1
|
Shinde S, Miryala SK, Anbarasu A, Ramaiah S. Systems biology approach to understand the interplay between Bacillus anthracis and human host genes that leads to CVDs. Microb Pathog 2023; 176:106019. [PMID: 36736801 DOI: 10.1016/j.micpath.2023.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Humans infected with invasive Bacillus anthracis (B. anthracis) have a very poor prognosis and are at high risk for developing cardiovascular diseases (CVDs) and shock. Several bacterial elements probably have significant pathogenic roles in this pathogenic process of anthrax. In our current work, we have analysed the molecular level interactions between B. anthracis and human genes to understand the interplay during anthrax that leads to the CVDs. Our results have shown dense interactions between the functional partners in both host and the B. anthracis Gene interaction network (GIN). The functional enrichment analysis indicated that the clusters in the host GIN had genes related to hypoxia and autophagy in response to the lethal toxin; and genes related to adherens junction and actin cytoskeleton in response to edema toxin play a significant role in multiple stages of the disease. The B. anthracis genes BA_0530, guaA, polA, rpoB, ribD, secDF, metS, dinG and human genes ACTB, EGFR, EP300, CTNNB1, ESR1 have shown more than 50 direct interactions with the functional partners and hence they can be considered as hub genes in the network and they are observed to have important roles in CVDs. The outcome of our study will help to understand the molecular pathogenesis of CVDs in anthrax. The hub genes reported in the study can be considered potential drug targets and they can be exploited for new drug discovery.
Collapse
Affiliation(s)
- Shabduli Shinde
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Structural Integrity of the Alveolar-Capillary Barrier in Cynomolgus Monkeys Challenged with Fully Virulent and Toxin-Deficient Strains of Bacillus anthracis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2095-2110. [PMID: 32598882 DOI: 10.1016/j.ajpath.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022]
Abstract
Inhalational anthrax, a disease caused by inhaling Bacillus anthracis spores, leads to respiratory distress, vascular leakage, high-level bacteremia, and often death within days. Anthrax lethal toxin and edema toxin, which are composed of protective antigen (PA) plus either lethal factor (LF) or edema factor (EF), respectively, play an important yet incompletely defined role in the pulmonary pathophysiology. To better understand their contribution, we examined the structural integrity of the alveolar-capillary barrier in archival formalin-fixed lungs of cynomolgus monkeys challenged with the fully virulent B. anthracis Ames wild-type strain or the isogenic toxin-deficient mutants ΔEF, ΔLF, and ΔPA. Pulmonary spore challenge with the wild-type strain caused high mortality, intra-alveolar hemorrhages, extensive alveolar septal sequestration of bacteria and neutrophils, diffuse destabilization of epithelial and endothelial junctions, increased markers of coagulation and complement activation (including tissue factor and C5a), and multifocal intra-alveolar fibrin deposition. ΔEF challenge was lethal and showed similar alveolar-capillary alterations; however, intra-alveolar hemorrhages, bacterial deposition, and markers of coagulation or complement were absent or markedly lower. In contrast, ΔLF or ΔPA challenges were nonlethal and showed no signs of alveolar bacterial deposition or alveolar-capillary changes. These findings provide evidence that lethal toxin plays a determinative role in bacterial dissemination and alveolar-capillary barrier dysfunction, and edema toxin may significantly exacerbate pulmonary pathologies in a systemic infection.
