1
|
Ghasemi A, Broomand Lomer N, Saberi A. Is there a link between Hepatitis A virus and Guillain-Barré syndrome? A systematic review of case reports. eNeurologicalSci 2025; 38:100551. [PMID: 39866833 PMCID: PMC11763178 DOI: 10.1016/j.ensci.2025.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025] Open
Abstract
Introduction Guillain-Barré syndrome (GBS) is an inflammatory disorder of the peripheral nervous system, causing acute flaccid paralysis. There have been occasional reports linking Hepatitis A virus (HAV) to GBS. Here we aimed to evaluate the current literature on the association between GBS and HAV, exploring potential mechanisms and clinical implications. Methods We conducted a systematic search using PRISMA guidelines in PubMed, Web of Science, Embase, and Scopus. Only published case reports or conference abstracts presenting cases of confirmed HAV infection and GBS were included. Data extraction was performed independently by two reviewers, and quality assessment was conducted using the Joanna Briggs Institute critical appraisal tool. Results Out of 581 studies identified, 46 studies encompassing 47 cases met the inclusion criteria. The mean age of patients was 29.47 years, with a male predominance (70.2 %). Geographically, most cases were reported in Asia (74.5 %). Clinical manifestations of HAV included fever, malaise, and jaundice, while GBS presented with muscle weakness and areflexia. Laboratory findings showed albuminocytological dissociation in 76.2 % of cases. Nerve conduction studies predominantly indicated AIDP subtype (32/46, 69.6 %). Treatment involved IVIG, plasmapheresis, and supportive care, with recovery times ranging from one week to 18 months. One fatality was reported. Conclusions This review suggests a potential link between HAV infection and GBS, proposing a mechanism: molecular mimicry. It emphasizes the need for increased awareness and preventive measures, especially in areas with lower health standards. However, further research is needed to clarify the possible mechanisms and deepen our understanding.
Collapse
Affiliation(s)
| | | | - Alia Saberi
- Neurosciences Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Lee S, Leclercq LD, Guerardel Y, Szymanski CM, Hurtaux T, Doering TL, Katayama T, Fujita K, Aoki K, Aoki-Kinoshita KF. MicroGlycoDB: A database of microbial glycans using Semantic Web technologies. BBA ADVANCES 2024; 6:100126. [PMID: 39720162 PMCID: PMC11667048 DOI: 10.1016/j.bbadva.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Glycoconjugates are present on microbial surfaces and play critical roles in modulating interactions with the environment and the host. Extensive research on microbial glycans, including elucidating the structural diversity of the glycan moieties of glycoconjugates and polysaccharides, has been carried out to investigate the function of glycans in modulating the interactions between the host and microbes, to explore their potential applications in the therapeutic targeting of pathogenic species, and in the use as probiotics in gut microbiomes. However, glycan-related information is dispersed across numerous databases and a vast amount of literature, which makes it laborious and time-consuming to identify and gather the relevant information about microbial glycosylation. This challenge can be addressed by a comprehensive database, which could offer insight into the fundamental processes underlying glycosylation. We have developed a MicroGlycoDB database to provide integrated glycan information on important model microorganisms. The data is described using Semantic Web Technologies, which allow microbial glycan data to be represented in a structured format accessible by machines, thus facilitating data sharing and integration with other resources that catalog features such as pathways, diseases, or interactions. This semantic data based on ontologies will contribute to the discovery of new knowledge in the field of microbiology, along with the expansion of information on the glycosylation of other microorganisms.
Collapse
Affiliation(s)
- Sunmyoung Lee
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Louis-David Leclercq
- French National Center for Scientific Research (CNRS), University of Lille, Lille, France
| | - Yann Guerardel
- French National Center for Scientific Research (CNRS), University of Lille, Lille, France
| | | | - Thomas Hurtaux
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kiyotaka Fujita
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Aoki
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko F. Aoki-Kinoshita
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
3
|
Kopańko M, Zabłudowska M, Zajkowska M, Gudowska-Sawczuk M, Mucha M, Mroczko B. The Impact of COVID-19 on the Guillain-Barré Syndrome Incidence. Biomedicines 2024; 12:1248. [PMID: 38927455 PMCID: PMC11201746 DOI: 10.3390/biomedicines12061248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the fact that the global COVID-19 pandemic has officially ended, we continue to feel its effects and discover new correlations between SARS-CoV-2 infection and changes in the organism that have occurred in patients. It has been shown that the disease can be associated with a variety of complications, including disorders of the nervous system such as a characteristic loss of smell and taste, as well as less commonly reported incidents such as cranial polyneuropathy or neuromuscular disorders. Nervous system diseases that are suspected to be related to COVID-19 include Guillain-Barré syndrome, which is frequently caused by viruses. During the course of the disease, autoimmunity destroys peripheral nerves, which despite its rare occurrence, can lead to serious consequences, such as symmetrical muscle weakness and deep reflexes, or even their complete abolition. Since the beginning of the pandemic, case reports suggesting a relationship between these two disease entities have been published, and in some countries, the increasing number of Guillain-Barré syndrome cases have also been reported. This suggests that previous contact with SARS-CoV-2 may have had an impact on their occurrence. This article is a review and summary of the literature that raises awareness of the neurological symptoms' prevalence, including Guillain-Barré syndrome, which may be impacted by the commonly occurring COVID-19 disease or vaccination against it. The aim of this review was to better understand the mechanisms of the virus's action on the nervous system, allowing for better detection and the prevention of its complications.
Collapse
Affiliation(s)
- Magdalena Kopańko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
| | - Magdalena Zabłudowska
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
| | - Mateusz Mucha
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland (M.G.-S.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Li Y, Li J, He J, Tao C. AE-GPT: Using Large Language Models to extract adverse events from surveillance reports-A use case with influenza vaccine adverse events. PLoS One 2024; 19:e0300919. [PMID: 38512919 PMCID: PMC10956752 DOI: 10.1371/journal.pone.0300919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Though Vaccines are instrumental in global health, mitigating infectious diseases and pandemic outbreaks, they can occasionally lead to adverse events (AEs). Recently, Large Language Models (LLMs) have shown promise in effectively identifying and cataloging AEs within clinical reports. Utilizing data from the Vaccine Adverse Event Reporting System (VAERS) from 1990 to 2016, this study particularly focuses on AEs to evaluate LLMs' capability for AE extraction. A variety of prevalent LLMs, including GPT-2, GPT-3 variants, GPT-4, and Llama2, were evaluated using Influenza vaccine as a use case. The fine-tuned GPT 3.5 model (AE-GPT) stood out with a 0.704 averaged micro F1 score for strict match and 0.816 for relaxed match. The encouraging performance of the AE-GPT underscores LLMs' potential in processing medical data, indicating a significant stride towards advanced AE detection, thus presumably generalizable to other AE extraction tasks.
Collapse
Affiliation(s)
- Yiming Li
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Jianfu Li
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States of America
| | - Jianping He
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Cui Tao
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States of America
| |
Collapse
|
5
|
Sarkar A, Nagappa M, Dey S, Mondal S, Babu GS, Choudhury SP, Akhil P, Debnath M. Synergistic effects of immune checkpoints and checkpoint inhibitors in inflammatory neuropathies: Implications and mechanisms. J Peripher Nerv Syst 2024; 29:6-16. [PMID: 37988274 DOI: 10.1111/jns.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Immune checkpoint molecules play pivotal roles in the regulation of immune homeostasis. Disruption of the immune checkpoints causes autoimmune/inflammatory as well as malignant disorders. Over the past few years, the immune checkpoint molecules with inhibitory function emerged as potential therapeutic targets in oncological conditions. The inhibition of the function of these molecules by using immune checkpoint inhibitors (ICIs) has brought paradigmatic changes in cancer therapy due to their remarkable clinical benefits, not only in improving the quality of life but also in prolonging the survival time of cancer patients. Unfortunately, the ICIs soon turned out to be a "double-edged sword" as the use of ICIs caused multiple immune-related adverse effects (irAEs). The development of inflammatory neuropathies such as Guillain-Barré syndrome (GBS) and Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP) as the secondary effects of immunotherapy appeared very challenging as these conditions result in significant and often permanent disability. The underlying mechanism(s) through which ICIs trigger inflammatory neuropathies are currently not known. Compelling evidence suggests autoimmune reaction and/or inflammation as the independent risk mechanism of inflammatory neuropathies. There is a lack of understanding as to whether prior exposure to the risk factors of inflammatory neuropathies, the presence of germline genetic variants in immune function-related genes, genetic variations within immune checkpoint molecules, the existence of autoantibodies, and activated/memory T cells act as determining factors for ICI-induced inflammatory neuropathies. Herein, we highlight the available pieces of evidence, discuss the mechanistic basis, and propose a few testable hypotheses on inflammatory neuropathies as irAEs of immunotherapy.
