1
|
Espinoza ME, Swing AM, Elghraoui A, Modlin SJ, Valafar F. Interred mechanisms of resistance and host immune evasion revealed through network-connectivity analysis of M. tuberculosis complex graph pangenome. mSystems 2025; 10:e0049924. [PMID: 40261029 PMCID: PMC12013269 DOI: 10.1128/msystems.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/16/2024] [Indexed: 04/24/2025] Open
Abstract
Mycobacterium tuberculosis complex successfully adapts to environmental pressures through mechanisms of rapid adaptation which remain poorly understood despite knowledge gained through decades of research. In this study, we used 110 reference-quality, complete de novo assembled, long-read sequenced clinical genomes to study patterns of structural adaptation through a graph-based pangenome analysis, elucidating rarely studied mechanisms that enable enhanced clinical phenotypes offering a novel perspective to the species' adaptation. Across isolates, we identified a pangenome of 4,325 genes (3,767 core and 558 accessory), revealing 290 novel genes, and a substantially more complete account of difficult-to-sequence esx/pe/pgrs/ppe genes. Seventy-four percent of core genes were deemed non-essential in vitro, 38% of which support the pathogen's survival in vivo, suggesting a need to broaden current perspectives on essentiality. Through information-theoretic analysis, we reveal the ppe genes that contribute most to the species' diversity-several with known consequences for antigenic variation and immune evasion. Construction of a graph pangenome revealed topological variations that implicate genes known to modulate host immunity (Rv0071-73, Rv2817c, cas2), defense against phages/viruses (cas2, csm6, and Rv2817c-2821c), and others associated with host tissue colonization. Here, the prominent trehalose transport pathway stands out for its involvement in caseous granuloma catabolism and the development of post-primary disease. We show paralogous duplications of genes implicated in bedaquiline (mmpL5 in all L1 isolates) and ethambutol (embC-A) resistance, with a paralogous duplication of its regulator (embR) in 96 isolates. We provide hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can escape detection by molecular diagnostics.IMPORTANCEM. tuberculosis complex (MTBC) has killed over a billion people in the past 200 years alone and continues to kill nearly 1.5 million annually. The pathogen has a versatile ability to diversify under immune and drug pressure and survive, even becoming antibiotic persistent or resistant in the face of harsh chemotherapy. For proper diagnosis and design of an appropriate treatment regimen, a full understanding of this diversification and its clinical consequences is desperately needed. A mechanism of diversification that is rarely studied systematically is MTBC's ability to structurally change its genome. In this article, we have de novo assembled 110 clinical genomes (the largest de novo assembled set to date) and performed a pangenomic analysis. Our pangenome provides structural variation-based hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can compromise molecular diagnostics and lead to further emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Monica E. Espinoza
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Ashley M. Swing
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- San Diego State University/University of California, San Diego | Joint Doctoral Program in Public Health (Global Health), San Diego, California, USA
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California, USA
| | - Samuel J. Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Davies-Bolorunduro OF, Jaemsai B, Ruangchai W, Noppanamas T, Boonbangyang M, Bodharamik T, Sawaengdee W, Mahasirimongkol S, Palittapongarnpim P. Analysis of complete genomes of Mycobacterium tuberculosis sublineage 2.1 (Proto-Beijing) revealed the presence of three pe_pgrs3-pe_pgrs4-like genes. Sci Rep 2024; 14:30702. [PMID: 39730410 DOI: 10.1038/s41598-024-79351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis Complex (MTBC), the etiological agent of tuberculosis (TB), demonstrates considerable genotypic diversity with distinct geographic distributions and variable virulence profiles. The pe-ppe gene family is especially noteworthy for its extensive variability and roles in host immune response modulation and virulence enhancement. We sequenced an Mtb genotype L2.1 isolate from Chiangrai, Northern Thailand, using second and third-generation sequencing technologies. Comparative genomic analysis with two additional L2.1 isolates and two L2.2.AA3 (Asia Ancestral 3 Beijing) isolates revealed significant pe-ppe gene variations. Notably, all L2.1 isolates harbored three copies of pe_pgrs3-pe_pgrs4-like genes (pe_pgrs3*, pe_pgrs4*, and pe_pgrs4), different from L2.2.AA3 and H37Rv strains. Additionally, ppe53 was duplicated in all but H37Rv, and ppe50 was deleted in L2.1 isolates, contrasting with an extended ppe50 in an L2.2 isolate (Mtb 18b), which contains an additional SVP motif. Complete deletion of ppe66 and loss of wag22 were observed in L2.1 isolates. These findings highlight the high structural variability of the pe-ppe gene family, emphasizing its complex roles in Mtb-host immune interactions. This genetic complexity offers potentially critical insights into mycobacterial pathogenesis, with significant implications for vaccine development and diagnostics.
Collapse
Affiliation(s)
- Olabisi Flora Davies-Bolorunduro
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Floret Center for Advanced Genomics and Bioinformatics Research, Lagos, Nigeria
| | - Bharkbhoom Jaemsai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thanakron Noppanamas
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Manon Boonbangyang
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thavin Bodharamik
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Waritta Sawaengdee
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
4
|
Priyanka, Sharma S, Varma-Basil M, Sharma M. C-terminal region of Rv1039c (PPE15) protein of Mycobacterium tuberculosis targets host mitochondria to induce macrophage apoptosis. Apoptosis 2024; 29:1757-1779. [PMID: 38615303 DOI: 10.1007/s10495-024-01965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Mycobacterium tuberculosis (Mtb) genome possesses a unique family called Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) gene family, exclusive to pathogenic mycobacterium. Some of these proteins are known to play role in virulence and immune response modulation, but many are still uncharacterized. This study investigated the role of C-terminal region of Rv1039c (PPE15) in inducing mitochondrial perturbations and macrophage apoptosis. Our in-silico studies revealed the disordered, coiled, and hydrophobic C-terminal region in Rv1039c has similarity with C-terminal of mitochondria-targeting pro-apoptotic host proteins. Wild type Rv1039c and C-terminal deleted Rv1039c (Rv1039c-/-Cterm) recombinant proteins were purified and their M. smegmatis knock-in strains were constructed which were used for in-vitro experiments. Confocal microscopy showed localization of Rv1039c to mitochondria of PMA-differentiated THP1 macrophages; and reduced mitochondrial membrane depolarization and production of mitochondrial superoxides were observed in response to Rv1039c-/-Cterm in comparison to full-length Rv1039c. The C-terminal region of Rv1039c was found to activate caspases 3, 7 and 9 along with upregulated expression of pro-apoptotic genes like Bax and Bim. Rv1039c-/-Cterm also reduced the Cytochrome-C release from the mitochondria and the expression of AnnexinV/PI positive and TUNEL positive cells as compared to Rv1039c. Additionally, Rv1039c was observed to upregulate the TLR4-NF-κB-TNF-α signalling whereas the same was downregulated in response to Rv1039c-/-Cterm. These findings suggested that the C-terminal region of Rv1039c is a molecular mimic of pro-apoptotic host proteins which induce mitochondria-dependent macrophage apoptosis and evoke host immune response. These observations enhance our understanding about the role of PE/PPE proteins at host-pathogen interface.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| |
Collapse
|
5
|
Mulinari ACDP, Sardella IG, da Silva VMC, Matteelli A, Carvalho ACC, Saad MHF. PPE59 antibodies in tuberculous patients and potential use for diagnosis when assayed with other rapid biomarkers. Mem Inst Oswaldo Cruz 2024; 119:e230183. [PMID: 39292107 PMCID: PMC11404981 DOI: 10.1590/0074-02760230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND PPE 59, which is absent from bacillus Calmette Guérin (BCG) strains, seems to induce a humoral immune response in patients with tuberculosis (TB). Additional studies are needed to better evaluate this protein in immune response to tuberculosis. OBJECTIVES To evaluate the response of antibodies to PPE59 in TB individuals, its combination with IgG response to other, previously tested mycobacterial antigens (Ag) and with sputum smear microbiology (SM) results. METHODS We have cloned and expressed the rv3429 gene that encodes PPE59, then IgG, IgM, and IgA against PPE59 antigens measured by enzyme-linked immunosorbent assay (ELISA) in 212 sera samples obtained from the following subject cohorts: TB residents from Italy (79) and in Brazil (52); and an all-Brazilian cohort of 55 patients with other respiratory disorders; 10 patients infected with non-tuberculous mycobacteria, and 16 asymptomatic subjects. Drawing on results from a previous study(17) of serum samples from Brazilian subjects tested for IgG by ELISA against mycobacterial antigens ESAT-6, 16kDa, MT10.3, MPT-64 and 38kDa, the results were analysed in combination with those of the PPE59 and SM tests. FINDINGS Keeping the specificity rate at 97%, the overall PPE59 IgA sensitivity was 42.7%, while IgG and IgM showed lower performance (p < 0.0001). Combining PPE59 IgA/16kDa IgG results increased sensitivity to 71%, and even higher rates when the results were combined with SM results (86.5%, p = 0.001), at 88.9% specificity. Positive IgA was associated with pulmonary image alterations of high TB probability (p < 0.05). MAIN CONCLUSIONS Tests with TB patients found a moderate frequency of positivity for PPE59 IgA. However, the higher level of sensitivity attained in combination with PPE59 IgA/16kDa IgG/SM results unheard of before, although imperfect, suggests that this may be a potential additional tool for rapid detection of TB in low-resource areas.
