1
|
Sangwan N, Gangwal A, Jain P, Langtso C, Srivastava S, Dhawan U, Baweja R, Singh Y. Anthrax: Transmission, Pathogenesis, Prevention and Treatment. Toxins (Basel) 2025; 17:56. [PMID: 39998073 PMCID: PMC11860322 DOI: 10.3390/toxins17020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Bacillus anthracis is a deadly pathogen that under unfavourable conditions forms highly resistant spores which enable them to survive for a long period of time. Spores of B. anthracis are transmitted through the contaminated soil or animal products and enter to the host through the skin, lungs or oral route and can cause cutaneous, injection, inhalation and gastrointestinal anthrax, respectively. The disease is caused by the toxin which is produced by them once they germinate within the host cell. Anthrax toxin is the major virulence factor which has the ability to kill the host cell. The role of protein kinases and phosphatases of B. anthracis in toxin production and other virulence related properties have also been reported. There are two vaccines, BioThrax and CYFENDUSTM, which are approved by the FDA-USA to prevent anthrax disease. Recently, anthrax toxin has also been shown to be a potential candidate for cancer therapeutics. Through present review, we aim to provide insights into sporulation, transmission and pathogenesis of B. anthracis as well as the current state of its prevention, treatment, vaccines and possible therapeutic uses in cancer.
Collapse
Affiliation(s)
- Nitika Sangwan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Aakriti Gangwal
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Preksha Jain
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Chokey Langtso
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Shruti Srivastava
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Renu Baweja
- Department of Biochemistry, Shivaji College, University of Delhi, Delhi 110027, India
| | - Yogendra Singh
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Alqahtani S, DiMaggio, Jr. DA, Brinsmade SR. CodY controls the SaeR/S two-component system by modulating branched-chain fatty acid synthesis in Staphylococcus aureus. J Bacteriol 2024; 206:e0019124. [PMID: 39382300 PMCID: PMC11580410 DOI: 10.1128/jb.00191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
Staphylococcus aureus is a Gram-positive, opportunistic human pathogen that is a leading cause of skin and soft tissue infections and invasive disease worldwide. Virulence in this bacterium is tightly controlled by a network of regulatory factors. One such factor is the global regulatory protein CodY. CodY links branched-chain amino acid sufficiency to the production of surface-associated and secreted factors that facilitate immune evasion and subversion. Our previous work revealed that CodY regulates virulence factor gene expression indirectly in part by controlling the activity of the SaeRS two-component system (TCS). While this is correlated with an increase in membrane anteiso-15:0 and -17:0 branched-chain fatty acids (BCFAs) derived from isoleucine, the true mechanism of control has remained elusive. Herein, we report that CodY-dependent regulation of SaeS sensor kinase activity requires BCFA synthesis. During periods of nutrient sufficiency, BCFA synthesis and Sae TCS activity are kept relatively low by CodY-dependent repression of the ilv-leu operon and the isoleucine-specific permease gene brnQ2. In a codY null mutant, which simulates extreme nutrient limitation, de-repression of ilv-leu and brnQ2 directs the synthesis of enzymes in redundant de novo and import pathways to upregulate production of BCFA precursors. Overexpression of brnQ2, independent of CodY, is sufficient to increase membrane anteiso BCFAs, Sae-dependent promoter activity, and SaeR ~P levels. Our results further clarify the molecular mechanisms by which CodY controls virulence in S. aureus.IMPORTANCEExpression of bacterial virulence genes often correlates with the exhaustion of nutrients, but how the signaling of nutrient availability and the resulting physiological responses are coordinated is unclear. In S. aureus, CodY controls the activity of two major regulators of virulence-the Agr and Sae two-component systems (TCSs)-by unknown mechanisms. This work identifies a mechanism by which CodY controls the activity of the sensor kinase SaeS by modulating the levels of anteiso branched-chain amino acids that are incorporated into the membrane. Understanding the mechanism adds to our understanding of how bacterial physiology and metabolism are linked to virulence and underscores the role virulence in maintaining homeostasis. Understanding the mechanism also opens potential avenues for targeted therapeutic strategies against S. aureus infections.
Collapse
Affiliation(s)
- Shahad Alqahtani
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | | |
Collapse
|
3
|
Williams B, Paterson J, Rawsthorne-Manning HJ, Jeffrey PA, Gillard JJ, Lythe G, Laws TR, López-García M. Quantifying in vitro B. anthracis growth and PA production and decay: a mathematical modelling approach. NPJ Syst Biol Appl 2024; 10:33. [PMID: 38553532 PMCID: PMC10980772 DOI: 10.1038/s41540-024-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.
Collapse
Affiliation(s)
- Bevelynn Williams
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Jamie Paterson
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | | | - Polly-Anne Jeffrey
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Joseph J Gillard
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Thomas R Laws
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Goossens PL. Bacillus anthracis, "la maladie du charbon", Toxins, and Institut Pasteur. Toxins (Basel) 2024; 16:66. [PMID: 38393144 PMCID: PMC10891547 DOI: 10.3390/toxins16020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Institut Pasteur and Bacillus anthracis have enjoyed a relationship lasting almost 120 years, starting from its foundation and the pioneering work of Louis Pasteur in the nascent fields of microbiology and vaccination, and blooming after 1986 following the molecular biology/genetic revolution. This contribution will give a historical overview of these two research eras, taking advantage of the archives conserved at Institut Pasteur. The first era mainly focused on the production, characterisation, surveillance and improvement of veterinary anthrax vaccines; the concepts and technologies with which to reach a deep understanding of this research field were not yet available. The second period saw a new era of B. anthracis research at Institut Pasteur, with the anthrax laboratory developing a multi-disciplinary approach, ranging from structural analysis, biochemistry, genetic expression, and regulation to bacterial-host cell interactions, in vivo pathogenicity, and therapy development; this led to the comprehensive unravelling of many facets of this toxi-infection. B. anthracis may exemplify some general points on how science is performed in a given society at a given time and how a scientific research domain evolves. A striking illustration can be seen in the additive layers of regulations that were implemented from the beginning of the 21st century and their impact on B. anthracis research. B. anthracis and anthrax are complex systems that raise many valuable questions regarding basic research. One may hope that B. anthracis research will be re-initiated under favourable circumstances later at Institut Pasteur.