Collapse
Affiliation(s)
- Aritrani Sarkar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saikat Dey
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandipan Mondal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gopika Suresh Babu
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saptamita Pal Choudhury
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pokala Akhil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
6
|
Homayonia S, Ling CC. Epoxide-Mediated Trans-Thioglycosylation and Application to the Synthesis of Oligosaccharides Related to the Capsular Polysaccharides of C. jejuni HS:4. Chemistry 2024; 30:e202303753. [PMID: 38215247 DOI: 10.1002/chem.202303753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
The enzyme-resistant thioglycosides are highly valuable immunogens because of their enhanced metabolic stability. We report the first synthesis of a family of thiooligosaccharides related to the capsular polysaccharides (CPS) of Campylobacter jejuni HS:4 for potential use in conjugate vaccines. The native CPS structures of the pathogen consist of a challenging repeating disaccharide formed with β(1→4)-linked 6-deoxy-β-D-ido-heptopyranoside and N-acetyl-D-glucosamine; the rare 6-deoxy-ido-heptopyranosyl backbone and β-anomeric configuration of the former monosaccharide makes the synthesis of this family of antigens very challenging. So far, no synthesis of the thioanalogs of the CPS antigens have been reported. The unprecedented synthesis presented in this work is built on an elegant approach by using β-glycosylthiolate as a glycosyl donor to open the 2,3-epoxide functionality of pre-designed 6-deoxy-β-D-talo-heptopyranosides. Our results illustrated that this key trans-thioglycosylation can be designed in a modular and regio and stereo-selective manner. Built on the success of this novel approach, we succeeded the synthesis of a family of thiooligosaccharides including a thiohexasaccharide which is considered to be the desired antigen length and complexity for immunizations. We also report the first direct conversion of base-stable but acid-labile 2-trimethylsilylethyl glycosides to glycosyl-1-thioacetates in a one-pot manner.
Collapse
Affiliation(s)
- Saba Homayonia
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
7
|
Jumagaliyeva MB, Ayaganov DN, Abdelazim IA, Saparbayev SS, Tuychibaeva NM, Kurmambayev YJ. Relation between Guillain-Barré syndrome and Covid-19: Case-Series. J Med Life 2023; 16:1433-1435. [PMID: 38107719 PMCID: PMC10719799 DOI: 10.25122/jml-2023-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 12/19/2023] Open
Abstract
Approximately two-thirds of the Guillain-Barré syndrome (GBS) cases are preceded by upper respiratory tract infection or enteritis. There has been previous documentation of a clear association between Covid-19 and GBS. Covid-19 can affect the nervous tissue either through direct damage or through triggering a host immune response with subsequent development of autoimmune diseases such as GBS. Covid-19 can affect the host`s immune system through the activation and interaction of the T-and B-lymphocytes with subsequent production of antibodies that cross-react with the gangliosides. Depending on the nature of the neuronal autoimmune destruction, the affected individual may have either a demyelinating or axonal subtype of GBS. These subtypes differ not only in symptoms but also in the likelihood of recovery. This report presents two cases of GBS that developed after the respiratory symptoms of Covid-19. Their neurological features indicated demyelination, axonal damage, irritation of spinal nerve roots, and impaired sensory and motor transmission with additional facial nerve palsy in the second-studied case. This case report highlights the relationship between GBS and Covid-19 infection.
Collapse
Affiliation(s)
| | | | - Ibrahim Anwar Abdelazim
- Department of Obstetrics and Gynecology, Faculty of Medicine Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
8
|
Bentley SA, Ahmad S, Kobeissy FH, Toklu HZ. Concomitant Guillain-Barré Syndrome and COVID-19: A Meta-Analysis of Cases. Medicina (B Aires) 2022; 58:medicina58121835. [PMID: 36557036 PMCID: PMC9788175 DOI: 10.3390/medicina58121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: Recent findings demonstrate that the transmigration of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) to the nervous system implicates severe neurotropic pathologies, including the onset of the rare disease called Guillain-Barré syndrome (GBS) which is characterized by immune-mediated polyneuropathy. This study aimed to identify the predisposing factors and the clinical features of coronavirus disease 2019 (COVID-19)-induced GBS. Materials and Methods: We have performed an analysis of 147 cases. A systematic review of the published research work was performed per the PRISMA statement to obtain individual participant data (IPD) for the meta-analysis. The search was conducted through PubMed, using the combined search terms "Guillain-Barré syndrome" and "COVID-19". All case reports and series in the English language with accessed full text were included in the search. Results: A systematic database search led to the retrieval of 112 peer-reviewed articles published between 1 April 2020, and 8 February 2022. The articles comprised 16 case series and 96 case reports containing IPD for 147 patients. Our findings showed that 77.6% of all cases were 40 years or older. Males comprised most of the cases (65.3%; n = 96). The intensive care unit (ICU) admission was 44.9%, and the need for mechanical ventilation (MV) was 38.1%. The patients presented with hyporeflexia or areflexia (84.4%; n = 124), lower limb strength and sensation impairment (93.2%; n = 138), upper limb strength and sensation impairment (85.7; n = 126), and somatic sensation impairment (72.8%; n = 107). The patients presented with increased cerebral spinal fluid (CSF) protein levels (92%; n = 92) and the presence of CSF albuminocytological dissociation (83.5%; n = 71). The most common variant of GBS observed was acute inflammatory demyelinating polyneuropathy (AIDP). We found that predisposing factors concomitant with COVID-19 and GBS were male gender and older age. Among the cases, patient mortality was 10.9%. Conclusions: A gap of knowledge exists regarding the complete spectrum of clinical characteristics of COVID-19-related GBS. Recent findings suggest that SARS-CoV-2 triggers GBS, as it follows a similar para-infectious pattern as the other viral agents contributing to the onset of GBS.
Collapse
Affiliation(s)
- Skylar A. Bentley
- College of Health Sciences, University of Central Florida, Orlando, FL 32816, USA
- Burnette Honors College, University of Central Florida, Orlando, FL 32816, USA
| | - Sarfraz Ahmad
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Advent Health Cancer Institute, Orlando, FL 32804, USA
| | - Firas H. Kobeissy
- Department of Emergency Medicine, College of Medicine, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (F.H.K.); (H.Z.T.); Tel.: +1-352-328-4617 (F.H.K.); +1-352-562-2220 (H.Z.T.)
| | - Hale Z. Toklu
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Correspondence: (F.H.K.); (H.Z.T.); Tel.: +1-352-328-4617 (F.H.K.); +1-352-562-2220 (H.Z.T.)
| |
Collapse
|
9
|
Chohan S, Chohan A. Recurrence of a Rare Subtype of Guillain-Barré Syndrome Following a Second Dose of the Shingles Vaccine. Cureus 2022; 14:e30717. [DOI: 10.7759/cureus.30717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
|
10
|
Stein RA. Campylobacter jejuni and Postinfectious Autoimmune Diseases: A Proof of Concept in Glycobiology. ACS Infect Dis 2022; 8:1981-1991. [PMID: 36137262 DOI: 10.1021/acsinfecdis.2c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycans, one of the most diverse groups of macromolecules, are ubiquitous constituents of all cells and have many critical functions, including the interaction between microbes and their hosts. One of the best model organisms to study the host-pathogen interaction, the gastrointestinal pathogen Campylobacter jejuni dedicates extensive resources to glycosylation and exhibits a diverse array of surface sugar-coated displays. The first bacterium where N-linked glycosylation was described, C. jejuni can additionally modify proteins by O-linked glycosylation, has extracellular capsular polysaccharides that are important for virulence and represent the major determinant of the Penner serotyping scheme, and has outer membrane lipooligosaccharides that participate in processes such as colonization, survival, inflammation, and immune evasion. In addition to causing gastrointestinal disease and extraintestinal infections, C. jejuni was also linked to postinfectious autoimmune neuropathies, of which Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) are the most extensively characterized ones. These postinfectious autoimmune neuropathies occur when specific bacterial surface lipooligosaccharides mimic gangliosides in the host nervous system. C. jejuni provided the first proof of concept for the involvement of molecular mimicry in the pathogenesis of an autoimmune disease and, also, for the ability of a bacterial polymorphism to shape the clinical presentation of the postinfectious autoimmune neuropathy. The scientific journey that culminated with elucidating the mechanistic details of the C. jejuni-GBS link was the result of contributions from several fields, including microbiology, structural biology, glycobiology, genetics, and immunology and provides an inspiring and important example to interrogate other instances of molecular mimicry and their involvement in autoimmune disease.
