1
|
Seizova S, Ferrel A, Boothroyd J, Tonkin CJ. Toxoplasma protein export and effector function. Nat Microbiol 2024; 9:17-28. [PMID: 38172621 DOI: 10.1038/s41564-023-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Toxoplasma gondii is a single-celled eukaryotic parasite with a considerable host range that must invade the cells of warm-blooded hosts to survive and replicate. The challenges and opportunities that such a strategy represent have been met by the evolution of effectors that are delivered into host cells, counter host defences and co-opt host cell functions for their own purposes. These effectors are delivered in two waves using distinct machinery for each. In this Review, we focus on understanding the architecture of these protein-export systems and how their protein cargo is recognized and selected. We discuss the recent findings on the role that host manipulation has in latent Toxoplasma infections. We also discuss how these recent findings compare to protein export in the related Plasmodium spp. (the causative agent of malaria) and how this can inform our understanding of host manipulation in the larger Apicomplexa phylum and its evolution.
Collapse
Affiliation(s)
- Simona Seizova
- School of Life Sciences, The University of Dundee, Dundee, UK
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - John Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Sugi T, Tomita T, Kidaka T, Kawai N, Hayashida K, Weiss LM, Yamagishi J. Single Cell Transcriptomes of In Vitro Bradyzoite Infected Cells Reveals Toxoplasma gondii Stage Dependent Host Cell Alterations. Front Cell Infect Microbiol 2022; 12:848693. [PMID: 35372115 PMCID: PMC8964302 DOI: 10.3389/fcimb.2022.848693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii bradyzoites establish chronic infections within their host cells. Recent studies have demonstrated that several parasite effector proteins are translocated to host cells during the bradyzoite stage of chronic infection. To understand the interaction between host cells and bradyzoites at the transcriptomic landscape level, we utilized single-cell RNA-sequencing (scRNA-Seq) to characterize the bradyzoite-induced host cell response. Distinct gene expression profiles were observed in infected host, cells with low parasite mapped reads, and mock (non-exposed) control cells. Gene set enrichment analysis showed that c-Myc and NF-κB signaling and energy metabolic pathways were upregulated by infection. Type I and II interferon response pathways were upregulated in cells with low parasite mapped reads compared to the non-exposed host control cells, and this upregulation effect was reversed in infected cells. Differences were observed in the host cells depending on the differentiation status of the parasites, as determined by BAG1 and SAG1 expression. NF-κB, inflammatory response pathways, and IFN-γ response pathways were downregulated in host cells containing T. gondiiBAG1+/SAG1-, whereas this downregulation effect was reversed in case of T. gondiiBAG1-/SAG1+. We also identified two distinct host cell subsets that contained T. gondiiBAG1+/SAG1-, one of which displayed distinct transcriptomes with upregulated c-Myc expression. Overall, these data clearly demonstrate that host cell transcriptional alteration by bradyzoite infection is different from that of tachyzoite infection, indicating fine-tuning of the host immune response.
Collapse
Affiliation(s)
- Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Taishi Kidaka
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoko Kawai
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kyoko Hayashida
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Seizova S, Ruparel U, Garnham AL, Bader SM, Uboldi AD, Coffey MJ, Whitehead LW, Rogers KL, Tonkin CJ. Transcriptional modification of host cells harboring Toxoplasma gondii bradyzoites prevents IFN gamma-mediated cell death. Cell Host Microbe 2021; 30:232-247.e6. [PMID: 34921775 DOI: 10.1016/j.chom.2021.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii develops a latent infection in the muscle and central nervous system that acts as a reservoir for acute-stage reactivation in vulnerable patients. Little is understood about how parasites manipulate host cells during latent infection and the impact this has on survival. We show that bradyzoites impart a unique transcriptional signature on infected host cells. Many of these transcriptional changes rely on protein export and result in the suppression of type I interferon (IFN) and IFNγ signaling more so than in acute stages. Loss of the protein export component, MYR1, abrogates transcriptional remodeling and prevents suppression of IFN signaling. Among the exported proteins, the inhibitor of STAT1 transcription (IST) plays a key role in limiting IFNγ signaling in bradyzoites. Furthermore, bradyzoite protein export protects host cells from IFNγ-mediated cell death, even when export is restricted to latent stages. These findings highlight the functional importance of host manipulation in Toxoplasma's bradyzoite stages.