Collapse
|
3
|
Bacillus anthracis Edema Toxin Inhibits Efferocytosis in Human Macrophages and Alters Efferocytic Receptor Signaling. Int J Mol Sci 2019; 20:ijms20051167. [PMID: 30866434 PMCID: PMC6429438 DOI: 10.3390/ijms20051167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
The Bacillus anthracis Edema Toxin (ET), composed of a Protective Antigen (PA) and the Edema Factor (EF), is a cellular adenylate cyclase that alters host responses by elevating cyclic adenosine monophosphate (cAMP) to supraphysiologic levels. However, the role of ET in systemic anthrax is unclear. Efferocytosis is a cAMP-sensitive, anti-inflammatory process of apoptotic cell engulfment, the inhibition of which may promote sepsis in systemic anthrax. Here, we tested the hypothesis that ET inhibits efferocytosis by primary human macrophages and evaluated the mechanisms of altered efferocytic signaling. ET, but not PA or EF alone, inhibited the efferocytosis of early apoptotic neutrophils (PMN) by primary human M2 macrophages (polarized with IL-4, IL-10, and/or dexamethasone) at concentrations relevant to those encountered in systemic infection. ET inhibited Protein S- and MFGE8-dependent efferocytosis initiated by signaling through MerTK and αVβ5 receptors, respectively. ET inhibited Rac1 activation as well as the phosphorylation of Rac1 and key activating sites of calcium calmodulin-dependent kinases CamK1α, CamK4, and vasodilator-stimulated phosphoprotein, that were induced by the exposure of M2(Dex) macrophages to Protein S-opsonized apoptotic PMN. These results show that ET impairs macrophage efferocytosis and alters efferocytic receptor signaling.
Collapse
|
4
|
Liu JZ, Ali SR, Bier E, Nizet V. Innate Immune Interactions between Bacillus anthracis and Host Neutrophils. Front Cell Infect Microbiol 2018; 8:2. [PMID: 29404280 PMCID: PMC5786542 DOI: 10.3389/fcimb.2018.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, has been a focus of study in host-pathogen dynamics since the nineteenth century. While the interaction between anthrax and host macrophages has been extensively modeled, comparatively little is known about the effect of anthrax on the immune function of neutrophils, a key frontline effector of innate immune defense. Here we showed that depletion of neutrophils significantly enhanced mortality in a systemic model of anthrax infection in mice. Ex vivo, we found that freshly isolated human neutrophils can rapidly kill anthrax, with specific inhibitor studies showing that phagocytosis and reactive oxygen species (ROS) generation contribute to this efficient bacterial clearance. Anthrax toxins, comprising lethal toxin (LT) and edema toxin (ET), are known to have major roles in B. anthracis macrophage resistance and systemic toxicity. Employing isogenic wild-type and mutant toxin-deficient B. anthracis strains, we show that despite previous studies that reported inhibition of neutrophil function by purified LT or ET, endogenous production of these toxins by live vegetative B. anthracis failed to alter key neutrophil functions. The lack of alteration in neutrophil function is accompanied by rapid killing of B. anthracis by neutrophils, regardless of the bacteria's expression of anthrax toxins. Lastly, our study demonstrates for the first time that anthrax induced neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Janet Z Liu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Syed R Ali
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Ethan Bier
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Anthrax Vaccine Precipitated Induces Edema Toxin-Neutralizing, Edema Factor-Specific Antibodies in Human Recipients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00165-17. [PMID: 28877928 DOI: 10.1128/cvi.00165-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/28/2017] [Indexed: 01/22/2023]
Abstract
Edema toxin (ET), composed of edema factor (EF) and protective antigen (PA), is a virulence factor of Bacillus anthracis that alters host immune cell function and contributes to anthrax disease. Anthrax vaccine precipitated (AVP) contains low but detectable levels of EF and can elicit EF-specific antibodies in human recipients of AVP. Active and passive vaccination of mice with EF can contribute to protection from challenge with Bacillus anthracis spores or ET. This study compared humoral responses to ET in recipients of AVP (n = 33) versus anthrax vaccine adsorbed (AVA; n = 66), matched for number of vaccinations and time postvaccination, and further determined whether EF antibodies elicited by AVP contribute to ET neutralization. AVP induced higher incidence (77.8%) and titer (229.8 ± 58.6) of EF antibodies than AVA (4.2% and 7.8 ± 8.3, respectively), reflecting the reported low but detectable presence of EF in AVP. In contrast, PA IgG levels and ET neutralization measured using a luciferase-based cyclic AMP reporter assay were robust and did not differ between the two vaccine groups. Multiple regression analysis failed to detect an independent contribution of EF antibodies to ET neutralization in AVP recipients; however, EF antibodies purified from AVP sera neutralized ET. Serum samples from at least half of EF IgG-positive AVP recipients bound to nine decapeptides located in EF domains II and III. Although PA antibodies are primarily responsible for ET neutralization in recipients of AVP, increased amounts of an EF component should be investigated for the capacity to enhance next-generation, PA-based vaccines.
