1
|
Liu Y, Wu F, Zhang M, Jin Y, Yuan X, Hao Y, Chen L, Fang B. 2'-Fucosyllactose and 3'-Sialyllactose Reduce Mortality in Neonatal Enteroaggregative Escherichia coli Infection by Improving the Construction of Intestinal Mucosal Immunity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26165-26177. [PMID: 39535070 DOI: 10.1021/acs.jafc.4c06524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Human milk oligosaccharides could prevent pathogenic bacterial infections in neonates; however, direct in vivo anti-infection evidence was still lacking. Here, we systematically evaluated the effects of 2'-fucosyllactose (2'-FL) and 3'-sialyllactose (3'-SL) on the structural development and functional maturation in neonates and their defense against enteroaggregative Escherichia coli infection. It was found that supplementation with 2'-FL and 3'-SL improved the resistance of weaned mice to enteroaggregative E. coli. The mechanism related to the promotion of 2'-FL and 3'-SL in the maturation of intestinal mucosal immunity by promoting stem cell differentiation, mucus layer integrity, and tight junction formation. 2'-FL and 3'-SL significantly increased the ratio of Th1 and Treg cells in the lamina propria, contents of short-chain fatty acids, as well as the serum content of IgA. This study lays a theoretical basis for the application of 2'-FL and 3'-SL in infant formula, as well as the development of intestinal health products.
Collapse
Affiliation(s)
- Yaqiong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xinlei Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Cao Z, Leng P, Xu H, Li X. The regulating role of galectin-9 in immune cell populations. Front Pharmacol 2024; 15:1462061. [PMID: 39539619 PMCID: PMC11557436 DOI: 10.3389/fphar.2024.1462061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Galectin-9 (gal-9) is a protein that belongs to the galectin family. Gal-9 is expressed in cells of the innate and adaptive immune system, including lymphocytes, dendritic cells, giant salivary cells, eosinophils and T cells, etc. In different immune cells, the role of gal-9 is different. Gal-9 can induce the proliferation and activation of immune cells, and also promote the apoptosis of immune cells. This effect of gal-9 affects the occurrence and development of a variety of immune-related diseases, such as the invasion of pathogenic microorganisms, immune escape of tumor cells, and inflammatory response. Thus, understanding the biological roles of gal-9 in innate and adaptive immunity may be essential for autoimmune diseases treatment and diagnosis to improve patient quality of life. In this review, we aim to summarize current research on the regulatory roles of gal-9 in human immune system and potential inducers and inhibitors of gal-9, which may provide new strategies for immune diseases therapies.
Collapse
Affiliation(s)
- Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | |
Collapse
|
3
|
Zhao H, Ma Y, Tian F, Li B, Xiao N, Mo X, Aibibula M, Min H, Cai X, Zhang T, Ma X. Expression of Tim-3/Galectin-9 pathway and CD8+T cells and related factors in patients with cystic echinococcosis. Exp Parasitol 2023; 254:108623. [PMID: 37793539 DOI: 10.1016/j.exppara.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE One of the primary reasons for the successful patriotization of Echinococcus multilocularis in patients is its ability to induce host immune tolerance. This study examined the expression of the immunosuppressive Tim-3/Galectin-9 pathway, CD8+T cells, and related factors in AE patients. The aim was to analyze the relationship between the Tim-3/Galectin-9 pathway and CD8+T cells in this disease and further understand the mechanism of immune tolerance induced by cystic echinococcosis. METHODS Using flow cytometry, we evaluated the expression of CTL, CD8+CD28-T cells, CD8+CD28 + IFN-γ + T cells, CD8+CD28+perforin + T cells, CD8+CD28+granzyme B + T cells, CD8+CD28-IL-10 + T cells, CD8+CD28-TGF-β+T cells, and Tim-3 expression on CD8+T cells in the peripheral blood of control (n = 30) and AE patients (n = 33). qRT-PCR was used to measure CD107a and Tim-3/Galectin-9 mRNA levels in PBMCs from the control and AE groups. Immunohistochemistry was employed to detect IL-10, TGF-β, and Tim-3/Galectin-9 expressions in the infected livers of AE patients. RESULTS AE patients exhibited a significant decrease in peripheral blood CTL ratio (P < 0.001) and an increase in CD8+CD28+IFN-γ+T cell ratio (P < 0.001). No