Collapse
Affiliation(s)
- Simona Seizova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Ushma Ruparel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Alexandra L Garnham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie M Bader
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Alessandro D Uboldi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael J Coffey
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Poseida Therapeutics, San Diego, CA, USA
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Henkel S, Frohnecke N, Maus D, McConville MJ, Laue M, Blume M, Seeber F. Toxoplasma gondii apicoplast-resident ferredoxin is an essential electron transfer protein for the MEP isoprenoid-biosynthetic pathway. J Biol Chem 2021; 298:101468. [PMID: 34896149 PMCID: PMC8717598 DOI: 10.1016/j.jbc.2021.101468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.
Collapse
Affiliation(s)
- Stephanie Henkel
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Nora Frohnecke
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Deborah Maus
- Metabolism of Microbial Pathogens (NG2), Robert Koch Institute, Berlin, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Martin Blume
- Metabolism of Microbial Pathogens (NG2), Robert Koch Institute, Berlin, Germany; Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Frank Seeber
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
5
|
Xue Y, Theisen TC, Rastogi S, Ferrel A, Quake SR, Boothroyd JC. A single-parasite transcriptional atlas of Toxoplasma Gondii reveals novel control of antigen expression. eLife 2020; 9:e54129. [PMID: 32065584 PMCID: PMC7180058 DOI: 10.7554/elife.54129] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii, a protozoan parasite, undergoes a complex and poorly understood developmental process that is critical for establishing a chronic infection in its intermediate hosts. Here, we applied single-cell RNA-sequencing (scRNA-seq) on >5,400 Toxoplasma in both tachyzoite and bradyzoite stages using three widely studied strains to construct a comprehensive atlas of cell-cycle and asexual development, revealing hidden states and transcriptional factors associated with each developmental stage. Analysis of SAG1-related sequence (SRS) antigenic repertoire reveals a highly heterogeneous, sporadic expression pattern unexplained by measurement noise, cell cycle, or asexual development. Furthermore, we identified AP2IX-1 as a transcription factor that controls the switching from the ubiquitous SAG1 to rare surface antigens not previously observed in tachyzoites. In addition, comparative analysis between Toxoplasma and Plasmodium scRNA-seq results reveals concerted expression of gene sets, despite fundamental differences in cell division. Lastly, we built an interactive data-browser for visualization of our atlas resource.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Terence C Theisen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Suchita Rastogi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, United States
- Department of Applied Physics, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
6
|
Venugopal K, Marion S. Secretory organelle trafficking in Toxoplasma gondii: A long story for a short travel. Int J Med Microbiol 2018; 308:751-760. [DOI: 10.1016/j.ijmm.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
|
7
|
Oh H, Eo KY, Gumber S, Hong JJ, Kim CY, Lee HH, Jung YM, Kim J, Whang GW, Lee JM, Yeo YG, Ryu B, Ryu JS, Lee SK, Kim U, Kang SG, Park JH. An outbreak of toxoplasmosis in squirrel monkeys (Saimiri sciureus) in South Korea. J Med Primatol 2018; 47:238-246. [PMID: 29708278 DOI: 10.1111/jmp.12344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is an intracellular protozoan parasite that can infect warm-blooded animals including humans. New World monkeys, such as squirrel monkeys, are more susceptible to T. gondii than Old World monkeys, often developing fatal disease. METHODS In this study, seven of thirteen dead squirrel monkeys at Seoul Grand Park were tested to find the cause of sudden death. RESULTS The main histopathological findings included interstitial pneumonia, necrotizing hepatitis, and splenitis. Periodic acid-Schiff staining of liver, spleen, and lung revealed cyst structures consistent with bradyzoites. Amplification of the B1 gene was detected in the liver or spleen of all monkeys. Additionally, a restriction fragment length polymorphism assay and phylogenetic analysis of the GRA6 amplicon revealed a consistent clustering with the type II strain of T. gondii. CONCLUSIONS This study is the first report of T. gondii infection of squirrel monkeys in Korea, and the first report of type II T. gondii based on GRA6 analysis in Korea.