Collapse
|
5
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
6
|
Tolibia SEM, Pacheco AD, Balbuena SYG, Rocha J, López Y López VE. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol 2022; 39:12. [PMID: 36372802 DOI: 10.1007/s11274-022-03460-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Transcriptional factors are well studied in bacteria for their global interactions and the effects they produce at the phenotypic level. Particularly, Bacillus subtilis has been widely employed as a model Gram-positive microorganism used to characterize these network interactions. Bacillus species are currently used as efficient commercial microbial platforms to produce diverse metabolites such as extracellular enzymes, antibiotics, surfactants, industrial chemicals, heterologous proteins, among others. However, the pleiotropic effects caused by the genetic modification of specific genes that codify for global regulators (transcription factors) have not been implicated commonly from a bioprocess point of view. Recently, these strategies have attracted the attention in Bacillus species because they can have an application to increase production efficiency of certain commercial interest metabolites. In this review, we update the recent advances that involve this trend in the use of genetic engineering (mutations, deletion, or overexpression) performed to global regulators such as Spo0A, CcpA, CodY and AbrB, which can provide an advantage for the development or improvement of bioprocesses that involve Bacillus species as production platforms. Genetic networks, regulation pathways and their relationship to the development of growth stages are also discussed to correlate the interactions that occur between these regulators, which are important to consider for application in the improvement of commercial-interest metabolites. Reported yields from these products currently produced mostly under laboratory conditions and, in a lesser extent at bioreactor level, are also discussed to give valuable perspectives about their potential use and developmental level directed to process optimization at large-scale.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, CP 90000, Guillermo Valle, Tlaxcala, Mexico
| | - Sulem Yali Granados Balbuena
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Jorge Rocha
- CONACyT - Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, A.C. Blvd. Santa Catarina, SN, C.P. 42163, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
7
|
Role of serine/threonine protein phosphatase PrpN in the life cycle of Bacillus anthracis. PLoS Pathog 2022; 18:e1010729. [PMID: 35913993 PMCID: PMC9371265 DOI: 10.1371/journal.ppat.1010729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 08/11/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Reversible protein phosphorylation at serine/threonine residues is one of the most common protein modifications, widely observed in all kingdoms of life. The catalysts controlling this modification are specific serine/threonine kinases and phosphatases that modulate various cellular pathways ranging from growth to cellular death. Genome sequencing and various omics studies have led to the identification of numerous serine/threonine kinases and cognate phosphatases, yet the physiological relevance of many of these proteins remain enigmatic. In Bacillus anthracis, only one ser/thr phosphatase, PrpC, has been functionally characterized; it was reported to be non-essential for bacterial growth and survival. In the present study, we characterized another ser/thr phosphatase (PrpN) of B. anthracis by various structural and functional approaches. To examine its physiological relevance in B. anthracis, a null mutant strain of prpN was generated and shown to have defects in sporulation and reduced synthesis of toxins (PA and LF) and the toxin activator protein AtxA. We also identified CodY, a global transcriptional regulator, as a target of PrpN and ser/thr kinase PrkC. CodY phosphorylation strongly controlled its binding to the promoter region of atxA, as shown using phosphomimetic and phosphoablative mutants. In nutshell, the present study reports phosphorylation-mediated regulation of CodY activity in the context of anthrax toxin synthesis in B. anthracis by a previously uncharacterized ser/thr protein phosphatase–PrpN. Reversible protein phosphorylation at specific ser/thr residues causes conformational changes in the protein structure, thereby modulating its cellular activity. In B. anthracis, though the role of ser/thr phosphorylation is implicated in various cellular pathways including pathogenesis, till date only one STP (PrpC) has been functionally characterized. This manuscript reports functional characterization of another STP (PrpN) in B. anthracis and with the aid of a null mutant strain (BAS ΔprpN) we provide important insight regarding the role of PrpN in the life cycle of B. anthracis. We have also identified the global transcriptional regulator, CodY as a target of PrpN and PrkC, and for the first time showed the physiological relevance of CodY phosphorylation status in the regulation of anthrax toxin synthesis.
Collapse
|
8
|
Pellegrini A, Lentini G, Famà A, Bonacorsi A, Scoffone VC, Buroni S, Trespidi G, Postiglione U, Sassera D, Manai F, Pietrocola G, Firon A, Biondo C, Teti G, Beninati C, Barbieri G. CodY Is a Global Transcriptional Regulator Required for Virulence in Group B Streptococcus. Front Microbiol 2022; 13:881549. [PMID: 35572655 PMCID: PMC9096947 DOI: 10.3389/fmicb.2022.881549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium able to switch from a harmless commensal of healthy adults to a pathogen responsible for invasive infections in neonates. The signals and regulatory mechanisms governing this transition are still largely unknown. CodY is a highly conserved global transcriptional regulator that links nutrient availability to the regulation of major metabolic and virulence pathways in low-G+C Gram-positive bacteria. In this work, we investigated the role of CodY in BM110, a GBS strain representative of a hypervirulent lineage associated with the majority of neonatal meningitis. Deletion of codY resulted in a reduced ability of the mutant strain to cause infections in neonatal and adult animal models. The observed decreased in vivo lethality was associated with an impaired ability of the mutant to persist in the blood, spread to distant organs, and cross the blood-brain barrier. Notably, the codY null mutant showed reduced adhesion to monolayers of human epithelial cells in vitro and an increased ability to form biofilms, a phenotype associated with strains able to asymptomatically colonize the host. RNA-seq analysis showed that CodY controls about 13% of the genome of GBS, acting mainly as a repressor of genes involved in amino acid transport and metabolism and encoding surface anchored proteins, including the virulence factor Srr2. CodY activity was shown to be dependent on the availability of branched-chain amino acids, which are the universal cofactors of this regulator. These results highlight a key role for CodY in the control of GBS virulence.
Collapse
Affiliation(s)
- Angelica Pellegrini
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | | | - Arnaud Firon
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Carmelo Biondo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Abstract
Bacillus anthracis, the anthrax agent, exhibits robust proliferation in diverse niches of mammalian hosts. The metabolic attributes of B. anthracis that permit rapid growth in multiple mammalian tissues have not been established. We posit that branched-chain amino acid (BCAA) (isoleucine, leucine, and valine) metabolism is key to B. anthracis pathogenesis. Increasing evidence indicates the relationships between B. anthracis virulence and the expression of BCAA-related genes. The expression of some BCAA-related genes is altered during culture in bovine blood in vitro, and the bacterium exhibits valine auxotrophy in a blood serum mimic medium. Transcriptome analyses have revealed that the virulence regulator AtxA, which positively affects the expression of the anthrax toxin and capsule genes, negatively regulates genes predicted to be associated with BCAA biosynthesis and transport. Here, we show that B. anthracis growth in defined medium is severely restricted in the absence of exogenous BCAAs, indicating that BCAA transport is required for optimal growth in vitro. We demonstrate functional redundancy among multiple BrnQ-type BCAA transporters. Three transporters are associated with isoleucine and valine transport, and the deletion of one, BrnQ3, attenuates virulence in a murine model for anthrax. Interestingly, an ilvD-null mutant lacking dihydroxy acid dehydratase, an enzyme essential for BCAA synthesis, exhibits unperturbed growth when cultured in medium containing BCAAs but is highly attenuated in the murine model. Finally, our data show that BCAAs enhance AtxA activity in a dose-dependent manner, suggesting a model in which BCAAs serve as a signal for virulence gene expression. IMPORTANCE Infection with B. anthracis can result in systemic disease with large numbers of the bacterium in multiple tissues. We found that branched-chain amino acid (BCAA) synthesis is insufficient for the robust growth of B. anthracis; access to BCAAs is necessary for the proliferation of the pathogen during culture and during infection in a murine model for anthrax. B. anthracis produces an unusually large repertoire of BCAA-related transporters. We identified three isoleucine/valine transporters with partial functional redundancy during culture. The deletion of one of these transporters, BrnQ3, resulted in attenuated virulence. Interestingly, a BCAA biosynthesis mutant grew well in medium containing BCAAs but, like BrnQ3, was attenuated for virulence. These results suggest that BCAAs are limiting in multiple niches during infection and further our understanding of the nutritional requirements of this important pathogen.
