1
|
Fan S, Tan Y, Li Z, Zhang Y, Li J, Feng Y, He Y, Chen X, Dong X. Mechanisms Underlying the Effects of Secretory Protein G22 on Biological Characteristics and Virulence of Streptococcus suis. Microorganisms 2025; 13:774. [PMID: 40284611 PMCID: PMC12029192 DOI: 10.3390/microorganisms13040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that seriously harms the swine industry and human health. However, its pathogenic mechanisms are largely unknown, and the few virulence factors reported so far are insufficient to systematically explain its infectious and pathogenic mechanisms. In preliminary research, we identified a gene named G22 encoding a hypothetical secreted protein that may be closely associated with the high-level pathogenicity of S. suis. In this study, we constructed deletion and complementation strains of the G22 gene through homologous recombination and explored its roles in the pathogenicity and susceptibility of S. suis to environmental stresses through in vitro and in vivo experiments. The deletion of G22 clearly influenced the typical capsular structure of SS2 and impaired the bacterium's growth in a medium containing hydrogen peroxide (showing a growth reduction of 32.98% ± 5.23% compared to the wild-type strain SC19, p < 0.001) or with a low pH (with a growth inhibition of 17.44% ± 1.9% relative to the wild-type strain SC19, p < 0.01). ΔG22 also showed reduced survival in whole blood and in RAW 264.7 macrophages (with a survival reduction of 16.44% ± 2.29% compared to the wild-type, p < 0.001). The deletion of G22 also sharply attenuated the virulence of SS2 in a mouse infection model (reducing the mortality rate by 50% ± 0.04%, p < 0.05). We also demonstrated that G22 is required for the adhesion and invasion of SS2 in host cells. An RNA sequencing analysis revealed that 50 genes were differentially expressed in the ΔG22 and wild-type strains: 23 upregulated and 37 downregulated. Many of the genes are involved in carbohydrate metabolism and the synthesis of virulence-associated factors. Several genes associated with the phosphotransferase system were significantly upregulated in strain ΔG22. In summary, G22 plays a role in the morphological development and pathogenesis of the highly virulent SS2 strain SC19.
Collapse
Affiliation(s)
- Shiyue Fan
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Yanping Tan
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Zhiwei Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China;
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China;
| | - Yi He
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Xiaoling Chen
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Xingxing Dong
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| |
Collapse
|
2
|
Zou Z, Singh P, Pinkner JS, Obernuefemann CLP, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. SCIENCE ADVANCES 2024; 10:eadn7979. [PMID: 39093975 PMCID: PMC11296344 DOI: 10.1126/sciadv.adn7979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor M. Nye
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen W. Dodson
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Scott J. Hultgren
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Schiavolin L, Deneubourg G, Steinmetz J, Smeesters PR, Botteaux A. Group A Streptococcus adaptation to diverse niches: lessons from transcriptomic studies. Crit Rev Microbiol 2024; 50:241-265. [PMID: 38140809 DOI: 10.1080/1040841x.2023.2294905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.
Collapse
Affiliation(s)
- Lionel Schiavolin
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Geoffrey Deneubourg
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Jenny Steinmetz
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre R Smeesters
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Zou Z, Obernuefemann CLP, Singh P, Pinkner JS, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573960. [PMID: 38260261 PMCID: PMC10802287 DOI: 10.1101/2024.01.02.573960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that have antimicrobial activities against a broad-spectrum of Gram-positive pathogens. Here we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens and accelerated rates of wound-healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Chloe L P Obernuefemann
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Taylor M Nye
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Karen W Dodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | | | - Scott J Hultgren
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael G Caparon
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
Merriman JA, Xu W, Caparon MG. Central carbon flux controls growth/damage balance for Streptococcus pyogenes. PLoS Pathog 2023; 19:e1011481. [PMID: 37384800 DOI: 10.1371/journal.ppat.1011481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Microbial pathogens balance growth against tissue damage to achieve maximum fitness. Central carbon metabolism is connected to growth, but how it influences growth/damage balance is largely unknown. Here we examined how carbon flux through the exclusively fermentative metabolism of the pathogenic lactic acid bacterium Streptococcus pyogenes impacts patterns of growth and tissue damage. Using a murine model of soft tissue infection, we systematically examined single and pair-wise mutants that constrained carbon flux through the three major pathways that S. pyogenes employs for reduction of the glycolytic intermediate pyruvate, revealing distinct disease outcomes. Its canonical lactic acid pathway (via lactate dehydrogenase) made a minimal contribution to virulence. In contrast, its two parallel pathways for mixed-acid fermentation played important, but non-overlapping roles. Anaerobic mixed acid fermentation (via pyruvate formate lyase) was required for growth in tissue, while aerobic mixed-acid pathway (via pyruvate dehydrogenase) was not required for growth, but instead regulated levels of tissue damage. Infection of macrophages in vitro revealed that pyruvate dehydrogenase was required to prevent phagolysosomal acidification, which altered expression of the immunosuppressive cytokine IL-10. Infection of IL-10 deficient mice confirmed that the ability of aerobic metabolism to regulate levels of IL-10 plays a key role in the ability of S. pyogenes to modulate levels of tissue damage. Taken together, these results show critical non-overlapping roles for anaerobic and aerobic metabolism in soft tissue infection and provide a mechanism for how oxygen and carbon flux act coordinately to regulate growth/damage balance. Therapies targeting carbon flux could be developed to mitigate tissue damage during severe S. pyogenes infection.
Collapse
Affiliation(s)
- Joseph A Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
6
|
Kant S, Sun Y, Pancholi V. StkP- and PhpP-Mediated Posttranslational Modifications Modulate the S. pneumoniae Metabolism, Polysaccharide Capsule, and Virulence. Infect Immun 2023; 91:e0029622. [PMID: 36877045 PMCID: PMC10112228 DOI: 10.1128/iai.00296-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Pneumococcal Ser/Thr kinase (StkP) and its cognate phosphatase (PhpP) play a crucial role in bacterial cytokinesis. However, their individual and reciprocal metabolic and virulence regulation-related functions have yet to be adequately investigated in encapsulated pneumococci. Here, we demonstrate that the encapsulated pneumococcal strain D39-derived D39ΔPhpP and D39ΔStkP mutants displayed differential cell division defects and growth patterns when grown in chemically defined media supplemented with glucose or nonglucose sugars as the sole carbon source. Microscopic and biochemical analyses supported by RNA-seq-based global transcriptomic analyses of these mutants revealed significantly down- and upregulated polysaccharide capsule formation and cps2 genes in D39ΔPhpP and D39ΔStkP mutants, respectively. While StkP and PhpP individually regulated several unique genes, they also participated in sharing the regulation of the same set of differentially regulated genes. Cps2 genes were reciprocally regulated in part by the StkP/PhpP-mediated reversible phosphorylation but independent of the MapZ-regulated cell division process. StkP-mediated dose-dependent phosphorylation of CcpA proportionately inhibited CcpA-binding to Pcps2A, supporting increased cps2 gene expression and capsule formation in D39ΔStkP. While the attenuation of the D39ΔPhpP mutant in two mouse infection models corroborated with several downregulated capsules-, virulence-, and phosphotransferase systems (PTS)-related genes, the D39ΔStkP mutant with increased amounts of polysaccharide capsules displayed significantly decreased virulence in mice compared to the D39 wild-type, but more virulence compared to D39ΔPhpP. NanoString technology-based inflammation-related gene expression and Meso Scale Discovery-based multiplex chemokine analysis of human lung cells cocultured with these mutants confirmed their distinct virulence phenotypes. StkP and PhpP may, therefore, serve as critical therapeutic targets.