Collapse
Affiliation(s)
- Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyung-Yeon Eo
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jung Joo Hong
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - C-Yoon Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hyun-Ho Lee
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Young-Mok Jung
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Gyu-Whan Whang
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Ji-Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yong-Gu Yeo
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ji-Sook Ryu
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Seul-Kee Lee
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sin-Geun Kang
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Use of Human Neurons Derived via Cellular Reprogramming Methods to Study Host-Parasite Interactions of Toxoplasma gondii in Neurons. Cells 2017; 6:cells6040032. [PMID: 28946615 PMCID: PMC5755492 DOI: 10.3390/cells6040032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite, with approximately one-third of the worlds' population chronically infected. In chronically infected individuals, the parasite resides in tissue cysts in neurons in the brain. The chronic infection in immunocompetant individuals has traditionally been considered to be asymptomatic, but increasing evidence indicates that chronic infection is associated with diverse neurological disorders such as schizophrenia, cryptogenic epilepsy, and Parkinson's Disease. The mechanisms by which the parasite exerts affects on behavior and other neuronal functions are not understood. Human neurons derived from cellular reprogramming methods offer the opportunity to develop better human neuronal models to study T. gondii in neurons. Results from two studies using human neurons derived via cellular reprogramming methods indicate these human neuronal models provide better in vitro models to study the effects of T. gondii on neurons and neurological functions. In this review, an overview of the current neural reprogramming methods will be given, followed by a summary of the studies using human induced pluripotent stem cell (hiPSC)-derived neurons and induced neurons (iNs) to study T. gondii in neurons. The potential of these neural reprogramming methods for further study of the host-parasite interactions of T. gondii in neurons will be discussed.
Collapse
|
9
|
Pérez D, Ruiz A, Muñoz M, Molina J, Hermosilla C, López A, Matos L, Ortega L, Martín S, Taubert A. Modulation of the pro-inflammatory molecules E-selectin and TNF-α gene transcription in Eimeria ninakohlyakimovae -infected primary caprine host endothelial cells. Parasitol Int 2015; 64:471-7. [DOI: 10.1016/j.parint.2015.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/22/2015] [Accepted: 05/10/2015] [Indexed: 01/02/2023]
|
10
|
Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics 2014; 15:806. [PMID: 25240600 PMCID: PMC4177681 DOI: 10.1186/1471-2164-15-806] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The obligate intracellular parasite Toxoplasma gondii establishes a life-long chronic infection within any warm-blooded host. After ingestion of an encysted parasite, T. gondii disseminates throughout the body as a rapidly replicating form during acute infection. Over time and after stimulation of the host immune response, T. gondii differentiates into a slow growing, cyst form that is the hallmark of chronic infection. Global transcriptome analysis of both host and parasite during the establishment of chronic T. gondii infection has not yet been performed. Here, we conducted a dual RNA-seq analysis of T. gondii and its rodent host to better understand host and parasite responses during acute and chronic infection. RESULTS We obtained nearly one billion paired-end RNA sequences from the forebrains of uninfected, acutely and chronically infected mice, then aligned them to the genomic reference files of both T. gondii and Mus musculus. Gene ontology (GO) analysis of the 100 most highly expressed T. gondii genes showed less than half were shared between acute and chronic infection. The majority of the highly expressed genes common in both acute and chronic infection were involved in transcription and translation, underscoring that parasites in both stages are actively synthesizing proteins. Similarly, most of the T. gondii genes highly expressed during chronic infection were involved in metabolic processes, again highlighting the activity of the cyst stage at 28 days post-infection. Comparative analyses of host genes using uninfected forebrain revealed over twice as many immune regulatory genes were more abundant during chronic infection compared to acute. This demonstrates the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. CONCLUSIONS RNA-seq is a valuable tool to simultaneously analyze host and microbe transcriptomes. Our data shows that T. gondii is metabolically active and synthesizing proteins at 28 days post-infection and that a distinct subset of host genes associated with the immune response are more abundant specifically during chronic infection. These data suggest host and pathogen interplay is still present during chronic infection and provides novel T. gondii targets for future drug and vaccine development.