Collapse
|
10
|
Jelinski J, Cortez M, Terwilliger A, Clark J, Maresso A. Loss of Dihydroxyacid Dehydratase Induces Auxotrophy in Bacillus anthracis. J Bacteriol 2021; 203:e0041521. [PMID: 34570623 PMCID: PMC8604071 DOI: 10.1128/jb.00415-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Anthrax disease is caused by infection with the bacteria Bacillus anthracis which, if left untreated, can result in fatal bacteremia and toxemia. Current treatment for infection requires prolonged administration of antibiotics. Despite this, inhalational and gastrointestinal anthrax still result in lethal disease. By identifying key metabolic steps that B. anthracis uses to grow in host-like environments, new targets for antibacterial strategies can be identified. Here, we report that the ilvD gene, which encodes dihydroxyacid dehydratase in the putative pathway for synthesizing branched chain amino acids, is necessary for B. anthracis to synthesize isoleucine de novo in an otherwise limiting microenvironment. We observed that ΔilvD B. anthracis cannot grow in media lacking isoleucine, but growth is restored when exogenous isoleucine is added. In addition, ΔilvD bacilli are unable to utilize human hemoglobin or serum albumin to overcome isoleucine auxotrophy, but can when provided with the murine forms. This species-specific effect is due to the lack of isoleucine in human hemoglobin. Furthermore, even when supplemented with physiological levels of human serum albumin, apotransferrin, fibrinogen, and IgG, the ilvD knockout strain grew poorly relative to nonsupplemented wild type. In addition, comparisons upon infecting humanized mice suggest that murine hemoglobin is a key source of isoleucine for both WT and ΔilvD bacilli. Further growth comparisons in murine and human blood show that the auxotrophy is detrimental for growth in human blood, not murine. This report identifies ilvD as necessary for isoleucine production in B. anthracis, and that it plays a key role in allowing the bacilli to effectively grow in isoleucine poor hosts. IMPORTANCE Anthrax disease, caused by B. anthracis, can cause lethal bacteremia and toxemia, even following treatment with antibiotics. This report identifies the ilvD gene, which encodes a dihydroxyacid dehydratase, as necessary for B. anthracis to synthesize the amino acid isoleucine in a nutrient-limiting environment, such as its mammalian host. The use of this strain further demonstrated a unique species-dependent utilization of hemoglobin as an exogenous source of extracellular isoleucine. By identifying mechanisms that B. anthracis uses to grow in host-like environments, new targets for therapeutic intervention are revealed.
Collapse
Affiliation(s)
- Joseph Jelinski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Madeline Cortez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Austen Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Transcriptional Regulators in Bacillus anthracis: A Potent Biothreat Agent. RECENT DEVELOPMENTS IN MICROBIAL TECHNOLOGIES 2021. [DOI: 10.1007/978-981-15-4439-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Tetanus Toxin Synthesis is Under the Control of A Complex Network of Regulatory Genes in Clostridium tetani. Toxins (Basel) 2020; 12:toxins12050328. [PMID: 32429286 PMCID: PMC7290440 DOI: 10.3390/toxins12050328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Clostridium tetani produces a potent neurotoxin, the tetanus toxin (TeNT), which is responsible for an often-fatal neurological disease (tetanus) characterized by spastic paralysis. Prevention is efficiently acquired by vaccination with the TeNT toxoid, which is obtained by C.tetani fermentation and subsequent purification and chemical inactivation. C.tetani synthesizes TeNT in a regulated manner. Indeed, the TeNT gene (tent) is mainly expressed in the late exponential and early stationary growth phases. The gene tetR (tetanus regulatory gene), located immediately upstream of tent, encodes an alternative sigma factor which was previously identified as a positive regulator of tent. In addition, the genome of C.tetani encodes more than 127 putative regulators, including 30 two-component systems (TCSs). Here, we investigated the impact of 12 regulators on TeNT synthesis which were selected based on their homology with related regulatory elements involved in toxin production in other clostridial species. Among nine TCSs tested, three of them impact TeNT production, including two positive regulators that indirectly stimulate tent and tetR transcription. One negative regulator was identified that interacts with both tent and tetR promoters. Two other TCSs showed a moderate effect: one binds to the tent promoter and weakly increases the extracellular TeNT level, and another one has a weak inverse effect. In addition, CodY (control of dciA (decoyinine induced operon) Y) but not Spo0A (sporulation stage 0) or the DNA repair protein Mfd (mutation frequency decline) positively controls TeNT synthesis by interacting with the tent promoter. Moreover, we found that inorganic phosphate and carbonate are among the environmental factors that control TeNT production. Our data show that TeNT synthesis is under the control of a complex network of regulators that are largely distinct from those involved in the control of toxin production in Clostridium botulinum or Clostridium difficile.
Collapse
|
13
|
Chen KY, Rathod J, Chiu YC, Chen JW, Tsai PJ, Huang IH. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in Clostridium difficile. Front Cell Infect Microbiol 2019; 9:356. [PMID: 31681632 PMCID: PMC6811523 DOI: 10.3389/fcimb.2019.00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming bacterium, and major cause of nosocomial diarrhea. Related studies have identified numerous factors that influence virulence traits such as the production of the two primary toxins, toxin A (TcdA) and toxin B (TcdB), as well as sporulation, motility, and biofilm formation. However, multiple putative transcriptional regulators are reportedly encoded in the genome, and additional factors are likely involved in virulence regulation. Although the leucine-responsive regulatory protein (Lrp) has been studied extensively in Gram-negative bacteria, little is known about its function in Gram-positive bacteria, although homologs have been identified in the genome. This study revealed that disruption of the lone lrp homolog in C. difficile decelerated growth under nutrient-limiting conditions, increased TcdA and TcdB production. Lrp was also found to negatively regulate sporulation while positively regulate swimming motility in strain R20291, but not in strain 630. The C. difficile Lrp appeared to function through transcriptional repression or activation. In addition, the lrp mutant was relatively virulent in a mouse model of infection. The results of this study collectively demonstrated that Lrp has broad regulatory function in C. difficile toxin expression, sporulation, motility, and pathogenesis.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Chiu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
14
|
The oligopeptide ABC-importers are essential communication channels in Gram-positive bacteria. Res Microbiol 2019; 170:338-344. [PMID: 31376485 DOI: 10.1016/j.resmic.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Abstract
The transport of peptides in microorganisms plays an important role in their physiology and behavior, both as a nutrient source and as a proxy to sense their environment. This latter function is evidenced in Gram-positive bacteria where cell-cell communication is mediated by small peptides. Here, we highlight the importance of the oligopeptide permease (Opp) systems in the various major processes controlled by signaling peptides, such as sporulation, virulence and conjugation. We underline that the functioning of these communication systems is tightly linked to the developmental status of the bacteria via the regulation of opp gene expression by transition phase regulators.
Collapse
|
15
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
16
|
Co-regulation of CodY and (p)ppGpp synthetases on morphology and pathogenesis of Streptococcus suis. Microbiol Res 2019; 223-225:88-98. [PMID: 31178056 DOI: 10.1016/j.micres.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/28/2019] [Accepted: 04/06/2019] [Indexed: 01/04/2023]
Abstract
CodY and (p)ppGpp synthetases are two important global regulators of bacteria. In some pathogens, such as Listeria monocytogenes, the GTP pool links these two regulatory systems, and introducing a codY mutant into the ΔrelA strain restored the pathogenicity of the attenuated ΔrelA mutant. In previous studies, we identified the (p)ppGpp synthetases (RelA and RelQ) and CodY of Streptococcus suis. To understand the interrelationships between these two regulators in S. suis, a ΔrelAΔrelQΔcodY mutant was constructed, and its growth, morphology, and pathogenicity were evaluated. Compared with ΔrelAΔrelQ, ΔcodY, its growth was very slow, but its chain length was partly restored to the wild-type length and its capsule became thick and rough. The adherence, invasion ability, and resistance to whole-blood killing in vitro of ΔrelAΔrelQΔcodY and its lethality and colonization ability in mice were clearly reduced, which differs from the effects of these mutations in L. monocytogenes. An analysis of gene expression showed that CodY interacted with the relA promoter in a GTP-independent manner to positively regulate the expression of relA. The introduction of a codY mutant into the ΔrelAΔrelQ strain further reduced the expression of virulence factors, which suggests a novel interaction between the (p)ppGpp synthetases and CodY. This study extends our understanding of the relationship between the (p)ppGpp-mediated stringent response and the regulation of CodY in S. suis.
