- M Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | | | - Graham J Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | | | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Megan A DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jesse M Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | | | | | | | | | | | | | | | | | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | | | | | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | | | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
3
|
Jia J, Zoeschg M, Barth H, Pulliainen AT, Ernst K. The Chaperonin TRiC/CCT Inhibitor HSF1A Protects Cells from Intoxication with Pertussis Toxin. Toxins (Basel) 2024; 16:36. [PMID: 38251252 PMCID: PMC10819386 DOI: 10.3390/toxins16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Manuel Zoeschg
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
4
|
Ardanuy J, Scanlon KM, Skerry C, Carbonetti NH. DNA-Dependent Interferon Induction and Lung Inflammation in Bordetella pertussis Infection. J Interferon Cytokine Res 2023; 43:478-486. [PMID: 37651198 PMCID: PMC10599430 DOI: 10.1089/jir.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
Pertussis, caused by Bordetella pertussis, is a resurgent respiratory disease but the molecular mechanisms underlying pathogenesis are poorly understood. We recently showed the importance of type I and type III interferon (IFN) induction and signaling for the development of lung inflammation in B. pertussis-infected mouse models. Classically, these IFNs are induced by signaling through a variety of pattern recognition receptors (PRRs) on host cells. Here, we found that the PRR signaling adaptor molecules MyD88 and TRIF contribute to IFN induction and lung inflammatory pathology during B. pertussis infection. However, the PRRs Toll-like receptors (TLR) 3 and TLR4, which signal through TRIF and MyD88, respectively, played no role in IFN induction. Instead, the DNA-sensing PRRs, TLR9 and STING, were important for induction of type I/III IFN and promotion of inflammatory pathology, indicating that DNA is a major inducer of lung IFN responses in B. pertussis infection. These results increase our understanding of this host-pathogen interaction and identify potential targets for host-directed therapies to reduce B. pertussis-mediated pathology.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen M. Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas H. Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Subramaniyan B, Gurung S, Bodas M, Moore AR, Larabee JL, Reuter D, Georgescu C, Wren JD, Myers DA, Papin JF, Walters MS. The Isolation and In Vitro Differentiation of Primary Fetal Baboon Tracheal Epithelial Cells for the Study of SARS-CoV-2 Host-Virus Interactions. Viruses 2023; 15:v15040862. [PMID: 37112842 PMCID: PMC10146425 DOI: 10.3390/v15040862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The mucociliary airway epithelium lines the human airways and is the primary site of host-environmental interactions in the lung. Following virus infection, airway epithelial cells initiate an innate immune response to suppress virus replication. Therefore, defining the virus-host interactions of the mucociliary airway epithelium is critical for understanding the mechanisms that regulate virus infection, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Non-human primates (NHP) are closely related to humans and provide a model to study human disease. However, ethical considerations and high costs can restrict the use of in vivo NHP models. Therefore, there is a need to develop in vitro NHP models of human respiratory virus infection that would allow for rapidly characterizing virus tropism and the suitability of specific NHP species to model human infection. Using the olive baboon (Papio anubis), we have developed methodologies for the isolation, in vitro expansion, cryopreservation, and mucociliary differentiation of primary fetal baboon tracheal epithelial cells (FBTECs). Furthermore, we demonstrate that in vitro differentiated FBTECs are permissive to SARS-CoV-2 infection and produce a potent host innate-immune response. In summary, we have developed an in vitro NHP model that provides a platform for the study of SARS-CoV-2 infection and other human respiratory viruses.