significant changes were observed in the ratios of CD8+CD28+perforin + T cells (P = 0.720) and CD8+CD28+granzyme B + T cells (P = 0.051). The proportions of CD8+CD28-T cells (P < 0.001), CD8+CD28-IL-10 + T cells (P < 0.001), and CD8+CD28-TGF-β+T cells (P < 0.001) were notably higher than in the control group. The expression of Tim-3 on CTL and CD8+CD28-T cells in AE patients was significantly upregulated (P < 0.001, P < 0.001). AE patients displayed a substantial decrease in peripheral blood PBMC CD107a mRNA levels (P < 0.001) and significant elevations in Tim-3/Galectin-9 mRNA levels (P < 0.001, P < 0.001). A negative correlation was observed between CD107a mRNA levels and both Tim-3 (r^2 = 0.411, P < 0.001) and Galectin-9 (r2 = 0.180, P = 0.019) mRNA levels. Expressions of IL-10 (P < 0.001), TGF-β (P < 0.001), and Tim-3/Galectin-9 (P < 0.001, P < 0.001) in AE patient-infected livers were significantly higher than in uninfected regions. IL-10 and TGF-β expressions showed a positive correlation with Tim-3/Galectin-9. CONCLUSION This study suggests that the high expression of Tim-3 on CD8+T cell surfaces in AE patients might promote an increase in CD8+CD28-T cells and related factors, while suppressing CTL and related factor expressions. This potentially induces the onset of immune tolerance, which is unfavorable for the clearance of Echinococcus multilocularis in patients, leading to the exacerbation of persistent infections.
Collapse
Affiliation(s)
- Hui Zhao
- The First Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Yuyu Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Fengming Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Bin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China
| | - Madinaimu Aibibula
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Hongyue Min
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Xuanlin Cai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China.
| |
Collapse
|
4
|
Yan X, Meng L, Zhang X, Deng Z, Gao B, Zhang Y, Yang M, Ma Y, Zhang Y, Tu K, Zhang M, Xu Q. Reactive oxygen species-responsive nanocarrier ameliorates murine colitis by intervening colonic innate and adaptive immune responses. Mol Ther 2023; 31:1383-1401. [PMID: 36855303 PMCID: PMC10188638 DOI: 10.1016/j.ymthe.2023.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic or relapsing inflammatory disease with limited therapeutic outcomes. Pterostilbene (PSB) is a polyphenol-based anti-oxidant that has received extensive interest for its intrinsic anti-inflammatory and anti-oxidative activities. This work aims to develop a reactive oxygen species (ROS)-responsive, folic acid (FA)-functionalized nanoparticle (NP) for efficient PSB delivery to treat UC. The resulting PSB@NP-FA had a nano-scaled diameter of 231 nm and a spherical shape. With ROS-responsive release and ROS-scavenging properties, PSB@NP could effectively scavenge H2O2, thereby protecting cells from H2O2-induced oxidative damage. After FA modification, the resulting PSB@NP-FA could be internalized by RAW 264.7 and Colon-26 cells efficiently and preferentially localized to the inflamed colon. In dextran sulfate sodium (DSS)-induced colitis models, PSB@NP-FA showed a prominent ROS-scavenging capacity and anti-inflammatory activity, therefore relieving murine colitis effectively. Mechanism results suggested that PSB@NP-FA ameliorated colitis by regulating dendritic cells (DCs), promoting macrophage polarization, and regulating T cell infiltration. Both innate and adaptive immunity were involved. More importantly, the combination of the PSB and dexamethasone (DEX) enhanced the therapeutic efficacy of colitis. This ROS-responsive and ROS-scavenging nanocarrier represents an alternative therapeutic approach to UC. It can also be used as an enhancer for classic anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiangji Yan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Lingzhang Meng
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China; Center for Systemic Inflammation Research (CSIR), Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xingzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi 710061, China
| | - Zhichao Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Bowen Gao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Mei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yana Ma
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Mingzhen Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China.