Collapse
Affiliation(s)
- Richard A Stein
- Industry Associate Professor NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| |
Collapse
|
11
|
A novel prognostic system based on clinical and laboratory parameters for childhood Guillain-Barre syndrome. Acta Neurol Belg 2022; 122:1237-1245. [PMID: 35753018 DOI: 10.1007/s13760-022-01960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
AIM To develop a score based on clinical and laboratory parameters in acute-phase of GBS to predict outcome at 6 months. METHODS Clinical and laboratory assessment at admission including blood neutrophil-to-lymphocyte ratio (NLR), pre and post-immunotherapy serum albumin was prospectively performed in pediatric-GBS cases at a tertiary-care hospital over 1 year. Clinical features and laboratory test results were compared between children with complete (Hughes Disability Score; HDS ≤ 1) and incomplete recovery (HDS > 1) at 6 months from onset, using univariate and multivariate analysis. Area-under-receiver-operating-characteristic-curve (AUC) of predictors of prognosis and their optimal cutoffs were assessed. RESULTS Forty-six patients were enrolled (mean age 69.1 ± 35.2 months; male 57.6%). Factors on admission that independently predicted poor-outcome at 6 months were older age, feeble voice, lower NLR and lower post-immunotherapy serum albumin. AUCs and optimal cutoffs of NLR and post-immunotherapy serum albumin for predicting disability at 6 months were 0.729, 0.781 and ≤ 1.65, ≤ 34.5 g/L, respectively. AUCs of clinical parameters such as older age and feeble voice were 0.749 and 0.713 respectively. King GBS outcomescore including all predictors had maximum AUC of 0.971 (95% CI 0.921-1.02). The score at cutoff ≥ 3 demonstrated excellent sensitivity (92.3%) and specificity (96.7%) to determine poor outcome. CONCLUSIONS This new prognostic system may be beneficial in recognising children-at-risk of poor prognosis who may benefit from additional treatment.
Collapse
|
12
|
Jacob S, Kapadia R, Soule T, Luo H, Schellenberg KL, Douville RN, Pfeffer G. Neuromuscular Complications of SARS-CoV-2 and Other Viral Infections. Front Neurol 2022; 13:914411. [PMID: 35812094 PMCID: PMC9263266 DOI: 10.3389/fneur.2022.914411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
In this article we review complications to the peripheral nervous system that occur as a consequence of viral infections, with a special focus on complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We discuss neuromuscular complications in three broad categories; the direct consequences of viral infection, autoimmune neuromuscular disorders provoked by viral infections, and chronic neurodegenerative conditions which have been associated with viral infections. We also include discussion of neuromuscular disorders that are treated by immunomodulatory therapies, and how this affects patient susceptibility in the current context of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is associated with direct consequences to the peripheral nervous system via presumed direct viral injury (dysgeusia/anosmia, myalgias/rhabdomyolysis, and potentially mononeuritis multiplex) and autoimmunity (Guillain Barré syndrome and variants). It has important implications for people receiving immunomodulatory therapies who may be at greater risk of severe outcomes from COVID-19. Thus far, chronic post-COVID syndromes (a.k.a: long COVID) also include possible involvement of the neuromuscular system. Whether we may observe neuromuscular degenerative conditions in the longer term will be an important question to monitor in future studies.
Collapse
Affiliation(s)
- Sarah Jacob
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronak Kapadia
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyler Soule
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kerri L. Schellenberg
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Renée N. Douville
- Division of Neurodegenerative Disorders, Department of Biology, Albrechtsen St. Boniface Research Centre, University of Winnipeg, Winnipeg, MB, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Alberta Child Health Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
14
|
Alves I, Fernandes Â, Santos-Pereira B, Azevedo CM, Pinho SS. Glycans as a key factor in self and non-self discrimination: Impact on the breach of immune tolerance. FEBS Lett 2022; 596:1485-1502. [PMID: 35383918 DOI: 10.1002/1873-3468.14347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from non-self. As such, glycans are a class of "Self-Associated Molecular Patterns" that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory or anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|
15
|
de Jong H, Wösten MMSM, Wennekes T. Sweet impersonators: Molecular mimicry of host glycans by bacteria. Glycobiology 2022; 32:11-22. [PMID: 34939094 PMCID: PMC8881735 DOI: 10.1093/glycob/cwab104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
All bacteria display surface-exposed glycans that can play an important role in their interaction with the host and in select cases mimic the glycans found on host cells, an event called molecular or glycan mimicry. In this review, we highlight the key bacteria that display human glycan mimicry and provide an overview of the involved glycan structures. We also discuss the general trends and outstanding questions associated with human glycan mimicry by bacteria. Finally, we provide an overview of several techniques that have emerged from the discipline of chemical glycobiology, which can aid in the study of the composition, variability, interaction and functional role of these mimicking glycans.
Collapse
Affiliation(s)
- Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
16
|
Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23020693. [PMID: 35054879 PMCID: PMC8775466 DOI: 10.3390/ijms23020693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.
Collapse
|
17
|
Nagappa M, Dutta D, Debnath M, Seshagiri D, Sreekumaran Nair B, Das S, Wahatule R, Sinha S, Ravi V, Taly A. Impact of antecedent infections on the antibodies against gangliosides and ganglioside complexes in guillain-barré syndrome: A correlative study. Ann Indian Acad Neurol 2022; 25:401-406. [PMID: 35936588 PMCID: PMC9350806 DOI: 10.4103/aian.aian_121_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Aims: Guillain-Barré Syndrome (GBS), an immune-mediated neuropathy, is characterized by antibodies against gangliosides/ganglioside complexes (GSCs) of peripheral nerves. Antecedent infections have been reported to induce antibodies that cross-react with the host gangliosides and thereby have a pivotal role in conferring an increased risk for developing GBS. Data pertaining to the impact of various antecedent infections, particularly those prevalent in tropical countries like India on the ganglioside/GSC antibodies is sparse. We aimed at exploring the association between six antecedent infections and the profile of ganglioside/GSC antibodies in GBS. Methods: Patients with GBS (n = 150) and healthy controls (n = 50) were examined for the serum profile of antibodies against GM1, GM2, GD1a, GD1b, GT1b, and GQ1b and their GSCs by ELISA. These antibodies were correlated with immunoreactivities against Campylobacter jejuni, Japanese encephalitis (JE), dengue, influenza, zika, and chikungunya infections. Results: The frequencies of antibodies against six single gangliosides (P < 0.001) and their GSCs (P = 0.039) were significantly higher in patients as compared to controls. Except for GT1b-antibody which was more frequent in axonal GBS, none of the other ganglioside/GSC antibodies correlated with the electrophysiological subtypes of GBS. Antecedent JE infection was significantly associated with increased frequency of antibodies against GD1a, GD1b, GT1b, and GQ1b. Antibodies against GSCs were not influenced by the antecedent infections. Interpretation: This study for the first time shows an association between antecedent JE infection and ganglioside antibodies in GBS. This finding reinforces the determining role of antecedent infections on ganglioside antibody responses and the subsequent immunological processes in GBS.
Collapse
|
18
|
Heikema AP, Strepis N, Horst-Kreft D, Huynh S, Zomer A, Kelly DJ, Cooper KK, Parker CT. Biomolecule sulphation and novel methylations related to Guillain-Barré syndrome-associated Campylobacter jejuni serotype HS:19. Microb Genom 2021; 7. [PMID: 34723785 PMCID: PMC8743553 DOI: 10.1099/mgen.0.000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni strains that produce sialylated lipooligosaccharides (LOS) can cause the immune-mediated disease Guillain-Barré syndrome (GBS). The risk of GBS after infection with C. jejuni Penner serotype HS:19 is estimated to be at least six times higher than the average risk. Aside from LOS biosynthesis genes, genomic characteristics that promote an increased risk for GBS following C. jejuni HS:19 infection, remain uncharacterized. We hypothesized that strains with the HS:19 serotype have unique genomic features that explain the increased risk for GBS. We performed genome sequencing, alignments, single nucleotide polymorphisms' analysis and methylome characterization on a subset, and pan-genome analysis on a large number of genomes to compare HS:19 with non-HS:19 C. jejuni genome sequences. Comparison of 36 C. jejuni HS:19 with 874 C. jejuni non-HS:19 genome sequences led to the identification of three single genes and ten clusters containing contiguous genes that were significantly associated with C. jejuni HS:19. One gene cluster of seven genes, localized downstream of the capsular biosynthesis locus, was related to sulphation of biomolecules. This cluster also encoded the campylobacter sialyl transferase Cst-I. Interestingly, sulphated bacterial biomolecules such as polysaccharides can promote immune responses and, therefore, (in the presence of sialic acid) may play a role in the development of GBS. Additional gene clusters included those involved in persistence-mediated pathogenicity and gene clusters involved in restriction-modification systems. Furthermore, characterization of methylomes of two HS:19 strains exhibited novel methylation patterns (5′-CATG-3 and 5′-m6AGTNNNNNNRTTG-3) that could differentially effect gene-expression patterns of C. jejuni HS:19 strains. Our study provides novel insight into specific genetic features and possible virulence factors of C. jejuni associated with the HS:19 serotype that may explain the increased risk of GBS.