Collapse
Affiliation(s)
| | | | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Silmon de Monerri NC, Kim K. Pathogens hijack the epigenome: a new twist on host-pathogen interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:897-911. [PMID: 24525150 DOI: 10.1016/j.ajpath.2013.12.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023]
Abstract
Pathogens have evolved strategies to promote their survival by dramatically modifying the transcriptional profile and protein content of the host cells they infect. Modifications of the host transcriptome and proteome are mediated by pathogen-encoded effector molecules that modulate host cells through a variety of different mechanisms. Recent studies highlight the importance of the host chromatin and other epigenetic regulators as targets of pathogens. Host gene regulatory mechanisms may be targeted through cytoplasmic signaling, directly by pathogen effector proteins, and possibly by pathogen RNA. Although many of these changes are short-lived and persist only during the course of infection, several studies indicate that pathogens are able to induce long-term, heritable changes that are essential to pathogenesis of infectious diseases and persistence of pathogens within their hosts. In this review, we discuss how pathogens modulate the epigenome of host cells, a new and flourishing avenue of host-pathogen interaction studies.
Collapse
Affiliation(s)
- Natalie C Silmon de Monerri
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Kami Kim
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
12
|
Jia B, Lu H, Liu Q, Yin J, Jiang N, Chen Q. Genome-wide comparative analysis revealed significant transcriptome changes in mice after Toxoplasma gondii infection. Parasit Vectors 2013; 6:161. [PMID: 23734932 PMCID: PMC3679772 DOI: 10.1186/1756-3305-6-161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an intracellular parasite that can modulate host responses and presumably host behavior. Host responses as well as pathogenesis vary depending on the parasite strains that are responsible for infection. In immune competent individuals, T. gondii preferentially infects tissues of the central nervous systems (CNS), which might be an additional factor in certain psychiatric disorders. While in immune-compromised individuals and pregnant women, the parasite can cause life-threatening infections. With the availability of the genome-wide investigation platform, the global responses in gene expression of the host after T. gondii infection can be systematically investigated. METHODS Total RNA of brain tissues and peripheral lymphocytes of BALB/C mice infected with RH and ME 49 strain T. gondii as well as that of healthy mice were purified and converted to cRNA with incorporated Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA probes were hybridized to the Whole Mouse Genome Microarray. The impact of parasite infection on gene expression in both brain tissues and peripheral lymphocytes were analyzed. Differentially expressed genes were revalidated with real-time quantitative reverse transcriptase-polymerase chain reaction (Q-PCR). RESULTS Data indicated that the genes associated with immunity were up-regulated after infection by the two parasite strains, but significant up-regulation was observed in both brain tissues and peripheral lymphocytes of mice infected with ME49 strain compared to that infected by RH strain. The pathways related to pathogenesis of the nervous system were more significantly up-regulated in mice infected with RH strain. CONCLUSIONS Genetically distinct T. gondii strains showed clear differences in modulation of host pathophysiological and immunological responses in both brain tissue and peripheral lymphocytes. It was likely that some of the host responses to T. gondii infection were universal, but the immune response and CNS reaction were in a strain-specific manner.