Collapse
|
6
|
Sharma AK, Dhasmana N, Dubey N, Kumar N, Gangwal A, Gupta M, Singh Y. Bacterial Virulence Factors: Secreted for Survival. Indian J Microbiol 2016; 57:1-10. [PMID: 28148975 DOI: 10.1007/s12088-016-0625-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive-metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis-an intracellular pathogen and Bacillus anthracis-an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Neha Dhasmana
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Neha Dubey
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Nishant Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Aakriti Gangwal
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India.,Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
7
|
Suryanarayana N, Verma M, Thavachelvam K, Saxena N, Mankere B, Tuteja U, Hmuaka V. Generation of a novel chimeric PALFn antigen of Bacillus anthracis and its immunological characterization in mouse model. Appl Microbiol Biotechnol 2016; 100:8439-51. [DOI: 10.1007/s00253-016-7684-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022]
|
8
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
9
|
Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli. Mol Biol Int 2016; 2016:4732791. [PMID: 26966576 PMCID: PMC4761392 DOI: 10.1155/2016/4732791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.
Collapse
|
10
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
11
|
Nagendra S, Vanlalhmuaka, Verma S, Tuteja U, Thavachelvam K. Recombinant expression of Bacillus anthracis lethal toxin components of Indian isolate in Escherichia coli and determination of its acute toxicity level in mouse model. Toxicon 2015; 108:108-14. [PMID: 26472254 DOI: 10.1016/j.toxicon.2015.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/04/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Abstract
Bacillus anthracis lethal toxin (LeTx) is the principle factor responsible for toxaemia and anthrax related death. Lethal toxin consist of two proteins viz protective antigen (PA) and lethal factor which combines in a typical fashion similar to other toxins belonging to A-B toxin super family. The amount of LeTx required to kill a particular organism generally differs among strains owing to their geographical distributions and genetic variation. In the present study, we have cloned PA and LF genes from B. anthracis clinical isolate of Indian origin and expressed them in soluble form employing Escherichia coli expression system. Both the proteins were purified to near homogeneity level using Immobilized metal ion affinity chromatography (IMAC). Further we have used equal ratio of both the proteins to form LeTx and determined its acute toxicity level in Balb/c mice by graphical method of Miller and Tainter. The LD50 value of LeTx by intravenous (i.v) route was found to be 0.97 ± 0.634 mg kg(-1) Balb/c mice. This study highlights the expression of recombinant LeTx from E. coli and assessing its acute toxicity level in experimental mouse model.
Collapse
Affiliation(s)
- Suryanarayana Nagendra
- Division of Microbiology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India.
| | - Vanlalhmuaka
- Division of Microbiology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India.
| | - Sarika Verma
- Division of Microbiology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India.
| | - Urmil Tuteja
- Division of Microbiology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India.
| | - Kulanthaivel Thavachelvam
- Division of Microbiology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India.
| |
Collapse
|
12
|
Ramachandran G, Gade P, Tsai P, Lu W, Kalvakolanu DV, Rosen GM, Cross AS. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis. Pathog Dis 2015; 73:ftv080. [PMID: 26424808 DOI: 10.1093/femspd/ftv080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is acquired by mammalian hosts from the environment, as quiescent endospores. These endospores must germinate inside host cells, forming vegetative bacilli, before they can express the virulence factors that enable them to evade host defenses and disseminate throughout the body. While the role of macrophages and dendritic cells in this initial interaction has been established, the role of polymorphonuclear leukocytes (PMNs) has not been adequately defined. We discovered that while B. anthracis 34F2 Sterne endospores germinate poorly within non-activated human PMNs, these phagocytes exhibit rapid microbicidal activity toward the outgrown vegetative bacilli, independent of superoxide and nitric oxide. These findings suggest that a non-free radical pathway kills B. anthracis bacilli. We also find in PMNs an autophagic mechanism of bacterial killing based on the rapid induction of LC-3 conversion, beclin-1 expression, sequestosome 1 (SQSTM1) degradation and inhibition of bactericidal activity by the inhibitor, 3-methyladenine. These findings extend to PMNs an autophagic bactericidal mechanism previously described for other phagocytes.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Padmaja Gade