Collapse
Affiliation(s)
- Sashi Kant
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Youcheng Sun
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
7
|
Dao TH, Iverson A, Neville SL, Johnson MDL, McDevitt CA, Rosch JW. The role of CopA in Streptococcus pyogenes copper homeostasis and virulence. J Inorg Biochem 2023; 240:112122. [PMID: 36639322 PMCID: PMC10161136 DOI: 10.1016/j.jinorgbio.2023.112122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Maintenance of intracellular metal homeostasis during interaction with host niches is critical to the success of bacterial pathogens. To prevent infection, the mammalian innate immune response employs metal-withholding and metal-intoxication mechanisms to limit bacterial propagation. The first-row transition metal ion copper serves critical roles at the host-pathogen interface and has been associated with antimicrobial activity since antiquity. Despite lacking any known copper-utilizing proteins, streptococci have been reported to accumulate significant levels of copper. Here, we report that loss of CopA, a copper-specific exporter, confers increased sensitivity to copper in Streptococcus pyogenes strain HSC5, with prolonged exposure to physiological levels of copper resulting in reduced viability during stationary phase cultivation. This defect in stationary phase survival was rescued by supplementation with exogeneous amino acids, indicating the pathogen had altered nutritional requirements during exposure to copper stress. Furthermore, S. pyogenes HSC5 ΔcopA was substantially attenuated during murine soft-tissue infection, demonstrating the importance of copper efflux at the host-pathogen interface. Collectively, these data indicate that copper can severely reduce the viability of stationary phase S. pyogenes and that active efflux mechanisms are required to survive copper stress in vitro and during infection.
Collapse
Affiliation(s)
- Tina H Dao
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Amy Iverson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Michael D L Johnson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunobiology, BIO5 Institute, Valley Fever Center for Excellence, and Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jason W Rosch
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
8
|
Roux AE, Robert S, Bastat M, Rosinski-Chupin I, Rong V, Holbert S, Mereghetti L, Camiade E. The Role of Regulator Catabolite Control Protein A (CcpA) in Streptococcus agalactiae Physiology and Stress Response. Microbiol Spectr 2022; 10:e0208022. [PMID: 36264242 PMCID: PMC9784791 DOI: 10.1128/spectrum.02080-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus agalactiae is a leading cause of infections in neonates. This opportunistic pathogen colonizes the vagina, where it has to cope with acidic pH and hydrogen peroxide produced by lactobacilli. Thus, in the host, this bacterium possesses numerous adaptation mechanisms in which the pleiotropic regulators play a major role. The transcriptional regulator CcpA (catabolite control protein A) has previously been shown to be the major regulator involved in carbon catabolite repression in Gram-positive bacteria but is also involved in other functions. By transcriptomic analysis, we characterized the CcpA-dependent gene regulation in S. agalactiae. Approximately 13.5% of the genome of S. agalactiae depends on CcpA for regulation and comprises genes involved in sugar uptake and fermentation, confirming the role of CcpA in carbon metabolism. We confirmed by electrophoretic mobility shift assays (EMSAs) that the DNA binding site called cis-acting catabolite responsive element (cre) determined for other streptococci was effective in S. agalactiae. We also showed that CcpA is of capital importance for survival under acidic and oxidative stresses and is implicated in macrophage survival by regulating several genes putatively or already described as involved in stress response. Among them, we focused our study on SAK_1689, which codes a putative UspA protein. We demonstrated that SAK_1689, highly downregulated by CcpA, is overexpressed under oxidative stress conditions, this overexpression being harmful for the bacterium in a ΔccpA mutant. IMPORTANCE Streptococcus agalactiae is a major cause of disease burden leading to morbidity and mortality in neonates worldwide. Deciphering its adaptation mechanisms is essential to understand how this bacterium manages to colonize its host. Here, we determined the regulon of the pleiotropic regulator CcpA in S. agalactiae. Our findings reveal that CcpA is not only involved in carbon catabolite repression, but is also important for acidic and oxidative stress resistance and survival in macrophages.
Collapse
Affiliation(s)
| | | | | | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | | | | | - Laurent Mereghetti
- ISP, Université de Tours, INRAE, Tours, France
- CHRU Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | | |
Collapse
|
9
|
Deletion of lacD gene affected stress tolerance and virulence of Streptococcus suis serotype 2. J Microbiol 2022; 60:948-959. [DOI: 10.1007/s12275-022-2146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
|
10
|
Abstract
The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit.
Collapse
|
11
|
DebRoy S, Aliaga-Tobar V, Galvez G, Arora S, Liang X, Horstmann N, Maracaja-Coutinho V, Latorre M, Hook M, Flores AR, Shelburne SA. Genome-wide analysis of in vivo CcpA binding with and without its key co-factor HPr in the major human pathogen group A Streptococcus. Mol Microbiol 2020; 115:1207-1228. [PMID: 33325565 PMCID: PMC8359418 DOI: 10.1111/mmi.14667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 01/01/2023]
Abstract
Catabolite control protein A (CcpA) is a master regulator of carbon source utilization and contributes to the virulence of numerous medically important Gram‐positive bacteria. Most functional assessments of CcpA, including interaction with its key co‐factor HPr, have been performed in nonpathogenic bacteria. In this study we aimed to identify the in vivo DNA binding profile of CcpA and assess the extent to which HPr is required for CcpA‐mediated regulation and DNA binding in the major human pathogen group A Streptococcus (GAS). Using a combination RNAseq/ChIP‐seq approach, we found that CcpA affects transcript levels of 514 of 1667 GAS genes (31%) whereas direct DNA binding was identified for 105 GAS genes. Three of the directly regulated genes encode the key GAS virulence factors Streptolysin S, PrtS (IL‐8 degrading proteinase), and SpeB (cysteine protease). Mutating CcpA Val301 to Ala (strain 2221‐CcpA‐V301A) abolished interaction between CcpA and HPr and impacted the transcript levels of 205 genes (40%) in the total CcpA regulon. By ChIP‐seq analysis, CcpAV301A bound to DNA from 74% of genes bound by wild‐type CcpA, but generally with lower affinity. These data delineate the direct CcpA regulon and clarify the HPr‐dependent and independent activities of CcpA in a key pathogenic bacterium.
Collapse
Affiliation(s)
- Sruti DebRoy
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victor Aliaga-Tobar
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases-ACCDiS, Universidad de Chile, Independencia, Chile.,Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gabriel Galvez
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Nicola Horstmann
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinicius Maracaja-Coutinho
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases-ACCDiS, Universidad de Chile, Independencia, Chile.,Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile.,Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.,Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA.,Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston TX, USA
| |
Collapse
|
12
|
Zeng L, Burne RA. Subpopulation behaviors in lactose metabolism by Streptococcus mutans. Mol Microbiol 2020; 115:58-69. [PMID: 32881164 DOI: 10.1111/mmi.14596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
When Streptococcus mutans is transferred from a preferred carbohydrate (glucose or fructose) to lactose, initiation of growth can take several hours, and substantial amounts of glucose are released during growth. Here, S. mutans strains UA159 and GS-5 were examined for stochastic behaviors in transcription of the lac operon. Using a gfp reporter fusion, we demonstrated that induction of the lac operon occurs in only a fraction of the population, with prior exposure to carbohydrate source and strain influencing the magniture of the sub-population response. Lower glucokinase activity in GS-5 was associated with release of substantially more glucose than UA159 and significantly lower lac expression. Mutants unable to use lactose grew on lactose as the sole carbohydrate when strains with an intact lac operon were also present in the cultures, indicative of the potential for population cheating. Utilizing a set of engineered obligate cheating and non-cheating strains, we confirmed that cheating can sustain a heterogeneous population. Futher, obligate cheaters of GS-5 competed well with the non-cheaters and showed a high degree of competitive fitness in a human-derived consortium biofilm model. The results show that bet-hedging behaviors in carbohydrate metabolism may substantially influence the composition and pathogenic potential of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
13
|
Phosphotransferase System Uptake and Metabolism of the β-Glucoside Salicin Impact Group A Streptococcal Bloodstream Survival and Soft Tissue Infection. Infect Immun 2020; 88:IAI.00346-20. [PMID: 32719156 DOI: 10.1128/iai.00346-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]), a major human-specific pathogen, relies on efficient nutrient acquisition for successful infection within its host. The phosphotransferase system (PTS) couples the import of carbohydrates with their phosphorylation prior to metabolism and has been linked to GAS pathogenesis. In a screen of an insertional mutant library of all 14 annotated PTS permease (EIIC) genes in MGAS5005, the annotated β-glucoside PTS transporter (bglP) was found to be crucial for GAS growth and survival in human blood and was validated in another M1T1 GAS strain, 5448. In 5448, bglP was shown to be in an operon with a putative phospho-β-glucosidase (bglB) downstream and a predicted antiterminator (licT) upstream. Using defined nonpolar mutants of the β-glucoside permease (bglP) and β-glucosidase enzyme (bglB) in 5448, we showed that bglB, not bglP, was important for growth in blood. Furthermore, transcription of the licT-blgPB operon was found to be repressed by glucose and induced by the β-glucoside salicin as the sole carbon source. Investigation of the individual bglP and bglB mutants determined that they influence in vitro growth in the β-glucoside salicin; however, only bglP was necessary for growth in other non-β-glucoside PTS sugars, such as fructose and mannose. Additionally, loss of BglP and BglB suggests that they are important for the regulation of virulence-related genes that control biofilm formation, streptolysin S (SLS)-mediated hemolysis, and localized ulcerative lesion progression during subcutaneous infections in mice. Thus, our results indicate that the β-glucoside PTS transports salicin and its metabolism can differentially influence GAS pathophysiology during soft tissue infection.