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
5
|
Zhang X, Liang Y, Jiang J, Lu C, Shi F, Cao Q, Zhang Y, Diao H. A High-Salt Diet Exacerbates Liver Fibrosis through Enterococcus-Dependent Macrophage Activation. Microbiol Spectr 2023; 11:e0340322. [PMID: 36786636 PMCID: PMC10100947 DOI: 10.1128/spectrum.03403-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/14/2023] [Indexed: 02/15/2023] Open
Abstract
People consume more salt than the recommended levels due to poor dietary practices. The effects of long-term consumption of high-salt diets (HSD) on liver fibrosis are unclear. This study aimed to explore the impact of HSD on liver fibrosis. In this study, a carbon tetrachloride (CCL4)-induced liver fibrosis mouse model was used to evaluate fibrotic changes in the livers of mice fed a normal diet (ND) and an HSD. The HSD exacerbated liver injury and fibrosis. Moreover, the protein expression levels of transforming growth factor β (TGF-β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein 1 (MCP-1) were significantly higher in the HSD group than in the normal group. The proportion of macrophages and activation significantly increased in the livers of HSD-fed mice. Meanwhile, the number of macrophages significantly increased in the small intestinal lamina propria of HSD-fed mice. The levels of profibrotic factors also increased in the small intestine of HSD-fed mice. Additionally, HSD increased the profibrotic chemokines and monocyte chemoattractant levels in the portal vein blood. Further characterization suggested that the HSD decreased the expression of tight junction proteins (ZO-1 and CLDN1), enhancing the translocation of bacteria. Enterococcus promoted liver injury and inflammation. In vitro experiments demonstrated that Enterococcus induced macrophage activation through the NF-κB pathway, thus promoting the expression of fibrosis-related genes, leading to liver fibrogenesis. Similarly, Enterococcus disrupted the gut microbiome in vivo and significantly increased the fibrotic markers, TGF-β, and alpha smooth muscle actin (α-SMA) expression in the liver. IMPORTANCE This study further confirms that Enterococcus induce liver fibrosis in mice. These results indicate that an HSD can exacerbate liver fibrosis by altering the gut microbiota composition, thus impairing intestinal barrier function. Therefore, this may serve as a new target for liver fibrosis therapy and gut microbiota management.
Collapse
Affiliation(s)
- Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chong Lu
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Association of Tim-3/Gal-9 Axis with NLRC4 Inflammasome in Glioma Malignancy: Tim-3/Gal-9 Induce the NLRC4 Inflammasome. Int J Mol Sci 2022; 23:ijms23042028. [PMID: 35216164 PMCID: PMC8878774 DOI: 10.3390/ijms23042028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Tim-3/Gal-9 and the NLRC4 inflammasome contribute to glioma progression. However, the underlying mechanisms involved are unclear. Here, we observed that Tim-3/Gal-9 expression increased with glioma malignancy and found that Tim-3/Gal-9 regulate NLRC4 inflammasome formation and activation. Tim-3/Gal-9 and NLRC4 inflammasome-related molecule expression levels increased with WHO glioma grade, and this association was correlated with low survival. We investigated NLRC4 inflammasome formation by genetically regulating Tim-3 and its ligand Gal-9. Tim-3/Gal-9 regulation was positively correlated with the NLRC4 inflammasome, NLRC4, and caspase-1 expression. Tim-3/Gal-9 did not trigger IL-1β secretion but were strongly positively correlated with caspase-1 activity as they induced programmed cell death in glioma cells. A protein–protein interaction analysis revealed that the FYN-JAK1-ZNF384 pathways are bridges in NLRC4 inflammasome regulation by Tim-3/Gal-9. The present study showed that Tim-3/Gal-9 are associated with poor prognosis in glioma patients and induce NLRC4 inflammasome formation and activation. We proposed that a Tim-3/Gal-9 blockade could be beneficial in glioma therapy as it would reduce the inflammatory microenvironment by downregulating the NLRC4 inflammasome.
Collapse
|
7
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
8
|
Rhoades NS, Hendrickson SM, Prongay K, Haertel A, Gill L, Edwards RA, Garzel L, Slifka MK, Messaoudi I. Growth faltering regardless of chronic diarrhea is associated with mucosal immune dysfunction and microbial dysbiosis in the gut lumen. Mucosal Immunol 2021; 14:1113-1126. [PMID: 34158595 PMCID: PMC8379072 DOI: 10.1038/s41385-021-00418-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
Despite the impact of childhood diarrhea on morbidity and mortality, our understanding of its sequelae has been significantly hampered by the lack of studies that examine samples across the entire intestinal tract. Infant rhesus macaques are naturally susceptible to human enteric pathogens and recapitulate the hallmarks of diarrheal disease such as intestinal inflammation and growth faltering. Here, we examined intestinal biopsies, lamina propria leukocytes, luminal contents, and fecal samples from healthy infants and those experiencing growth faltering with distant acute or chronic active diarrhea. We show that growth faltering in the presence or absence of active diarrhea is associated with a heightened systemic and mucosal pro-inflammatory state centered in the colon. Moreover, polyclonal stimulation of colonic lamina propria leukocytes resulted in a dampened cytokine response, indicative of immune exhaustion. We also detected a functional and taxonomic shift in the luminal microbiome across multiple gut sites including the migration of Streptococcus and Prevotella species between the small and large intestine, suggesting a decompartmentalization of gut microbial communities. Our studies provide valuable insight into the outcomes of diarrheal diseases and growth faltering not attainable in humans and lays the groundwork to test interventions in a controlled and reproducible setting.