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pei Tsai
- Department of Pharmaceutical Sciences, and the Center for EPR Imaging In Vivo Physiology, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Rosen
- Department of Pharmaceutical Sciences, and the Center for EPR Imaging In Vivo Physiology, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alan S Cross
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
14
|
Lin P, Cheng T, Jin S, Wu Y, Fu B, Long R, Zhao P, Xia Q. PC, a Novel Oral Insecticidal Toxin from Bacillus bombysepticus Involved in Host Lethality via APN and BtR-175. Sci Rep 2015; 5:11101. [PMID: 26057951 PMCID: PMC4460869 DOI: 10.1038/srep11101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/13/2015] [Indexed: 01/31/2023] Open
Abstract
Insect pests have developed resistance to chemical insecticides, insecticidal toxins as bioinsecticides or genetic protection built into crops. Consequently, novel, orally active insecticidal toxins would be valuable biological alternatives for pest control. Here, we identified a novel insecticidal toxin, parasporal crystal toxin (PC), from Bacillus bombysepticus (Bb). PC shows oral pathogenic activity and lethality towards silkworms and Cry1Ac-resistant Helicoverpa armigera strains. In vitro assays, PC after activated by trypsin binds to BmAPN4 and BtR-175 by interacting with CR7 and CR12 fragments. Additionally, trypsin-activated PC demonstrates cytotoxicity against Sf9 cells expressing BmAPN4, revealing that BmAPN4 serves as a functional receptor that participates in Bb and PC pathogenicity. In vivo assay, knocking out BtR-175 increased the resistance of silkworms to PC. These data suggest that PC is the first protein with insecticidal activity identified in Bb that is capable of causing silkworm death via receptor interactions, representing an important advance in our understanding of the toxicity of Bb and the contributions of interactions between microbial pathogens and insects to disease pathology. Furthermore, the potency of PC as an insecticidal protein makes it a good candidate for inclusion in integrated agricultural pest management systems.
Collapse
Affiliation(s)
- Ping Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shengkai Jin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bohua Fu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Micropatterned macrophage analysis reveals global cytoskeleton constraints induced by Bacillus anthracis edema toxin. Infect Immun 2015; 83:3114-25. [PMID: 26015478 DOI: 10.1128/iai.00479-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/16/2015] [Indexed: 12/20/2022] Open
Abstract
Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton.
Collapse
|
16
|
Busch B, Weimer R, Woischke C, Fischer W, Haas R. Helicobacter pylori interferes with leukocyte migration via the outer membrane protein HopQ and via CagA translocation. Int J Med Microbiol 2015; 305:355-64. [PMID: 25736449 DOI: 10.1016/j.ijmm.2015.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
The human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Persistent colonization of the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, such as avoidance of Toll-like receptor recognition or skewing of effector T cell responses. Interactions of H. pylori with different immune cells have been described with respect to immune cell activation, cytokine release, or oxidative burst induction. We show here that H. pylori infection of human granulocytes, or of HL-60 cells differentiated to a granulocyte-like phenotype (dHL-60 cells) results in inhibition of cell migration under different conditions. Migration of dHL-60 cells in a three-dimensional collagen gel was found to be inhibited independently of the cag pathogenicity island, whereas migration inhibition in an under agarose assay was dependent on the cag pathogenicity island, on its effector protein CagA, and on the outer membrane protein HopQ. CagA translocation into leukocytes is accompanied by its tyrosine phosphorylation and by proteolytic processing into an N-terminal 100 kDa and a C-terminal 35 kDa fragment at a distinct cleavage site. By using complemented H. pylori strains producing either phosphorylation-resistant or cleavage-resistant CagA variants, we show that CagA tyrosine phosphorylation is required for migration inhibition, but CagA processing is not. Our results suggest that direct contact of H. pylori with immune cells subverts not only their activation characteristics, but also their migratory behaviour.
Collapse
Affiliation(s)
- Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Ramona Weimer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Christine Woischke
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany.