Collapse
Affiliation(s)
- Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Andrew R. Moore
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Darlene Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - James F. Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Matthew S. Walters
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
- Correspondence:
| |
Collapse
|
6
|
Blanc P, Liu Y, Reveneau N, Cavell B, Gorringe A, Renauld-Mongénie G. The role of bactericidal and opsonic activity in immunity against Bordetella pertussis. Expert Rev Vaccines 2022; 21:1727-1738. [PMID: 36369768 DOI: 10.1080/14760584.2022.2137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Pertussis vaccines have drastically reduced the disease burden in humans since their implementation. Despite their success, pertussis remains an important global public health challenge. Bordetella pertussis resurgence could be a result of greater surveillance combined with improved diagnosis methods, changes in Bordetella pertussis biology, vaccine schedules, and/or coverage. Additionally, mechanisms of protection conferred by acellular pertussis (aP) and whole-cell pertussis (wP) vaccines differ qualitatively. There are no clear immune correlates of protection for pertussis vaccines. Pertussis antigens can induce toxin neutralizing antibodies, block adherence or engage complement mediated phagocytic/bactericidal killing. AREAS COVERED We reviewed the existing evidence on antibody-mediated serum bactericidal and opsonophagocytic activity and discussed the relevance of these functional antibodies in the development of next-generation pertussis vaccines. EXPERT OPINION Current paradigm proposes that wP vaccines may confer greater herd protection than aP vaccines due to their enhanced clearance of bacteria from the nasopharynx in animal models. Functional antibodies may contribute to the reduction of nasal colonization, which differentiates aP and wP vaccines. Understanding the intrinsic differences in protective immune responses elicited by each class of vaccines will help to identify biomarkers that can be used as immunological end points in clinical trials.
Collapse
Affiliation(s)
- Pascal Blanc
- Research & Development, Sanofi, Marcy l'Etoile, France
| | - Yuanqing Liu
- Research & Development, Sanofi, Marcy l'Etoile, France
| | | | - Breeze Cavell
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, UK
| | - Andrew Gorringe
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, UK
| | | |
Collapse
|
7
|
Holubova J, Stanek O, Juhasz A, Hamidou Soumana I, Makovicky P, Sebo P. The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathog 2022; 18:e1010402. [PMID: 35395059 PMCID: PMC9020735 DOI: 10.1371/journal.ppat.1010402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/20/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.
Collapse
Affiliation(s)
- Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Attila Juhasz
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Peter Makovicky
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Ernst K. Novel Strategies to Inhibit Pertussis Toxin. Toxins (Basel) 2022; 14:187. [PMID: 35324684 PMCID: PMC8951090 DOI: 10.3390/toxins14030187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pertussis, also known as whooping cough, is a respiratory disease caused by infection with Bordetella pertussis, which releases several virulence factors, including the AB-type pertussis toxin (PT). The characteristic symptom is severe, long-lasting paroxysmal coughing. Especially in newborns and infants, pertussis symptoms, such as leukocytosis, can become life-threatening. Despite an available vaccination, increasing case numbers have been reported worldwide, including Western countries such as Germany and the USA. Antibiotic treatment is available and important to prevent further transmission. However, antibiotics only reduce symptoms if administered in early stages, which rarely occurs due to a late diagnosis. Thus, no causative treatments against symptoms of whooping cough are currently available. The AB-type protein toxin PT is a main virulence factor and consists of a binding subunit that facilitates transport of an enzyme subunit into the cytosol of target cells. There, the enzyme subunit ADP-ribosylates inhibitory α-subunits of G-protein coupled receptors resulting in disturbed cAMP signaling. As an important virulence factor associated with severe symptoms, such as leukocytosis, and poor outcomes, PT represents an attractive drug target to develop novel therapeutic strategies. In this review, chaperone inhibitors, human peptides, small molecule inhibitors, and humanized antibodies are discussed as novel strategies to inhibit PT.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
9
|
Abstract
Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.