Collapse
|
14
|
Survival of Group A Streptococcus (GAS) is Enhanced Under Desiccated Culture Conditions. Curr Microbiol 2020; 77:1518-1524. [PMID: 32240341 PMCID: PMC8238923 DOI: 10.1007/s00284-020-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 11/01/2022]
Abstract
AbstractStreptococcus pyogenes or Group A Streptococcus (GAS) infections are the leading cause of bacterial tonsillopharyngitis. The bacterium can survive and persist within the human host for a long time as it is observed in up to 40% of the population who are considered as carriers. Recurrent tonsillopharyngitis is a particular problem in children which is caused either by relapses due to failed bacterial clearance or by reinfection. A prolonged survival in tonsillar crypts or on inanimate surfaces might be sources for reinfection. We therefore examined 64 clinical GAS isolates from children with tonsillopharyngitis for their long-term survival under either liquid or desiccated culture conditions. After 6 weeks, the overall GAS survival rate was 400-fold increased under desiccated culture conditions compared to liquid culture conditions, but varied depending on the emm-type between 20-fold (emm4) and 14000-fold (emm3). The survival rates of isolates from emm75 were significantly lower which is probably due to their production of hydrogen peroxide up to fatal doses. No hydrogen peroxide production could be detected for other emm-types. Furthermore, 11 isolates from patients with recurrent tonsillopharyngitis were compared to isolates of the same emm-type from patients with single episodes of tonsillopharyngitis. A significant elevated pH value and an increased survival rate for isolates from patients with recurrent infections were observed. In conclusion, significant differences in long-term survival of different GAS isolates as well as survival under desiccated culture conditions might contribute to both failed bacterial clearance and reinfection in patients with recurrent tonsillopharyngitis.
Collapse
|
15
|
Nye TM, Jacob KM, Holley EK, Nevarez JM, Dawid S, Simmons LA, Watson ME. DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes. PLoS Pathog 2019; 15:e1007841. [PMID: 31206562 PMCID: PMC6597129 DOI: 10.1371/journal.ppat.1007841] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/27/2019] [Accepted: 05/14/2019] [Indexed: 11/26/2022] Open
Abstract
DNA methylation is pervasive across all domains of life. In bacteria, the presence of N6-methyladenosine (m6A) has been detected among diverse species, yet the contribution of m6A to the regulation of gene expression is unclear in many organisms. Here we investigated the impact of DNA methylation on gene expression and virulence within the human pathogen Streptococcus pyogenes, or Group A Streptococcus. Single Molecule Real-Time sequencing and subsequent methylation analysis identified 412 putative m6A sites throughout the 1.8 Mb genome. Deletion of the Restriction, Specificity, and Methylation gene subunits (ΔRSM strain) of a putative Type I restriction modification system lost all detectable m6A at the recognition sites and failed to prevent transformation with foreign-methylated DNA. RNA-sequencing identified 20 genes out of 1,895 predicted coding regions with significantly different gene expression. All of the differentially expressed genes were down regulated in the ΔRSM strain relative to the parent strain. Importantly, we found that the presence of m6A DNA modifications affected expression of Mga, a master transcriptional regulator for multiple virulence genes, surface adhesins, and immune-evasion factors in S. pyogenes. Using a murine subcutaneous infection model, mice infected with the ΔRSM strain exhibited an enhanced host immune response with larger skin lesions and increased levels of pro-inflammatory cytokines compared to mice infected with the parent or complemented mutant strains, suggesting alterations in m6A methylation influence virulence. Further, we found that the ΔRSM strain showed poor survival within human neutrophils and reduced adherence to human epithelial cells. These results demonstrate that, in addition to restriction of foreign DNA, gram-positive bacteria also use restriction modification systems to regulate the expression of gene networks important for virulence. DNA methylation is common among many bacterial species, yet the contribution of DNA methylation to the regulation of gene expression is unclear outside of a limited number of gram-negative species. We characterized sites of DNA methylation throughout the genome of the gram-positive pathogen Streptococcus pyogenes or Group A Streptococcus. We determined that the gene products of a functional restriction modification system are responsible for genome-wide m6A. The mutant strain lacking DNA methylation showed altered gene expression compared to the parent strain, with several genes important for causing human disease down regulated. Furthermore, we showed that the mutant strain lacking DNA methylation exhibited altered virulence properties compared to the parent strain using various models of pathogenesis. The mutant strain was attenuated for both survival within human neutrophils and adherence to human epithelial cells, and was unable to suppress the host immune response in a murine subcutaneous infection model. Together, these results show that bacterial m6A contributes to differential gene expression and influences the ability of Group A Streptococcus to cause disease. DNA methylation is a conserved feature among bacteria and may represent a potential target for intervention in effort to interfere with the ability of bacteria to cause human disease.
Collapse
Affiliation(s)
- Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kristin M. Jacob
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Elena K. Holley
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Juan M. Nevarez
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Suzanne Dawid
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael E. Watson
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
16
|
Menschner L, Falke U, Konrad P, Berner R, Toepfner N. Hydrogen Peroxide Production of Group A Streptococci (GAS) is emm-Type Dependent and Increased at Low Temperatures. Curr Microbiol 2019; 76:698-705. [PMID: 30955044 DOI: 10.1007/s00284-019-01683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Abstract
Group A streptococcus (GAS) is an important human pathogen whose clinical isolates differ in their ability to produce hydrogen peroxide (H2O2). H2O2 is primarily produced by the enzyme lactate oxidase (LctO), an in depth in silico research revealed that all genome-sequenced GAS possess the required gene lctO. The importance of lctO for GAS is underlined by its highly conserved catabolite control element (cre box) as well as its perfect promotor sequence in comparison to the known consensus sequences of the Gram-positive model organism Bacillus subtilis. In this study, we provide further insight in the function and regulation of lactate oxidase by analyzing a large group of clinical GAS isolates. We found that H2O2 production increased over time in the late stationary phase; after 4 days of incubation, 5.4% of the isolates showed a positive result at 37 °C, while the rate increased to 16.4% at 20 °C. This correlation between H2O2 production and low temperatures suggests additional regulatory mechanisms for lctO besides catabolite control protein A (CcpA) and indicates that lctO might play a role for GAS energy metabolism at sub-body temperatures. Furthermore, we could identify that H2O2 production was different among clinical isolates; we could correlate H2O2 production to emm-types, indicating that emm-types 6 and 75 had the highest rate of H2O2 production. The emm-type- and temperature-dependent H2O2 production of clinical GAS isolates might contribute to their different survival strategies.
Collapse
Affiliation(s)
- Leonhard Menschner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Uta Falke
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Peter Konrad
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicole Toepfner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
17
|
Paluscio E, Watson ME, Caparon MG. CcpA Coordinates Growth/Damage Balance for Streptococcus pyogenes Pathogenesis. Sci Rep 2018; 8:14254. [PMID: 30250043 PMCID: PMC6155242 DOI: 10.1038/s41598-018-32558-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
To achieve maximum fitness, pathogens must balance growth with tissue damage, coordinating metabolism and virulence factor expression. In the gram-positive bacterium Streptococcus pyogenes, the DNA-binding transcriptional regulator Carbon Catabolite Protein A (CcpA) is a master regulator of both carbon catabolite repression and virulence, suggesting it coordinates growth/damage balance. To examine this, two murine models were used to compare the virulence of a mutant lacking CcpA with a mutant expressing CcpA locked into its high-affinity DNA-binding conformation (CcpAT307Y). In models of acute soft tissue infection and of long-term asymptomatic mucosal colonization, both CcpA mutants displayed altered virulence, albeit with distinct growth/damage profiles. Loss of CcpA resulted in a diminished ability to grow in tissue, leading to less damage and early clearance. In contrast, constitutive DNA-binding activity uncoupled the growth/damage relationship, such that high tissue burdens and extended time of carriage were achieved, despite reduced tissue damage. These data demonstrate that growth/damage balance can be actively controlled by the pathogen and implicate CcpA as a master regulator of this relationship. This suggests a model where the topology of the S. pyogenes virulence network has evolved to couple carbon source selection with growth/damage balance, which may differentially influence pathogenesis at distinct tissues.