Collapse
Affiliation(s)
- Ana Carla de Paulo Mulinari
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, RJ, Brasil
| | - Isabela Gama Sardella
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, RJ, Brasil
| | - Vania Maria C da Silva
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Rio de Janeiro, RJ, Brasil
| | - Alberto Matteelli
- Università degli Studi di Brescia, Clinic of Infectious and Tropical Diseases, Spedali Civili di Brescia, Italy
| | - Anna Cristina C Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Educação e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Maria Helena Féres Saad
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
6
|
Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, Izumi H, Monk IR, Porter JL, Bennett-Wood V, Seemann T, Otter A, Taiaroa G, Cook GM, West N, Tobias NJ, Fuerst JA, Stutz MD, Pellegrini M, McConville M, Brosch R, Stinear TP. Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLoS Pathog 2024; 20:e1012440. [PMID: 39207937 PMCID: PMC11361433 DOI: 10.1371/journal.ppat.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stephan Klatt
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Louis S. Ates
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicholas West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael D. Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Malcolm McConville
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Krysztopa-Grzybowska K, Lach J, Polak M, Strapagiel D, Dziadek J, Olszewski M, Zasada AA, Darlińska A, Lutyńska A, Augustynowicz-Kopeć E. The whole genome sequence of Polish vaccine strain Mycobacterium bovis BCG Moreau. Microbiol Spectr 2024; 12:e0425923. [PMID: 38757975 PMCID: PMC11237378 DOI: 10.1128/spectrum.04259-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.
Collapse
Affiliation(s)
- Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Mycobacterium Genetics and Physiology Unit, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Aleksandra A. Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Aniela Darlińska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| |
Collapse
|
8
|
Ouaked N, Demoitié MA, Godfroid F, Mortier MC, Vanloubbeeck Y, Temmerman ST. Non-clinical evaluation of local and systemic immunity induced by different vaccination strategies of the candidate tuberculosis vaccine M72/AS01. Tuberculosis (Edinb) 2023; 143:102425. [PMID: 38180028 DOI: 10.1016/j.tube.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 01/06/2024]
Abstract
A new efficacious tuberculosis vaccine targeting adolescents/adults represents an urgent medical need. The M72/AS01E vaccine candidate protected half of the latently-infected adults against progression to pulmonary tuberculosis in a Phase IIb trial (NCT01755598). We report that three immunizations of mice, two weeks apart, with AS01-adjuvanted M72 induced polyfunctional, Th1-cytokine-expressing M72-specific CD4+/CD8+ T cells in blood and lungs, with the highest frequencies in lungs. Antigen-dose reductions across the three vaccinations skewed pulmonary CD4+ T-cell profiles towards IL-17 expression. In blood, reducing antigen and adjuvant doses of only the third injection (to 1/5th or 1/25th of those of the first injections) did not significantly alter CD4+ T-cell/antibody responses; applying a 10-week delay for the fractional third dose enhanced antibody titers. Delaying a full-dose booster enhanced systemic CD4+ T-cell and antibody responses. Cross-reactivity with PPE and non-PPE proteins was assessed, as Mycobacterium tuberculosis (Mtb) virulence factors and evasion mechanisms are often associated with PE/PPE proteins, to which Mtb39a (contained in M72) belongs. In silico/in vivo analyses revealed that M72/AS01 induced cross-reactive systemic CD4+ T-cell responses to epitopes in a non-vaccine antigen (putative latency-associated Mtb protein PPE24/Rv1753c). These preclinical data describing novel mechanisms of M72/AS01-induced immunity could guide future clinical development of the vaccine.
Collapse
Affiliation(s)
- Nadia Ouaked
- GSK, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Medha, Joshi H, Sharma S, Sharma M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn 2023; 41:10009-10025. [PMID: 36448553 DOI: 10.1080/07391102.2022.2151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) encodes a total of 67 PE_PGRS proteins and definite functions of many of them are still unknown. This study reports PE_PGRS45 (Rv2615c) protein from Mtb as NADPH dependent oxido-reductase having substrate specificity for fatty acyl Coenzyme A. Computational studies predicted PE_PGRS45 to be an integral membrane protein of Mtb. Expression of PE_PGRS45 in non-pathogenic Mycobacterium smegmatis, which does not possess PE_PGRS genes, confirmed its membrane localization. This protein was observed to have NADPH binding motif. Experimental validation confirmed its NADPH dependent oxido-reductase activity (Km value = 34.85 ± 9.478 μM, Vmax = 96.77 ± 7.184 nmol/min/mg of protein). Therefore, its potential to be targeted by first line anti-tubercular drug Isoniazid (INH) was investigated. INH was predicted to bind within the active site of PE_PGRS45 protein and experiments validated its inhibitory effect on the oxido-reductase activity of PE_PGRS45 with IC50/Ki values of 5.66 μM. Mtb is resistant to first line drugs including INH. Therefore, to address the problem of drug resistant TB, docking and Molecular Dynamics (MD) simulation studies between PE_PGRS45 and three drugs (Entacapone, Tolcapone and Verapamil) which are being used in Parkinson's and hypertension treatment were performed. PE_PGRS45 bound the three drugs with similar or better affinity in comparison to INH. Additionally, INH and these drugs bound within the same active site of PE_PGRS45. This study discovered Mtb's PE_PGRS45 protein to have an oxido-reductase activity and could be targeted by drugs that can be repurposed for TB treatment. Furthermore, in-vitro and in-vivo validation will aid in drug-resistant TB treatment. HIGHLIGHTSIn-silico and in-vitro studies of hypothetical protein PE_PGRS45 (Rv2615c) of Mycobacterium tuberculosis (Mtb) reveals it to be an integral membrane proteinPE_PGRS45 protein has substrate specificity for fatty acyl Coenzyme A (fatty acyl CoA) and possess NADPH dependent oxido-reductase activityDocking and simulation studies revealed that first line anti-tubercular drug Isoniazid (INH) and other drugs with anti-TB property have strong affinity for PE_PGRS45 proteinOxido-reductase activity of PE_PGRS45 protein is inhibited by INHPE_PGRS45 protein could be targeted by drugs that can be repurposed for TB treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Medha
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sadhna Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Monika Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Guo F, Wei J, Song Y, Li B, Qian Z, Wang X, Wang H, Xu T. Immunological effects of the PE/PPE family proteins of Mycobacterium tuberculosis and related vaccines. Front Immunol 2023; 14:1255920. [PMID: 37841250 PMCID: PMC10569470 DOI: 10.3389/fimmu.2023.1255920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), and its incidence and mortality are increasing. The BCG vaccine was developed in the early 20th century. As the most widely administered vaccine in the world, approximately 100 million newborns are vaccinated with BCG every year, which has saved tens of millions of lives. However, due to differences in region and race, the average protective rate of BCG in preventing tuberculosis in children is still not high in some areas. Moreover, because the immune memory induced by BCG will weaken with the increase of age, it is slightly inferior in preventing adult tuberculosis, and BCG revaccination cannot reduce the incidence of tuberculosis again. Research on the mechanism of Mtb and the development of new vaccines against TB are the main strategies for preventing and treating TB. In recent years, Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins have been found to have an increasingly important role in the pathogenesis and chronic protracted infection observed in TB. The development and clinical trials of vaccines based on Mtb antigens are in progress. Herein, we review the immunological effects of PE/PPE proteins and the development of common PE/PPE vaccines.
Collapse
Affiliation(s)
- Fangzheng Guo
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Jing Wei
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Yamin Song
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Li F, Guo X, Bi Y, Jia R, Pitt ME, Pan S, Li S, Gasser RB, Coin LJ, Song J. Digerati - A multipath parallel hybrid deep learning framework for the identification of mycobacterial PE/PPE proteins. Comput Biol Med 2023; 163:107155. [PMID: 37356289 DOI: 10.1016/j.compbiomed.2023.107155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
The genome of Mycobacterium tuberculosis contains a relatively high percentage (10%) of genes that are poorly characterised because of their highly repetitive nature and high GC content. Some of these genes encode proteins of the PE/PPE family, which are thought to be involved in host-pathogen interactions, virulence, and disease pathogenicity. Members of this family are genetically divergent and challenging to both identify and classify using conventional computational tools. Thus, advanced in silico methods are needed to identify proteins of this family for subsequent functional annotation efficiently. In this study, we developed the first deep learning-based approach, termed Digerati, for the rapid and accurate identification of PE and PPE family proteins. Digerati was built upon a multipath parallel hybrid deep learning framework, which equips multi-layer convolutional neural networks with bidirectional, long short-term memory, equipped with a self-attention module to effectively learn the higher-order feature representations of PE/PPE proteins. Empirical studies demonstrated that Digerati achieved a significantly better performance (∼18-20%) than alignment-based approaches, including BLASTP, PHMMER, and HHsuite, in both prediction accuracy and speed. Digerati is anticipated to facilitate community-wide efforts to conduct high-throughput identification and analysis of PE/PPE family members. The webserver and source codes of Digerati are publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/Digerati/.