Collapse
Affiliation(s)
- Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, California, USA;
- California National Primate Research Center, University of California, Davis, California, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California, USA;
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California, USA
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
10
|
Wu S, Hu Q, Yang C, Zhou H, Chen H, Zhang Y, Jiang M, He Y, Shi X. Molecular epidemiology of Bordetella pertussis and analysis of vaccine antigen genes from clinical isolates from Shenzhen, China. Ann Clin Microbiol Antimicrob 2021; 20:53. [PMID: 34407803 PMCID: PMC8371876 DOI: 10.1186/s12941-021-00458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Although pertussis cases globally have been controlled through the Expanded Programme on Immunization (EPI), the incidence of pertussis has increased significantly in recent years, with a “resurgence” of pertussis occurring in developed countries with high immunization coverage. Attracted by its fast-developing economy, the population of Shenzhen has reached 14 million and has become one of the top five largest cities by population size in China. The incidence of pertussis here was about 2.02/100,000, far exceeding that of the whole province and the whole country (both < 1/100,000). There are increasing numbers of reports demonstrating variation in Bordetella pertussis antigens and genes, which may be associated with the increased incidence. Fifty strains of Bordetella pertussis isolated from 387 suspected cases were collected in Shenzhen in 2018 for genotypic and molecular epidemiological analysis. Methods There were 387 suspected cases of pertussis enrolled at surveillance sites in Shenzhen from June to August 2018. Nasopharyngeal swabs from suspected pertussis cases were collected for bacterial culture and the identity of putative Bordetella pertussis isolates was confirmed by real-time PCR. The immunization history of each patient was taken. The acellular pertussis vaccine (APV) antigen genes for pertussis toxin (ptxA, ptxC), pertactin (prn) and fimbriae (fim2 and fim3) together with the pertussis toxin promoter region (ptxP) were analyzed by second-generation sequencing. Genetic and phylogenetic analysis was performed using sequences publicly available from GenBank, National Institutes of Health, Bethesda, MD, USA (https://www.ncbi.nlm.nih.gov/genbank/). The antimicrobial susceptibility was test by Kirby-Bauer disk diffusion. Results Fifty strains of Bordetella pertussis were successfully isolated from nasopharyngeal swabs of 387 suspected cases, with a positivity rate of 16.79%, including 28 males and 22 females, accounting for 56.0% and 44.0% respectively. Thirty-eight of the 50 (76%) patients were found to be positive for B. pertussis by culture. Among the positive cases with a history of vaccination, 30 of 42 (71.4%) cases had an incomplete pertussis vaccination history according to the national recommendation. Three phylogenetic groups (PG1-PG3) were identified each containing a predominant genotype. The two vaccines strains, CS and Tohama I, were distantly related to these three groups. Thirty-one out of fifty (62%) isolates belonged to genotype PG1, with the allelic profile prn2/ptxC2/ptxP3/ptxA1/fim3-1/fim2-1. Eighteen out of fifty (36%) isolates contained the A2047G mutation and were highly resistant to erythromycin, and all belonged to genotype PG3 (prn1/ptxA1/ptxP1/ptxC1/fim3-1/fim2-1), which is closely related to the recent epidemic strains found in northern China. Conclusions The positive rate of cases under one-year-old was significantly higher than that of other age groups and should be monitored. The dominant antigen genotypes of 50 Shenzhen isolates are closely related to the epidemic strains in the United States, Australia and many countries in Europe. Despite high rates of immunization with APV, epidemics of pertussis have recently occurred in these countries. Therefore, genomic analysis of circulating isolates of B. pertussis should be continued, for it will benefit the control of whooping cough and development of improved vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Shuang Wu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Chao Yang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention (ICDC) of China CDC, Beijing, China
| | - Hongyu Chen
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanwei Zhang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yuxiang He
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China.
| |
Collapse
|
11
|
Soumana IH, Linz B, Dewan KK, Sarr D, Gestal MC, Howard LK, Caulfield AD, Rada B, Harvill ET. Modeling Immune Evasion and Vaccine Limitations by Targeted Nasopharyngeal Bordetella pertussis Inoculation in Mice. Emerg Infect Dis 2021; 27:2107-2116. [PMID: 34286682 PMCID: PMC8314809 DOI: 10.3201/eid2708.203566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Conventional pertussis animal models deliver hundreds of thousands of Bordetella pertussis bacteria deep into the lungs, rapidly inducing severe pneumonic pathology and a robust immune response. However, human infections usually begin with colonization and growth in the upper respiratory tract. We inoculated only the nasopharynx of mice to explore the course of infection in a more natural exposure model. Nasopharyngeal colonization resulted in robust growth in the upper respiratory tract but elicited little immune response, enabling prolonged and persistent infection. Immunization with human acellular pertussis vaccine, which prevents severe lung infections in the conventional pneumonic infection model, had little effect on nasopharyngeal colonization. Our infection model revealed that B. pertussis can efficiently colonize the mouse nasopharynx, grow and spread within and between respiratory organs, evade robust host immunity, and persist for months. This experimental approach can measure aspects of the infection processes not observed in the conventional pneumonic infection model.