Collapse
Affiliation(s)
- Boyin Jia
- Key Laboratory of Zoonosis, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China.
| | | | | | | | | | | |
Collapse
|
13
|
Xiao J, Kannan G, Jones-Brando L, Brannock C, Krasnova I, Cadet J, Pletnikov M, Yolken R. Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience 2012; 206:39-48. [DOI: 10.1016/j.neuroscience.2011.12.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
|
14
|
Baumeister S, Wiesner J, Reichenberg A, Hintz M, Bietz S, Harb OS, Roos DS, Kordes M, Friesen J, Matuschewski K, Lingelbach K, Jomaa H, Seeber F. Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways. PLoS One 2011; 6:e19334. [PMID: 21573242 PMCID: PMC3087763 DOI: 10.1371/journal.pone.0019334] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/27/2011] [Indexed: 11/18/2022] Open
Abstract
Background Highly charged compounds typically suffer from low membrane permeability and thus are generally regarded as sub-optimal drug candidates. Nonetheless, the highly charged drug fosmidomycin and its more active methyl-derivative FR900098 have proven parasiticidal activity against erythrocytic stages of the malaria parasite Plasmodium falciparum. Both compounds target the isoprenoid biosynthesis pathway present in bacteria and plastid-bearing organisms, like apicomplexan parasites. Surprisingly, the compounds are inactive against a range of apicomplexans replicating in nucleated cells, including Toxoplasma gondii. Methodology/Principal Findings Since non-infected erythrocytes are impermeable for FR90098, we hypothesized that these drugs are taken up only by erythrocytes infected with Plasmodium. We provide evidence that radiolabeled FR900098 accumulates in theses cells as a consequence of parasite-induced new properties of the host cell, which coincide with an increased permeability of the erythrocyte membrane. Babesia divergens, a related parasite that also infects human erythrocytes and is also known to induce an increase in membrane permeability, displays a similar susceptibility and uptake behavior with regard to the drug. In contrast, Toxoplasma gondii-infected cells do apparently not take up the compounds, and the drugs are inactive against the liver stages of Plasmodium berghei, a mouse malaria parasite. Conclusions/Significance Our findings provide an explanation for the observed differences in activity of fosmidomycin and FR900098 against different Apicomplexa. These results have important implications for future screens aimed at finding new and safe molecular entities active against P. falciparum and related parasites. Our data provide further evidence that parasite-induced new permeability pathways may be exploited as routes for drug delivery.
Collapse
Affiliation(s)
- Stefan Baumeister
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| | - Jochen Wiesner
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Armin Reichenberg
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Martin Hintz
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Sven Bietz
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| | - Omar S. Harb
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maximilian Kordes
- Parasitology Unit, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Johannes Friesen
- Parasitology Unit, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Klaus Lingelbach
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| | - Hassan Jomaa
- Institut für Klinische Immunologie und Transfusionsmedizin, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany
| | - Frank Seeber
- Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
- Fachgebiet 16 Parasitologie, Robert-Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Witola WH, Mui E, Hargrave A, Liu S, Hypolite M, Montpetit A, Cavailles P, Bisanz C, Cesbron-Delauw MF, Fournié GJ, McLeod R. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun 2011; 79:756-66. [PMID: 21098108 PMCID: PMC3028851 DOI: 10.1128/iai.00898-10] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/20/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022] Open
Abstract
NALP1 is a member of the NOD-like receptor (NLR) family of proteins that form inflammasomes. Upon cellular infection or stress, inflammasomes are activated, triggering maturation of proinflammatory cytokines and downstream cellular signaling mediated through the MyD88 adaptor. Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines that are important in innate immunity. In this study, susceptibility alleles for human congenital toxoplasmosis were identified in the NALP1 gene. To investigate the role of the NALP1 inflammasome during infection with T. gondii, we genetically engineered a human monocytic cell line for NALP1 gene knockdown by RNA interference. NALP1 silencing attenuated progression of T. gondii infection, with accelerated host cell death and eventual cell disintegration. In line with this observation, upregulation of the proinflammatory cytokines interleukin-1β (IL-1β), IL-18, and IL-12 upon T. gondii infection was not observed in monocytic cells with NALP1 knockdown. These findings suggest that the NALP1 inflammasome is critical for mediating innate immune responses to T. gondii infection and pathogenesis. Although there have been recent advances in understanding the potent activity of inflammasomes in directing innate immune responses to disease, this is the first report, to our knowledge, on the crucial role of the NALP1 inflammasome in the pathogenesis of T. gondii infections in humans.