Collapse
Affiliation(s)
- Fuyi Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yue Bi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Runchang Jia
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Shirui Pan
- School of Information and Communication Technology, Griffith University, QLD, 4222, Australia
| | - Shuqin Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Robin B Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, VIC, 3010, Australia
| | - Lachlan Jm Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
12
|
Shibabaw A, Gelaw B, Ghanem M, Legall N, Schooley AM, Soehnlen MK, Salvador LCM, Gebreyes W, Wang SH, Tessema B. Molecular epidemiology and transmission dynamics of multi-drug resistant tuberculosis strains using whole genome sequencing in the Amhara region, Ethiopia. BMC Genomics 2023; 24:400. [PMID: 37460951 DOI: 10.1186/s12864-023-09502-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Drug resistant Mycobacterium tuberculosis prevention and care is a major challenge in Ethiopia. The World health organization has designated Ethiopia as one of the 30 high burden multi-drug resistant tuberculosis (MDR-TB) countries. There is limited information regarding genetic diversity and transmission dynamics of MDR-TB in Ethiopia. OBJECTIVE To investigate the molecular epidemiology and transmission dynamics of MDR-TB strains using whole genome sequence (WGS) in the Amhara region. METHODS Forty-five MDR-TB clinical isolates from Amhara region were collected between 2016 and 2018, and characterized using WGS and 24-loci Mycobacterium Interspersed Repetitive Units Variable Number of Tandem Repeats (MIRU-VNTR) typing. Clusters were defined based on the maximum distance of 12 single nucleotide polymorphisms (SNPs) or alleles as the upper threshold of genomic relatedness. Five or less SNPs or alleles distance or identical 24-loci VNTR typing is denoted as surrogate marker for recent transmission. RESULTS Forty-one of the 45 isolates were analyzed by WGS and 44% (18/41) of the isolates were distributed into 4 clusters. Of the 41 MDR-TB isolates, 58.5% were classified as lineage 4, 36.5% lineage 3 and 5% lineage 1. Overall, TUR genotype (54%) was the predominant in MDR-TB strains. 41% (17/41) of the isolates were clustered into four WGS groups and the remaining isolates were unique strains. The predominant cluster (Cluster 1) was composed of nine isolates belonging to lineage 4 and of these, four isolates were in the recent transmission links. CONCLUSIONS Majority of MDR-TB strain cluster and predominance of TUR lineage in the Amhara region give rise to concerns for possible ongoing transmission. Efforts to strengthen TB laboratory to advance diagnosis, intensified active case finding, and expanded contact tracing activities are needed in order to improve rapid diagnosis and initiate early treatment. This would lead to the interruption of the transmission chain and stop the spread of MDR-TB in the Amhara region.
Collapse
Affiliation(s)
- Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA.
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| | - Baye Gelaw
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Noah Legall
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Angie M Schooley
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA
| | - Marty K Soehnlen
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA
| | - Liliana C M Salvador
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and life sciences, University of Arizona, Tucson, AZ, USA
| | - Wondwossen Gebreyes
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Shu-Hua Wang
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Belay Tessema
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
13
|
Vargas R, Luna MJ, Freschi L, Marin M, Froom R, Murphy KC, Campbell EA, Ioerger TR, Sassetti CM, Farhat MR. Phase variation as a major mechanism of adaptation in Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2023; 120:e2301394120. [PMID: 37399390 PMCID: PMC10334774 DOI: 10.1073/pnas.2301394120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.
Collapse
Affiliation(s)
- Roger Vargas
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA02115
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Michael J. Luna
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Maximillian Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY10065
| | - Kenan C. Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX77843
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
14
|
Mao LR, Du JP, Wang XC, Xu LF, Zhang YP, Sun QS, Shi ZL, Xing YR, Su YX, Wang SJ, Wang J, Ma JL, Zhang JY. Long-Term Immunogenicity and In Vitro Prophylactic Protective Efficacy of M. tuberculosis Fusion Protein DR2 Combined with Liposomal Adjuvant DIMQ as a Boosting Vaccine for BCG. ACS Infect Dis 2023; 9:593-608. [PMID: 36808986 DOI: 10.1021/acsinfecdis.2c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The resuscitation of dormant Mycobacterium tuberculosis is an important cause of adult tuberculosis (TB) transmission. According to the interaction mechanism between M. tuberculosis and the host, the latency antigen Rv0572c and region of difference 9 (RD9) antigen Rv3621c were selected in this study to prepare the fusion protein DR2. Stimulating clinically diagnosed active tuberculosis infections (i.e., TB patients), latent tuberculosis infections, and healthy controls confirmed that T lymphocytes could recognize DR2 protein in the peripheral blood of TB-infected individuals more than subcomponent protein. The DR2 protein was then emulsified in the liposome adjuvant dimethyl dioctadecyl ammonium bromide, and imiquimod (DIMQ) was administered to C57BL/6 mice immunized with Bacillus Calmette-Guérin (BCG) vaccine to evaluate their immunogenicity. Studies have shown that DR2/DIMQ, a booster vaccine for BCG primary immunization, can elicit robust CD4+ Th1 cell immune response and predominant IFN-γ+ CD4+ effector memory T cells (TEM) subsets. Furthermore, the serum antibody level and the expression of related cytokines increased significantly with the extension of immunization time, with IL2+, CD4+, or CD8+ central memory T cells (TCM) subsets predominant in the long term. This immunization strategy showed matched prophylactic protective efficacy by performing in vitro challenge experiment. This result provides robust evidence that the novel subunit vaccine prepared by fusion protein DR2 combined with liposomal adjuvant DIMQ is a promising TB vaccine candidate for further preclinical trials as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Li-Rong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jian-Peng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Chun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Li-Fa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yan-Peng Zhang
- Department of Cosmetology, School of Medicine, Huainan Union University, Huainan 232038, China
| | - Qi-Shan Sun
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Zi-Lun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Ying-Ru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei 230000, China
| | - Yi-Xin Su
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Sheng-Jian Wang
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Ji-Lei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing-Yan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
15
|
Priyanka, Medha, Bhatt P, Joshi H, Sharma S, Sharma M. Late stage specific Rv0109 (PE_PGRS1) protein of Mycobacterium tuberculosis induces mitochondria mediated macrophage apoptosis. Microb Pathog 2023; 176:106021. [PMID: 36739922 DOI: 10.1016/j.micpath.2023.106021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Mitochondria are the powerhouse of the cell and a critical cell signalling hub that decides the fate of the cell. Mycobacterium tuberculosis (Mtb) being a successful pathogen targets and controls the host mitochondria for pathogenesis. Various effector proteins of Mtb are also known to target host mitochondria which include few proteins of a unique Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) family exclusively present in pathogenic mycobacteria, but many of them are still uncharacterized. The present study investigates one such late expressing Rv0109 (PE_PGRS1) protein of Mtb. In-silico analysis predicted the presence of mitochondria targeting signal sequences in Rv0109 and its role in regulation of cysteine type endopeptidase (caspase) activity during apoptosis. Recombinant Rv0109 gets localized to mitochondria of THP1 macrophages as shown by confocal microscopy. Rv0109 was observed to induce mitochondrial stress which resulted in mitochondrial membrane depolarization, upregulation of mitochondrial superoxides and release of Cytochrome-C in the cytoplasm through flow cytometry. Depleted intracellular ATP was observed in THP1 macrophages in response to Rv0109. This mitochondrial stress in response to Rv0109 was observed to culminate in increased expression of pro-apoptotic Bax and Bim factors and caspase activation leading to macrophage apoptosis. Since Rv0109 is a late stage specific protein expressed within granuloma; mitochondria mediated apoptosis induced by Rv0109 may be explored for its role in granuloma maintenance and pathogen persistence.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| | - Medha
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Parul Bhatt
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| |
Collapse
|
16
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
17
|
Responses of Humoral and Cellular Immune Mediators in BALB/c Mice to LipX (PE11) as Seed Tuberculosis Vaccine Candidates. Genes (Basel) 2022; 13:genes13111954. [DOI: 10.3390/genes13111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
A member of the pe/ppe gene family, lipX (pe11), is capable of directing persistent Mycobacterium tuberculosis and avoiding host immune responses. Some studies have indicated that LipX (PE11) can detect humoral antibodies in tuberculosis patients. Hence, information on immune mediators’ responses to this protein is essential to understand its protective efficacy against M. tuberculosis infections. This study aimed to examine the response of immune mediators to pCDNA3.1-lipX expression in vivo. In the experiment, pCDNA3.1-lipX was injected into BALB/c strain male mice aged between 6 and 8 weeks, and they were compared to groups injected with pCDNA3.1 and without injection. The injection was carried out three times intramuscularly every two weeks. Blood was taken retro-orbitally and used for humoral response analysis by Western blotting against LipX-His protein. Simultaneously, the splenocytes were cultured and induced with LipX-His protein for cellular immunity analyses. Our study showed that the recombinant DNA of pCDNA3.1-lipX induced a humoral and cellular immune response, especially in IL-4, IL-12, and IFN-γ, which are the primary cellular responses to M. tuberculosis infections. However, additional studies, such as a challenge study, are needed to strengthen the argument that this plasmid construction is feasible as a tuberculosis seed vaccine candidate.
Collapse
|
18
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
19
|
Nikitushkin V, Shleeva M, Loginov D, Dyčka F. F, Sterba J, Kaprelyants A. Shotgun proteomic profiling of dormant, ‘non-culturable’ Mycobacterium tuberculosis. PLoS One 2022; 17:e0269847. [PMID: 35944020 PMCID: PMC9362914 DOI: 10.1371/journal.pone.0269847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dormant cells of Mycobacterium tuberculosis, in addition to low metabolic activity and a high level of drug resistance, are characterized by ‘non-culturability’–a specific reversible state of the inability of the cells to grow on solid media. The biochemical characterization of this physiological state of the pathogen is only superficial, pending clarification of the metabolic processes that may exist in such cells. In this study, applying LC-MS proteomic profiling, we report the analysis of proteins accumulated in dormant, ‘non-culturable’ M. tuberculosis cells in an in vitro model of self-acidification of mycobacteria in the post-stationary phase, simulating the in vivo persistence conditions—the raw data are available via ProteomeXchange with identifier PXD028849. This approach revealed the preservation of 1379 proteins in cells after 5 months of storage in dormancy; among them, 468 proteins were statistically different from those in the actively growing cells and bore a positive fold change (FC). Differential analysis revealed the proteins of the pH-dependent regulatory system PhoP and allowed the reconstruction of the reactions of central carbon/glycerol metabolism, as well as revealing the salvaged pathways of mycothiol and UMP biosynthesis, establishing the cohort of survival enzymes of dormancy. The annotated pathways mirror the adaptation of the mycobacterial metabolic machinery to life within lipid-rich macrophages: especially the involvement of the methyl citrate and glyoxylate pathways. Thus, the current in vitro model of M. tuberculosis self-acidification reflects the biochemical adaptation of these bacteria to persistence in vivo. Comparative analysis with published proteins displaying antigenic properties makes it possible to distinguish immunoreactive proteins among the proteins bearing a positive FC in dormancy, which may include specific antigens of latent tuberculosis. Additionally, the biotransformatory enzymes (oxidoreductases and hydrolases) capable of prodrug activation and stored up in the dormant state were annotated. These findings may potentially lead to the discovery of immunodiagnostic tests for early latent tuberculosis and trigger the discovery of efficient drugs/prodrugs with potency against non-replicating, dormant populations of mycobacteria.