Collapse
|
12
|
Triggering receptor expressed on myeloid cells-1 (TREM-1) contributes to Bordetella pertussis inflammatory pathology. Infect Immun 2021; 89:e0012621. [PMID: 34097504 DOI: 10.1128/iai.00126-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whooping cough (pertussis) is a severe pulmonary infectious disease caused by the bacteria Bordetella pertussis. Pertussis infects an estimated 24 million people annually, resulting in >150,000 deaths. The NIH placed pertussis on the list of emerging pathogens in 2015. Antibiotics are ineffective unless administered before the onset of the disease characteristic cough. Therefore, there is an urgent need for novel pertussis therapeutics. We have shown that sphingosine-1-phosphate receptor (S1PR) agonists reduce pertussis inflammation, without increasing bacterial burden. Transcriptomic studies were performed to identify this mechanism and allow for the development of pertussis therapeutics which specifically target problematic inflammation without sacrificing bacterial control. These data suggested a role for triggering receptor expressed on myeloid cells-1 (TREM-1). TREM-1 cell surface receptor functions as an amplifier of inflammatory responses. Expression of TREM-1 is increased in response to bacterial infection of mucosal surfaces. In mice, B. pertussis infection results in TLR9-dependent increased expression of TREM-1 and its associated cytokines. Interestingly, S1PR agonists dampen pulmonary inflammation and TREM-1 expression. Mice challenged intranasally with B. pertussis and treated with ligand-dependent (LP17) and ligand-independent (GF9) TREM-1 inhibitors showed no differences in bacterial burden and significantly reduced TNF-α and CCL-2 expression compared to controls. Mice receiving TREM-1 inhibitors showed reduced pulmonary inflammation compared to controls indicating that TREM-1 promotes inflammatory pathology, but not bacterial control, during pertussis infection. This implicates TREM-1 as a potential therapeutic target for the treatment of pertussis.
Collapse
|
13
|
Jiang W, Wei C, Mou D, Zuo W, Liang J, Ma X, Wang L, Gao N, Gu Q, Luo P, Ma Y, Li J, Liu S, Shi L, Sun M. Infant rhesus macaques as a non-human primate model of Bordetella pertussis infection. BMC Infect Dis 2021; 21:407. [PMID: 33941094 PMCID: PMC8091708 DOI: 10.1186/s12879-021-06090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s–1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. Methods In the present study, infant rhesus macaques were challenged with Bordetella pertussis (B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. Results Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p. Conclusion These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06090-y.
Collapse
Affiliation(s)
- Wenwen Jiang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Chen Wei
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Dachao Mou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Weilun Zuo
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Lichan Wang
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Na Gao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Peng Luo
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Yan Ma
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jingyan Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China.
| |
Collapse
|
14
|
Liu Y, Ai T, Fan Y, Xie C, Lou R, Zeng X, Wang L, Peng Y, Chen M. Etiological distribution of pertussis-like syndrome in 756 children in Chengdu. Transl Pediatr 2021; 10:984-989. [PMID: 34012846 PMCID: PMC8107860 DOI: 10.21037/tp-21-140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To analyze and summarize the etiological distribution of pertussis-like syndrome in children and to provide a basis for clinical treatment. METHODS A retrospective analysis was conducted of 756 children with pertussis-like syndrome hospitalized at the Department of Pediatric Respiratory Medicine of Chengdu Women's and Children's Central Hospital, 2015 to 2019. The etiological features were classified and reviewed. RESULTS Among 756 children with pertussis-like syndrome, 439 cases were positive for etiological agents Among the 439 cases, 268 cases were positive for bacterial agents (positive rate 35.45%), including 174 cases (65.25%) positive for Haemophilus influenza (H. influenza). There were 75 cases (9.92%) positive for viral antibodies, including 29 cases (accounting for 38.67% of all cases positive for viral infection) positive for the respiratory syncytial virus (RSV). There were 243 cases (32.14%) positive for Mycoplasma pneumoniae (M. pneumoniae) antibodies. As to the general distribution of infections, cases with infections caused by a single type of bacteria accounted for 20.63%; cases with M. pneumoniae infection accounted for 18.78%; and cases with bacterial infection combined with M. pneumoniae infection accounted for 8.73%. CONCLUSIONS H. influenza, RSV, and M. pneumoniae were important pathogens causing pertussis-like syndrome in children. Bacterial infection, M. pneumoniae infection, and mixed infection caused by the two pathogens were the primary causes of pertussis-like syndrome in children.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Ai
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yinghong Fan
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Xie
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ronghua Lou
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangdong Zeng