Collapse
Affiliation(s)
- Elyse Paluscio
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, United States
| | - Michael E Watson
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109-5624, United States
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States.
| |
Collapse
|
18
|
Valdes KM, Sundar GS, Belew AT, Islam E, El-Sayed NM, Le Breton Y, McIver KS. Glucose Levels Alter the Mga Virulence Regulon in the Group A Streptococcus. Sci Rep 2018; 8:4971. [PMID: 29563558 PMCID: PMC5862849 DOI: 10.1038/s41598-018-23366-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022] Open
Abstract
Many bacterial pathogens coordinately regulate genes encoding important metabolic pathways during disease progression, including the phosphoenolpyruvate (PEP)-phosphotransferase system (PTS) for uptake of carbohydrates. The Gram-positive Group A Streptococcus (GAS) is a pathogen that infects multiple tissues in the human host. The virulence regulator Mga in GAS can be phosphorylated by the PTS, affecting Mga activity based on carbohydrate availability. Here, we explored the effects of glucose availability on the Mga regulon. RNA-seq was used to identify transcriptomic differences between the Mga regulon grown to late log phase in the presence of glucose (THY) or after glucose has been expended (C media). Our results revealed a correlation between the genes activated in C media with those known to be repressed by CcpA, indicating that C media mimics a non-preferred sugar environment. Interestingly, we found very little overlap in the Mga regulon from GAS grown in THY versus C media beyond the core virulence genes. We also observed an alteration in the phosphorylation status of Mga, indicating that the observed media differences in the Mga regulon may be directly attributed to glucose levels. Thus, these results support an in vivo link between glucose availability and virulence regulation in GAS.
Collapse
Affiliation(s)
- Kayla M Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA
| | - Ganesh S Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA
| | - Ashton T Belew
- Center for Bioinformatics and Computation Biology, UMCP, College Park, MD, USA
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA
| | - Najib M El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA.,Center for Bioinformatics and Computation Biology, UMCP, College Park, MD, USA
| | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA.
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, Maryland, USA.
| |
Collapse
|
19
|
Sundar GS, Islam E, Braza RD, Silver AB, Le Breton Y, McIver KS. Route of Glucose Uptake in the Group a Streptococcus Impacts SLS-Mediated Hemolysis and Survival in Human Blood. Front Cell Infect Microbiol 2018; 8:71. [PMID: 29594067 PMCID: PMC5861209 DOI: 10.3389/fcimb.2018.00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
The transport and metabolism of glucose has been shown to have far reaching consequences in the transcriptional profile of many bacteria. As glucose is most often the preferred carbon source for bacteria, its presence in the environment leads to the repression of many alternate carbohydrate pathways, a condition known as carbon catabolite repression (CCR). Additionally, the expression of many virulence factors is also dependent on the presence of glucose. Despite its importance, little is known about the transport routes of glucose in the human pathogen Streptococcus pyogenes. Considering that Streptococcus pyogenes is an important human pathogen responsible for over 500,000 deaths every year, we characterized the routes of glucose transport in an effort to understand its importance in GAS pathogenesis. Using a deletion of glucokinase (ΔnagC) to block utilization of glucose imported by non-PTS pathways, we determined that of the two glucose transport pathways in GAS (PTS and non-PTS), the non-PTS pathway played a more significant role in glucose transport. However, the expression of both pathways is linked by a currently unknown mechanism, as blocking the non-PTS uptake of glucose reduces ptsI (EI) expression. Similar to the effects of the deletion of the PTS pathway, lack of the non-PTS pathway also leads to the early activity of Streptolysin S. However, this early activity did not adversely or favorably affect survival of ΔnagC in whole human blood. In a subcutaneous murine infection model, ΔnagC-infected mice showed increased lesion severity at the local site of infection; although, lesion size and dissemination from the site of infection was similar to wild type. Here, we show that glucose transport in GAS is primarily via a non-PTS pathway. The route of glucose transport differentially affects the survival of GAS in whole human blood, as well as the lesion size at the local site of infection in a murine skin infection model.
Collapse
Affiliation(s)
- Ganesh S Sundar
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Emrul Islam
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Rezia D Braza
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Aliyah B Silver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
20
|
Do H, Makthal N, VanderWal AR, Rettel M, Savitski MM, Peschek N, Papenfort K, Olsen RJ, Musser JM, Kumaraswami M. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proc Natl Acad Sci U S A 2017; 114:E8498-E8507. [PMID: 28923955 PMCID: PMC5635878 DOI: 10.1073/pnas.1705972114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Successful pathogens use complex signaling mechanisms to monitor their environment and reprogram global gene expression during specific stages of infection. Group A Streptococcus (GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor that is produced abundantly during infection and is critical for GAS pathogenesis. Although identified nearly a century ago, the molecular basis for growth phase control of speB gene expression remains unknown. We have discovered that GAS uses a previously unknown peptide-mediated intercellular signaling system to control SpeB production, alter global gene expression, and enhance virulence. GAS produces an eight-amino acid leaderless peptide [SpeB-inducing peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to induce population-wide speB expression. The SIP signaling pathway includes peptide secretion, reimportation into the cytosol, and interaction with the intracellular global gene regulator Regulator of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core genes. Several genes that encode toxins and other virulence genes that enhance pathogen dissemination and infection are significantly up-regulated. Using three mouse infection models, we show that the SIP signaling pathway is active during infection and contributes significantly to GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular mechanisms involved in a previously undescribed virulence regulatory pathway of an important human pathogen and suggest new therapeutic strategies.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Mandy Rettel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nikolai Peschek
- Munich Center for Integrated Protein Science, Department of Microbiology, Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Kai Papenfort
- Munich Center for Integrated Protein Science, Department of Microbiology, Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030;
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| |
Collapse
|
21
|
Knaus UG, Hertzberger R, Pircalabioru GG, Yousefi SPM, Branco dos Santos F. Pathogen control at the intestinal mucosa - H 2O 2 to the rescue. Gut Microbes 2017; 8:67-74. [PMID: 28080210 PMCID: PMC5341913 DOI: 10.1080/19490976.2017.1279378] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intestinal infections are a global challenge, connected to malnutrition and inadequate hygiene in developing countries, and to expanding antibiotic resistance in developed countries. In general, a healthy host is capable of fighting off gut pathogens or at least to recover from infections quickly. The underlying protective mechanism, termed colonization resistance, is provided by indigenous commensal communities (microbiota) that are shaped and aided by the host's epithelial and innate immune system. Commensal-pathogen interactions are governed by competition for a suitable niche for replication and stable colonization, nutrient availability, species-specific alterations of the metabolic environment, changes in oxygen tension and release of chemicals and proteinaceous toxins (bacteriocins). This protective intestinal milieu is further reinforced by antimicrobial factors and chemicals secreted by the epithelial barrier, by dendritic cell sensing and by homeostasis between T-cell subsets (Treg/Th17) in the lamina propria. The 3 players (host-microbiota-pathogen) communicate via direct interactions or secreted factors. Our recent manuscript illustrates that reactive oxygen species (ROS) are an integral part of colonization resistance and should be considered an interkingdom antivirulence strategy.