Collapse
Affiliation(s)
- Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
- * E-mail: (VN); (FDF)
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Loginov
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- BioCeV—Institute of Microbiology of the CAS, Vestec, Czech Republic
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Filip Dyčka F.
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- * E-mail: (VN); (FDF)
| | - Jan Sterba
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Singh S, Bolz M, Cornelius A, Desvignes L. Intravenous BCG driven antigen recognition in a murine tuberculosis model. Comp Immunol Microbiol Infect Dis 2022; 87:101838. [PMID: 35700556 DOI: 10.1016/j.cimid.2022.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Bacille Calmette-Guerin (BCG) is the only approved vaccine against tuberculosis but the subcutaneous route does not provide for the elimination of Mycobacterium tuberculosis (Mtb), thus highlighting the need for investigating other routes of administration. We used a unique set of 60 peptide pools with unprecedented coverage of the bacterium that had previously been used to study T cell responses in subjects latently infected with Mtb. We showed that intravenous BCG vaccination of C57BL/6 mice elicited a more robust IFN-γ response from splenocytes than the subcutaneous route, with the highest responses driven by the Ag85A/B and PE/PPE family epitopes, followed by TB10.4 and Esx-1. We then compared the spectrum of antigen recognition in BCG-naïve H37Rv-challenged and BCG-vaccinated H37Rv-challenged mice. Peptides belonging to TB10.4, ESAT-6, CFP-10, Ag85A/Ag85B, PE/PPE and Esx families up-regulated IFN-γ production in the lungs of BCG-naïve H37Rv-challenged mice but the response was much lower in the BCG-vaccinated group. Historically, a limited number of Mtb antigens have been used to study T cell responses in TB. The goal of using this 60-peptide assay was to define T cell responses in TB down to the epitope level. We envision that the use of broad antigen panels such as ours in conjunction with studies of bacterial load reduction will help delineate the protective efficacy of 'groups' of antigens.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care Medicine, USA.
| | - Miriam Bolz
- Division of Infectious Diseases and Immunology, Department of Medicine, USA
| | - Amber Cornelius
- Division of Infectious Diseases and Immunology, Department of Medicine, USA
| | - Ludovic Desvignes
- Division of Infectious Diseases and Immunology, Department of Medicine, USA; Office of Science & Research, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
21
|
Silva FJ, Santos-Garcia D, Zheng X, Zhang L, Han XY. Construction and Analysis of the Complete Genome Sequence of Leprosy Agent Mycobacterium lepromatosis. Microbiol Spectr 2022; 10:e0169221. [PMID: 35467405 PMCID: PMC9248898 DOI: 10.1128/spectrum.01692-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/07/2022] [Indexed: 12/29/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. We report construction and analyses of the complete genome sequence of M. lepromatosis FJ924. The genome contained 3,271,694 nucleotides to encode 1,789 functional genes and 1,564 pseudogenes. It shared 1,420 genes and 885 pseudogenes (71.4%) with M. leprae but differed in 1,281 genes and pseudogenes (28.6%). In phylogeny, the leprosy bacilli started from a most recent common ancestor (MRCA) that diverged ~30 million years ago (Mya) from environmental organism Mycobacterium haemophilum. The MRCA then underwent reductive evolution with pseudogenization, gene loss, and chromosomal rearrangements. Analysis of the shared pseudogenes estimated the pseudogenization event ~14 Mya, shortly before species bifurcation. Afterwards, genomic changes occurred to lesser extent in each species. Like M. leprae, four major types of highly repetitive sequences were detected in M. lepromatosis, contributing to chromosomal rearrangements within and after MRCA. Variations in genes and copy numbers were noted, such as three copies of the gene encoding bifunctional diguanylate cyclase/phosphodiesterase in M. lepromatosis, but single copy in M. leprae; 6 genes encoding the TetR family transcriptional regulators in M. lepromatosis, but 11 such genes in M. leprae; presence of hemW gene in M. lepromatosis, but absence in M. leprae; and others. These variations likely aid unique pathogenesis, such as diffuse lepromatous leprosy associated with M. lepromatosis, while the shared genomic features should explain the common pathogenesis of dermatitis and neuritis in leprosy. Together, these findings and the genomic data of M. lepromatosis may facilitate future research and care for leprosy. IMPORTANCE Leprosy is a dreaded infection that still affects millions of people worldwide. Mycobacterium lepromatosis is a recently recognized cause in addition to the well-known Mycobacterium leprae. M. lepromatosis is likely specific for diffuse lepromatous leprosy, a severe form of the infection and endemic in Mexico. This study constructed and annotated the complete genome sequence of M. lepromatosis FJ924 and performed comparative genomic analyses with related mycobacteria. The results afford new and refined insights into the genome size, gene repertoire, pseudogenes, phylogenomic relationship, genome organization and plasticity, process and timing of reductive evolution, and genetic and proteomic basis for pathogenesis. The availability of the complete M. lepromatosis genome may prove to be useful for future research and care for the infection.
Collapse
Affiliation(s)
- Francisco J. Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Paterna, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology UMR CNRS, University of Lyon, Villeurbanne, France
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiang Y. Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Kumar A, Sharma P, Arun A, Meena LS. Development of peptide vaccine candidate using highly antigenic PE-PGRS family proteins to stimulate the host immune response against Mycobacterium tuberculosis H 37Rv: an immuno-informatics approach. J Biomol Struct Dyn 2022; 41:3382-3404. [PMID: 35293852 DOI: 10.1080/07391102.2022.2048079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tuberculosis (TB) is a fast spreading; transmissible disease caused by the Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis has a high death rate in its endemic regions due to a lack of appropriate treatment and preventative measures. We have used a vaccinomics strategy to create an effective multi-epitope vaccine against M. tuberculosis. The antigenic proteins with the highest antigenicity were utilised to predict cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes. CTL and HTL epitopes were covered in 99.97% of the population. Seven epitopes each of CTL, HTL, and LBL were ultimately selected and utilised to develop a multi-epitope vaccine. A vaccine design was developed by combining these epitopes with suitable linkers and LprG adjuvant. The vaccine chimera was revealed to be highly immunogenic, non-allergenic, and non-toxic. To ensure a better expression within the Escherichia coli K12 (E. coli K12) host system, codon adaptation and in silico cloning were accomplished. Following that, various validation studies were conducted, including molecular docking, molecular dynamics simulation, and immunological simulation, all of which indicated that the designed vaccine would be stable in the biological environment and effective against M. tuberculosis infection. The immune simulation revealed higher levels of T-cell and B-cell activity, which corresponded to the actual immune response. Exposure simulations were repeated several times, resulting in increased clonal selection and faster antigen clearance. These results suggest that, if proposed vaccine chimera would test both in-vitro and in-vivo, it could be a viable treatment and preventive strategy for TB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Sharma
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Akanksha Arun
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
23
|
Babu Sait MR, Koliwer-Brandl H, Stewart JA, Swarts BM, Jacobsen M, Ioerger TR, Kalscheuer R. PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis. Sci Rep 2022; 12:2097. [PMID: 35136132 PMCID: PMC8826857 DOI: 10.1038/s41598-022-06109-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 01/07/2023] Open
Abstract
The disaccharide trehalose is essential for viability of Mycobacterium tuberculosis, which synthesizes trehalose de novo but can also utilize exogenous trehalose. The mycobacterial cell wall encompasses two permeability barriers, the cytoplasmic membrane and the outer mycolic acid-containing mycomembrane. The ABC transporter LpqY-SugA-SugB-SugC has previously been demonstrated to mediate the specific uptake of trehalose across the cytoplasmic membrane. However, it is still unclear how the transport of trehalose molecules across the mycomembrane is mediated. In this study, we harnessed the antimycobacterial activity of the analogue 6-azido trehalose to select for spontaneous resistant M. tuberculosis mutants in a merodiploid strain harbouring two LpqY-SugA-SugB-SugC copies. Mutations mediating resistance to 6-azido trehalose mapped to the proline-proline-glutamate (PPE) family member PPE51 (Rv3136), which has recently been shown to be an integral mycomembrane protein involved in uptake of low-molecular weight compounds. A site-specific ppe51 gene deletion mutant of M. tuberculosis was unable to grow on trehalose as the sole carbon source. Furthermore, bioorthogonal labelling of the M. tuberculosis Δppe51 mutant incubated with 6-azido trehalose corroborated the impaired internalization. Taken together, the results indicate that the transport of trehalose and trehalose analogues across the mycomembrane of M. tuberculosis is exclusively mediated by PPE51.
Collapse
Affiliation(s)
- Mohammed Rizwan Babu Sait
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Hendrik Koliwer-Brandl
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Jessica A Stewart
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Thomas R Ioerger
- Department of Computer Science, Texas A&M University, College Station, TX, 77843, USA
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
24
|
Abrahams JS, Weigand MR, Ring N, MacArthur I, Etty J, Peng S, Williams MM, Bready B, Catalano AP, Davis JR, Kaiser MD, Oliver JS, Sage JM, Bagby S, Tondella ML, Gorringe AR, Preston A. Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microb Genom 2022; 8:000761. [PMID: 35143385 PMCID: PMC8942028 DOI: 10.1099/mgen.0.000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis, whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis. We found 590 amplifications in M. tuberculosis, and like B. pertussis, these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis. This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis, highlighting the need for a more holistic understanding of bacterial genetics.