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Wang
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Peng
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjia Chen
- Department of Pediatric Respiratory Medicine, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F + neutrophils. Mucosal Immunol 2021; 14:1183-1202. [PMID: 33976385 PMCID: PMC8379078 DOI: 10.1038/s41385-021-00407-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Understanding the mechanism of protective immunity in the nasal mucosae is central to the design of more effective vaccines that prevent nasal infection and transmission of Bordetella pertussis. We found significant infiltration of IL-17-secreting CD4+ tissue-resident memory T (TRM) cells and Siglec-F+ neutrophils into the nasal tissue during primary infection with B. pertussis. Il17A-/- mice had significantly higher bacterial load in the nasal mucosae, associated with significantly reduced infiltration of Siglec-F+ neutrophils. Re-infected convalescent mice rapidly cleared B. pertussis from the nasal cavity and this was associated with local expansion of IL-17-producing CD4+ TRM cells. Depletion of CD4 T cells from the nasal tissue during primary infection or after re-challenge of convalescent mice significantly delayed clearance of bacteria from the nasal mucosae. Protection was lost in Il17A-/- mice and this was associated with significantly less infiltration of Siglec-F+ neutrophils and antimicrobial peptide (AMP) production. Finally, depletion of neutrophils reduced the clearance of B. pertussis following re-challenge of convalescent mice. Our findings demonstrate that IL-17 plays a critical role in natural and acquired immunity to B. pertussis in the nasal mucosae and this effect is mediated by mobilizing neutrophils, especially Siglec-F+ neutrophils, which have high neutrophil extracellular trap (NET) activity.
Collapse
|
16
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
17
|
Ardanuy J, Scanlon K, Skerry C, Fuchs SY, Carbonetti NH. Age-Dependent Effects of Type I and Type III IFNs in the Pathogenesis of Bordetella pertussis Infection and Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:2192-2202. [PMID: 32152071 PMCID: PMC7141952 DOI: 10.4049/jimmunol.1900912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
Type I and III IFNs play diverse roles in bacterial infections, being protective for some but deleterious for others. Using RNA-sequencing transcriptomics we investigated lung gene expression responses to Bordetella pertussis infection in adult mice, revealing that type I and III IFN pathways may play an important role in promoting inflammatory responses. In B. pertussis-infected mice, lung type I/III IFN responses correlated with increased proinflammatory cytokine expression and with lung inflammatory pathology. In mutant mice with increased type I IFN receptor (IFNAR) signaling, B. pertussis infection exacerbated lung inflammatory pathology, whereas knockout mice with defects in type I IFN signaling had lower levels of lung inflammation than wild-type mice. Curiously, B. pertussis-infected IFNAR1 knockout mice had wild-type levels of lung inflammatory pathology. However, in response to infection these mice had increased levels of type III IFN expression, neutralization of which reduced lung inflammation. In support of this finding, B. pertussis-infected mice with a knockout mutation in the type III IFN receptor (IFNLR1) and double IFNAR1/IFNLR1 knockout mutant mice had reduced lung inflammatory pathology compared with that in wild-type mice, indicating that type III IFN exacerbates lung inflammation. In marked contrast, infant mice did not upregulate type I or III IFNs in response to B. pertussis infection and were protected from lethal infection by increased type I IFN signaling. These results indicate age-dependent effects of type I/III IFN signaling during B. pertussis infection and suggest that these pathways represent targets for therapeutic intervention in pertussis.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| |
Collapse
|
18
|
Nguyen AW, DiVenere AM, Papin JF, Connelly S, Kaleko M, Maynard JA. Neutralization of pertussis toxin by a single antibody prevents clinical pertussis in neonatal baboons. SCIENCE ADVANCES 2020; 6:eaay9258. [PMID: 32076653 PMCID: PMC7002138 DOI: 10.1126/sciadv.aay9258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/20/2019] [Indexed: 05/13/2023]
Abstract
Pertussis continues to cause considerable infant mortality world-wide, which could be addressed in part by passive immunization strategies. Antibody hu1B7 is a candidate therapeutic that potently neutralizes pertussis toxin in vitro, prevents leukocytosis in mice and treats established disease in weanling baboons as part of an antibody cocktail. Here, we evaluated the potential for hu1B7 and an extended half-life hu1B7 variant to prevent death, leukocytosis and other clinical symptoms in a newborn baboon model that mimics many aspects of human disease. We administered a single antibody dose to newborn baboons five weeks prior to experimental infection. While all animals were heavily colonized with Bordetella pertussis, prophylaxed animals showed significantly greater survival (P < 0.005), delayed and suppressed leukocytosis (P < 0.01) and enhanced clinical outcomes, including coughing (P < 0.01), as compared to controls. Together, this work demonstrates that a single neutralizing anti-PTx antibody is sufficient to prevent clinical pertussis symptoms.