Collapse
|
17
|
Daou N, Wang Y, Levdikov VM, Nandakumar M, Livny J, Bouillaut L, Blagova E, Zhang K, Belitsky BR, Rhee K, Wilkinson AJ, Sun X, Sonenshein AL. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS One 2019; 14:e0206896. [PMID: 30699117 PMCID: PMC6353076 DOI: 10.1371/journal.pone.0206896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.
Collapse
Affiliation(s)
- Nadine Daou
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yuanguo Wang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Vladimir M. Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Madhumitha Nandakumar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Elena Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Keshan Zhang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Boris R. Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Kyu Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Abraham L. Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Leiser OP, Blackburn JK, Hadfield TL, Kreuzer HW, Wunschel DS, Bruckner-Lea CJ. Laboratory strains of Bacillus anthracis exhibit pervasive alteration in expression of proteins related to sporulation under laboratory conditions relative to genetically related wild strains. PLoS One 2018; 13:e0209120. [PMID: 30557394 PMCID: PMC6296524 DOI: 10.1371/journal.pone.0209120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 11/25/2022] Open
Abstract
The spore forming pathogen Bacillus anthracis is the etiologic agent of anthrax in humans and animals. It cycles through infected hosts as vegetative cells and is eventually introduced into the environment where it generates an endospore resistant to many harsh conditions. The endospores are subsequently taken up by another host to begin the next cycle. Outbreaks of anthrax occur regularly worldwide in wildlife and livestock, and the potential for human infection exists whenever humans encounter infected animals. It is also possible to encounter intentional releases of anthrax spores, as was the case in October 2001. Consequently, it is important to be able to rapidly establish the provenance of infectious strains of B. anthracis. Here, we compare protein expression in seven low-passage wild isolates and four laboratory strains of B. anthracis grown under identical conditions using LC-MS/MS proteomic analysis. Of the 1,023 total identified proteins, 96 had significant abundance differences between wild and laboratory strains. Of those, 28 proteins directly related to sporulation were upregulated in wild isolates, with expression driven by Spo0A, CodY, and AbrB/ScoC. In addition, we observed evidence of changes in cell division and fatty acid biosynthesis between the two classes of strains, despite being grown under identical experimental conditions. These results suggest wild B. anthracis cells are more highly tuned to sporulate than their laboratory cousins, and this difference should be exploited as a method to differentiate between laboratory and low passage wild strains isolated during an anthrax outbreak. This knowledge should distinguish between intentional releases and exposure to strains in nature, providing a basis for the type of response by public health officials and investigators.
Collapse
Affiliation(s)
- Owen P. Leiser
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Jason K. Blackburn
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
| | - Ted L. Hadfield
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - David S. Wunschel
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Cindy J. Bruckner-Lea
- Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
19
|
Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018; 9:mBio.01188-18. [PMID: 30181248 PMCID: PMC6123439 DOI: 10.1128/mbio.01188-18] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. A body of research has accumulated over the years to describe the multifaceted physiological roles of BCAAs and the mechanisms bacteria use to maintain their intracellular levels. More recent studies have focused on understanding how fluctuations in their intracellular levels impact global regulatory pathways that coordinate the adaptation to nutrient limitation, especially in pathogenic bacteria. In this minireview, we discuss how these studies have refined the individual roles of BCAAs, shed light on how BCAA auxotrophy might promote higher sensitivity to exogenous BCAA levels, and revealed pathogen-specific responses to BCAA deprivation. These advancements improve our understanding of how bacteria meet their nutritional requirements for growth while simultaneously remaining responsive to changes in environmental nutrient availability to promote their survival in a range of environments.
Collapse
|
20
|
Raynor MJ, Roh JH, Widen SG, Wood TG, Koehler TM. Regulons and protein-protein interactions of PRD-containing Bacillus anthracis virulence regulators reveal overlapping but distinct functions. Mol Microbiol 2018; 109:10.1111/mmi.13961. [PMID: 29603836 PMCID: PMC6167206 DOI: 10.1111/mmi.13961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 01/19/2023]
Abstract
Bacillus anthracis produces three regulators, AtxA, AcpA and AcpB, which control virulence gene transcription and belong to an emerging class of regulators termed 'PCVRs' (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA, named for its control of toxin gene expression, is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. Reports of PCVR activity suggest overlapping function. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA level or activity result in capBCADE transcription in strains lacking acpA and acpB. We used RNA-Seq to assess the regulons of the paralogous regulators in strains constructed to express individual PCVRs at native levels. Plasmid and chromosome-borne genes were PCVR controlled, with AtxA, AcpA and AcpB having a ≥ 4-fold effect on transcript levels of 145, 130 and 49 genes respectively. Several genes were coregulated by two or three PCVRs. We determined that AcpA and AcpB form homomultimers, as shown previously for AtxA, and we detected AtxA-AcpA heteromultimers. In co-expression experiments, AcpA activity was reduced by increased levels of AtxA. Our data show that the PCVRs have specific and overlapping activity and that PCVR stoichiometry and potential heteromultimerization can influence target gene expression.
Collapse
Affiliation(s)
- Malik J. Raynor
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jung-Hyeob Roh
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
| | - Stephen G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas G. Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Theresa M. Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
21
|
Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00012-18. [PMID: 29378891 DOI: 10.1128/jb.00012-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus subverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via the S. aureus exoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of the sae P1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY represses sae expression by blocking SaeR binding. Epistasis experiments support a model that CodY also controls sae indirectly through Agr and Rot-mediated repression of the sae P1 promoter. We also demonstrate that CodY repression of sae restrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCE Bacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens like S. aureus produce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by which S. aureus delays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.
Collapse
|
22
|
Joon S, Gopalani M, Rahi A, Kulshreshtha P, Gogoi H, Bhatnagar S, Bhatnagar R. Biochemical characterization of the GTP-sensing protein, CodY of Bacillus anthracis. Pathog Dis 2018; 75:3791465. [PMID: 28472295 DOI: 10.1093/femspd/ftx048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 12/30/2022] Open
Abstract
The pleiotropism of the GTP-sensing transcriptional regulator CodY is evident by the gamut of processes that it regulates in almost all low G+C Gram-positive bacteria, including general metabolism, biosynthesis of some amino acids and transport systems, nitrogen uptake, sporulation, biofilm formation, motility and virulence. The role of CodY in virulence has been established in Bacillus anthracis, the top rated bioterrorism agent. In this study, we investigated the biochemical attributes of this global regulator. Homology modeling and sequence/structure analysis revealed putative GTP-binding residues in CodY of B. anthracis. CodY exhibited an interaction with the GTP as tested by ultraviolet cross-linking experiments. It could autophosphorylate itself at a conserved Ser215 residue. This was further corroborated by the impairment of autophosphorylation activity in the CodYS215A mutant. Autophosphorylation may be speculated as an additional mechanism regulating CodY activity in the cell. The protein could also hydrolyze GTP, albeit weakly, as indicated by thin- layer chromatography and spectrophotometric quantification of its kinetic parameters. Altogether, these observations provide us an insight into the mechanism of action of this global regulator and a better understanding of its functional regulation.