Collapse
Affiliation(s)
- Astrid P. Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
- *Correspondence: Astrid P. Heikema,
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Deborah Horst-Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
- *Correspondence: Craig T. Parker,
| |
Collapse
|
19
|
Eckman E, Laman JD, Fischer KF, Lopansri B, Martins TB, Hill HR, Kriesel JD. Spinal fluid IgG antibodies from patients with demyelinating diseases bind multiple sclerosis-associated bacteria. J Mol Med (Berl) 2021; 99:1399-1411. [PMID: 34100959 PMCID: PMC8185491 DOI: 10.1007/s00109-021-02085-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023]
Abstract
Abstract A panel of 10 IgG enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of anti-microbial immune responses in the cerebrospinal fluid (CSF) of patients with demyelinating diseases (DD). The anti-microbial ELISA assays follow on prior human brain tissue RNA sequencing studies that established multiple sclerosis (MS) microbial candidates. Lysates included in the ELISA panel were derived from Akkermansia muciniphila, Atopobium vaginae, Bacteroides fragilis, Lactobacillus paracasei, Odoribacter splanchnicus, Pseudomonas aeruginosa, Cutibacterium (Propionibacterium) acnes, Fusobacterium necrophorum, Porphyromonas gingivalis, and Streptococcus mutans. CSF responses from patients with demyelinating diseases (DD, N = 14) were compared to those with other neurological diseases (OND, N = 8) and controls (N = 13). Commercial positive and negative control CSF specimens were run with each assay. ELISA index values were derived for each specimen against each of the 10 bacterial lysates. CSF reactivity was significantly higher in the DD group compared to the controls against Akkermansia, Atopobium, Bacteroides, Lactobacillus, Odoribacter, and Fusobacterium. Four of the 11 tested DD group subjects had elevated antibody indexes against at least one of the 10 bacterial species, suggesting intrathecal antibody production. This CSF serological study supports the hypothesis that several of the previously identified MS candidate microbes contribute to demyelination in some patients. Key messages A panel of 10 IgG enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of anti-microbial immune responses in the cerebrospinal fluid (CSF) of patients with demyelinating diseases, including multiple sclerosis and acute disseminated encephalomyelitis. CSF reactivity was significantly higher in the demyelination group compared to the controls against the bacteria Akkermansia, Atopobium, Bacteroides, Lactobacillus, Odoribacter, and Fusobacterium. Several of the demyelination subjects had elevated antibody indexes against at least one of the 10 antigens, suggesting at least limited intrathecal production of anti-bacterial antibodies. This CSF serological study supports the hypothesis that several of the previously identified MS candidate microbes contribute to demyelination in some patients.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02085-z.
Collapse
Affiliation(s)
- Emily Eckman
- Department of Internal Medicine, Division of Infectious Disease, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Kael F Fischer
- Department of Internal Medicine, Division of Infectious Disease, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bert Lopansri
- Department of Internal Medicine, Division of Infectious Disease, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tom B Martins
- Department of Pathology, ARUP Laboratories, Salt Lake City, UT, USA
| | - Harry R Hill
- Department of Pathology, ARUP Laboratories, Salt Lake City, UT, USA
| | - John D Kriesel
- Department of Internal Medicine, Division of Infectious Disease, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Camelo IY, Rana M, Cooper ER. Acute Disseminated Encephalomyelitis Following Campylobacter jejuni Infection in a 12-Year-Old Girl. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractWe reported a case of acute disseminated encephalomyelitis (ADEM) in a 12-year-old girl shortly after developing fever and vomiting, and ultimately found to have Campylobacter jejuni by antigen detection and conventional stool culture. Campylobacter jejuni has been associated with peripheral demyelinating diseases including Guillain–Barre's syndrome, but it has not been previously implicated in central demyelination in children. The clinical description and review of the literature are included here.
Collapse
Affiliation(s)
- Ingrid Yolanda Camelo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Massachusetts School of Medicine, Baystate Medical Center, Springfield, Massachusetts, United States
| | - Mandeep Rana
- Division of Pediatric Neurology, Department of Pediatrics, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, United States
| | - Ellen Rae Cooper
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
21
|
Tiwari I, Alam A, Kanta C, Koonwar S, Garg RK, Pandey S, Jain A, Kumar R. Clinical Profile and Predictors of Mechanical Ventilation in Guillain-Barre Syndrome in North Indian Children. J Child Neurol 2021; 36:453-460. [PMID: 33331796 DOI: 10.1177/0883073820978020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To describe the clinical-laboratory profile of pediatric Guillain-Barre syndrome and delineate features associated with need of mechanical ventilation. METHODS In a prospective observational study at tertiary care hospital, clinical-laboratory assessment and nerve conduction studies were documented in consecutive children hospitalized with Guillain-Barre syndrome according to Brighton criteria. Clinical-laboratory features were compared between ventilated and nonventilated patients using univariate and multivariate analysis. RESULTS Forty-six children (27 boys) with a mean age of 69.1±35.2 months were enrolled. History of preceding infection was present in 47.8%, bulbar palsy in 43.5%, feeble voice in 41.3%, sensory involvement in 13%, and autonomic involvement in 39.5%. Tetraparesis was noted in 87% of cases. Hughes disability scale >3 was noted in 44 children at admission and 39 (84.7%) at discharge. The most common electrophysiological type was acute motor axonal neuropathy (46.5%) followed by acute motor sensory axonal neuropathy (39.5%), acute inflammatory demyelinating polyneuropathy (7%), and inexcitable nerves (7%). Nine (19.7%) children were ventilated, 3 (6.5%) died or were lost, and 43 were discharged. Factors associated with need of mechanical ventilation on univariate analysis were older age, hypertension, bulbar palsy, feeble voice, lower Medical Research Council (MRC) sum, raised total leucocyte count, and history of preceding infection. Logistic regression revealed older age, history of predisposing illness, lower MRC sum at presentation, and bulbar palsy as independent predictors of mechanical ventilation. CONCLUSIONS The most common electrophysiological subtype in northern Indian children is acute motor axonal neuropathy. Older age, preceding infection, low MRC sum, and bulbar palsy are predictors of mechanical ventilation in pediatric Guillain-Barre syndrome.
Collapse
Affiliation(s)
- Ishita Tiwari
- Departments of Pediatrics, 76140King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Areesha Alam
- Departments of Pediatrics, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Chandra Kanta
- Departments of Pediatrics, 76140King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sciddhartha Koonwar
- Departments of Pediatrics, 76140King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ravindra Kumar Garg
- Department of Neurology, 76140King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shweta Pandey
- Department of Neurology, 76140King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, 76140King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rashmi Kumar
- Departments of Pediatrics, 76140King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Hongo Y, Kaida K, Komuta Y, Takazaki H, Yamazaki K, Suzuki K. Cholesterol-added antigens can enhance antiglycolipid antibody activity: Application to antibody testing. J Neuroimmunol 2021; 356:577580. [PMID: 33933819 DOI: 10.1016/j.jneuroim.2021.577580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
We analysed the effect of adding cholesterol to glycolipid antigens on antibody activity with enzyme-linked immunosorbent assay in 123 subjects consisting of 96 patients with Guillain-Barré syndrome, 25 Miller Fisher syndrome, and two Bickerstaff brainstem encephalitis. The use of cholesterol-added GM1 antigens increased anti-GM1 activity in 11 out of 23 anti-GM1-positive patients and resulted in six out of 100 anti-GM1-negative patients becoming anti-GM1-positive. Enhancement of anti-GM1 activity by cholesterol addition was significantly associated with antecedent gastrointestinal infection. The use of cholesterol-added glycolipid antigens can increase the detection rate of anti-glycolipid antibodies and accurately evaluate the anti-glycolipid antibody activity in vivo.
Collapse
Affiliation(s)
- Yu Hongo
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Kaida
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan.
| | - Yukari Komuta
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Takazaki
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Keishi Yamazaki
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| | - Kazushi Suzuki
- Department of Neurology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
23
|
Rare Organism Uncommon Disease Case Vignette of Guillain-Barré Syndrome Induced by Fusobacterium nucleatum Infection. Case Rep Infect Dis 2021; 2021:8816104. [PMID: 33747581 PMCID: PMC7952173 DOI: 10.1155/2021/8816104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
In this case report, we describe an unusual pathogen F. nucleatum-induced empyema, followed by the development of Guillain–Barré syndrome (GBS). Although many pathogens have been associated with GBS, this may be one of the few in the literature to describe an association with F. nucleatum infection.