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research, Partner Site München, München, Germany
| |
Collapse
|
17
|
Weiner ZP, Ernst SM, Boyer AE, Gallegos-Candela M, Barr JR, Glomski IJ. Circulating lethal toxin decreases the ability of neutrophils to respond toBacillus anthracis. Cell Microbiol 2013; 16:504-18. [DOI: 10.1111/cmi.12232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Zachary P. Weiner
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville VA USA
| | - Stephen M. Ernst
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville VA USA
| | - Anne E. Boyer
- National Center for Environmental Health; Centers for Disease Control and Prevention; Atlanta GA 30341 USA
| | - Maribel Gallegos-Candela
- National Center for Environmental Health; Centers for Disease Control and Prevention; Atlanta GA 30341 USA
| | - John R. Barr
- National Center for Environmental Health; Centers for Disease Control and Prevention; Atlanta GA 30341 USA
| | - Ian J. Glomski
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville VA USA
| |
Collapse
|
18
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
19
|
Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012; 2:76. [PMID: 22919667 PMCID: PMC3417473 DOI: 10.3389/fcimb.2012.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
Collapse
Affiliation(s)
- David E Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
20
|
Trescos Y, Tournier JN. Cytoskeleton as an emerging target of anthrax toxins. Toxins (Basel) 2012; 4:83-97. [PMID: 22474568 PMCID: PMC3317109 DOI: 10.3390/toxins4020083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/21/2012] [Accepted: 01/26/2012] [Indexed: 01/29/2023] Open
Abstract
Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT) and edema toxin (ET). So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.
Collapse
Affiliation(s)
- Yannick Trescos
- Unité Interactions Hôte-Agents pathogènes, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, BP 87, 24 avenue des Maquis du Grésivaudan 38702 La Tronche Cedex, France;
- Ecole du Val-de-Grâce, 1 place Alphonse Lavéran, 75005 Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents pathogènes, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, BP 87, 24 avenue des Maquis du Grésivaudan 38702 La Tronche Cedex, France;
- Ecole du Val-de-Grâce, 1 place Alphonse Lavéran, 75005 Paris, France
- Author to whom correspondence should be addressed; ; Tel.: +33-4-76636850; Fax: +33-4-76636917
| |
Collapse
|
21
|
Klezovich-Bénard M, Corre JP, Jusforgues-Saklani H, Fiole D, Burjek N, Tournier JN, Goossens PL. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: a balance between stimulation by spores and differential disruption by toxins. PLoS Pathog 2012; 8:e1002481. [PMID: 22253596 PMCID: PMC3257302 DOI: 10.1371/journal.ppat.1002481] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023] Open
Abstract
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms. NK cells are important immune effectors that perform a surveillance task and react to transformed, stressed, and virally infected cells. They represent a first-line defence against cancer and pathogen invasion. Different pathogens trigger distinct NK-cell activation pathways. The Bacillus anthracis spore is the highly resistant form that enters the host and provokes anthrax. This microbe kills through a combination of acute bacterial infection and devastating toxemia. In the present study, we characterise the crosstalk between NK cells and spores, as well as the strategies used by B. anthracis to evade initial control mechanisms and impact anthrax pathogenesis. Our findings exemplify the spores' property to efficiently drive a high production of IFN-γ by NK cells, as well as the complex pathways used for activation which require both cytokine and cellular signaling. B. anthracis subverts this response through its toxins by paralysing essential NK cell functions. Furthermore, edema toxin from B. anthracis blocks natural cytotoxicity without affecting IFN-γ secretion. The CyaA toxin of Bordetella pertussis possesses the same enzymatic activity and has a similar effect. The high efficiency of these toxins in blocking cytotoxicity in vivo implies possible exploitation of their subverting activity to modulate excessive cytotoxic responses in immunopathological diseases.