Collapse
Affiliation(s)
- Shikha Joon
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India.,Structural and Computational Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, New Delhi 110078, India
| | - Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| | | | - Himanshu Gogoi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| | - Sonika Bhatnagar
- Structural and Computational Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, New Delhi 110078, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, Munirka, New Delhi 110067, India
| |
Collapse
|
23
|
Zhu D, Sorg JA, Sun X. Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Front Cell Infect Microbiol 2018; 8:29. [PMID: 29473021 PMCID: PMC5809512 DOI: 10.3389/fcimb.2018.00029] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, toxin-producing anaerobe, and an important nosocomial pathogen. Due to the strictly anaerobic nature of the vegetative form, spores are the main morphotype of infection and transmission of the disease. Spore formation and their subsequent germination play critical roles in C. difficile infection (CDI) progress. Under suitable conditions, C. difficile spores will germinate and outgrow to produce the pathogenic vegetative form. During CDI, C. difficile produces toxins (TcdA and TcdB) that are required to initiate the disease. Meanwhile, it also produces spores that are responsible for the persistence and recurrence of C. difficile in patients. Recent studies have shed light on the regulatory mechanisms of C. difficile sporulation and germination. This review is to summarize recent advances on the regulation of sporulation/germination in C. difficile and the corresponding therapeutic strategies that are aimed at these important processes.
Collapse
Affiliation(s)
- Duolong Zhu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
24
|
CodY-Mediated c-di-GMP-Dependent Inhibition of Mammalian Cell Invasion in Listeria monocytogenes. J Bacteriol 2018; 200:JB.00457-17. [PMID: 29229701 DOI: 10.1128/jb.00457-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Elevated levels of the second messenger c-di-GMP suppress virulence in diverse pathogenic bacteria, yet mechanisms are poorly characterized. In the foodborne pathogen Listeria monocytogenes, high c-di-GMP levels inhibit mammalian cell invasion. Here, we show that invasion is impaired because of the decreased expression levels of internalin genes whose products are involved in invasion. We further show that at high c-di-GMP levels, the expression of the entire virulence regulon is suppressed, and so is the expression of the prfA gene encoding the master activator of the virulence regulon. Analysis of mechanisms controlling prfA expression pointed to the transcription factor CodY as a c-di-GMP-sensitive component. In high-c-di-GMP strains, codY gene expression is decreased, apparently due to the lower activity of CodY, which functions as an activator of codY transcription. We found that listerial CodY does not bind c-di-GMP in vitro and therefore investigated whether c-di-GMP levels affect two known cofactors of listerial CodY, branched-chain amino acids and GTP. Our manipulation of branched-chain amino acid levels did not perturb the c-di-GMP effect; however, our replacement of listerial CodY with the streptococcal CodY homolog, whose activity is GTP independent, abolished the c-di-GMP effect. The results of this study suggest that elevated c-di-GMP levels decrease the activity of the coordinator of metabolism and virulence, CodY, possibly via lower GTP levels, and that decreased CodY activity suppresses L. monocytogenes virulence by the decreased expression of the PrfA virulence regulon.IMPORTANCEListeria monocytogenes is a pathogen causing listeriosis, a disease responsible for the highest mortality rate among foodborne diseases. Understanding how the virulence of this pathogen is regulated is important for developing treatments to decrease the frequency of listerial infections in susceptible populations. In this study, we describe the mechanism through which elevated levels of the second messenger c-di-GMP inhibit listerial invasion in mammalian cells. Inhibition is caused by the decreased activity of the transcription factor CodY that coordinates metabolism and virulence.
Collapse
|
25
|
The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579. PLoS One 2017; 12:e0184975. [PMID: 28991912 PMCID: PMC5633148 DOI: 10.1371/journal.pone.0184975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/05/2017] [Indexed: 11/19/2022] Open
Abstract
The Gram-positive pathogen Bacillus cereus is able to grow in chains of rod-shaped cells, but the regulation of chaining remains largely unknown. Here, we observe that glucose-grown cells of B. cereus ATCC 14579 form longer chains than those grown in the absence of glucose during the late exponential and transition growth phases, and identify that the clhAB2 operon is required for this chain lengthening phenotype. The clhAB2 operon is specific to the B. cereus group (i.e., B. thuringiensis, B. anthracis and B. cereus) and encodes two membrane proteins of unknown function, which are homologous to the Staphylococcus aureus CidA and CidB proteins involved in cell death control within glucose-grown cells. A deletion mutant (ΔclhAB2) was constructed and our quantitative image analyses show that ΔclhAB2 cells formed abnormal short chains regardless of the presence of glucose. We also found that glucose-grown cells of ΔclhAB2 were significantly wider than wild-type cells (1.47 μm ±CI95% 0.04 vs 1.19 μm ±CI95% 0.03, respectively), suggesting an alteration of the bacterial cell wall. Remarkably, ΔclhAB2 cells showed accelerated autolysis under autolysis-inducing conditions, compared to wild-type cells. Overall, our data suggest that the B. cereus clhAB2 operon modulates peptidoglycan hydrolase activity, which is required for proper cell shape and chain length during cell growth, and down-regulates autolysin activity. Lastly, we studied the transcription of clhAB2 using a lacZ transcriptional reporter in wild-type, ccpA and codY deletion-mutant strains. We found that the global transcriptional regulatory protein CodY is required for the basal level of clhAB2 expression under all conditions tested, including the transition growth phase while CcpA, the major global carbon regulator, is needed for the high-level expression of clhAB2 in glucose-grown cells.
Collapse
|
26
|
A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 2017; 85:IAI.00347-17. [PMID: 28652311 DOI: 10.1128/iai.00347-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.
Collapse
|
27
|
Levdikov VM, Blagova E, Young VL, Belitsky BR, Lebedev A, Sonenshein AL, Wilkinson AJ. Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis. J Biol Chem 2016; 292:2714-2728. [PMID: 28011634 PMCID: PMC5314169 DOI: 10.1074/jbc.m116.754309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/23/2016] [Indexed: 01/02/2023] Open
Abstract
CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (cGMP-stimulated phosphodiesterases, adenylate cyclases, FhlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed.