Collapse
|
24
|
Low-Dose Exposure to Ganglioside-Mimicking Bacteria Tolerizes Human Macrophages to Guillain-Barré Syndrome-Associated Antigens. mBio 2021; 13:e0385221. [PMID: 35100875 PMCID: PMC8805021 DOI: 10.1128/mbio.03852-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early in life, commensal bacteria play a major role in immune development, helping to guide the host response toward harmful stimuli while tolerating harmless antigens to prevent autoimmunity. Guillain-Barré syndrome (GBS) is an autoimmune disease caused by errant immune attack of antibody-bound ganglioside receptors on host nerve cells, resulting in paralysis. Lipooligosaccharides enveloping the prevalent enteric pathogen, Campylobacter jejuni, frequently mimic human gangliosides and can trigger GBS by stimulating the autoimmune response. In low- to middle-income countries, young children are consistently exposed to C. jejuni, and it is not known if this impacts GBS susceptibility later in life. Using a macrophage model, we examined the effect of training these cells with low doses of ganglioside-mimicking bacteria prior to challenge with GBS-associated antigens. This training caused decreased production of proinflammatory cytokines, suggesting tolerance induction. We then screened Campylobacter isolates from 154 infant fecal samples for GM1 ganglioside mimicry, finding that 23.4% of strains from both symptomatic and asymptomatic infants displayed GM1-like structures. Training macrophages with one of these asymptomatic carrier isolates also induced tolerance against GBS-associated antigens, supporting that children can be exposed to the tolerizing antigen early in life. RNA interference of Toll-like receptor 2 (TLR2) and TLR4 suggests that these receptors are not involved in tolerance associated with decreases in tumor necrosis factor (TNF), interleukin-6 (IL-6), or IL-1β levels. The results of this study suggest that exposure to ganglioside-mimicking bacteria early in life occurs naturally and impacts host susceptibility to GBS development. IMPORTANCE In this study, we demonstrated that it is possible to tolerize immune cells to potentially dampen the autoreactive proinflammatory immune response against Guillain-Barré syndrome (GBS)-associated antigens. The innate immune response functions to arm the host against bacterial attack, but it can be tricked into recognizing the host's own cells when infectious bacteria display sugar structures that mimic human glycans. It is this errant response that leads to the autoimmunity and paralysis associated with GBS. By presenting immune cells with small amounts of the bacterial glycan mimic, we were able to suppress the proinflammatory immune response upon subsequent high exposure to glycan-mimicking bacteria. This suggests that individuals who have already been exposed to the glycan mimics in small amounts are less sensitive to autoimmune reactions against these glycans, and this could be a factor in determining susceptibility to GBS.
Collapse
|
25
|
Kajumba MM, Kolls BJ, Koltai DC, Kaddumukasa M, Kaddumukasa M, Laskowitz DT. COVID-19-Associated Guillain-Barre Syndrome: Atypical Para-infectious Profile, Symptom Overlap, and Increased Risk of Severe Neurological Complications. ACTA ACUST UNITED AC 2020; 2:2702-2714. [PMID: 33251483 PMCID: PMC7680081 DOI: 10.1007/s42399-020-00646-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The concurrence of COVID-19 with Guillain-Barre syndrome (GBS) can increase the likelihood of neuromuscular respiratory failure, autonomic dysfunction, and other life-threatening symptoms. Currently, very little is known about the underlying mechanisms, clinical course, and prognostic implications of comorbid COVID-19 in patients with GBS. We reviewed COVID-19-associated GBS case reports published since the outbreak of the pandemic, with a database search up to August 2020, including a manual search of the reference lists for additional relevant cases. Fifty-one (51) case reports of COVID-19 patients (aged 23–84 years) diagnosed with GBS in 11 different countries were included in this review. The results revealed atypical manifestations of GBS, including para-infectious profiles and onset of GBS without antecedent COVID-19 symptoms. Although all tested patients had signs of neuroinflammation, none had SARS-CoV-2 in the cerebrospinal fluid (CSF), and only four (4) patients had antiganglioside antibodies. The majority had a 1- to 10-day time interval between the onset of COVID-19 and GBS symptoms, and many had a poor outcome, with 20 out of the 51 (39.2%) requiring mechanical ventilation, and two deaths within 12 to 24 h. The atypical manifestations of COVID-19-associated GBS, especially the para-infectious profile and short time interval between the onset of the COVID-19 and GBS symptoms, increase the likelihood of symptom overlap, which can complicate the treatment and result in worsened disease progression and/or higher mortality rates. Inclusion of a neurological assessment during diagnosis of COVID-19 might facilitate timely identification and effective management of the GBS symptoms and improve treatment outcome.
Collapse
Affiliation(s)
- Mayanja M. Kajumba
- Department of Mental Health and Community Psychology, School of Psychology, Makerere University, P. O. Box, 7062 Kampala, Uganda
| | - Brad J. Kolls
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Duke University Medical Center, Box 3807, Durham, NC 27705 USA
- Department of Neurology, Duke University School of Medicine, Durham, NC USA
- Neuroscience Medicine, Duke Clinical Research Institute, 300 W Morgan St, Durham, NC 27701 USA
| | - Deborah C. Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Duke University Medical Center, Box 3807, Durham, NC 27705 USA
- Department of Neurology, Duke University School of Medicine, Durham, NC USA
- Department of Psychiatry and Behavioral Sciences, DUMC, Duke University School of Medicine, Box 3119, Trent Drive, Durham, NC USA
| | - Mark Kaddumukasa
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Martin Kaddumukasa
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Daniel T. Laskowitz
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Duke University Medical Center, Box 3807, Durham, NC 27705 USA
- Department of Neurology, Duke University School of Medicine, Durham, NC USA
- Neuroscience Medicine, Duke Clinical Research Institute, 300 W Morgan St, Durham, NC 27701 USA
| |
Collapse
|
26
|
Kappler K, Hennet T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun 2020; 21:224-239. [PMID: 32753697 PMCID: PMC7449879 DOI: 10.1038/s41435-020-0105-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Carbohydrate-specific antibodies are widespread among all classes of immunoglobulins. Despite their broad occurrence, little is known about their formation and biological significance. Carbohydrate-specific antibodies are often classified as natural antibodies under the assumption that they arise without prior exposure to exogenous antigens. On the other hand, various carbohydrate-specific antibodies, including antibodies to ABO blood group antigens, emerge after the contact of immune cells with the intestinal microbiota, which expresses a vast diversity of carbohydrate antigens. Here we explore the development of carbohydrate-specific antibodies in humans, addressing the definition of natural antibodies and the production of carbohydrate-specific antibodies upon antigen stimulation. We focus on the significance of the intestinal microbiota in shaping carbohydrate-specific antibodies not just in the gut, but also in the blood circulation. The structural similarity between bacterial carbohydrate antigens and surface glycoconjugates of protists, fungi and animals leads to the production of carbohydrate-specific antibodies protective against a broad range of pathogens. Mimicry between bacterial and human glycoconjugates, however, can also lead to the generation of carbohydrate-specific antibodies that cross-react with human antigens, thereby contributing to the development of autoimmune disorders.
Collapse
Affiliation(s)
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Du FH, Yerevanian A, Shtrahman M. Acute ophthalmoplegia in a patient with anti-GQ1b antibody and chronic facial diplegia. BMJ Case Rep 2020; 13:13/7/e234319. [DOI: 10.1136/bcr-2020-234319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 56-year-old man with a remote history of bilateral recurrent facial palsies presented with a week of ophthalmoplegia with intact deep tendon reflexes and lack of ataxia, cerebrospinal fluid with albuminocytologic dissociation and elevated serum anti-ganglioside Q1b (GQ1b) IgG antibody. We diagnosed the patient with acute ophthalmoplegia without ataxia, a condition under the spectrum of anti-GQ1b antibody syndromes which also includes Miller Fisher syndrome. Given the rarity of recurrent facial palsies and anti-GQ1b antibody syndromes as well as reports associating facial palsies and this syndrome, we suggest that our case may be an unusual presentation of an anti-GQ1b antibody syndrome beginning with recurrent facial palsies several years prior to ophthalmoplegia. Prior studies of human nerves provide insight into the pathophysiology, including ganglioside distribution and cross-reactivities underlying the heterogeneity of anti-GQ1b antibody syndromes. This report may expand the differential diagnosis in patients with recurrent facial palsies and broaden the phenotype of anti-GQ1b syndromes.