Collapse
Affiliation(s)
- Nicholas S Rhoades
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Sara M Hendrickson
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Kamm Prongay
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Andrew Haertel
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Leanne Gill
- California National Primate Research Center, Davis, Davis, CA, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Laura Garzel
- California National Primate Research Center, Davis, Davis, CA, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
10
|
Schmidt S, Sassu EL, Vatzia E, Pierron A, Lagler J, Mair KH, Stadler M, Knecht C, Spergser J, Dolezal M, Springer S, Theuß T, Fachinger V, Ladinig A, Saalmüller A, Gerner W. Vaccination and Infection of Swine With Salmonella Typhimurium Induces a Systemic and Local Multifunctional CD4 + T-Cell Response. Front Immunol 2021; 11:603089. [PMID: 33584671 PMCID: PMC7874209 DOI: 10.3389/fimmu.2020.603089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023] Open
Abstract
The gram-negative facultative intracellular bacteria Salmonella Typhimurium (STM) often leads to subclinical infections in pigs, but can also cause severe enterocolitis in this species. Due to its high zoonotic potential, the pathogen is likewise dangerous for humans. Vaccination with a live attenuated STM strain (Salmoporc) is regarded as an effective method to control STM infections in affected pig herds. However, information on the cellular immune response of swine against STM is still scarce. In this study, we investigated the T-cell immune response in pigs that were vaccinated twice with Salmoporc followed by a challenge infection with a virulent STM strain. Blood- and organ-derived lymphocytes (spleen, tonsils, jejunal and ileocolic lymph nodes, jejunum, ileum) were stimulated in vitro with heat-inactivated STM. Subsequently, CD4+ T cells present in these cell preparations were analyzed for the production of IFN-γ, TNF-α, and IL-17A by flow cytometry and Boolean gating. Highest frequencies of STM-specific cytokine-producing CD4+ T cells were found in lamina propria lymphocytes of jejunum and ileum. Significant differences of the relative abundance of cytokine-producing phenotypes between control group and vaccinated + infected animals were detected in most organs, but dominated in gut and lymph node-residing CD4+ T cells. IL-17A producing CD4+ T cells dominated in gut and gut-draining lymph nodes, whereas IFN-γ/TNF-α co-producing CD4+ T cells were present in all locations. Additionally, the majority of cytokine-producing CD4+ T cells had a CD8α+CD27- phenotype, indicative of a late effector or effector memory stage of differentiation. In summary, we show that Salmonella-specific multifunctional CD4+ T cells exist in vaccinated and infected pigs, dominate in the gut and most likely contribute to protective immunity against STM in the pig.