Collapse
Affiliation(s)
- Annalee W. Nguyen
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea M. DiVenere
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - James F. Papin
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sheila Connelly
- Synthetic Biologics, 9605 Medical Center Dr., Suite 270, Rockville, MD 20850, USA
| | - Michael Kaleko
- Synthetic Biologics, 9605 Medical Center Dr., Suite 270, Rockville, MD 20850, USA
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
19
|
Pertussis Toxin: A Key Component in Pertussis Vaccines? Toxins (Basel) 2019; 11:toxins11100557. [PMID: 31546599 PMCID: PMC6832755 DOI: 10.3390/toxins11100557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
B. pertussis is a human-specific pathogen and the causative agent of whooping cough. The ongoing resurgence in pertussis incidence in high income countries is likely due to faster waning of immunity and increased asymptomatic colonization in individuals vaccinated with acellular pertussis (aP) vaccine relative whole-cell pertussis (wP)-vaccinated individuals. This has renewed interest in developing more effective vaccines and treatments and, in support of these efforts, defining pertussis vaccine correlates of protection and the role of vaccine antigens and toxins in disease. Pertussis and its toxins have been investigated by scientists for over a century, yet we still do not have a clear understanding of how pertussis toxin (PT) contributes to disease symptomology or how anti-PT immune responses confer protection. This review covers PT's role in disease and evidence for its protective role in vaccines. Clinical data suggest that PT is a defining and essential toxin for B. pertussis pathogenesis and, when formulated into a vaccine, can prevent disease. Additional studies are required to further elucidate the role of PT in disease and vaccine-mediated protection, to inform the development of more effective treatments and vaccines.
Collapse
|
20
|
Lambert EE, Buisman AM, van Els CACM. Superior B. pertussis Specific CD4+ T-Cell Immunity Imprinted by Natural Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:81-98. [PMID: 31321753 DOI: 10.1007/5584_2019_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis remains endemic in vaccinated populations due to waning of vaccine-induced immunity and insufficient interruption of transmission. Correlates of long-term protection against whooping cough remain elusive but increasing evidence from experimental models indicates that the priming of particular lineages of B. pertussis (Bp) specific CD4+ T cells is essential to control bacterial load. Critical hallmarks of these protective CD4+ T cell lineages in animals are suggested to be their differentiation profile as Th1 and Th17 cells and their tissue residency. These features seem optimally primed by previous infection but insufficiently or only partially by current vaccines. In this review, evidence is sought indicating whether infection also drives such superior Bp specific CD4+ T cell lineages in humans. We highlight key features of effector immunity downstream of Th1 and Th17 cell cytokines that explain clearing of primary Bp infections in naïve hosts, and effective prevention of infection in convalescent hosts during secondary challenge. Outstanding questions are put forward that need answers before correlates of human Bp infection-primed CD4+ T cell immunity can be used as benchmark for the development of improved pertussis vaccines.
Collapse
Affiliation(s)
- Eleonora E Lambert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|