Collapse
Affiliation(s)
- Vladimir M Levdikov
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Vicki L Young
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Boris R Belitsky
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Andrey Lebedev
- the STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Abraham L Sonenshein
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Anthony J Wilkinson
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom,
| |
Collapse
|
28
|
Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet 2016; 63:417-425. [PMID: 27744611 DOI: 10.1007/s00294-016-0656-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
Collapse
|
29
|
Kim SK, Jung KH, Chai YG. Changes in Bacillus anthracis CodY regulation under host-specific environmental factor deprived conditions. BMC Genomics 2016; 17:645. [PMID: 27530340 PMCID: PMC4987991 DOI: 10.1186/s12864-016-3004-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Background Host-specific environmental factors induce changes in Bacillus anthracis gene transcription during infection. A global transcription regulator, CodY, plays a pivotal role in regulating central metabolism, biosynthesis, and virulence in B. anthracis. In this study, we utilized RNA-sequencing to assess changes in the transcriptional patterns of CodY-regulated B. anthracis genes in response to three conditions of environmental starvation: iron, CO2, or glucose deprivation. In addition, we performed chromatin immunoprecipitation on newly identified CodY-mediated genes. Results Environmental deprivation induced transcriptional changes in CodY-regulated genes in both wild-type and codY null strains, and both CodY-specific and environment-specific patterns were observed. In the iron-depleted condition, overexpression of iron homeostasis genes was observed independent of codY deletion; however, transcription of siderophore and amino acid biosynthesis genes was CodY dependent. Although CodY has a significant regulatory role in central metabolism and the carbon overflow pathway, metabolism-associated genes exhibited CodY-independent expression patterns under glucose starvation. Genes that were differentially expressed in response to CO2 availability showed CodY-dependent regulation, though their maximal expression did require a supply of CO2/bicarbonate. Conclusions We speculate that CodY regulates the expression of environmental-responsive genes in a hierarchical manner and is likely associated with other transcription regulators that are specific for a particular environmental change. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Kye Kim
- Department of Molecular and Life Science, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea. .,Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
30
|
Kim SK, Jung KH, Yoon SN, Kim YK, Chai YG. Late-Exponential Gene Expression in codY-Deficient Bacillus anthracis in a Host-Like Environment. Curr Microbiol 2016; 73:714-720. [PMID: 27515669 DOI: 10.1007/s00284-016-1120-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
CodY is a pleiotropic regulator commonly found in Gram-positive bacteria and regulates various biological processes during the stringent response in a nutrient-limiting environment. CodY also participates in virulence factor expression in many low G+C Gram-positive pathogens, as observed in Bacillus anthracis. However, the mechanism by which B. anthracis CodY regulates metabolism and virulence factors in response to environmental changes is unclear. Here, we attempted to identify the link between CodY and B. anthracis regulation with codY-deficient and codY-overexpressing mutants using high-throughput transcriptional analysis. Growth pattern analyses of codY mutants in both rich and minimal media showed defects in early cell proliferation, with opposite patterns in the early stationary phase: CodY overexpression prolonged bacterial growth, whereas deletion inhibited growth. RNA sequencing of codY-deficient B. anthracis showed both positive and negative changes in the gene expression of proteases and virulence factors as well as genes related to stringent response-related metabolism and biosynthetic processing. We also found that changes in codY expression could alter virulence gene expression of B. anthracis, suggesting modes of regulation in its virulence in a CodY concentration-dependent manner. Collectively, we conclude from these results that CodY can both positively and negatively regulate its regulon via direct and/or indirect approaches, and that its mode of regulation may be concentration dependent.
Collapse
Affiliation(s)
- Se Kye Kim
- Department of Molecular and Life Science, Hanyang University, 1271, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 1271, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | | | - Yun Ki Kim
- Samyang Chemical Co., Ltd, Seoul, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 1271, Ansan, Gyeonggi-do, 15588, Republic of Korea.
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Regulation of Toxin Production in Clostridium perfringens. Toxins (Basel) 2016; 8:toxins8070207. [PMID: 27399773 PMCID: PMC4963840 DOI: 10.3390/toxins8070207] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023] Open
Abstract
The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here.
Collapse
|
32
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
33
|
Lobel L, Herskovits AA. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes. PLoS Genet 2016; 12:e1005870. [PMID: 26895237 PMCID: PMC4760761 DOI: 10.1371/journal.pgen.1005870] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY's regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner.
Collapse
Affiliation(s)
- Lior Lobel
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat A. Herskovits
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
34
|
Slamti L, Lemy C, Henry C, Guillot A, Huillet E, Lereclus D. CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis. Front Microbiol 2016; 6:1501. [PMID: 26779156 PMCID: PMC4701985 DOI: 10.3389/fmicb.2015.01501] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 01/17/2023] Open
Abstract
In Gram-positive bacteria, cell–cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth.
Collapse
Affiliation(s)
- Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Eugénie Huillet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
35
|
Gopalani M, Dhiman A, Rahi A, Bhatnagar R. Overexpression of the pleiotropic regulator CodY decreases sporulation, attachment and pellicle formation in Bacillus anthracis. Biochem Biophys Res Commun 2016; 469:672-8. [DOI: 10.1016/j.bbrc.2015.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/05/2015] [Indexed: 11/25/2022]
|
36
|
Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 2015; 6:813. [PMID: 26300876 PMCID: PMC4525379 DOI: 10.3389/fmicb.2015.00813] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.
Collapse
Affiliation(s)
- Sara E Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Christophe Nguyen-The
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Marie-Hélène Guinebretière
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; UMR 1333 DGIMI, INRA, Université de Montpellier Montpellier, France
| |
Collapse
|
37
|
Belitsky BR, Barbieri G, Albertini AM, Ferrari E, Strauch MA, Sonenshein AL. Interactive regulation by the Bacillus subtilis global regulators CodY and ScoC. Mol Microbiol 2015; 97:698-716. [PMID: 25966844 DOI: 10.1111/mmi.13056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 11/28/2022]
Abstract
CodY and ScoC are Bacillus subtilis transcriptional regulators that control the expression of dozens of genes and operons. Using scoC-lacZ fusions and DNA-binding experiments, we show here that scoC is directly repressed by CodY. This effect creates multiple forms of cascade regulation. For instance, expression of the dtpT gene, which is directly and negatively controlled by ScoC and encodes a putative oligopeptide permease, was activated indirectly by CodY due to CodY-mediated repression of scoC. The opp operon, which encodes an oligopeptide permease that is essential for sporulation and genetic competence development, proved to be a direct target of repression by both ScoC and CodY but was not significantly affected in codY or scoC single mutants. The combined actions of CodY and ScoC maintain opp repression when either one of the regulators loses activity but limit the level of repression to that provided by one of the regulators acting alone. Under conditions of nitrogen limitation, repression by ScoC of dtpT and opp was partly prevented by TnrA. Thus, the functioning of ScoC is determined by other transcription factors via modulation of its expression or DNA binding.
Collapse
Affiliation(s)
- Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Giulia Barbieri
- Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università di Pavia, Pavia, Italy
| | - Alessandra M Albertini
- Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università di Pavia, Pavia, Italy
| | - Eugenio Ferrari
- Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università di Pavia, Pavia, Italy
| | - Mark A Strauch
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
38
|
Han H, Iakovenko L, Wilson AC. Loss of Homogentisate 1,2-Dioxygenase Activity in Bacillus anthracis Results in Accumulation of Protective Pigment. PLoS One 2015; 10:e0128967. [PMID: 26047497 PMCID: PMC4457819 DOI: 10.1371/journal.pone.0128967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/04/2015] [Indexed: 01/28/2023] Open
Abstract
Melanin production is important to the pathogenicity and survival of some bacterial pathogens. In Bacillus anthracis, loss of hmgA, encoding homogentisate 1,2-dioxygenase, results in accumulation of a melanin-like pigment called pyomelanin. Pyomelanin is produced in the mutant as a byproduct of disrupted catabolism of L-tyrosine and L-phenylalanine. Accumulation of pyomelanin protects B. anthracis cells from UV damage but not from oxidative damage. Neither loss of hmgA nor accumulation of pyomelanin alter virulence gene expression, sporulation or germination. This is the first investigation of homogentisate 1,2-dioxygenase activity in the Gram-positive bacteria, and these results provide insight into a conserved aspect of bacterial physiology.