Collapse
|
28
|
Genomic Epidemiology and Evolution of Diverse Lineages of Clinical Campylobacter jejuni Cocirculating in New Hampshire, USA, 2017. J Clin Microbiol 2020; 58:JCM.02070-19. [PMID: 32269101 PMCID: PMC7269400 DOI: 10.1128/jcm.02070-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/28/2020] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide. In the United States, New Hampshire was one of the 18 states that reported cases in the 2016 to 2018 multistate outbreak of multidrug-resistant C. jejuni. Here, we aimed to elucidate the baseline diversity of the wider New Hampshire C. jejuni population during the outbreak. We used genome sequences of 52 clinical isolates sampled in New Hampshire in 2017, including 1 of the 2 isolates from the outbreak. Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide. In the United States, New Hampshire was one of the 18 states that reported cases in the 2016 to 2018 multistate outbreak of multidrug-resistant C. jejuni. Here, we aimed to elucidate the baseline diversity of the wider New Hampshire C. jejuni population during the outbreak. We used genome sequences of 52 clinical isolates sampled in New Hampshire in 2017, including 1 of the 2 isolates from the outbreak. Results revealed a remarkably diverse population composed of at least 28 sequence types, which are mostly represented by 1 or a few strains. A comparison of our isolates with 249 clinical C. jejuni from other states showed frequent phylogenetic intermingling, suggesting a lack of geographical structure and minimal local diversification within the state. Multiple independent acquisitions of resistance genes from 5 classes of antibiotics characterize the population, with 47/52 (90.4%) of the genomes carrying at least 1 horizontally acquired resistance gene. Frequently recombining genes include those associated with heptose biosynthesis, colonization, and stress resistance. We conclude that the diversity of clinical C. jejuni in New Hampshire in 2017 was driven mainly by the coexistence of phylogenetically diverse antibiotic-resistant lineages, widespread geographical mixing, and frequent recombination. This study provides an important baseline census of the standing pangenomic variation and drug resistance to aid the development of a statewide database for epidemiological studies and clinical decision making. Continued genomic surveillance will be necessary to accurately assess how the population of C. jejuni changes over the long term.
Collapse
|
29
|
GM1 Oligosaccharide Crosses the Human Blood-Brain Barrier In Vitro by a Paracellular Route. Int J Mol Sci 2020; 21:ijms21082858. [PMID: 32325905 PMCID: PMC7215935 DOI: 10.3390/ijms21082858] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Ganglioside GM1 (GM1) has been reported to functionally recover degenerated nervous system in vitro and in vivo, but the possibility to translate GM1′s potential in clinical settings is counteracted by its low ability to overcome the blood–brain barrier (BBB) due to its amphiphilic nature. Interestingly, the soluble and hydrophilic GM1-oligosaccharide (OligoGM1) is able to punctually replace GM1 neurotrophic functions alone, both in vitro and in vivo. In order to take advantage of OligoGM1 properties, which overcome GM1′s pharmacological limitations, here we characterize the OligoGM1 brain transport by using a human in vitro BBB model. OligoGM1 showed a 20-fold higher crossing rate than GM1 and time–concentration-dependent transport. Additionally, OligoGM1 crossed the barrier at 4 °C and in inverse transport experiments, allowing consideration of the passive paracellular route. This was confirmed by the exclusion of a direct interaction with the active ATP-binding cassette (ABC) transporters using the “pump out” system. Finally, after barrier crossing, OligoGM1 remained intact and able to induce Neuro2a cell neuritogenesis by activating the TrkA pathway. Importantly, these in vitro data demonstrated that OligoGM1, lacking the hydrophobic ceramide, can advantageously cross the BBB in comparison with GM1, while maintaining its neuroproperties. This study has improved the knowledge about OligoGM1′s pharmacological potential, offering a tangible therapeutic strategy.
Collapse
|
30
|
Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. Int J Mol Sci 2020; 21:E868. [PMID: 32013258 PMCID: PMC7037093 DOI: 10.3390/ijms21030868] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico-chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever-increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component.
Collapse
Affiliation(s)
| | | | | | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Milano, Italy; (E.C.)
| | | |
Collapse
|
31
|
Polonskaya Z, Savage PB, Finn MG, Teyton L. High-affinity anti-glycan antibodies: challenges and strategies. Curr Opin Immunol 2019; 59:65-71. [PMID: 31029911 DOI: 10.1016/j.coi.2019.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
High-affinity binding of antibodies provides for increased specificity and usually higher effector functions in vivo. This goal, well documented in cancer immunotherapy, is very relevant to vaccines as well, and has particularly significant application toward glycan antigens. The inability to elicit high-affinity antibodies has limited potential applications of glycan-based immunogens, giving rise to insufficient population coverage due to low titers and short duration of protection. That such vaccines have achieved widespread use in spite of these shortcomings highlights the surpassing importance of glycans as prophylactic immunological targets. New advances in the combination of synthetic chemistry, bioconjugation, and mechanistic immunology offer the possibility to vastly expand the number of potential molecular targets in cancer and infectious diseases by opening a wider world of carbohydrate structures to immunological recognition and high-affinity response.
Collapse
Affiliation(s)
- Zinaida Polonskaya
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, UT, USA
| | - M G Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
32
|
Dehelean L, Sarbu M, Petrut A, Zamfir AD. Trends in Glycolipid Biomarker Discovery in Neurodegenerative Disorders by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:703-729. [DOI: 10.1007/978-3-030-15950-4_42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Effector/memory CD8 + T cells synergize with co-stimulation competent macrophages to trigger autoimmune peripheral neuropathy. Brain Behav Immun 2018; 71:142-157. [PMID: 29627532 DOI: 10.1016/j.bbi.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Autoimmune peripheral neuropathy (APN) such as Guillain Barre Syndrome (GBS) is a debilitating illness and sometimes life threatening. The molecular and cellular mechanisms remain elusive but exposure to environmental factors including viral/bacterial infection and injury is highly associated with disease incidence. We demonstrated previously that both male and female B7.2 (CD86) transgenic L31 and L31/CD4KO mice develop spontaneous APN. Here we further reveal that CD8+ T cells in these mice exhibit an effector/memory phenotype, which bears a resemblance to the CD8+ T cell response following persistent cytomegalovirus (CMV) infection in humans and mice, whilst CMV has been considered as one of the most relevant pathogens in APN development. These activated, peripheral myelin Ag specific CD8+ T cells are required for the disease initiation. While an injury to a peripheral nerve results in Wallerian degeneration in control littermates, the same injury accelerates the development of APN in other non-injured nerves of L31 mice which have a predisposed inflammatory background consisting of effector/memory CD8+ T (CD8+ TEM) cells. However, CD8+ TEM cells alone are not sufficient. A certain threshold of B7.2 expression on nerve macrophages is an additional requisite. Our findings reveal that indeed, the synergism between CD8+ TEM cells and co-stimulation competent macrophages is crucial in inducing autoimmune-mediated peripheral neuropathy. The identification of decisive molecular/cellular players connecting environmental triggers and the occurrence of APN provides opportunities to prevent disease onset, reduce relapses and develop new therapeutic strategies.
Collapse
|
34
|
Principi N, Esposito S. Vaccine-preventable diseases, vaccines and Guillain-Barre' syndrome. Vaccine 2018; 37:5544-5550. [PMID: 29880241 DOI: 10.1016/j.vaccine.2018.05.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/27/2022]
Abstract
Guillain-Barré syndrome (GBS) is an acute, immune-mediated polyradiculoneuropathy. Infections and vaccines have been hypothesized to play a role in triggering GBS development. These beliefs can play a role in reducing vaccination coverage. In this report, data concerning this hypothesis are discussed. It is shown that an association between vaccine administration and GBS has never been proven for most of debated vaccines, although it cannot be definitively excluded. The only exception is the influenza vaccine, at least for the preparation used in 1976. For some vaccines, such as measles/mumps/rubella, human papillomavirus, tetravalent conjugated meningococcal vaccine, and influenza, the debate between supporters and opponents of vaccination remains robust and perception of vaccines' low safety remains a barrier to achieving adequate vaccination coverage. Less than 1 case of GBS per million immunized persons might occur for these vaccines. However, in some casesimmunization actually reduces the risk of GBS development. In addition, the benefits of vaccination are clearly demonstrated by the eradication or enormous decline in the incidence of many vaccine-preventable diseases. These data highlight that the hypothesized risks of adverse events, such as GBS, cannot be considered a valid reason to avoid the administration of currently recommended vaccines.