Collapse
MESH Headings
- Animals
- Bacillus anthracis/immunology
- Bacterial Toxins/pharmacology
- Cells, Cultured
- Female
- Homeostasis/drug effects
- Homeostasis/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macrophage Activation/drug effects
- Macrophage Activation/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/immunology
- Spores, Bacterial/immunology
- Spores, Bacterial/physiology
Collapse
Affiliation(s)
- Maria Klezovich-Bénard
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Philippe Corre
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | | | - Daniel Fiole
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier, St-Martin-d'Hères, France
| | - Nick Burjek
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- École du Val-de-Grâce, Paris, France
| | - Pierre L. Goossens
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Nguyen C, Feng C, Zhan M, Cross AS, Goldblum SE. Bacillus anthracis-derived edema toxin (ET) counter-regulates movement of neutrophils and macromolecules through the endothelial paracellular pathway. BMC Microbiol 2012; 12:2. [PMID: 22230035 PMCID: PMC3277462 DOI: 10.1186/1471-2180-12-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common finding amongst patients with inhalational anthrax is a paucity of polymorphonuclear leukocytes (PMNs) in infected tissues in the face of abundant circulating PMNs. A major virulence determinant of anthrax is edema toxin (ET), which is formed by the combination of two proteins produced by the organism, edema factor (EF), which is an adenyl cyclase, and protective antigen (PA). Since cAMP, a product of adenyl cyclase, is known to enhance endothelial barrier integrity, we asked whether ET might decrease extravasation of PMNs into tissues through closure of the paracellular pathway through which PMNs traverse. RESULTS Pretreatment of human microvascular endothelial cell(EC)s of the lung (HMVEC-L) with ET decreased interleukin (IL)-8-driven transendothelial migration (TEM) of PMNs with a maximal reduction of nearly 60%. This effect required the presence of both EF and PA. Conversely, ET did not diminish PMN chemotaxis in an EC-free system. Pretreatment of subconfluent HMVEC-Ls decreased transendothelial 14 C-albumin flux by ~ 50% compared to medium controls. Coadministration of ET with either tumor necrosis factor-α or bacterial lipopolysaccharide, each at 100 ng/mL, attenuated the increase of transendothelial 14 C-albumin flux caused by either agent alone. The inhibitory effect of ET on TEM paralleled increases in protein kinase A (PKA) activity, but could not be blocked by inhibition of PKA with either H-89 or KT-5720. Finally, we were unable to replicate the ET effect with either forskolin or 3-isobutyl-1-methylxanthine, two agents known to increase cAMP. CONCLUSIONS We conclude that ET decreases IL-8-driven TEM of PMNs across HMVEC-L monolayers independent of cAMP/PKA activity.
Collapse
Affiliation(s)
- Chinh Nguyen
- Southern Arizona Veterans Affairs Health Care Systems, Tucson, AZ 85723, USA.
| | | | | | | | | |
Collapse
|
23
|
Chauncey KM, Szarowicz SE, Sidhu GS, During RL, Southwick FS. Anthrax lethal and edema toxins fail to directly impair human platelet function. J Infect Dis 2011; 205:453-7. [PMID: 22158563 DOI: 10.1093/infdis/jir763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hemorrhage is a prominent clinical manifestation of systemic anthrax. Therefore, we have examined the effects of anthrax lethal and edema toxins on human platelets. We find that anthrax lethal toxin fails to cleave its target, mitogen-activated protein kinase 1, and anthrax edema toxin fails to increase intracellular cyclic adenosine monophosphate. Surface expression of toxin receptors tumor endothelial marker 8 and capillary morphogenesis gene 2, as well as coreceptor low density lipoprotein receptor-related protein 6 (LRP6), are markedly reduced, preventing toxin binding to platelets. Our studies suggest that the hemorrhagic clinical manifestations of systemic anthrax are unlikely to be caused by the direct binding and entry of anthrax toxins into human platelets.
Collapse
Affiliation(s)
- Kassidy M Chauncey
- Department of Medicine, University of Florida, Gainesville, FL 32610-0277, USA
| | | | | | | | | |
Collapse
|
24
|
Dumetz F, Jouvion G, Khun H, Glomski IJ, Corre JP, Rougeaux C, Tang WJ, Mock M, Huerre M, Goossens PL. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2523-35. [PMID: 21641378 DOI: 10.1016/j.ajpath.2011.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/25/2011] [Accepted: 02/01/2011] [Indexed: 12/27/2022]
Abstract
Powerful noninvasive imaging technologies enable real-time tracking of pathogen-host interactions in vivo, giving access to previously elusive events. We visualized the interactions between wild-type Bacillus anthracis and its host during a spore infection through bioluminescence imaging coupled with histology. We show that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice. Edema toxin (ET), but not lethal toxin (LT), markedly modified the patterns of bacterial dissemination leading, to apparent direct dissemination to the spleen and provoking apoptosis of lymphoid cells. Each toxin alone provoked particular histological lesions in the spleen. When ET and LT are produced together during infection, a specific temporal pattern of lesion developed, with early lesions typical of LT, followed at a later stage by lesions typical of ET. Our study provides new insights into the complex spatial and temporal effects of B. anthracis toxins in the infected host, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection.