Collapse
Affiliation(s)
- Hesong Han
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Liudmyla Iakovenko
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Adam C. Wilson
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ohtani K, Shimizu T. Regulation of toxin gene expression in Clostridium perfringens. Res Microbiol 2015; 166:280-9. [DOI: 10.1016/j.resmic.2014.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 11/16/2022]
|
40
|
CodY regulates expression of the Bacillus subtilis extracellular proteases Vpr and Mpr. J Bacteriol 2015; 197:1423-32. [PMID: 25666135 DOI: 10.1128/jb.02588-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED CodY is a global transcriptional regulator in low-G+C Gram-positive bacteria that is responsive to GTP and branched-chain amino acids. By interacting with its two cofactors, it is able to sense the nutritional and energetic status of the cell and respond by regulating expression of adaptive genetic programs. In Bacillus subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. In this study, we demonstrated that expression of two extracellular proteases, Vpr and Mpr, is negatively controlled by CodY. By gel mobility shift and DNase I footprinting assays, we showed that CodY binds to the regulatory regions of both genes, in the vicinity of their transcription start points. The mpr gene is also characterized by the presence of a second, higher-affinity CodY-binding site located at the beginning of its coding sequence. Using strains carrying vpr- or mpr-lacZ transcriptional fusions in which CodY-binding sites were mutated, we demonstrated that repression of both protease genes is due to the direct effect by CodY and that the mpr internal site is required for regulation. The vpr promoter is a rare example of a sigma H-dependent promoter that is regulated by CodY. In a codY null mutant, Vpr became one of the more abundant proteins of the B. subtilis exoproteome. IMPORTANCE CodY is a global transcriptional regulator of metabolism and virulence in low-G+C Gram-positive bacteria. In B. subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. However, no role for B. subtilis CodY in regulating expression of extracellular proteases has been established to date. In this work, we demonstrate that by binding to the regulatory regions of the corresponding genes, B. subtilis CodY negatively controls expression of Vpr and Mpr, two extracellular proteases. Thus, in B. subtilis, CodY can now be seen to regulate the entire protein utilization pathway.
Collapse
|
41
|
Lobel L, Sigal N, Borovok I, Belitsky BR, Sonenshein AL, Herskovits AA. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA. Mol Microbiol 2014; 95:624-44. [PMID: 25430920 DOI: 10.1111/mmi.12890] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 11/30/2022]
Abstract
Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAAs) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence, while revealing novel features of CodY-mediated regulation.
Collapse
Affiliation(s)
- Lior Lobel
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Bouillaut L, Dubois T, Sonenshein AL, Dupuy B. Integration of metabolism and virulence in Clostridium difficile. Res Microbiol 2014; 166:375-83. [PMID: 25445566 DOI: 10.1016/j.resmic.2014.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
Abstract
Synthesis of the major toxin proteins of the diarrheal pathogen, Clostridium difficile, is dependent on the activity of TcdR, an initiation (sigma) factor of RNA polymerase. The synthesis of TcdR and the activation of toxin gene expression are responsive to multiple components in the bacterium's nutritional environment, such as the presence of certain sugars, amino acids, and fatty acids. This review summarizes current knowledge about the mechanisms responsible for repression of toxin synthesis when glucose or branched-chain amino acids or proline are in excess and the pathways that lead to synthesis of butyrate, an activator of toxin synthesis. The regulatory proteins implicated in these mechanisms also play key roles in modulating bacterial metabolic pathways, suggesting that C. difficile pathogenesis is intimately connected to the bacterium's metabolic state.
Collapse
Affiliation(s)
- Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Thomas Dubois
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
43
|
Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:7651-8. [PMID: 25281376 DOI: 10.1128/aem.02838-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status.
Collapse
|
44
|
Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY. Proc Natl Acad Sci U S A 2014; 111:8227-32. [PMID: 24843172 DOI: 10.1073/pnas.1321308111] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global regulators that bind strategic metabolites allow bacteria to adapt rapidly to dynamic environments by coordinating the expression of many genes. We report an approach for determining gene regulation hierarchy using the regulon of the Bacillus subtilis global regulatory protein CodY as proof of principle. In theory, this approach can be used to measure the dynamics of any bacterial transcriptional regulatory network that is affected by interaction with a ligand. In B. subtilis, CodY controls dozens of genes, but the threshold activities of CodY required to regulate each gene are unknown. We hypothesized that targets of CodY are differentially regulated based on varying affinity for the protein's many binding sites. We used RNA sequencing to determine the transcription profiles of B. subtilis strains expressing mutant CodY proteins with different levels of residual activity. In parallel, we quantified intracellular metabolites connected to central metabolism. Strains producing CodY variants F71Y, R61K, and R61H retained varying degrees of partial activity relative to the WT protein, leading to gene-specific, differential alterations in transcript abundance for the 223 identified members of the CodY regulon. Using liquid chromatography coupled to MS, we detected significant increases in branched-chain amino acids and intermediates of arginine, proline, and glutamate metabolism, as well as decreases in pyruvate and glycerate as CodY activity decreased. We conclude that a spectrum of CodY activities leads to programmed regulation of gene expression and an apparent rerouting of carbon and nitrogen metabolism, suggesting that during changes in nutrient availability, CodY prioritizes the expression of specific pathways.
Collapse
|
45
|
Kim SK, Park MK, Kim SH, Oh KG, Jung KH, Hong CH, Yoon JW, Chai YG. Identification of stringent response-related and potential serological proteins released from Bacillus anthracis overexpressing the RelA/SpoT homolog, Rsh Bant. Curr Microbiol 2014; 69:436-44. [PMID: 24838666 DOI: 10.1007/s00284-014-0606-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/20/2014] [Indexed: 11/28/2022]
Abstract
RelA and SpoT synthesize ppGpp, a key effector molecule that facilitates the adaptation of bacteria to nutrient starvation and other stresses, known as the stringent response. To investigate the role of Rsh Bant , a putative RelA/SpoT homolog (encoded by BAS4302) in Bacillus anthracis, we examined the alteration of the secretome profiles after the overexpression of a functional His-Rsh Bant protein in the B. anthracis strain Sterne at the stationary growth phase. In the ppGpp-deficient E. coli mutant strain CF1693, overexpression of Rsh Bant restored a ppGpp-dependent growth defect on minimal glucose media. The secretome profiles obtained using a two-dimensional electrophoresis (2-DE) analysis were altered by overexpression of Rsh Bant in B. anthracis. Among the 66 protein spots differentially expressed >1.5-fold, the 29 proteins were abundant for further identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Functional categorization of those proteins implicated their involvement in various biological activities. Taken together, our results imply that overexpression of a functional His-Rsh Bant can lead to the increased levels of intracellular ppGpp in B. anthracis, resulting in the significant changes in its secretome profiling. The stringent response-controlled proteins identified are likely useful as potential targets for serodiagnostic applications.
Collapse
Affiliation(s)
- Se Kye Kim
- Department of Molecular and Life Sciences, Hanyang University, 1271, Ansan, 426-791, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
McKenzie AT, Pomerantsev AP, Sastalla I, Martens C, Ricklefs SM, Virtaneva K, Anzick S, Porcella SF, Leppla SH. Transcriptome analysis identifies Bacillus anthracis genes that respond to CO2 through an AtxA-dependent mechanism. BMC Genomics 2014; 15:229. [PMID: 24661624 PMCID: PMC3987803 DOI: 10.1186/1471-2164-15-229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
Abstract
Background Upon infection of a mammalian host, Bacillus anthracis responds to host cues, and particularly to elevated temperature (37°C) and bicarbonate/CO2 concentrations, with increased expression of virulence factors that include the anthrax toxins and extracellular capsular layer. This response requires the presence of the pXO1 virulence plasmid-encoded pleiotropic regulator AtxA. To better understand the genetic basis of this response, we utilized a controlled in vitro system and Next Generation sequencing to determine and compare RNA expression profiles of the parental strain and an isogenic AtxA-deficient strain in a 2 × 2 factorial design with growth environments containing or lacking carbon dioxide. Results We found 15 pXO1-encoded genes and 3 chromosomal genes that were strongly regulated by the separate or synergistic actions of AtxA and carbon dioxide. The majority of the regulated genes responded to both AtxA and carbon dioxide rather than to just one of these factors. Interestingly, we identified two previously unrecognized small RNAs that are highly expressed under physiological carbon dioxide concentrations in an AtxA-dependent manner. Expression levels of the two small RNAs were found to be higher than that of any other gene differentially expressed in response to these conditions. Secondary structure and small RNA-mRNA binding predictions for the two small RNAs suggest that they may perform important functions in regulating B. anthracis virulence. Conclusions A majority of genes on the virulence plasmid pXO1 that are regulated by the presence of either CO2 or AtxA separately are also regulated synergistically in the presence of both. These results also elucidate novel pXO1-encoded small RNAs that are associated with virulence conditions.