Collapse
Affiliation(s)
- Nicola Principi
- Professor Emeritus of Pediatrics, Università degli Studi di Milano, Milano, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy.
| |
Collapse
|
35
|
Correlative study between C-reactive protein, clinical severity, and nerve conduction studies in Guillain-Barrè syndrome. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2018; 54:4. [PMID: 29780224 PMCID: PMC5954777 DOI: 10.1186/s41983-018-0006-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/23/2018] [Indexed: 11/30/2022] Open
Abstract
Background Guillain-Barre' syndrome (GBS) is a serious autoimmune disorder in which the immune system attacks healthy nerve cells of the peripheral nervous system causing polyradiculoneuropathy which leads to weakness, numbness, and tingling, and can eventually cause paralysis. Autoimmune conditions like GBS can induce a high level of inflammation resulting in an increase in the C-reactive protein( CRP) production. The aim of this study is to assess the relationship between CRP level and the clinical severity as well as the electrophysiological findings of nerve conduction studies in patients with GBS. Methods Twenty- four patients (10 males &14 females) with ages ranged from 14 to 50 years and a mean age of 33.46 ±12.25 years who fulfilled the clinical criteria for diagnosing GBS were recruited within the first 2 weeks of onset of illness, in a cross- section study. They underwent general and neurological examination. Nerve conduction studies as well as assessment of serum CRP level were done. Results There was a statistically significant positive correlation between clinical severity assessed by (Hughes disability scale) and serum CRP level in GBS patients. Multivariate logistic regression analysis showed that both gastroenteritis, cranio-bulbar affection, need for mechanical ventilation (MV), disability score >4, and absent motor and sensory responses were significantly associated with high serum CRP level >6mg/dl. Conclusions The results of this study support the hypothesis that in GBS patients, gastroenteritis, craniobulbar affection, need for MV, disability score >4, and absent motor and sensory nerve responses were significantly related to high serum CRP level. This reflects the negative impact of the inflammatory response elicited by high CRP level on clinical severity in GBS patients, and so it may be used as a prognostic marker of clinical severity of GBS and this can help in therapeutic decision making.
Collapse
|
36
|
Tebib N, Bill O, Niederhauser J, Christin L. An uncommon complication of Listeria monocytogenes infection: Polyradiculoneuritis following Listeria meningoencephalitis. IDCases 2018; 12:101-103. [PMID: 29942763 PMCID: PMC6010957 DOI: 10.1016/j.idcr.2018.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/05/2022] Open
Abstract
Listeria monocytogenes, primarily a foodborne pathogen, is commonly responsible for disorders affecting the central nervous system and cranial nerves. We hereby present the first case to our knowledge of listeriosis linked to a peripheral neurological disorder causing acute upper limb weakness.
Collapse
Affiliation(s)
- N. Tebib
- Department of Internal Medicine, GHOL, Nyon, Switzerland
| | - O. Bill
- Stroke Unit, GHOL, Nyon, Switzerland
| | | | - L. Christin
- Department of Internal Medicine, GHOL, Nyon, Switzerland
| |
Collapse
|
37
|
Robnik B, Keše D, Rojko T, Horvat-Ledinek A, Pražnikar A, Beović B. Unilateral brachial plexopathy, a rare complication of Mycoplasma pneumoniae infection. J Infect Chemother 2017; 24:309-311. [PMID: 29221755 DOI: 10.1016/j.jiac.2017.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
Few reports in the literature describe isolated peripheral neuropathies in relation to Mycoplasma pneumoniae infection without concurrent damage to the central nervous system. To our knowledge only a single case of mononeuritis multiplex with brachial plexus neuropathy coincident with M. pneumoniae has been documented until now. Here we present the first clinical case of lobar M. pneumoniae pneumonia in a 19-year-old female patient, where coincident neurological complications manifested as unilateral brachial plexus neuropathy, affecting axillar and suprascapular nerves. Isolated M. pneumoniae from sputum belonged to P1 type 2 and to MLVA type 3-6-6-2. No mutation associated with macrolide resistance in domain V of the 23S rRNA gene was detected. Serological testing of a GM1 antibody showed positive results, which might support the role of immunologic mechanisms in the pathogenesis of peripheral neuropathies related to M. pneumoniae infection.
Collapse
Affiliation(s)
- Barbara Robnik
- Department of Infectious Diseases, University Medical Centre Maribor, Maribor, Slovenia
| | - Darja Keše
- Institute of Microbiology and Immunology, Faculty of Medicine Ljubljana, Slovenia
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Aleš Pražnikar
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Bojana Beović
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
38
|
Zhang P, Hevey R, Ling CC. Total Synthesis of β-d-ido-Heptopyranosides Related to Capsular Polysaccharides of Campylobacter jejuni HS:4. J Org Chem 2017; 82:9662-9674. [DOI: 10.1021/acs.joc.7b01752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- Alberta Glycomics Centre,
Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Rachel Hevey
- Alberta Glycomics Centre,
Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chang-Chun Ling
- Alberta Glycomics Centre,
Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
39
|
Leal de Araujo J, Tizard I, Guo J, Heatley JJ, Rodrigues Hoffmann A, Rech RR. Are anti-ganglioside antibodies associated with proventricular dilatation disease in birds? PeerJ 2017; 5:e3144. [PMID: 28413724 PMCID: PMC5390765 DOI: 10.7717/peerj.3144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/04/2017] [Indexed: 11/20/2022] Open
Abstract
The identification of Parrot bornaviruses (PaBV) in psittacine birds with proventricular dilatation disease (PDD) has not been sufficient to explain the pathogenesis of this fatal disease, since not all infected birds develop clinical signs. Although the most accepted theory indicates that PaBV directly triggers an inflammatory response in this disease, another hypothesis suggests the disease is triggered by autoantibodies targeting neuronal gangliosides, and PDD might therefore resemble Guillain-Barré Syndrome (GBS) in its pathogenesis. Experimental inoculation of pure gangliosides and brain-derived ganglioside extracts were used in two different immunization studies. The first study was performed on 17 healthy chickens (Gallus gallus domesticus): 11 chickens were inoculated with a brain ganglioside extract in Freund’s complete adjuvant (FCA) and six chickens inoculated with phosphate-buffered saline. A second study was performed five healthy quaker parrots (Myiopsitta monachus) that were divided into three groups: Two quaker parrots received purified gangliosides in FCA, two received a crude brain extract in FCA, and one control quaker parrot received FCA alone. One chicken developed difficult in walking. Histologically, only a mild perivascular and perineural lymphocytic infiltrate in the proventriculus. Two quaker parrots (one from each treatment group) had mild lymphoplasmacytic encephalitis and myelitis. However, none of the quaker parrots developed myenteric ganglioneuritis, suggesting that autoantibodies against gangliosides in birds are not associated with a condition resembling PDD.
Collapse
Affiliation(s)
- Jeann Leal de Araujo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Ian Tizard
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - J Jill Heatley
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Raquel R Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
40
|
Pinto-Díaz CA, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Molano-González N, Anaya JM, Ramírez-Santana C. Autoimmunity in Guillain-Barré syndrome associated with Zika virus infection and beyond. Autoimmun Rev 2017; 16:327-334. [PMID: 28216074 DOI: 10.1016/j.autrev.2017.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities among them as well as their familial clustering. Guillain-Barré syndrome (GBS), an autoimmune peripheral neuropathy, has been recently associated with Zika virus (ZIKV) infection. Based on a series of cases, this review article provides a comparative analysis of GBS associated with ZIKV infection, contrasted with the general characteristics of GBS in light of the autoimmune tautology, including gender differences in prevalence, subphenotypes, polyautoimmunity, familial autoimmunity, age at onset, pathophysiology, ecology, genetics, ancestry, and treatment.
Collapse
Affiliation(s)
- Carlos A Pinto-Díaz
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Nicolás Molano-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia.
| |
Collapse
|
41
|
Patel P, Kearney JF. Immunological Outcomes of Antibody Binding to Glycans Shared between Microorganisms and Mammals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4201-4209. [PMID: 27864551 PMCID: PMC5119654 DOI: 10.4049/jimmunol.1600872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Glycans constitute basic cellular components of living organisms across biological kingdoms, and glycan-binding Abs participate in many cellular interactions during immune defense against pathogenic organisms. Glycan epitopes are expressed as carbohydrate-only entities or as oligomers or polymers on proteins and lipids. Such epitopes on glycoproteins may be formed by posttranslational modifications or neoepitopes resulting from metabolic-catabolic processes and can be altered during inflammation. Pathogenic organisms can display host-like glycans to evade the host immune response. However, Abs to glycans, shared between microorganisms and the host, exist naturally. These Abs are able to not only protect against infectious disease, but also are involved in host housekeeping functions and can suppress allergic disease. Despite the reactivity of these Abs to glycans shared between microorganisms and host, diverse tolerance-inducing mechanisms permit the B cell precursors of these Ab-secreting cells to exist within the normal B cell repertoire.