Collapse
Affiliation(s)
- Ulla G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rosanne Hertzberger
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - S. Parsa M. Yousefi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Lheure C, Grange PA, Ollagnier G, Morand P, Désiré N, Sayon S, Corvec S, Raingeaud J, Marcelin AG, Calvez V, Khammari A, Batteux F, Dréno B, Dupin N. TLR-2 Recognizes Propionibacterium acnes CAMP Factor 1 from Highly Inflammatory Strains. PLoS One 2016; 11:e0167237. [PMID: 27902761 PMCID: PMC5130237 DOI: 10.1371/journal.pone.0167237] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background Propionibacterium acnes (P. acnes) is an anaerobic, Gram-positive bacteria encountered in inflammatory acne lesions, particularly in the pilosebaceous follicle. P. acnes triggers a strong immune response involving keratinocytes, sebocytes and monocytes, the target cells during acne development. Lipoteicoic acid and peptidoglycan induce the inflammatory reaction, but no P. acnes surface protein interacting with Toll-like receptors has been identified. P. acnes surface proteins have been extracted by lithium stripping and shown to induce CXCL8 production by keratinocytes. Methodology and principal findings Far-western blotting identified two surface proteins, of 24.5- and 27.5-kDa in size, specifically recognized by TLR2. These proteins were characterized, by LC-MS/MS, as CAMP factor 1 devoid of its signal peptide sequence, as shown by N-terminal sequencing. Purified CAMP factor 1 induces CXCL8 production by activating the CXCL8 gene promoter, triggering the synthesis of CXCL8 mRNA. Antibodies against TLR2 significantly decreased the CXCL8 response. For the 27 P. acnes strains used in this study, CAMP1-TLR2 binding intensity was modulated and appeared to be strong in type IB and II strains, which produced large amounts of CXCL8, whereas most of the type IA1 and IA2 strains presented little or no CAMP1-TLR2 binding and low levels of CXCL8 production. The nucleotide sequence of CAMP factor displays a major polymorphism, defining two distinct genetic groups corresponding to CAMP factor 1 with 14 amino-acid changes from strains phylotyped II with moderate and high levels of CAMP1-TLR2 binding activity, and CAMP factor 1 containing 0, 1 or 2 amino-acid changes from strains phylotyped IA1, IA2, or IB presenting no, weak or moderate CAMP1-TLR2 binding. Conclusions Our findings indicate that CAMP factor 1 may contribute to P. acnes virulence, by amplifying the inflammation reaction through direct interaction with TLR2.
Collapse
Affiliation(s)
- Coralie Lheure
- Université Sorbonne Paris Descartes, Faculté de Médecine, INSERM, Institut Cochin, Laboratoire de Dermatologie-CNR Syphilis, Paris, France
| | - Philippe Alain Grange
- Université Sorbonne Paris Descartes, Faculté de Médecine, INSERM, Institut Cochin, Laboratoire de Dermatologie-CNR Syphilis, Paris, France
| | - Guillaume Ollagnier
- Université Sorbonne Paris Descartes, Faculté de Médecine, INSERM, Institut Cochin, Laboratoire de Dermatologie-CNR Syphilis, Paris, France
| | - Philippe Morand
- AP-HP, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Service de Bactériologie-CNR Streptocoques, Paris, France
| | - Nathalie Désiré
- Sorbonne Université, UPMC Université Paris 06, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
- AP-HP, Groupe hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Sophie Sayon
- Sorbonne Université, UPMC Université Paris 06, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
- AP-HP, Groupe hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Stéphane Corvec
- Service de Bactériologie-Hygiène hospitalière, CHU de Nantes, Nantes, France
| | | | - Anne-Geneviève Marcelin
- Sorbonne Université, UPMC Université Paris 06, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
- AP-HP, Groupe hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Vincent Calvez
- Sorbonne Université, UPMC Université Paris 06, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
- AP-HP, Groupe hospitalier Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Amir Khammari
- CHU, service de dermatologie, CIC, Hôtel Dieu, Nantes, Hôtel Dieu, Nantes, France
| | - Frédéric Batteux
- Université Sorbonne Paris Descartes, Faculté de Médecine, INSERM, Institut Cochin, Laboratoire de Dermatologie-CNR Syphilis, Paris, France
- AP-HP, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Service d’Immunologie Biologique, Paris, France
| | - Brigitte Dréno
- CHU, service de dermatologie, CIC, Hôtel Dieu, Nantes, Hôtel Dieu, Nantes, France
| | - Nicolas Dupin
- Université Sorbonne Paris Descartes, Faculté de Médecine, INSERM, Institut Cochin, Laboratoire de Dermatologie-CNR Syphilis, Paris, France
- AP-HP, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Service de Dermatologie-Vénéréologie, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Sundar GS, Islam E, Gera K, Le Breton Y, McIver KS. A PTS EII mutant library in Group A Streptococcus identifies a promiscuous man-family PTS transporter influencing SLS-mediated hemolysis. Mol Microbiol 2016; 103:518-533. [PMID: 27862457 DOI: 10.1111/mmi.13573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 01/10/2023]
Abstract
The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose-specific EII locus, encoded by manLMN, was expressed as a mannose-inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose-specific EII also acted to prevent the early onset of SLS-mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain-specific needs.
Collapse
Affiliation(s)
- Ganesh S Sundar
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Emrul Islam
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Kanika Gera
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
24
|
Echlin H, Frank MW, Iverson A, Chang TC, Johnson MDL, Rock CO, Rosch JW. Pyruvate Oxidase as a Critical Link between Metabolism and Capsule Biosynthesis in Streptococcus pneumoniae. PLoS Pathog 2016; 12:e1005951. [PMID: 27760231 PMCID: PMC5070856 DOI: 10.1371/journal.ppat.1005951] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
The pneumococcus is one of the most prodigious producers of hydrogen peroxide amongst bacterial pathogens. Hydrogen peroxide production by the pneumococcus has been implicated in antibiotic synergism, competition between other bacterial colonizers of the nasopharynx, and damage to epithelial cells. However, the role during invasive disease has been less clear with mutants defective in hydrogen peroxide production demonstrating both attenuation and heightened invasive disease capacity depending upon strain and serotype background. This work resolves these conflicting observations by demonstrating that the main hydrogen peroxide producing enzyme of the pneumococcus, SpxB, is required for capsule formation in a strain dependent manner. Capsule production by strains harboring capsules with acetylated sugars was dependent upon the presence of spxB while capsule production in serotypes lacking such linkages were not. The spxB mutant had significantly lower steady-state cellular levels of acetyl-CoA, suggesting that loss of capsule arises from dysregulation of this intermediary metabolite. This conclusion is corroborated by deletion of pdhC, which also resulted in lower steady-state acetyl-CoA levels and phenocopied the capsule expression profile of the spxB mutant. Capsule and acetyl-CoA levels were restored in the spxB and lctO (lactate oxidase) double mutant, supporting the connection between central metabolism and capsule formation. Taken together, these data show that the defect in pathogenesis in the spxB mutant is due to a metabolic imbalance that attenuates capsule formation and not to reduced hydrogen peroxide formation. The pneumococcus polysaccharide capsule is one of the most critical virulence determinants produced by this major human pathogen. The pneumococcus also produces prodigious amounts of hydrogen peroxide via the enzymatic reaction catalyzed by pyruvate oxidase, SpxB. Deletion of spxB resulted in the loss of surface polysaccharide capsule production in a serotype dependent manner with a mirrored effect on the virulence of the mutants. We observed that deletion of spxB reduced the steady-state levels of acetyl-CoA, a key metabolic intermediate in peptidoglycan, fatty acid biosynthesis, and in capsule biosynthesis in a subset of serotypes. These data suggest that the defect in capsule production was due to altered metabolism that results in reduced acetyl-CoA availability. Corroborating these data, we found that capsule biosynthesis was impaired upon loss of PDHC, an additional metabolic enzyme that generates acetyl-CoA. These data reveal a critical link between pneumococcal metabolism and capsule biosynthesis as well as provide a striking example of how a virulence gene can have a differential contribution to pathogenesis dependent upon strain background.
Collapse
Affiliation(s)
- Haley Echlin
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Matthew W. Frank
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Amy Iverson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ti-Cheng Chang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michael D. L. Johnson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Charles O. Rock
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
25
|
A Multi-Serotype Approach Clarifies the Catabolite Control Protein A Regulon in the Major Human Pathogen Group A Streptococcus. Sci Rep 2016; 6:32442. [PMID: 27580596 PMCID: PMC5007534 DOI: 10.1038/srep32442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022] Open
Abstract
Catabolite control protein A (CcpA) is a highly conserved, master regulator of carbon source utilization in gram-positive bacteria, but the CcpA regulon remains ill-defined. In this study we aimed to clarify the CcpA regulon by determining the impact of CcpA-inactivation on the virulence and transcriptome of three distinct serotypes of the major human pathogen Group A Streptococcus (GAS). CcpA-inactivation significantly decreased GAS virulence in a broad array of animal challenge models consistent with the idea that CcpA is critical to gram-positive bacterial pathogenesis. Via comparative transcriptomics, we established that the GAS CcpA core regulon is enriched for highly conserved CcpA binding motifs (i.e. cre sites). Conversely, strain-specific differences in the CcpA transcriptome seems to consist primarily of affected secondary networks. Refinement of cre site composition via analysis of the core regulon facilitated development of a modified cre consensus that shows promise for improved prediction of CcpA targets in other medically relevant gram-positive pathogens.