Collapse
Affiliation(s)
- Selma Schmidt
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eleni Vatzia
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Alix Pierron
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Julia Lagler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.,Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Tobias Theuß
- Ceva Innovation Center GmbH, Dessau-Roßlau, Germany
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
11
|
Wu Y, Feng Z, Jiang S, Chen J, Zhan Y, Chen J. Secreting-lux/pT-ClyA engineered bacteria suppresses tumor growth via interleukin-1β in two pathways. AMB Express 2019; 9:189. [PMID: 31754923 PMCID: PMC6872689 DOI: 10.1186/s13568-019-0910-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Engineered Salmonella typhimurium (S.t-ΔpGlux/pT-ClyA) and attenuated Salmonella typhimurium (SL: Salmonella typhimurium with a defect in the synthesis of guanine 5′-diphosphate-3′-diphosphate) exhibit similar tumor targeting capabilities (Kim et al. in Theranostics 5:1328–1342, 2015; Jiang et al. in Mol Ther 18:635–642, 2013), but S.t-ΔpGlux/pT-ClyA exerts superior tumor suppressive effects. The aim of this study was to investigate whether S.t-ΔpGlux/pT-ClyA inhibits colon cancer growth and recurrence by promoting increased IL-1β production. The CT26 tumor mouse model was used, and mice were treated in the following ways: PBS, S.t-ΔpGlux/pT-ClyA(+) + IL-1βAb, SL, S.t-ΔpGlux/pT-ClyA(−), and S.t-ΔpGlux/pT-ClyA(+). Dynamic evaluation of the efficacy of S.t-ΔpGlux/pT-ClyA in the treatment of colon cancer was assessed by MRI. Western blot, immunofluorescence and flow cytometry analysis were used to investigate IL-1β-derived cells and IL-1β expression on tumor cells and immune cells to analyze the regulatory mechanism. IL-1β levels in tumors colonized by S.t-ΔpGlux/pT-ClyA were significantly increased and maintained at high levels compared to control treatments. This increase caused tumors to subside without recurrence. We examined the immune cells mediating S.t-ΔpGlux/pT-ClyA-induced tumor suppression and examined the major cell types producing IL-1β. We found that macrophages and dendritic cells were the primary IL-1β producers. Inhibition of IL-1β in mice treated with S.t-ΔpGlux/pT-ClyA using an IL-1β antibody caused tumor growth to resume. This suggests that IL-1β plays an important role in the treatment of cancer by S.t-ΔpGlux/pT-ClyA. We found that in St-ΔpGlux/pT-ClyA-treated tumors, expression of molecules involved in signaling pathways, such as NLRP3, ASC, Caspase1, TLR4, MyD88, NF-kB and IL-1β, were upregulated, while in ΔppGpp S. typhimurium treated animals, TLR4, MyD88, NF-kB and IL-1β were upregulated with NLRP3, ASC, and Caspase1 being rarely expressed or not expressed at all. Using S.t-ΔpGlux/pT-ClyA may simultaneously activate TLR4 and NLRP3 signaling pathways, which increase IL-1β expression and enhance inhibition of colon cancer growth without tumor recurrence. This study provides a novel platform for treating colon cancer.
Collapse
|
12
|
Qin A, Zhong T, Zou H, Wan X, Yao B, Zheng X, Yin D. Critical role of Tim-3 mediated autophagy in chronic stress induced immunosuppression. Cell Biosci 2019; 9:13. [PMID: 30680089 PMCID: PMC6341633 DOI: 10.1186/s13578-019-0275-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
Background Psychological and physical stress can either enhance or suppress immune functions depending on a variety of factors such as duration and severity of stressful situation. Chronic stress exerts a significantly suppressive effect on immune functions. However, the mechanisms responsible for this phenomenon remain to be elucidated. Autophagy plays an essential role in modulating cellular homeostasis and immune responses. However, it is not known yet whether autophagy contributes to chronic stress-induced immunosuppression. T cell immunoglobulin and mucin domain 3 (Tim-3) has shown immune-suppressive effects and obviously positive regulation on cell apoptosis. Tim-3 combines with Tim-3 ligand galectin-9 to modulate apoptosis. However, its impact on autophagy and chronic stress-induced immunosuppression is not yet identified. Results We found remarkably higher autophagy level in the spleens of mice that were subjected to chronic restraint stress compared with the control group. We also found that inhibition of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated chronic stress-induced alterations of pro-inflammatory and anti-inflammatory cytokine levels. We further elucidated that 3-MA dramatically inhibited the reduction of lymphocyte numbers. Moreover, chronic stress dramatically enhanced the expression of Tim-3 and galectin-9. Inhibition of Tim-3 by small interfering RNA against Tim-3 significantly decreased the level of autophagy and immune suppression in isolated primary splenocytes from stressed mice. In addition, α-lactose, a blocker for the interaction of Tim-3 and galectin-9, also decreased the autophagy level and immune suppression. Conclusion Chronic stress induces autophagy, resulting with suppression of immune system. Tim-3 and galectin-9 play a crucial regulatory role in chronic stress-induced autophagy. These studies suggest that Tim-3 mediated autophagy may offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.
Collapse
Affiliation(s)
- Anna Qin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Huajiao Zou
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Bifeng Yao
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China.,2Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| |
Collapse
|