Collapse
Affiliation(s)
- Jonathan S. Abrahams
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Michael R. Weigand
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie Ring
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Iain MacArthur
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Joss Etty
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Scott Peng
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | | - Stefan Bagby
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - M. Lucia Tondella
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Andrew Preston
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
25
|
Gupta R, Pandey M, Pandey AK, Tiwari PK, Amrathlal RS. Novel genetic polymorphisms identified in the clinical isolates of Mycobacterium tuberculosis PE_PGRS33 gene modulate cytokines expression and promotes survival in macrophages. J Infect Public Health 2022; 15:245-254. [DOI: 10.1016/j.jiph.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
|
26
|
De Maio F, Salustri A, Battah B, Palucci I, Marchionni F, Bellesi S, Palmieri V, Papi M, Kramarska E, Sanguinetti M, Sali M, Berisio R, Delogu G. PE_PGRS3 ensures provision of the vital phospholipids cardiolipin and phosphatidylinositols by promoting the interaction between M. tuberculosis and host cells. Virulence 2021; 12:868-884. [PMID: 33757409 PMCID: PMC8007152 DOI: 10.1080/21505594.2021.1897247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) constitute a large family of complex modular proteins whose role is still unclear. Among those, we have previously shown, using the heterologous expression in Mycobacterium smegmatis, that PE_PGRS3 containing a unique arginine-rich C-terminal domain, promotes adhesion to host cells. In this study, we investigate the role of PE_PGRS3 and its C-terminal domain directly in Mtb using functional deletion mutants. The results obtained here show that PE_PGRS3 is localized on the mycobacterial cell wall and its arginine-rich C-terminal region protrudes from the mycobacterial membrane and mediates Mtb entry into epithelial cells. Most importantly, this positively charged helical domain specifically binds phosphorylated phosphatidylinositols and cardiolipin, whereas it is unable to bind other phospholipids. Interestingly, administration of cardiolipin and phosphatidylinositol but no other phospholipids was able to turn-off expression of pe_pgrs3 activated by phosphate starvation conditions. These findings suggest that PE_PGRS3 has the key role to serve as a bridge between mycobacteria and host cells by interacting with specific host phospholipids and extracting them from host cells, for their direct integration or as a source of phosphate, during phases of TB pathogenesis when Mtb is short of phosphate supply.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Basem Battah
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Marchionni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
27
|
Umar A, Haque A, Alghamdi YS, Mashraqi MM, Rehman A, Shahid F, Khurshid M, Ashfaq UA. Development of a Candidate Multi-Epitope Subunit Vaccine against Klebsiella aerogenes: Subtractive Proteomics and Immuno-Informatics Approach. Vaccines (Basel) 2021; 9:vaccines9111373. [PMID: 34835304 PMCID: PMC8624419 DOI: 10.3390/vaccines9111373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Klebsiella aerogenes is a Gram-negative bacterium which has gained considerable importance in recent years. It is involved in 10% of nosocomial and community-acquired urinary tract infections and 12% of hospital-acquired pneumonia. This organism has an intrinsic ability to produce inducible chromosomal AmpC beta-lactamases, which confer high resistance. The drug resistance in K. aerogenes has been reported in China, Israel, Poland, Italy and the United States, with a high mortality rate (~50%). This study aims to combine immunological approaches with molecular docking approaches for three highly antigenic proteins to design vaccines against K. aerogenes. The synthesis of the B-cell, T-cell (CTL and HTL) and IFN-γ epitopes of the targeted proteins was performed and most conserved epitopes were chosen for future research studies. The vaccine was predicted by connecting the respective epitopes, i.e., B cells, CTL and HTL with KK, AAY and GPGPG linkers and all these were connected with N-terminal adjuvants with EAAAK linker. The humoral response of the constructed vaccine was measured through IFN-γ and B-cell epitopes. Before being used as vaccine candidate, all identified B-cell, HTL and CTL epitopes were tested for antigenicity, allergenicity and toxicity to check the safety profiles of our vaccine. To find out the compatibility of constructed vaccine with receptors, MHC-I, followed by MHC-II and TLR4 receptors, was docked with the vaccine. Lastly, in order to precisely certify the proper expression and integrity of our construct, in silico cloning was carried out. Further studies are needed to confirm the safety features and immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Ahitsham Umar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Youssef Saeed Alghamdi
- Department of Biology, Turabah University College, Taif University, Taif 21944, Saudi Arabia;
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia;
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
- Correspondence:
| |
Collapse
|
28
|
Design of a peptide-based vaccine from late stage specific immunogenic cross-reactive antigens of PE/PPE proteins of Mycobacterium tuberculosis. Eur J Pharm Sci 2021; 168:106051. [PMID: 34744006 DOI: 10.1016/j.ejps.2021.106051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Since decades now, Tuberculosis (TB) is among the leading cause of death globally. Innovative and extensive research strategies are necessary to lower TB incidence and achieve the End TB Strategy milestone. Epitope-based vaccine designing and development provides a promising solution with high efficacy and effectiveness. Mining of less studied genes of Mycobacterium tuberculosis (Mtb) is crucial for recognizing potential antigenic peptide epitopes which can mount protective immune response in host. Many proteins from ESX associated Proline-Glutamate (PE)/ Proline-Proline-Glutamate (PPE) family are virulence factors and alter host mediated immune response against the pathogen. In the present study, we have targeted 34 late stage expressing (being expressed at 90 days) PE/PPE proteins of Mtb for prediction and identification of promiscuous, immunogenic and cross-reactive CD4+ T cell specific epitopes. We found a total of 149 promiscuous and cross-reactive epitopes out of which 42 were antigenic as well. Further, we shortlisted top 10 Promiscuous, Cross-reactive CD4+ T cell specific, Antigenic Peptide Epitopes (PCAPEs) which were characterized to be non-allergenic and pro-inflammatory cytokine inducing in nature. These epitopes also showed strong binding affinity for CD8+ T cell restricted Major Histo-compatibility Complex (MHC) class I alleles. Additionally, these PCAPEs showed wide population coverage of 99.6% globally for both MHC class I and class II alleles. Molecular docking studies were conducted to confirm the affinity of these shortlisted peptides for widely occurring MHC alleles. Additionally, we performed codon adaptation and in silico cloning of the recombinant vaccine construct incorporating EsxA (ESAT-6) as an adjuvant and the 10 selected PCAPEs joined by linkers. The recombinant vaccine construct showed strong affinity for Toll-like receptor2 (TLR2) immune receptor in docking studies. In silico prediction based study using C-ImmSim server shows significant population of Th1 type immune cells with memory cells lasting for months in response to our vaccine administration. Since, majority of TB vaccines under clinical trials are antigens expressed at early stages; a combinatorial approach inclusive of peptide epitopes derived from proteins being expressed at all stages could be a promising strategy to design and develop effective TB vaccine. Synthesis and experimental validation of this multi-epitopic recombinant TB vaccine construct may result in an effective vaccine to confer protection against Mtb.
Collapse
|
29
|
Comparative Genomics of Mycobacterium avium Complex Reveals Signatures of Environment-Specific Adaptation and Community Acquisition. mSystems 2021; 6:e0119421. [PMID: 34665012 PMCID: PMC8525567 DOI: 10.1128/msystems.01194-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacteria, including those in the Mycobacterium avium complex (MAC), constitute an increasingly urgent threat to global public health. Ubiquitous in soil and water worldwide, MAC members cause a diverse array of infections in humans and animals that are often multidrug resistant, intractable, and deadly. MAC lung disease is of particular concern and is now more prevalent than tuberculosis in many countries, including the United States. Although the clinical importance of these microorganisms continues to expand, our understanding of their genomic diversity is limited, hampering basic and translational studies alike. Here, we leveraged a unique collection of genomes to characterize MAC population structure, gene content, and within-host strain dynamics in unprecedented detail. We found that different MAC species encode distinct suites of biomedically relevant genes, including antibiotic resistance genes and virulence factors, which may influence their distinct clinical manifestations. We observed that M. avium isolates from different sources—human pulmonary infections, human disseminated infections, animals, and natural environments—are readily distinguished by their core and accessory genomes, by their patterns of horizontal gene transfer, and by numerous specific genes, including virulence factors. We identified highly similar MAC strains from distinct patients within and across two geographically distinct clinical cohorts, providing important insights into the reservoirs which seed community acquisition. We also discovered a novel MAC genomospecies in one of these cohorts. Collectively, our results provide key genomic context for these emerging pathogens and will facilitate future exploration of MAC ecology, evolution, and pathogenesis. IMPORTANCE Members of the Mycobacterium avium complex (MAC), a group of mycobacteria encompassing M. avium and its closest relatives, are omnipresent in natural environments and emerging pathogens of humans and animals. MAC infections are difficult to treat, sometimes fatal, and increasingly common. Here, we used comparative genomics to illuminate key aspects of MAC biology. We found that different MAC species and M. avium isolates from different sources encode distinct suites of clinically relevant genes, including those for virulence and antibiotic resistance. We identified highly similar MAC strains in patients from different states and decades, suggesting community acquisition from dispersed and stable reservoirs, and we discovered a novel MAC species. Our work provides valuable insight into the genomic features underlying these versatile pathogens.