Collapse
|
26
|
Avilés-Reyes A, Miller JH, Lemos JA, Abranches J. Collagen-binding proteins of Streptococcus mutans and related streptococci. Mol Oral Microbiol 2016; 32:89-106. [PMID: 26991416 DOI: 10.1111/omi.12158] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host.
Collapse
Affiliation(s)
- A Avilés-Reyes
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - J H Miller
- Department of Anesthesiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - J A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - J Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Abstract
Virulence gene expression serves two main functions, growth in/on the host, and the acquisition of nutrients. Therefore, it is obvious that nutrient availability is important to control expression of virulence genes. In any cell, enzymes are the components that are best informed about the availability of their respective substrates and products. It is thus not surprising that bacteria have evolved a variety of strategies to employ this information in the control of gene expression. Enzymes that have a second (so-called moonlighting) function in the regulation of gene expression are collectively referred to as trigger enzymes. Trigger enzymes may have a second activity as a direct regulatory protein that can bind specific DNA or RNA targets under particular conditions or they may affect the activity of transcription factors by covalent modification or direct protein-protein interaction. In this chapter, we provide an overview on these mechanisms and discuss the relevance of trigger enzymes for virulence gene expression in bacterial pathogens.
Collapse
|
28
|
The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood. Infect Immun 2016; 84:1016-1031. [PMID: 26787724 DOI: 10.1128/iai.01296-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment.
Collapse
|
29
|
Hendrickson C, Euler CW, Nguyen SV, Rahman M, McCullor KA, King CJ, Fischetti VA, McShan WM. Elimination of Chromosomal Island SpyCIM1 from Streptococcus pyogenes Strain SF370 Reverses the Mutator Phenotype and Alters Global Transcription. PLoS One 2015; 10:e0145884. [PMID: 26701803 PMCID: PMC4689407 DOI: 10.1371/journal.pone.0145884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pyogenes chromosomal island M1 (SpyCIM1) integrates by site-specific recombination into the 5’ end of DNA mismatch repair (MMR) gene mutL in strain SF370SmR, blocking transcription of it and the downstream operon genes. During exponential growth, SpyCIM1 excises from the chromosome and replicates as an episome, restoring mutL transcription. This process is reversed in stationary phase with SpyCIM1 re-integrating into mutL, returning the cells to a mutator phenotype. Here we show that elimination of SpyCIM1 relieves this mutator phenotype. The downstream MMR operon genes, multidrug efflux pump lmrP, Holliday junction resolution helicase ruvA, and DNA base excision repair glycosylase tag, are also restored to constitutive expression by elimination of SpyCIM1. The presence of SpyCIM1 alters global transcription patterns in SF370SmR. RNA sequencing (RNA-Seq) demonstrated that loss of SpyCIM1 in the SpyCIM1 deletion mutant, CEM1Δ4, impacted the expression of over 100 genes involved in virulence and metabolism both in early exponential phase, when the SpyCIM1 is episomal, as well as at the onset of stationary phase, when SpyCIM1 has reintegrated into mutL. Among these changes, the up-regulation of the genes for the antiphagocytic M protein (emm1), streptolysin O (slo), capsule operon (hasABC), and streptococcal pyrogenic exotoxin (speB), are particularly notable. The expression pattern of the MMR operon confirmed our earlier observations that these genes are transcribed in early exponential phase but silenced as stationary phase is approached. Thus, the direct role of SpyCIM1 in causing the mutator phenotype is confirmed, and further, its influence upon the biology of S. pyogenes was found to impact multiple genes in addition to the MMR operon, which is a novel function for a mobile genetic element. We suggest that such chromosomal islands are a remarkable evolutionary adaptation to promote the survival of its S. pyogenes host cell in changing environments.
Collapse
Affiliation(s)
- Christina Hendrickson
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- The Biology Department, The University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, United States of America
- Department of Medical Laboratory Sciences, Belfer Research Building, Hunter College, CUNY, New York, New York, United States of America
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Scott V. Nguyen
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Maliha Rahman
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kimberly A. McCullor
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Catherine J. King
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, United States of America
| | - W. Michael McShan
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Sci Rep 2015; 5:10799. [PMID: 26028191 PMCID: PMC4450579 DOI: 10.1038/srep10799] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/30/2015] [Indexed: 11/08/2022] Open
Abstract
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.
Collapse
|
31
|
Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, Shirtliff ME, El-Sayed NM, McIver KS. Essential Genes in the Core Genome of the Human Pathogen Streptococcus pyogenes. Sci Rep 2015; 5:9838. [PMID: 25996237 PMCID: PMC4440532 DOI: 10.1038/srep09838] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/23/2015] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) remains a major public health burden worldwide, infecting over 750 million people leading to over 500,000 deaths annually. GAS pathogenesis is complex, involving genetically distinct GAS strains and multiple infection sites. To overcome fastidious genetic manipulations and accelerate pathogenesis investigations in GAS, we developed a mariner-based system (Krmit) for en masse monitoring of complex mutant pools by transposon sequencing (Tn-seq). Highly saturated transposant libraries (Krmit insertions in ca. every 25 nucleotides) were generated in two distinct GAS clinical isolates, a serotype M1T1 invasive strain 5448 and a nephritogenic serotype M49 strain NZ131, and analyzed using a Bayesian statistical model to predict GAS essential genes, identifying sets of 227 and 241 of those genes in 5448 and NZ131, respectively. A large proportion of GAS essential genes corresponded to key cellular processes and metabolic pathways, and 177 were found conserved within the GAS core genome established from 20 available GAS genomes. Selected essential genes were validated using conditional-expression mutants. Finally, comparison to previous essentiality analyses in S. sanguinis and S. pneumoniae revealed significant overlaps, providing valuable insights for the development of new antimicrobials to treat infections by GAS and other pathogenic streptococci.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Kayla M. Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Patrick Curry
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mark E. Shirtliff
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
- Center for Bioinformatics and Computation Biology, University of Maryland, College Park, MD USA
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| |
Collapse
|
32
|
Fiedler T, Köller T, Kreikemeyer B. Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front Cell Infect Microbiol 2015; 5:15. [PMID: 25717441 PMCID: PMC4324238 DOI: 10.3389/fcimb.2015.00015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pyogenes (group A streptococci, GAS) is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.
Collapse
Affiliation(s)
- Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre Rostock, Germany
| | - Thomas Köller
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre Rostock, Germany
| |
Collapse
|
33
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
34
|
Streptococcus pyogenes malate degradation pathway links pH regulation and virulence. Infect Immun 2015; 83:1162-71. [PMID: 25583521 DOI: 10.1128/iai.02814-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of Streptococcus pyogenes to infect different niches within its human host most likely relies on its ability to utilize alternative carbon sources. In examining this question, we discovered that all sequenced S. pyogenes strains possess the genes for the malic enzyme (ME) pathway, which allows malate to be used as a supplemental carbon source for growth. ME is comprised of four genes in two adjacent operons, with the regulatory two-component MaeKR required for expression of genes encoding a malate permease (maeP) and malic enzyme (maeE). Analysis of transcription indicated that expression of maeP and maeE is induced by both malate and low pH, and induction in response to both cues is dependent on the MaeK sensor kinase. Furthermore, both maePE and maeKR are repressed by glucose, which occurs via a CcpA-independent mechanism. Additionally, malate utilization requires the PTS transporter EI enzyme (PtsI), as a PtsI(-) mutant fails to express the ME genes and is unable to utilize malate. Virulence of selected ME mutants was assessed in a murine model of soft tissue infection. MaeP(-), MaeK(-), and MaeR(-) mutants were attenuated for virulence, whereas a MaeE(-) mutant showed enhanced virulence compared to that of the wild type. Taken together, these data show that ME contributes to S. pyogenes' carbon source repertory, that malate utilization is a highly regulated process, and that a single regulator controls ME expression in response to diverse signals. Furthermore, malate uptake and utilization contribute to the adaptive pH response, and ME can influence the outcome of infection.