Collapse
Affiliation(s)
- William H. Witola
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Ernest Mui
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Aubrey Hargrave
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Susan Liu
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Magali Hypolite
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Alexandre Montpetit
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Pierre Cavailles
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Cordelia Bisanz
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Marie-France Cesbron-Delauw
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Gilbert J. Fournié
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| | - Rima McLeod
- Departments of Surgery (Ophthalmology) and Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois 60637, Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR 5163, Université Joseph Fourier Grenoble 1, Institut Jean Roget, BP 170, 38042 Grenoble Cedex 9, France, Centre d'Innovation, Génome Québec, Montréal, Québec H3A 1A4, Canada, INSERM, U563, F-31000 Toulouse, France, University Toulouse III Paul Sabatier, F-31000 Toulouse, France
| |
Collapse
|
16
|
Miller CM, Zakrzewski AM, Ikin RJ, Boulter NR, Katrib M, Lees MP, Fuller SJ, Wiley JS, Smith NC. Dysregulation of the inflammatory response to the parasite, Toxoplasma gondii, in P2X7 receptor-deficient mice. Int J Parasitol 2010; 41:301-8. [PMID: 21044631 DOI: 10.1016/j.ijpara.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 10/04/2010] [Indexed: 12/18/2022]
Abstract
The P2X(7) receptor (P2X(7)R) is a two transmembrane receptor that is highly expressed on the surface of immune cells. Loss of function polymorphisms in this receptor have been linked to increased susceptibility to intracellular pathogens. P2X(7)R gene knockout (P2X(7)R(-/-); on a C57Bl/6J background), C57Bl/6J and BALB/c mice were infected with the avirulent ME49 strain of the intracellular parasite, Toxoplasma gondii, and susceptibility determined by monitoring weight loss. P2X(7)R(-/-) mice lost significantly more weight than C57Bl/6J mice from day 8p.i. C57Bl/6J, in turn, lost significantly more weight than BALB/c mice. Thus, by day 10p.i., P2X(7)R(-/-) mice had lost 5.7 ± 0.7% of their weight versus 2.4 ± 0.6% for C57Bl/6J mice, whereas BALB/c mice had gained 1.9 ± 0.5%; by day 12p.i., P2X(7)R(-/-) mice had lost 15.1±0.6%, C57Bl/6J had lost 10.1±0.8% and BALB/c had lost 4.8 ± 0.8% of their weight. Neither parasite burden nor liver pathology was greater in the P2X(7)R(-/-) mice than in C57Bl/6J mice but BALB/c mice had significantly smaller numbers of parasites and less pathology in their livers than these strains. Absence of the P2X(7) receptor did not affect IFN-γ, IL-12, IL-1β, monocyte chemoattractant protein-1 (MCP-1) or TNF production. However, both P2X(7)R(-/-) and C57Bl/6J mice produced more IL-1β and TNF than BALB/c mice. There was one important point of differentiation between the P2X(7)R(-/-) and C57Bl/6J mice, namely the significantly enhanced and prolonged production of nitric oxide, accompanied by delayed production of IL-10 in the P2X(7)R-deficient mice.