Collapse
|
30
|
Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils. J Biol Chem 2021; 297:101194. [PMID: 34537246 PMCID: PMC8551513 DOI: 10.1016/j.jbc.2021.101194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Membraneless organelles (MLOs) are vital and dynamic reaction centers in cells that compartmentalize the cytoplasm in the absence of a membrane. Multivalent interactions between protein low-complexity domains contribute to MLO organization. Previously, we used computational methods to identify structural motifs termed low-complexity amyloid-like reversible kinked segments (LARKS) that promote phase transition to form hydrogels and that are common in human proteins that participate in MLOs. Here, we searched for LARKS in the proteomes of six model organisms: Homo sapiens, Drosophila melanogaster, Plasmodium falciparum, Saccharomyces cerevisiae, Mycobacterium tuberculosis, and Escherichia coli to gain an understanding of the distribution of LARKS in the proteomes of various species. We found that LARKS are abundant in M. tuberculosis, D. melanogaster, and H. sapiens but not in S. cerevisiae or P. falciparum. LARKS have high glycine content, which enables kinks to form as exemplified by the known LARKS-rich amyloidogenic structures of TDP43, FUS, and hnRNPA2, three proteins that are known to participate in MLOs. These results support the idea of LARKS as an evolved structural motif. Based on these results, we also established the LARKSdb Web server, which permits users to search for LARKS in their protein sequences of interest.
Collapse
|
31
|
Yi F, Hu J, Zhu X, Wang Y, Yu Q, Deng J, Huang X, Ma Y, Xie Y. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Stimulated by Mycobacterium tuberculosis PPE57 Identifies Characteristic Genes Associated With Type I Interferon Signaling. Front Cell Infect Microbiol 2021; 11:716809. [PMID: 34490145 PMCID: PMC8416891 DOI: 10.3389/fcimb.2021.716809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 02/05/2023] Open
Abstract
Proline-glutamic acid (PE)- and proline-proline-glutamic acid (PPE)-containing proteins are exclusive to Mycobacterium tuberculosis (MTB), the leading cause of tuberculosis (TB). In this study, we performed global transcriptome sequencing (RNA-Seq) on PPE57-stimulated peripheral blood mononuclear cells (PBMCs) and control samples to quantitatively measure the expression level of key transcripts of interest. A total of 1367 differentially expressed genes (DEGs) were observed in response to a 6 h exposure to PPE57, with 685 being up-regulated and 682 down-regulated. Immune-related gene functions and pathways associated with these genes were evaluated, revealing that the type I IFN signaling pathway was the most significantly enriched pathway in our RNA-seq dataset, with 14 DEGs identified therein including ISG15, MX2, IRF9, IFIT3, IFIT2, OAS3, IFIT1, IFI6, OAS2, OASL, RSAD2, OAS1, IRF7, and MX1. These PPE57-related transcriptomic profiles have implications for a better understanding of host global immune mechanisms underlying MTB infection outcomes. However, more studies regarding these DEGs and type I IFN signaling in this infectious context are necessary to more fully clarify the underlying mechanisms that arise in response to PPE57 during MTB infection.
Collapse
Affiliation(s)
- Fanli Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuedong Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
33
|
Heijmenberg I, Husain A, Sathkumara HD, Muruganandah V, Seifert J, Miranda-Hernandez S, Kashyap RS, Field MA, Krishnamoorthy G, Kupz A. ESX-5-targeted export of ESAT-6 in BCG combines enhanced immunogenicity & efficacy against murine tuberculosis with low virulence and reduced persistence. Vaccine 2021; 39:7265-7276. [PMID: 34420788 DOI: 10.1016/j.vaccine.2021.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) is the leading infectious cause of death globally. The only licensed TB vaccine, Bacille Calmette-Guérin (BCG), has low efficacy against TB in adults and is not recommended in people with impaired immunity. The incorporation of the Mycobacterium tuberculosis (Mtb) secretion system ESX-1 into BCG improves immunogenicity and protection against TB in animal models, which is associated with the secretion of the ESX-1-dependent protein ESAT-6. However, the resulting strain, BCG::ESX1Mtb, has been deemed unsafe as a human vaccine, due to prolonged persistence and increased virulence in immunocompromised mice. In this study, we describe a new recombinant BCG strain that uncouples the beneficial aspects of ESAT-6 secretion from the detrimental ESX-1effects on virulence and persistence. The strain was constructed by fusing the ESAT-6-encoding gene esxA to the general secretion signal for the mycobacterial type VII secretion pathway protein PE25. This new strain, BCG::ESAT6-PE25SS, secretes full-length ESAT-6 via the ESX-5 secretion system, which in contrast to ESX-1 is also present in BCG. In vivo testing revealed that ESX-5-targeted ESAT-6 export, induces cytosolic contact, generates ESAT-6-specific T cells and enhances the protective efficacy against TB disease, but is associated with low virulence and reduced persistence in immunocompetent and immunocompromised mice. Additionally, compared to BCG::ESX1Mtb and parental BCG, mucosal administration of BCG::ESAT6-PE25SS is associated with more rapid clearance from the lung. These results warrant further studies to evaluate BCG::ESAT6-PE25SS as a potential live attenuated vaccine candidate for TB.
Collapse
Affiliation(s)
- Isis Heijmenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Leiden University, Leiden 2311, the Netherlands
| | - Aliabbas Husain
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Harindra D Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Julia Seifert
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Socorro Miranda-Hernandez
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia
| | - Rajpal Singh Kashyap
- Central India Institute of Medical Sciences, 88/2, Bajaj Nagar, Nagpur 10, India
| | - Matt A Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Queensland, Australia; John Curtin School of Medical Research, Australian National University, Canberra 2601, ACT, Australia
| | | | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878 & Townsville 4811, Queensland, Australia.
| |
Collapse
|
34
|
Gupta A, Alland D. Reversible gene silencing through frameshift indels and frameshift scars provide adaptive plasticity for Mycobacterium tuberculosis. Nat Commun 2021; 12:4702. [PMID: 34349104 PMCID: PMC8339072 DOI: 10.1038/s41467-021-25055-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis can adapt to changing environments by non-heritable mechanisms. Frame-shifting insertions and deletions (indels) may also participate in adaptation through gene disruption, which could be reversed by secondary introduction of a frame-restoring indel. We present ScarTrek, a program that scans genomic data for indels, including those that together disrupt and restore a gene's reading frame, producing "frame-shift scars" suggestive of reversible gene inactivation. We use ScarTrek to analyze 5977 clinical M. tuberculosis isolates. We show that indel frequency inversely correlates with genomic linguistic complexity and varies with gene-position and gene-essentiality. Using ScarTrek, we detect 74 unique frame-shift scars in 48 genes, with a 3.74% population-level incidence of unique scar events. We find multiple scars in the ESX-1 gene cluster. Six scars show evidence of convergent evolution while the rest shared a common ancestor. Our results suggest that sequential indels are a mechanism for reversible gene silencing and adaptation in M. tuberculosis.
Collapse
Affiliation(s)
- Aditi Gupta
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| | - David Alland
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
35
|
De Maio F, Berisio R, Manganelli R, Delogu G. PE_PGRS proteins of Mycobacterium tuberculosis: A specialized molecular task force at the forefront of host-pathogen interaction. Virulence 2021; 11:898-915. [PMID: 32713249 PMCID: PMC7550000 DOI: 10.1080/21505594.2020.1785815] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To the PE_PGRS protein subfamily belongs a group of surface-exposed mycobacterial antigens that in Mycobacterium tuberculosis (Mtb) H37Rv accounts to more than 65 genes, 51 of which are thought to express a functional protein. PE_PGRS proteins share a conserved structural architecture with three main domains: the N-terminal PE domain; the PGRS domain, that can vary in sequence and size and is characterized by the presence of multiple GGA-GGX amino acid repeats; the highly conserved sequence containing the GRPLI motif that links the PE and PGRS domains; the unique C-terminus end that can vary in size from few to up to ≈ 300 amino acids. pe_pgrs genes emerged in slow-growing mycobacteria and expanded and diversified in MTBC and few other pathogenic mycobacteria. Interestingly, despite sequence homology and apparent redundancy, PE_PGRS proteins seem to have evolved a peculiar function. In this review, we summarize the actual knowledge on this elusive protein family in terms of evolution, structure, and function, focusing on the role of PE_PGRS in TB pathogenesis. We provide an original hypothesis on the role of the PE domain and propose a structural model for the polymorphic PGRS domain that might explain how so similar proteins can have different physiological functions.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" , Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB , Naples, Italy
| | | | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy.,Mater Olbia Hospital , Olbia, Italy
| |
Collapse
|
36
|
Mapping Gene-by-Gene Single-Nucleotide Variation in 8,535 Mycobacterium tuberculosis Genomes: a Resource To Support Potential Vaccine and Drug Development. mSphere 2021; 6:6/2/e01224-20. [PMID: 33692198 PMCID: PMC8546714 DOI: 10.1128/msphere.01224-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) is responsible for millions of deaths annually. More effective vaccines and new antituberculous drugs are essential to control the disease. Numerous genomic studies have advanced our knowledge about M. tuberculosis drug resistance, population structure, and transmission patterns. At the same time, reverse vaccinology and drug discovery pipelines have identified potential immunogenic vaccine candidates or drug targets. However, a better understanding of the sequence variation of all the M. tuberculosis genes on a large scale could aid in the identification of new vaccine and drug targets. Achieving this was the focus of the current study. Genome sequence data were obtained from online public sources covering seven M. tuberculosis lineages. A total of 8,535 genome sequences were mapped against M. tuberculosis H37Rv reference genome, in order to identify single nucleotide polymorphisms (SNPs). The results of the initial mapping were further processed, and a frequency distribution of nucleotide variants within genes was identified and further analyzed. The majority of genomic positions in the M. tuberculosis H37Rv genome were conserved. Genes with the highest level of conservation were often associated with stress responses and maintenance of redox balance. Conversely, genes with high levels of nucleotide variation were often associated with drug resistance. We have provided a high-resolution analysis of the single-nucleotide variation of all M. tuberculosis genes across seven lineages as a resource to support future drug and vaccine development. We have identified a number of highly conserved genes, important in M. tuberculosis biology, that could potentially be used as targets for novel vaccine candidates and antituberculous medications. IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis. In the first half of the 20th century, the discovery of the Mycobacterium bovis BCG vaccine and antituberculous drugs heralded a new era in the control of TB. However, combating TB has proven challenging, especially with the emergence of HIV and drug resistance. A major hindrance in TB control is the lack of an effective vaccine, as the efficacy of BCG is geographically variable and provides little protection against pulmonary disease in high-risk groups. Our research is significant because it provides a resource to support future drug and vaccine development. We have achieved this by developing a better understanding of the nucleotide variation of all of the M. tuberculosis genes on a large scale and by identifying highly conserved genes that could potentially be used as targets for novel vaccine candidates and antituberculous medications.