Collapse
Affiliation(s)
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kobylarz MJ, Grigg JC, Takayama SIJ, Rai DK, Heinrichs DE, Murphy MEP. Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor. ACTA ACUST UNITED AC 2014; 21:379-88. [PMID: 24485762 DOI: 10.1016/j.chembiol.2013.12.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 11/29/2022]
Abstract
L-2,3-diaminopropionic acid (L-Dap) is an amino acid that is a precursor of antibiotics and staphyloferrin B a siderophore produced by Staphylococcus aureus. SbnA and SbnB are encoded by the staphyloferrin B biosynthetic gene cluster and are implicated in L-Dap biosynthesis. We demonstrate here that SbnA uses PLP and substrates O-phospho-L-serine and L-glutamate to produce a metabolite N-(1-amino-1-carboxyl-2-ethyl)-glutamic acid (ACEGA). SbnB is shown to use NAD(+) to oxidatively hydrolyze ACEGA to yield α-ketoglutarate and L-Dap. Also, we describe crystal structures of SbnB in complex with NADH and ACEGA as well as with NAD(+) and α-ketoglutarate to reveal the residues required for substrate binding, oxidation, and hydrolysis. SbnA and SbnB contribute to the iron sparing response of S. aureus that enables staphyloferrin B biosynthesis in the absence of an active tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Marek J Kobylarz
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shin-ichi J Takayama
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Dushyant K Rai
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, The Centre for Human Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
48
|
Panda G, Basak T, Tanwer P, Sengupta S, dos Santos VAPM, Bhatnagar R. Delineating the effect of host environmental signals on a fully virulent strain of Bacillus anthracis using an integrated transcriptomics and proteomics approach. J Proteomics 2014; 105:242-65. [PMID: 24406299 DOI: 10.1016/j.jprot.2013.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED Pathogenic bacteria sense the host environment and regulate expression of virulence-related genes. Environmental signals like temperature, bicarbonate/CO2 and glucose induce toxin production in Bacillus anthracis, but the mechanisms by which these signals contribute to virulence and overall physiological adaptation remains elusive. An integrated, systems level investigation using transcriptomics and iTRAQ-based proteomics was done to assess the effect of temperature, bicarbonate/CO2 and glucose on B. anthracis. Significant changes observed in amino acid, carbohydrate, energy and nucleotide metabolism indicates events of metabolic readjustments by environmental factors. Directed induction of genes involved in polyamine biosynthesis and iron metabolism revealed the redirection of cellular metabolite pool towards iron uptake. Protein levels of glycolytic enzymes, ptsH and Ldh along with transcripts involved in immune evasion (mprF, bNOS, Phospholipases and asnA), cell surface remodeling (rfbABCD, antABCD, and cls) and utilization of lactate (lutABC) and inositol showed constant repression under environmental perturbations. Discrepancies observed in mRNA/protein level of genes involved in glycolysis, protein synthesis, stress response and nucleotide metabolism hinted at the existence of additional regulatory layers and illustrated the utility of an integrated approach. The above findings might assist in the identification of novel adaptive strategies of B. anthracis during host associated survival and pathogenesis. BIOLOGICAL SIGNIFICANCE In this study, the changes observed at both transcript and protein level were quantified and integrated to understand the effect of host environmental factors (host temperature, bicarbonate and glucose) in shaping the physiology and adaptive strategies of a fully virulent strain of B. anthracis for efficient survival and virulence in its host. Perturbations affecting toxin production were found to concordantly affect vital metabolic pathways and several known as well as novel virulence factors. These changes act as a valuable asset for generating testable hypotheses that can be further verified by detailed molecular and mutant studies to identify novel adaptive strategies of B. anthracis during infection. Adaptation of an integrated transcriptomics and proteomics approach also led to the identification of discrepancies between mRNA/protein levels among genes across major functional categories. Few of these discrepancies have been previously reported in literature for model organisms. However their existence in B. anthracis and that too as a result of growth perturbations have not been reported till date. These findings demonstrate a substantial role of regulatory processes post mRNA synthesis via post transcriptional, translational or protein degradation mechanisms. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Gurudutta Panda
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India; Academy of Scientific & Innovative Research, Delhi, India
| | - Pooja Tanwer
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India; Academy of Scientific & Innovative Research, Delhi, India
| | - Vítor A P Martins dos Santos
- Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; LifeGlimmer GmbH, Markelstrasse 38, Berlin 12163, Germany
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
49
|
CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals. J Bacteriol 2014; 196:1184-96. [PMID: 24391052 DOI: 10.1128/jb.00128-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus Agr system regulates virulence gene expression by responding to cell population density (quorum sensing). When an extracellular peptide signal (AIP-III in strain UAMS-1, used for these experiments) reaches a concentration threshold, the AgrC-AgrA two-component regulatory system is activated through a cascade of phosphorylation events, leading to induction of the divergently transcribed agrBDCA operon and the RNAIII gene. RNAIII is a posttranscriptional regulator of numerous metabolic and pathogenesis genes. CodY, a global regulatory protein, is known to repress agrBDCA and RNAIII transcription during exponential growth in rich medium, but the mechanism of this regulation has remained elusive. Here we report that phosphorylation of AgrA by the AgrC protein kinase is required for the overexpression of the agrBDCA operon and the RNAIII gene in a codY mutant during the exponential-growth phase, suggesting that the quorum-sensing system, which normally controls AgrC activation, is active even in exponential-phase cells in the absence of CodY. In part, such premature expression of RNAIII was attributable to higher-than-normal accumulation of AIP-III in a codY mutant strain, as determined using ultrahigh-performance liquid chromatography coupled to mass spectrometry. Although CodY is a strong repressor of the agr locus, CodY bound only weakly to the agrBDCA-RNAIII promoter region, suggesting that direct regulation by CodY is unlikely to be the principal mechanism by which CodY regulates agr and RNAIII expression. Taken together, these results strongly suggest that cell population density signals inducing virulence gene expression can be overridden by nutrient availability, a condition monitored by CodY.
Collapse
|
50
|
Intersection of the stringent response and the CodY regulon in low GC Gram-positive bacteria. Int J Med Microbiol 2013; 304:150-5. [PMID: 24462007 DOI: 10.1016/j.ijmm.2013.11.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacteria adapt efficiently to a wide range of nutritional environments. Therefore, they possess overlapping regulatory systems that detect intracellular pools of key metabolites. In low GC Gram-positive bacteria, two global regulators, the stringent response and the CodY repressor, respond to an intracellular decrease in amino acid content. Amino acid limitation leads to rapid synthesis of the alarmones pppGpp and ppGpp through the stringent response and inactivates the CodY repressor. Two cofactors, branched chain amino acids (BCAA) and GTP, are ligands for CodY and facilitate binding to the target DNA. Because (p)ppGpp synthesis and accumulation evidentially reduce the intracellular GTP pool, CodY is released from the DNA, and transcription of target genes is altered. Here, we focus on this intimate link between the stringent response and CodY regulation in different Gram-positive species.
Collapse
|