Collapse
Affiliation(s)
- Catherine M Miller
- Institute for Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway, NSW 2007, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The chemokine receptor CCR7 is a well-established homing receptor for dendritic cells and T cells. Interactions with its ligands, CCL19 and CCL21, facilitate priming of immune responses in lymphoid tissue, yet CCR7-independent immune responses can be generated in the presence of sufficient antigen. In these studies, we investigated the role of CCR7 signaling in the generation of protective immune responses to the intracellular protozoan parasite Toxoplasma gondii. The results demonstrated a significant increase in the expression of CCL19, CCL21, and CCR7 in peripheral and central nervous system (CNS) tissues over the course of infection. Unexpectedly, despite the presence of abundant antigen, CCR7 was an absolute requirement for protective immunity to T. gondii, as CCR7(-/-) mice succumbed to the parasite early in the acute phase of infection. Although serum levels of interleukin 12 (IL-12), IL-6, tumor necrosis factor alpha (TNF-alpha), and IL-10 remained unchanged, there was a significant decrease in CCL2/monocyte chemoattractant protein 1 (MCP-1) and inflammatory monocyte recruitment to the site of infection. In addition, CCR7(-/-) mice failed to produce sufficient gamma interferon (IFN-gamma), a critical Th1-associated effector cytokine required to control parasite replication. As a result, there was increased parasite dissemination and a significant increase in parasite burden in the lungs, livers, and brains of infected mice. Adoptive-transfer experiments revealed that expression of CCR7 on the T-cell compartment alone is sufficient to enable T-cell priming, increase IFN-gamma production, and allow the survival of CCR7(-/-) mice. These data demonstrate an absolute requirement for T-cell expression of CCR7 for the generation of protective immune responses to Toxoplasma infection.
Collapse
|
18
|
Guimarães EV, Carvalho LD, Barbosa HS. Interaction and cystogenesis of Toxoplasma gondii within skeletal muscle cells in vitro. Mem Inst Oswaldo Cruz 2010; 104:170-4. [PMID: 19430639 DOI: 10.1590/s0074-02762009000200007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/02/2009] [Indexed: 11/22/2022] Open
Abstract
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Collapse
Affiliation(s)
- Erick Vaz Guimarães
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
19
|
Abstract
This article is an attempt to identify the most significant highlights of Toxoplasma research over the last 25 years. It has been a period of enormous progress and the top 25 most significant advances, in the view of this author, are described. These range from the bench to the bedside and represent a tremendous body of work from countless investigators. And, having laid out so much that has been discovered, it is impossible not to also reflect on the challenges that lie ahead. These, too, are briefly discussed. Finally, while every effort has been made to view the field as a whole, the molecular biology background of the author almost certainly will have skewed the relative importance attached to past and future advances. Despite this, it is hoped that the reader will agree with, or at least not disagree too strongly with, most of the choices presented here.
Collapse
Affiliation(s)
- John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA.
| |
Collapse
|
20
|
Albuquerque SS, Carret C, Grosso AR, Tarun AS, Peng X, Kappe SHI, Prudêncio M, Mota MM. Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genomics 2009; 10:270. [PMID: 19534804 PMCID: PMC2706893 DOI: 10.1186/1471-2164-10-270] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/17/2009] [Indexed: 12/29/2022] Open
Abstract
Background Plasmodium sporozoites migrate to the liver where they traverse several hepatocytes before invading the one inside which they will develop and multiply into thousands of merozoites. Although this constitutes an essential step of malaria infection, the requirements of Plasmodium parasites in liver cells and how they use the host cell for their own survival and development are poorly understood. Results To gain new insights into the molecular host-parasite interactions that take place during malaria liver infection, we have used high-throughput microarray technology to determine the transcriptional profile of P. berghei-infected hepatoma cells. The data analysis shows differential expression patterns for 1064 host genes starting at 6 h and up to 24 h post infection, with the largest proportion correlating specifically with the early stages of the infection process. A considerable proportion of those genes were also found to be modulated in liver cells collected from P. yoelii-infected mice 24 and 40 h after infection, strengthening the data obtained with the in vitro model and highlighting genes and pathways involved in the host response to rodent Plasmodium parasites. Conclusion Our data reveal that host cell infection by Plasmodium sporozoites leads to a coordinated and sequential set of biological events, ranging from the initial stage of stress response up to the engagement of host metabolic processes and the maintenance of cell viability throughout infection.