Collapse
|
37
|
Systematic Evaluation of Mycobacterium tuberculosis Proteins for Antigenic Properties Identifies Rv1485 and Rv1705c as Potential Protective Subunit Vaccine Candidates. Infect Immun 2021; 89:IAI.00585-20. [PMID: 33318140 PMCID: PMC8097267 DOI: 10.1128/iai.00585-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
The lack of efficacious vaccines against Mycobacterium tuberculosis (MTB) infection is a limiting factor in the prevention and control of tuberculosis (TB), the leading cause of death from an infectious agent. Improvement or replacement of the BCG vaccine with one that reliably protects all age groups is urgent. The lack of efficacious vaccines against Mycobacterium tuberculosis (MTB) infection is a limiting factor in the prevention and control of tuberculosis (TB), the leading cause of death from an infectious agent. Improvement or replacement of the BCG vaccine with one that reliably protects all age groups is urgent. Concerns exist that antigens currently being evaluated are too homogeneous. To identify new protective antigens, we screened 1,781 proteins from a high-throughput proteome-wide protein purification study for antigenic activity. Forty-nine antigens (34 previously unreported) induced antigen-specific gamma interferon (IFN-γ) release from peripheral blood mononuclear cells (PBMCs) derived from 4,452 TB and suspected TB patients and 167 healthy donors. Three (Rv1485, Rv1705c, and Rv1802) of the 20 antigens evaluated in a BALB/c mouse challenge model showed protective efficacy, reducing lung CFU counts by 66.2%, 75.8%, and 60%, respectively. Evaluation of IgG2a/IgG1 ratios and cytokine release indicated that Rv1485 and Rv1705c induce a protective Th1 immune response. Epitope analysis of PE/PPE protein Rv1705c, the strongest candidate, identified a dominant epitope in its extreme N-terminal domain accounting for 90% of its immune response. Systematic preclinical assessment of antigens Rv1485 and Rv1705c is warranted.
Collapse
|
38
|
Vargas R, Freschi L, Marin M, Epperson LE, Smith M, Oussenko I, Durbin D, Strong M, Salfinger M, Farhat MR. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 2021; 10:61805. [PMID: 33522489 PMCID: PMC7884073 DOI: 10.7554/elife.61805] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) is a leading cause of death globally. Understanding the population dynamics of TB’s causative agent Mycobacterium tuberculosis complex (Mtbc) in-host is vital for understanding the efficacy of antibiotic treatment. We use longitudinally collected clinical Mtbc isolates that underwent Whole-Genome Sequencing from the sputa of 200 patients to investigate Mtbc diversity during the course of active TB disease after excluding 107 cases suspected of reinfection, mixed infection or contamination. Of the 178/200 patients with persistent clonal infection >2 months, 27 developed new resistance mutations between sampling with 20/27 occurring in patients with pre-existing resistance. Low abundance resistance variants at a purity of ≥19% in the first isolate predict fixation in the subsequent sample. We identify significant in-host variation in 27 genes, including antibiotic resistance genes, metabolic genes and genes known to modulate host innate immunity and confirm several to be under positive selection by assessing phylogenetic convergence across a genetically diverse sample of 20,352 isolates.
Collapse
Affiliation(s)
- Roger Vargas
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - Maximillian Marin
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Department of Biomedical Informatics, Harvard Medical School, Boston, United States
| | - L Elaine Epperson
- Center for Genes, Environment and Health, Center for Genes, National Jewish Health, Denver, United States
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute of Data Sciences and Genomics Technology, New York, United States
| | - Irina Oussenko
- Icahn Institute of Data Sciences and Genomics Technology, New York, United States
| | - David Durbin
- Mycobacteriology Reference Laboratory, Advanced Diagnostic Laboratories, National Jewish Health, Denver, United States
| | - Michael Strong
- Center for Genes, Environment and Health, Center for Genes, National Jewish Health, Denver, United States
| | - Max Salfinger
- College of Public Health, University of South Florida, Tampa, United States.,Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, United States.,Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
39
|
Hakim JMC, Yang Z. Predicted Structural Variability of Mycobacterium tuberculosis PPE18 Protein With Immunological Implications Among Clinical Strains. Front Microbiol 2021; 11:595312. [PMID: 33488541 PMCID: PMC7819968 DOI: 10.3389/fmicb.2020.595312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Recent advancements in vaccinology have led to the development of the M72/AS01E subunit vaccine, of which the major component is the Mycobacterium tuberculosis (MTB) PPE18 protein. Previous studies have demonstrated the genetic variability of the gene encoding PPE18 protein and the resulting peptide changes in diverse clinical strains of MTB; however, none have modeled the structural changes resulting from these peptide changes and their immunological implications. In this study, we investigated the structural predictions of 29 variant PPE18 proteins previously reported. We found evidence that PPE18 is at least a two-domain protein, with a highly conserved first domain and a largely variable second domain that has different coevolutionary clusters. Further, we investigated putative epitope sites in the clinical variants of PPE18 using prediction software. We found a negative relationship between T-cell epitope number and residue variability, while B-cell epitope likelihood was positively correlated with residue variability. Moreover, we found far more residues in the second domain predicted to be B-cell epitopes compared with the first domain. These results suggest an important functional role of the first domain and a role in immune evasion for the second, which extends our knowledge base of the basic biology of the PPE18 protein and indicates the need for further study into non-traditional immunological responses to TB.
Collapse
Affiliation(s)
- Jill M C Hakim
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Zhenhua Yang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Bellini C, Horváti K. Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis. Cells 2020; 9:cells9122673. [PMID: 33333744 PMCID: PMC7765234 DOI: 10.3390/cells9122673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The World Health Organization (WHO) herald of the “End TB Strategy” has defined goals and targets for tuberculosis prevention, care, and control to end the global tuberculosis endemic. The emergence of drug resistance and the relative dreadful consequences in treatment outcome has led to increased awareness on immunization against Mycobacterium tuberculosis (Mtb). However, the proven limited efficacy of Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mtb, has highlighted the need for alternative vaccines. In this review, we seek to give an overview of Mtb infection and failure of BCG to control it. Afterward, we focus on the protein- and peptide-based subunit vaccine subtype, examining the advantages and drawbacks of using this design approach. Finally, we explore the features of subunit vaccine candidates currently in pre-clinical and clinical evaluation, including the antigen repertoire, the exploited adjuvanted delivery systems, as well as the spawned immune response.
Collapse
Affiliation(s)
- Chiara Bellini
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary;
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
41
|
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiol Mol Biol Rev 2020; 84:84/4/e00082-19. [DOI: 10.1128/mmbr.00082-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathogenic mycobacteria cause chronic and acute diseases ranging from human tuberculosis (TB) to nontubercular infections.
Mycobacterium tuberculosis
causes both acute and chronic human tuberculosis. Environmentally acquired nontubercular mycobacteria (NTM) cause chronic disease in humans and animals. Not surprisingly, NTM and
M. tuberculosis
often use shared molecular mechanisms to survive within the host. The ESX-1 system is a specialized secretion system that is essential for virulence and is functionally conserved between
M. tuberculosis
and
Mycobacterium marinum
.
Collapse
|
42
|
Strong EJ, Jurcic Smith KL, Saini NK, Ng TW, Porcelli SA, Lee S. Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening. Infect Immun 2020; 88:e00269-20. [PMID: 32989037 PMCID: PMC7671894 DOI: 10.1128/iai.00269-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to progressive or latent infection. Autophagy is recognized as one component of host cell responses that has an essential role in innate and adaptive immunity to intracellular bacteria. Many microbes, including Mycobacterium tuberculosis, have evolved to evade or exploit autophagy, but the precise mechanisms and virulence factors are mostly unknown. Through a loss-of-function screening of an M. tuberculosis transposon mutant library, we identified 16 genes that contribute to autophagy inhibition, six of which encoded the PE/PPE protein family. Their expression in Mycobacterium smegmatis confirmed that these PE/PPE proteins inhibit autophagy and increase intracellular bacterial persistence or replication in infected cells. These effects were associated with increased mammalian target of rapamycin (mTOR) activity and also with decreased production of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). We also confirmed that the targeted deletion of the pe/ppe genes in M. tuberculosis resulted in enhanced autophagy and improved intracellular survival rates compared to those of wild-type bacteria in the infected macrophages. Differential expression of these PE/PPE proteins was observed in response to various stress conditions, suggesting that they may confer advantages to M. tuberculosis by modulating its interactions with host cells under various conditions. Our findings demonstrated that multiple M. tuberculosis PE/PPE proteins are involved in inhibiting autophagy during infection of host phagocytes and may provide strategic targets in developing therapeutics or vaccines against tuberculosis.