Collapse
Affiliation(s)
- Preeyam Patel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
42
|
|
43
|
Higher frequencies of HLA DQB1*05:01 and anti-glycosphingolipid antibodies in a cluster of severe Guillain–Barré syndrome. J Neurol 2016; 263:2105-13. [DOI: 10.1007/s00415-016-8237-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
|
44
|
Connor BA. Post-Infectious Sequelae of Travelers’ Diarrhea: Reactive Arthritis, Guillain-Barré Syndrome, and Irritable Bowel Syndrome. CURRENT TROPICAL MEDICINE REPORTS 2016. [DOI: 10.1007/s40475-016-0080-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Navaneetharaja N, Griffiths V, Wileman T, Carding SR. A Role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)? J Clin Med 2016; 5:E55. [PMID: 27275835 PMCID: PMC4929410 DOI: 10.3390/jcm5060055] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous disorder of significant societal impact that is proposed to involve both host and environmentally derived aetiologies that may be autoimmune in nature. Immune-related symptoms of at least moderate severity persisting for prolonged periods of time are common in ME/CFS patients and B cell depletion therapy is of significant therapeutic benefit. The origin of these symptoms and whether it is infectious or inflammatory in nature is not clear, with seeking evidence of acute or chronic virus infections contributing to the induction of autoimmune processes in ME/CFS being an area of recent interest. This article provides a comprehensive review of the current evidence supporting an infectious aetiology for ME/CFS leading us to propose the novel concept that the intestinal microbiota and in particular members of the virome are a source of the "infectious" trigger of the disease. Such an approach has the potential to identify disease biomarkers and influence therapeutics, providing much-needed approaches in preventing and managing a disease desperately in need of confronting.
Collapse
Affiliation(s)
- Navena Navaneetharaja
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Verity Griffiths
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Tom Wileman
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Simon R Carding
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
46
|
Moise L, Beseme S, Tassone R, Liu R, Kibria F, Terry F, Martin W, De Groot AS. T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Rev Vaccines 2016; 15:607-17. [PMID: 26588466 DOI: 10.1586/14760584.2016.1123098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T cells are extensively trained on 'self' in the thymus and then move to the periphery, where they seek out and destroy infections and regulate immune response to self-antigens. T cell receptors (TCRs) on T cells' surface recognize T cell epitopes, short linear strings of amino acids presented by antigen-presenting cells. Some of these epitopes activate T effectors, while others activate regulatory T cells. It was recently discovered that T cell epitopes that are highly conserved on their TCR face with human genome sequences are often associated with T cells that regulate immune response. These TCR-cross-conserved or 'redundant epitopes' are more common in proteins found in pathogens that have co-evolved with humans than in other non-commensal pathogens. Epitope redundancy might be the link between pathogens and autoimmune disease. This article reviews recently published data and addresses epitope redundancy, the "elephant in the room" for vaccine developers and T cell immunologists.
Collapse
Affiliation(s)
- Leonard Moise
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | | | - Ryan Tassone
- b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | - Rui Liu
- b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | | | | | | | - Anne S De Groot
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| |
Collapse
|
47
|
Vegosen L, Breysse PN, Agnew J, Gray GC, Nachamkin I, Sheikh K, Kamel F, Silbergeld E. Occupational Exposure to Swine, Poultry, and Cattle and Antibody Biomarkers of Campylobacter jejuni Exposure and Autoimmune Peripheral Neuropathy. PLoS One 2015; 10:e0143587. [PMID: 26636679 PMCID: PMC4670215 DOI: 10.1371/journal.pone.0143587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 11/07/2015] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Foodborne Campylobacter jejuni infection has been associated with an increased risk of autoimmune peripheral neuropathy, but risks of occupational exposure to C. jejuni have received less attention. This study compared anti-C. jejuni IgA, IgG, and IgM antibody levels, as well as the likelihood of testing positive for any of five anti-ganglioside autoantibodies, between animal farmers and non-farmers. Anti-C. jejuni antibody levels were also compared between farmers with different animal herd or flock sizes. The relationship between anti-C. jejuni antibody levels and detection of anti-ganglioside autoantibodies was also assessed. METHODS Serum samples from 129 Agricultural Health Study swine farmers (some of whom also worked with other animals) and 46 non-farmers, all from Iowa, were analyzed for anti-C. jejuni antibodies and anti-ganglioside autoantibodies using ELISA. Information on animal exposures was assessed using questionnaire data. Anti-C. jejuni antibody levels were compared using Mann-Whitney tests and linear regression on log-transformed outcomes. Fisher's Exact Tests and logistic regression were used to compare likelihood of positivity for anti-ganglioside autoantibodies. RESULTS Farmers had significantly higher levels of anti-C. jejuni IgA (p < 0.0001) and IgG (p = 0.02) antibodies compared to non-farmers. There was no consistent pattern of anti-C. jejuni antibody levels based on animal herd or flock size. A higher percentage of farmers (21%) tested positive for anti-ganglioside autoantibodies compared to non-farmers (9%), but this difference was not statistically significant (p = 0.11). There was no significant association between anti-C. jejuni antibody levels and anti-ganglioside autoantibodies. CONCLUSIONS The findings provide evidence that farmers who work with animals may be at increased risk of exposure to C. jejuni. Future research should include longitudinal studies of exposures and outcomes, as well as studies of interventions to reduce exposure. Policies to reduce occupational exposure to C. jejuni should be considered.
Collapse
Affiliation(s)
- Leora Vegosen
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
- * E-mail:
| | - Patrick N. Breysse
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Jacqueline Agnew
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Gregory C. Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kazim Sheikh
- Department of Neurology, University of Texas Medical School, Houston, TX, United States of America
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, United States of America
| | - Ellen Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
48
|
Schengrund CL. Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 2015; 40:397-406. [DOI: 10.1016/j.tibs.2015.03.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
|
49
|
Rodrigues CG, Melo RT, Fonseca BB, Martins PA, Ferreira FA, Araújo MB, Rossi DA. Occurrence and characterization of Campylobacter spp.isolates in dogs, cats and children. PESQUISA VETERINARIA BRASILEIRA 2015. [DOI: 10.1590/s0100-736x2015000400009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To improve the understanding of implications of Campylobacterspp. infections in pets and children of different environments were analysed 160 faecal samples from children and 120 from pets (103 dogs and 17 cats). Campylobacter spp. were detected in 6.87% of the children and in 18.3% of the dogs and cats. From 33 stool samples positive for Campylobacter spp., 57.6% were identified as C. jejuni, and 33.4% were identified as C. coli. More than 50% of the isolates in pets were resistant to ceftiofur, sulphazotrim, norfloxacin and tetracycline. In humans, most of the isolates were resistant to amoxicillin, cefazolin, ceftiofur, erythromycin and norfloxacin. From 19 isolates of C. jejuni, 11 isolates from children and 5 from dogs contained two to four of the virulence genes flaA, pldA, cadF or ciaB.We found an association between the presence of virulence genes and diarrhoea. Furthermore, an association was observed between the presence of Campylobacter spp. and diarrhoea in dewormed pets with blood picture suggestive of bacterial infection, and the therapeutic use of antibiotics was associated with more positive detection of Campylobacterspp. in the faeces of pets. Our data indicate that virulent strains of Campylobacter spp. can be risk factor to diarrhoea in animals, and that high resistance to antimicrobial agents is common in pets.
Collapse
|
50
|
Bladder dysfunction and hypertension in children with Guillain-Barre syndrome. Pediatr Nephrol 2014; 29:1637-41. [PMID: 24651942 DOI: 10.1007/s00467-014-2799-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/23/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Guillain-Barre syndrome (GBS) causes acute motor, sensory and autonomic dysfunction. There is a relative paucity of published data regarding the autonomic features of GBS. The aims of this study were to describe the incidence, management and outcome of bladder dysfunction and hypertension in GBS and to ascertain whether these features relate to muscle weakness severity. CASE-DIAGNOSIS/TREATMENT Twenty-seven patients with a median (interquartile range) age of 5.7 (3.5-8.4) years were included, of whom 18 (67%) were male and 14 (52%) had autonomic dysfunction. One patient presented with and three subsequently developed urinary retention necessitating catheterisation for a median of 7.5 (7-14.5) days. Univariate analysis demonstrated that urinary retention was associated with weakness in all four limbs [retention: MRC muscle grade 2 (2-2.75); no retention: MRC grade 4 (3-4); p = 0.02], possibly reflecting more severe disease. Patients with hypertension (12 patients, 44%) had a longer hospital stay [median 32.5 (15.5-53.5) days; rho = 0.65; p = 0.02], and those with worse muscle weakness required more anti-hypertensive medications (upper limb rho = -0.71, p = 0.03; lower limb rho = -0.72, p = 0.03]. The majority of blood pressure treatments involved calcium channel and beta blockers. CONCLUSION In children with GBS, bladder dysfunction and hypertension are common. The presence of severe muscle weakness may predict those at greatest risk of these complications.
Collapse
|