Collapse
Affiliation(s)
- Fabien Dumetz
- Pathogenesis of Bacterial Toxi-Infections Laboratory, Pasteur Institute (Institut Pasteur), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guichard A, Nizet V, Bier E. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect 2011; 14:97-118. [PMID: 21930233 DOI: 10.1016/j.micinf.2011.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
26
|
Glycogen synthase kinase 3 activation is important for anthrax edema toxin-induced dendritic cell maturation and anthrax toxin receptor 2 expression in macrophages. Infect Immun 2011; 79:3302-8. [PMID: 21576335 DOI: 10.1128/iai.05070-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anthrax edema toxin (ET) is one of two binary toxins produced by Bacillus anthracis that contributes to the virulence of this pathogen. ET is an adenylate cyclase that generates high levels of cyclic AMP (cAMP), causing alterations in multiple host cell signaling pathways. We previously demonstrated that ET increases cell surface expression of the anthrax toxin receptors (ANTXR) in monocyte-derived cells and promotes dendritic cell (DC) migration toward the lymph node-homing chemokine MIP-3β. In this work, we sought to determine if glycogen synthase kinase 3 (GSK-3) is important for ET-induced modulation of macrophage and DC function. We demonstrate that inhibition of GSK-3 dampens ET-induced maturation and migration processes of monocyte-derived dendritic cells (MDDCs). Additional studies reveal that the ET-induced expression of ANTXR in macrophages was decreased when GSK-3 activity was disrupted with chemical inhibitors or with small interfering RNA (siRNA) targeting GSK-3. Further examination of the ET induction of ANTXR revealed that a dominant negative form of CREB could block the ET induction of ANTXR, suggesting that CREB or a related family member was involved in the upregulation of ANTXR. Because CREB and GSK-3 activity appeared to be important for ET-induced ANTXR expression, the impact of GSK-3 on ET-induced CREB activity was examined in RAW 264.7 cells possessing a CRE-luciferase reporter. As with ANTXR expression, the ET induction of the CRE reporter was decreased by reducing GSK-3 activity. These studies not only provide insight into host pathways targeted by ET but also shed light on interactions between GSK-3 and CREB pathways in host immune cells.
Collapse
|
27
|
Gnade BT, Moen ST, Chopra AK, Peterson JW, Yeager LA. Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions. Toxins (Basel) 2010; 2:1881-97. [PMID: 22069663 PMCID: PMC3153274 DOI: 10.3390/toxins2071881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022] Open
Abstract
Anthrax edema toxin (ET), a powerful adenylyl cyclase, is an important virulence factor of Bacillus anthracis. Until recently, only a modest amount of research was performed to understand the role this toxin plays in the organism's immune evasion strategy. A new wave of studies have begun to elucidate the effects this toxin has on a variety of host cells. While efforts have been made to illuminate the effect ET has on cells of the adaptive immune system, such as T cells, the greatest focus has been on cells of the innate immune system, particularly the macrophage. Here we discuss the immunoevasive activities that ET exerts on macrophages, as well as new research on the effects of this toxin on B cells.
Collapse
Affiliation(s)
- Bryan T. Gnade
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| | - Scott T. Moen
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| | - Ashok K. Chopra
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
- Center for Biodefense and Emerging Infectious Diseases and Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.K.C.); (J.W.P.)
| | - Johnny W. Peterson
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
- Center for Biodefense and Emerging Infectious Diseases and Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.K.C.); (J.W.P.)
| | - Linsey A. Yeager
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (B.T.G.); (S.T.M.)