Collapse
Affiliation(s)
- Emily J Strong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tony W Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sunhee Lee
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
43
|
Szulc-Kielbik I, Brzostek A, Gatkowska J, Kielbik M, Klink M. Determination of in vitro and in vivo immune response to recombinant cholesterol oxidase from Mycobacterium tuberculosis. Immunol Lett 2020; 228:103-111. [PMID: 33166528 DOI: 10.1016/j.imlet.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023]
Abstract
Cholesterol oxidase (ChoD) is an enzyme that is involved but is dispensable in the process of cholesterol degradation by Mycobacterium tuberculosis (Mtb). Interestingly, ChoD is a virulence factor of Mtb, and it strongly modulates the function of human macrophages in vitro, allowing the intracellular survival of bacteria. Here, we determined the immunogenic activity of recombinant ChoD from Mtb in a mouse model. We found that peritoneal exudate cells obtained from mice injected i.p. with ChoD but not those from mice injected with PBS responded in vitro with highly spontaneous, as well as phorbol 12-myristate 13-acetate (PMA)-stimulated, production of reactive oxygen species (ROS). However, ChoD significantly reduced the ROS response to PMA in re-stimulated cells in vitro. The cytokine secretion pattern in mice immunized s.c. with ChoD emulsified with incomplete Freund's adjuvant (IFA) showed evidence of Th2-induced or proinflammatory immune responses. The main cytokines detected in sera were interleukin (IL) 6 and 5, tumour necrosis factor α (TNF-α) and monocyte chemoattractant protein 1, while IL-2 and IL-12 as well as interferon γ were undetectable. Similarly, ChoD protein alone activated THP-1-derived macrophages to release proinflammatory IL-6, IL-8 and TNF-α, in vitro. Moreover, a statistically significant predominance of the IgG1 isotype over that of IgG2a in the sera of mice immunized with ChoD/IFA was observed. In conclusion, we demonstrated here that ChoD of Mtb is an active protein, which is able to induce the immune response both in vivo and in vitro.
Collapse
Affiliation(s)
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
44
|
Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol 2020; 38:1194-1202. [PMID: 32341563 PMCID: PMC7541396 DOI: 10.1038/s41587-020-0505-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
CD4+ T cells are critical to fighting pathogens, but a comprehensive analysis of human T-cell specificities is hindered by the diversity of HLA alleles (>20,000) and the complexity of many pathogen genomes. We previously described GLIPH, an algorithm to cluster T-cell receptors (TCRs) that recognize the same epitope and to predict their HLA restriction, but this method loses efficiency and accuracy when >10,000 TCRs are analyzed. Here we describe an improved algorithm, GLIPH2, that can process millions of TCR sequences. We used GLIPH2 to analyze 19,044 unique TCRβ sequences from 58 individuals latently infected with Mycobacterium tuberculosis (Mtb) and to group them according to their specificity. To identify the epitopes targeted by clusters of Mtb-specific T cells, we carried out a screen of 3,724 distinct proteins covering 95% of Mtb protein-coding genes using artificial antigen-presenting cells (aAPCs) and reporter T cells. We found that at least five PPE (Pro-Pro-Glu) proteins are targets for T-cell recognition in Mtb.
Collapse
Affiliation(s)
- Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunlin Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Rubelt
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
45
|
Peters JS, Ismail N, Dippenaar A, Ma S, Sherman DR, Warren RM, Kana BD. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu Rev Genet 2020; 54:511-537. [PMID: 32926793 DOI: 10.1146/annurev-genet-022820-085940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, Mycobacterium tuberculosis, has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of M. tuberculosis isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| | - Nabila Ismail
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; , .,Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2000, Belgium;
| | - Shuyi Ma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Robin M Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Bavesh D Kana
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| |
Collapse
|
46
|
Smith AA, Villarreal-Ramos B, Mendum TA, Williams KJ, Jones GJ, Wu H, McFadden J, Vordermeier HM, Stewart GR. Genetic screening for the protective antigenic targets of BCG vaccination. Tuberculosis (Edinb) 2020; 124:101979. [PMID: 32814303 DOI: 10.1016/j.tube.2020.101979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Bovine tuberculosis is an important animal health problem and the predominant cause of zoonotic tuberculosis worldwide. It results in serious economic burden due to losses in productivity and the cost of control programmes. Control could be greatly improved by the introduction of an efficacious cattle vaccine but the most likely candidate, BCG, has several limitations including variable efficacy. Augmentation of BCG with a subunit vaccine booster has been shown to increase protection but the selection of antigens has hitherto been left largely to serendipity. In the present study, we take a rational approach to identify the protective antigens of BCG, selecting a BCG transposon mutant library in naïve and BCG-vaccinated cattle. Ten mutants had increased relative survival in vaccinated compared to naïve cattle, consistent with loss of protective antigen targets making the mutants less visible to the BCG immune response. The immunogenicity of three putative protective antigens, BCG_0116, BCG_0205 (YrbE1B) and BCG_1448 (PPE20) was investigated using peptide pools and PBMCs from BCG vaccinated cattle. BCG vaccination induced PBMC to release elevated levels of IP10, IL-17a and IL-10 in response to all three antigens. Taken together, the data supports the further study of these antigens for use in subunit vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- BCG Vaccine/administration & dosage
- BCG Vaccine/immunology
- Cattle
- Cytokines/immunology
- Cytokines/metabolism
- DNA Transposable Elements
- Immunogenicity, Vaccine
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Mutation
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Tuberculosis, Bovine/immunology
- Tuberculosis, Bovine/metabolism
- Tuberculosis, Bovine/microbiology
- Tuberculosis, Bovine/prevention & control
- Vaccination/veterinary
Collapse
Affiliation(s)
- Alex A Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Tom A Mendum
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kerstin J Williams
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Gareth J Jones
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Johnjoe McFadden
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - H Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
47
|
Homoplastic single nucleotide polymorphisms contributed to phenotypic diversity in Mycobacterium tuberculosis. Sci Rep 2020; 10:8024. [PMID: 32415151 PMCID: PMC7229016 DOI: 10.1038/s41598-020-64895-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Homoplastic mutations are mutations independently occurring in different clades of an organism. The homoplastic changes may be a result of convergence evolution due to selective pressures. Reports on the analysis of homoplastic mutations in Mycobacterium tuberculosis have been limited. Here we characterized the distribution of homoplastic single nucleotide polymorphisms (SNPs) among genomes of 1,170 clinical M. tuberculosis isolates. They were present in all functional categories of genes, with pe/ppe gene family having the highest ratio of homoplastic SNPs compared to the total SNPs identified in the same functional category. Among the pe/ppe genes, the homoplastic SNPs were common in a relatively small number of homologous genes, including ppe18, the protein of which is a component of a promising candidate vaccine, M72/AS01E. The homoplastic SNPs in ppe18 were particularly common among M. tuberculosis Lineage 1 isolates, suggesting the need for caution in extrapolating the results of the vaccine trial to the population where L1 is endemic in Asia. As expected, homoplastic SNPs strongly associated with drug resistance. Most of these mutations are already well known. However, a number of novel mutations associated with streptomycin resistance were identified, which warrants further investigation. A SNP in the intergenic region upstream of Rv0079 (DATIN) was experimentally shown to increase transcriptional activity of the downstream gene, suggesting that intergenic homoplastic SNPs should have effects on the physiology of the bacterial cells. Our study highlights the potential of homoplastic mutations to produce phenotypic changes. Under selective pressure and during interaction with the host, homoplastic mutations may confer advantages to M. tuberculosis and deserve further characterization.
Collapse
|
48
|
Crosskey TD, Beckham KS, Wilmanns M. The ATPases of the mycobacterial type VII secretion system: Structural and mechanistic insights into secretion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 152:25-34. [DOI: 10.1016/j.pbiomolbio.2019.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
|
49
|
Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans—An integrated vaccinomics approach. Mol Immunol 2020; 120:146-163. [DOI: 10.1016/j.molimm.2020.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
|
50
|
Baena A, Cabarcas F, Alvarez-Eraso KLF, Isaza JP, Alzate JF, Barrera LF. Differential determinants of virulence in two Mycobacterium tuberculosis Colombian clinical isolates of the LAM09 family. Virulence 2020; 10:695-710. [PMID: 31291814 PMCID: PMC6650194 DOI: 10.1080/21505594.2019.1642045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The heterogeneity of the clinical outcome of Mycobacterium tuberculosis (Mtb) infection may be due in part to different strategies used by circulating strains to cause disease. This heterogeneity is one of the main limitations to eradicate tuberculosis disease. In this study, we have compared the transcriptional response of two closely related Colombian clinical isolates (UT127 and UT205) of the LAM family under two axenic media conditions. These clinical isolates are phenotypically different at the level of cell death, cytokine production, growth kinetics upon in vitro infection of human tissue macrophages, and membrane vesicle secretion upon culture in synthetic medium. Using RNA-seq, we have identified different pathways that account for two different strategies to cope with the stressful condition of a carbon-poor media such as Sauton’s. We showed that the clinical isolate UT205 focus mainly in the activation of virulence systems such as the ESX-1, synthesis of diacyl-trehalose, polyacyl-trehalose, and sulfolipids, while UT127 concentrates its efforts mainly in the survival mode by the activation of the DNA replication, cell division, and lipid biosynthesis. This is an example of two Mtb isolates that belong to the same family and lineage, and even though they have a very similar genome, its transcriptional regulation showed important differences. This results in summary highlight the necessity to reach a better understanding of the heterogeneity in the behavior of these circulating Mtb strains which may help us to design better treatments and vaccines and to identify new targets for drugs.
Collapse
Affiliation(s)
- Andres Baena
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,b Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Felipe Cabarcas
- c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,d Grupo SISTEMIC, Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia , Medellín , Colombia
| | - Karen L F Alvarez-Eraso
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Juan Pablo Isaza
- c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Juan F Alzate
- b Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,e Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Luis F Barrera
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,f Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| |
Collapse
|