Collapse
|
35
|
Chiang-Ni C, Nian SY, Wu JJ, Chen CJ. Oxygen-dependent phenotypic variation in group A streptococcus. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:837-842. [PMID: 25649484 DOI: 10.1016/j.jmii.2014.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND The phenotypic heterogeneity of the human pathogen Streptococcus pyogenes [group A streptococcus (GAS)] is associated with bacterial virulence variation. During invasive GAS infection, mutations in the two-component regulatory system covR/covS leads to increases in hyaluronic acid capsule production, virulence genes expression, and lethality in the mouse infection model. Phenotypic variation of GAS is also found under in vitro culture conditions. However, whether a specific environmental factor is important for phenotypic variation is still unknown. METHODS GAS968 is an emm12-type clinical isolate that converts from mucoid to hypermucoid morphology under in vitro culture conditions. To clarify whether morphology variation can be triggered by specific environmental signals, or whether different morphology variants would be selected under specific environmental stresses, GAS968 was cultured under different conditions, and the changes in the number of mucoid and hypermucoid colonies in the total bacterial population were analyzed. RESULTS The ratio of mucoid and hypermucoid colonies of GAS968 in the total bacterial population changes dramatically under aerobic and anaerobic conditions. The decrease in the number of hypermucoid colonies in the total bacterial population under aerobic conditions is not caused by growth repression, suggesting that the morphology conversion of GAS968 is inhibited by oxygen. CONCLUSION Phenotypic heterogeneity has been shown to contribute to invasive GAS infection. Our results suggest that oxygen-dependent morphology variation in GAS968 may have important roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Siao-Ying Nian
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jiunn-Jong Wu
- Department of Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital and Children's Hospital, Tao-Yuan, Taiwan
| |
Collapse
|
36
|
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front Cell Infect Microbiol 2014; 4:159. [PMID: 25414836 PMCID: PMC4220732 DOI: 10.3389/fcimb.2014.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Fahmina Akhter
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| |
Collapse
|
37
|
Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol 2014; 6:24878. [PMID: 25317251 PMCID: PMC4157138 DOI: 10.3402/jom.v6.24878] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/17/2022] Open
Abstract
The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease.
Collapse
Affiliation(s)
- Zachary D Moye
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Tabata A, Sato Y, Maya K, Nakano K, Kikuchi K, Whiley RA, Ohkura K, Tomoyasu T, Nagamune H. A streptolysin S homologue is essential for β-haemolytic Streptococcus constellatus subsp. constellatus cytotoxicity. MICROBIOLOGY-SGM 2014; 160:980-991. [PMID: 24600025 DOI: 10.1099/mic.0.075580-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus constellatus is a member of the Anginosus group streptococci (AGS) and primarily inhabits the human oral cavity. S. constellatus is composed of three subspecies: S. constellatus subsp. constellatus (SCC), S. constellatus subsp. pharyngis and the newly described subspecies S. constellatus subsp. viborgensis. Although previous studies have established that SCC contains β-haemolytic strains, the factor(s) responsible for β-haemolysis in β-haemolytic SCC (β-SCC) has yet to be clarified. Recently, we discovered that a streptolysin S (SLS) homologue is the β-haemolytic factor of β-haemolytic Streptococcus anginosus subsp. anginosus (β-SAA), another member of the AGS. Furthermore, because previous studies have suggested that other AGS species, except for Streptococcus intermedius, do not possess a haemolysin(s) belonging to the family of cholesterol-dependent cytolysins, we hypothesized that, as with β-SAA, the SLS homologue is the β-haemolytic factor of β-SCC, and therefore aimed to investigate and characterize the haemolytic factor of β-SCC in the present study. PCR amplification revealed that all of the tested β-SCC strains were positive for the sagA homologue of SCC (sagA(SCC)). Further investigations using β-SCC strain W277 were conducted to elucidate the relationship between sagA(SCC) and β-haemolysis by constructing sagA(SCC) deletion mutants, which completely lost β-haemolytic activity. This loss of β-haemolytic activity was restored by trans-complementation of sagA(SCC). Furthermore, a co-cultivation assay established that the cytotoxicity of β-SCC was clearly dependent on the presence of sagA(SCC). These results demonstrate that sagA(SCC) is the factor responsible for β-SCC β-haemolysis and cytotoxicity.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan
| | - Yuji Sato
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan
| | - Kentaro Maya
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan
| | - Kota Nakano
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan
| | - Ken Kikuchi
- Department of Infection Control Science, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Robert A Whiley
- Department of Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | - Kazuto Ohkura
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-0816, Japan
| | - Toshifumi Tomoyasu
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan
| | - Hideaki Nagamune
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan
| |
Collapse
|
39
|
Gera K, Le T, Jamin R, Eichenbaum Z, McIver KS. The phosphoenolpyruvate phosphotransferase system in group A Streptococcus acts to reduce streptolysin S activity and lesion severity during soft tissue infection. Infect Immun 2014; 82:1192-204. [PMID: 24379283 PMCID: PMC3957985 DOI: 10.1128/iai.01271-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/19/2013] [Indexed: 11/20/2022] Open
Abstract
Obtaining essential nutrients, such as carbohydrates, is an important process for bacterial pathogens to successfully colonize host tissues. The phosphoenolpyruvate phosphotransferase system (PTS) is the primary mechanism by which bacteria transport sugars and sense the carbon state of the cell. The group A streptococcus (GAS) is a fastidious microorganism that has adapted to a variety of niches in the human body to elicit a wide array of diseases. A ΔptsI mutant (enzyme I [EI] deficient) generated in three different strains of M1T1 GAS was unable to grow on multiple carbon sources (PTS and non-PTS). Complementation with ptsI expressed under its native promoter in single copy was able to rescue the growth defect of the mutant. In a mouse model of GAS soft tissue infection, all ΔptsI mutants exhibited a significantly larger and more severe ulcerative lesion than mice infected with the wild type. Increased transcript levels of sagA and streptolysin S (SLS) activity during exponential-phase growth was observed. We hypothesized that early onset of SLS activity would correlate with the severity of the lesions induced by the ΔptsI mutant. In fact, infection of mice with a ΔptsI sagB double mutant resulted in a lesion comparable to that of either the wild type or a sagB mutant alone. Therefore, a functional PTS is not required for subcutaneous skin infection in mice; however, it does play a role in coordinating virulence factor expression and disease progression.
Collapse
Affiliation(s)
- Kanika Gera
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Tuquynh Le
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rebecca Jamin
- Biology Department, Georgia State University, Atlanta, Georgia, USA
| | | | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
40
|
H(2)O(2) production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase. Appl Environ Microbiol 2014; 80:2229-39. [PMID: 24487531 DOI: 10.1128/aem.04272-13] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H(2)O(2), inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H(2)O(2) production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H(2)O(2) production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H(2)O(2) production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H(2)O(2) production in L. johnsonii.
Collapse
|
41
|
Honsa ES, Johnson MDL, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2013; 3:92. [PMID: 24364001 PMCID: PMC3849628 DOI: 10.3389/fcimb.2013.00092] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023] Open
Abstract
For bacterial pathogens whose sole environmental reservoir is the human host, the acquisition of essential nutrients, particularly transition metals, is a critical aspect of survival due to tight sequestration and limitation strategies deployed to curtail pathogen outgrowth. As such, these bacteria have developed diverse, specialized acquisition mechanisms to obtain these metals from the niches of the body in which they reside. To oppose the spread of infection, the human host has evolved multiple mechanisms to counter bacterial invasion, including sequestering essential metals away from bacteria and exposing bacteria to lethal concentrations of metals. Hence, to maintain homeostasis within the host, pathogens must be able to acquire necessary metals from host proteins and to export such metals when concentrations become detrimental. Furthermore, this acquisition and efflux equilibrium must occur in a tissue-specific manner because the concentration of metals varies greatly within the various microenvironments of the human body. In this review, we examine the functional roles of the metal import and export systems of the Gram-positive pathogen Streptococcus pneumoniae in both signaling and pathogenesis.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Michael D L Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
42
|
Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity. Infect Immun 2013; 82:233-42. [PMID: 24144727 DOI: 10.1128/iai.00916-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS(-/-)) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient.
Collapse
|
43
|
Library screen identifies Enterococcus faecalis CcpA, the catabolite control protein A, as an effector of Ace, a collagen adhesion protein linked to virulence. J Bacteriol 2013; 195:4761-8. [PMID: 23974022 DOI: 10.1128/jb.00706-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis.