| |
Collapse
|
28
|
Odumosu O, Nicholas D, Yano H, Langridge W. AB toxins: a paradigm switch from deadly to desirable. Toxins (Basel) 2010; 2:1612-45. [PMID: 22069653 PMCID: PMC3153263 DOI: 10.3390/toxins2071612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022] Open
Abstract
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Dequina Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Hiroshi Yano
- Department of Biology, University of Redlands, 1200 East Colton Ave, P.O. Box 3080, Redlands, CA 92373, USA; (H.Y.)
| | - William Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +1-909-558-1000 (81362); Fax: +1-909-558-0177
| |
Collapse
|
29
|
Huang L, Cheng T, Xu P, Cheng D, Fang T, Xia Q. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS One 2009; 4:e8098. [PMID: 19956592 PMCID: PMC2780328 DOI: 10.1371/journal.pone.0008098] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/04/2009] [Indexed: 11/18/2022] Open
Abstract
Host-pathogen interactions are complex relationships, and a central challenge is to reveal the interactions between pathogens and their hosts. Bacillus bombysepticus (Bb) which can produces spores and parasporal crystals was firstly separated from the corpses of the infected silkworms (Bombyx mori). Bb naturally infects the silkworm can cause an acute fuliginosa septicaemia and kill the silkworm larvae generally within one day in the hot and humid season. Bb pathogen of the silkworm can be used for investigating the host responses after the infection. Gene expression profiling during four time-points of silkworm whole larvae after Bb infection was performed to gain insight into the mechanism of Bb-associated host whole body effect. Genome-wide survey of the host genes demonstrated many genes and pathways modulated after the infection. GO analysis of the induced genes indicated that their functions could be divided into 14 categories. KEGG pathway analysis identified that six types of basal metabolic pathway were regulated, including genetic information processing and transcription, carbohydrate metabolism, amino acid and nitrogen metabolism, nucleotide metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation and metabolism. Similar to Bacillus thuringiensis (Bt), Bb can also induce a silkworm poisoning-related response. In this process, genes encoding midgut peritrophic membrane proteins, aminopeptidase N receptors and sodium/calcium exchange protein showed modulation. For the first time, we found that Bb induced a lot of genes involved in juvenile hormone synthesis and metabolism pathway upregulated. Bb also triggered the host immune responses, including cellular immune response and serine protease cascade melanization response. Real time PCR analysis showed that Bb can induce the silkworm systemic immune response, mainly by the Toll pathway. Anti-microorganism peptides (AMPs), including of Attacin, Lebocin, Enbocin, Gloverin and Moricin families, were upregulated at 24 hours post the infection.
Collapse
Affiliation(s)
- Lulin Huang
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Economic Crops Breeding and Cultivation, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Tingcai Cheng
- Institute of Agronomy and Life Science, Chongqing University, Chongqing, China
| | - Pingzhen Xu
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Daojun Cheng
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ting Fang
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Agronomy and Life Science, Chongqing University, Chongqing, China
- * E-mail:
| |
Collapse
|
30
|
Tang WJ, Guo Q. The adenylyl cyclase activity of anthrax edema factor. Mol Aspects Med 2009; 30:423-30. [PMID: 19560485 DOI: 10.1016/j.mam.2009.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 02/08/2023]
Abstract
Bacillus anthracis, the etiologic agent for anthrax, secretes edema factor (EF) to disrupt intracellular signaling pathways. Upon translocation into host cells and association with a calcium sensor, calmodulin (CaM), EF becomes a highly active adenylyl cyclase (AC) that raises the intracellular concentration of cyclic AMP (cAMP). Growing evidence shows that EF plays a key role in anthrax pathogenesis by affecting cellular functions vital for host defense. This strategy is also used by Bordetella pertussis, a bacterium that causes whooping cough. Pertussis bacteria secrete the bifunctional toxin CyaA which raises the intracellular cAMP. Here, we discuss recent advances from structural analyses that reveal the molecular basis of the conserved mechanism of activation and catalysis of EF and CyaA by CaM even though these two toxins use the completely different sequences to bind CaM. Comparison of the biochemical and structural characteristics of these two AC toxins with host ACs reveal that they have diverse strategies of catalytic activation, yet use the same two-metal-ion catalytic mechanism.
Collapse
Affiliation(s)
- Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W434, Chicago, IL 60637, USA.
| | | |
Collapse
|