Collapse
|
44
|
LacR mutations are frequently observed in Streptococcus intermedius and are responsible for increased intermedilysin production and virulence. Infect Immun 2013; 81:3276-86. [PMID: 23798532 DOI: 10.1128/iai.00638-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus intermedius secretes a human-specific cytolysin, intermedilysin (ILY), which is considered to be the major virulence factor of this pathogen. We screened for a repressor of ily expression by using random gene disruption in a low-ILY-producing strain (PC574). Three independent high-ILY-producing colonies that had plasmid insertions within a gene that has high homology to lacR were isolated. Validation of these observations was achieved through disruption of lacR in strain PC574 with an erythromycin cassette, which also led to higher hemolytic activity, increased transcription of ily, and higher cytotoxicity against HepG2 cells, compared to the parental strain. The direct binding of LacR within the ily promoter region was shown by a biotinylated DNA probe pulldown assay, and the amount of ILY secreted into the culture supernatant by PC574 cells was increased by adding lactose or galactose to the medium as a carbon source. Furthermore, we examined lacR nucleotide sequences and the hemolytic activity of 50 strains isolated from clinical infections and 7 strains isolated from dental plaque. Of the 50 strains isolated from infections, 13 showed high ILY production, 11 of these 13 strains had one or more point mutations and/or an insertion mutation in LacR, and almost all mutations were associated with a marked decline in LacR function. These results strongly suggest that mutation in lacR is required for the overproduction of ILY, which is associated with an increase in pathogenicity of S. intermedius.
Collapse
|
45
|
Watson ME, Nielsen HV, Hultgren SJ, Caparon MG. Murine vaginal colonization model for investigating asymptomatic mucosal carriage of Streptococcus pyogenes. Infect Immun 2013; 81:1606-17. [PMID: 23460515 PMCID: PMC3648019 DOI: 10.1128/iai.00021-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/21/2013] [Indexed: 11/20/2022] Open
Abstract
While many virulence factors promoting Streptococcus pyogenes invasive disease have been described, specific streptococcal factors and host properties influencing asymptomatic mucosal carriage remain uncertain. To address the need for a refined model of prolonged S. pyogenes asymptomatic mucosal colonization, we have adapted a preestrogenized murine vaginal colonization model for S. pyogenes. In this model, derivatives of strains HSC5, SF370, JRS4, NZ131, and MEW123 established a reproducible, asymptomatic colonization of the vaginal mucosa over a period of typically 3 to 4 weeks' duration at a relatively high colonization efficiency. Prior treatment with estradiol prolonged streptococcal colonization and was associated with reduced inflammation in the colonized vaginal epithelium as well as a decreased leukocyte presence in vaginal fluid compared to the levels of inflammation and leukocyte presence in non-estradiol-treated control mice. The utility of our model for investigating S. pyogenes factors contributing to mucosal carriage was verified, as a mutant with a mutation in the transcriptional regulator catabolite control protein A (CcpA) demonstrated significant impairment in vaginal colonization. An assessment of in vivo transcriptional activity in the CcpA(-) strain for several known CcpA-regulated genes identified significantly elevated transcription of lactate oxidase (lctO) correlating with excessive generation of hydrogen peroxide to self-lethal levels. Deletion of lctO did not impair colonization, but deletion of lctO in a CcpA(-) strain prolonged carriage, exceeding even that of the wild-type strain. Thus, while LctO is not essential for vaginal colonization, its dysregulation is deleterious, highlighting the critical role of CcpA in promoting mucosal colonization. The vaginal colonization model should prove effective for future analyses of S. pyogenes mucosal colonization.
Collapse
Affiliation(s)
- Michael E. Watson
- Divison of Pediatric Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hailyn V. Nielsen
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
46
|
Vega LA, Caparon MG. Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol Microbiol 2012; 85:1119-32. [PMID: 22780862 DOI: 10.1111/j.1365-2958.2012.08163.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although they possess a well-characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behaviour at levels that are sublethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP-1) with the human pathogen Streptococcus pyogenes. At sublethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, specialized for protein secretion and processing. A consequence of this interaction was the disruption of ExPortal organization and a redistribution of ExPortal components into the peripheral membrane. Redistribution was associated with inhibition of secretion of certain toxins, including the SpeB cysteine protease and the streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and interfering with secretion of factors required for infection and survival. This mechanism may prove valuable for the design of new types of antimicrobial agents to combat the emergence of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Luis Alberto Vega
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
47
|
Growth phase-dependent modulation of Rgg binding specificity in Streptococcus pyogenes. J Bacteriol 2012; 194:3961-71. [PMID: 22636768 DOI: 10.1128/jb.06709-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes Rgg is a transcriptional regulator that interacts with the cofactor LacD.1 to control growth phase-dependent expression of genes, including speB, which encodes a secreted cysteine protease. LacD.1 is thought to interact with Rgg when glycolytic intermediates are abundant in a manner that prevents Rgg-mediated activation of speB expression via binding to the promoter region. When the intermediates diminish, LacD.1 dissociates from Rgg and binds to the speB promoter to activate expression. The purpose of this study was to determine if Rgg bound to chromatin during the exponential phase of growth and, if so, to identify the binding sites. Rgg bound to 62 chromosomal sites, as determined by chromatin immunoprecipitation coupled with DNA microarrays. Thirty-eight were within noncoding DNA, including sites upstream of the genes encoding the M protein (M49), serum opacity factor (SOF), fibronectin-binding protein (SfbX49), and a prophage-encoded superantigen, SpeH. Each of these sites contained a promoter that was regulated by Rgg, as determined with transcriptional fusion assays. Purified Rgg also bound to the promoter regions of emm49, sof, and sfbX49 in vitro. Results obtained with a lacD.1 mutant showed that both LacD.1 and Rgg were necessary for the repression of emm49, sof, sfbX49, and speH expression. Overall, the results indicated that the DNA binding specificity of Rgg is responsive to environmental changes in a LacD.1-dependent manner and that Rgg and LacD.1 directly control virulence gene expression in the exponential phase of growth.
Collapse
|
48
|
Fuchs TM, Eisenreich W, Heesemann J, Goebel W. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 2012; 36:435-62. [DOI: 10.1111/j.1574-6976.2011.00301.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/21/2011] [Indexed: 01/02/2023] Open
|
49
|
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) is a human-specific pathogen that causes a variety of diseases ranging from superficial infections to life-threatening diseases. SpeB, a potent extracellular cysteine proteinase, plays an important role in the pathogenesis of GAS infections. Previous studies show that SpeB expression and activity are controlled at the transcriptional and posttranslational levels, though it had been unclear whether speB was also regulated at the posttranscriptional level. In this study, we examined the growth phase-dependent speB mRNA level and decay using quantitative reverse transcription-PCR (qRT-PCR) and Northern blot analyses. We observed that speB mRNA accumulated rapidly during exponential growth, which occurred concomitantly with an increase in speB mRNA stability. A closer observation revealed that the increased speB mRNA stability was mainly due to progressive acidification. Inactivation of RNase Y, a recently identified endoribonuclease, revealed a role in processing and degradation of speB mRNA. We conclude that the increased speB mRNA stability contributes to the rapid accumulation of speB transcript during growth.
Collapse
|
50
|
Patenge N, Fiedler T, Kreikemeyer B. Common regulators of virulence in streptococci. Curr Top Microbiol Immunol 2012; 368:111-53. [PMID: 23242855 DOI: 10.1007/82_2012_295] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptococcal species are a diverse group of bacteria which can be found in animals and humans. Their interactions with host organisms can vary from commensal to pathogenic. Many of the pathogenic species are causative agents of severe, invasive infections in their hosts, accounting for a high burden of morbidity and mortality, associated with high economic costs in industry and health care. Among them, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus suis are discussed here. An environmentally stimulated and tightly controlled expression of their virulence factors is of utmost importance for their pathogenic potential. Thus, the most universal and widespread regulators from the classes of stand-alone transcriptional regulators, two-component signal transduction systems (TCS), eukaryotic-like serine/threonine kinases, and small noncoding RNAs are the topic of this chapter. The regulatory levels are reviewed with respect to function, activity, and their role in pathogenesis. Understanding of and interfering with transcriptional regulation mechanisms and networks is a promising basis for the development of novel anti-infective therapies.
Collapse
Affiliation(s)
- Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|