Collapse
Affiliation(s)
- Sónia S Albuquerque
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Immunological interactions between 2 common pathogens, Th1-inducing protozoan Toxoplasma gondii and the Th2-inducing helminth Fasciola hepatica. PLoS One 2009; 4:e5692. [PMID: 19478853 PMCID: PMC2682559 DOI: 10.1371/journal.pone.0005692] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/23/2008] [Indexed: 11/22/2022] Open
Abstract
Background The nature of the immune response to infection is dependent on the type of infecting organism. Intracellular organisms such as Toxoplasma gondii stimulate a Th1-driven response associated with production of IL-12, IFN-γ, nitric oxide and IgG2a antibodies and classical activation of macrophages. In contrast, extracellular helminths such as Fasciola hepatica induce Th2 responses characterised by the production of IL-4, IL-5, IL-10 and IgG1 antibodies and alternative activation of macrophages. As co-infections with these types of parasites commonly exist in the field it is relevant to examine how the various facets of the immune responses induced by each may influence or counter-regulate that of the other. Principal Findings Regardless, of whether F. hepatica infection preceded or succeeded T. gondii infection, there was little impact on the production of the Th1 cytokines IL-12, IFN-γ or on the development of classically-activated macrophages induced by T. gondii. By contrast, the production of helminth-specific Th2 cytokines, such as IL-4 and IL-5, was suppressed by infection with T. gondii. Additionally, the recruitment and alternative activation of macrophages by F. hepatica was blocked or reversed by subsequent infection with T. gondii. The clinical symptoms of toxoplasmosis and the survival rate of infected mice were not significantly altered by the helminth. Conclusions Despite previous studies showing that F. hepatica suppressed the classical activation of macrophages and the Th1-driven responses of mice to bystander microbial infection, as well as reduced their ability to reject these, here we found that the potent immune responses to T. gondii were capable of suppressing the responses to helminth infection. Clearly, the outcome of particular infections in polyparasitoses depends on the means and potency by which each pathogen controls the immune response.
Collapse
|
22
|
Visualization of Toxoplasma gondii stage conversion by expression of stage-specific dual fluorescent proteins. Parasitology 2009; 136:579-88. [PMID: 19368740 DOI: 10.1017/s0031182009005836] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To recognize the stage conversion of Toxoplasma gondii between tachyzoite and bradyzoite in live host cells, a transgenic T. gondii line, which expressed stage-specific red and green fluorescence, was constructed. T. gondii PLK strain tachyzoites were stably transformed with genes encoding red fluorescent protein (DsRed Express) and green fluorescent protein (GFP) under the control of tachyzoite-specific SAG1 and bradyzoite-specific BAG1 promoters, respectively. The resulting transgenic parasite was designated PLK/DUAL. When PLK/DUAL was cultured in pH 7.0 medium, the PLK/DUAL zoites expressed red fluorescence, but no detectable levels of green fluorescence were observed. The PLK/DUAL zoites reacted with anti-SAG1 antibody, but not anti-BAG1 antiserum. When PLK/DUAL was cultured under high pH conditions, or in the presence of the p38 MAPK inhibitor SB202190, a small number of zoites expressed green fluorescence and were BAG1 positive. C57BL/6J mice were infected with PLK/DUAL tachyzoites. During the acute and reactivating phase, zoites expressed red fluorescence. However, green fluorescence was not detectable. By contrast, latent cysts expressed green fluorescence. The stage-specific dual fluorescence of PLK/DUAL facilitates identification of the parasitic stage in live cells, with the advantage that fixation or immunostaining is not required.
Collapse
|
23
|
Nelson MM, Jones AR, Carmen JC, Sinai AP, Burchmore R, Wastling JM. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infect Immun 2008; 76:828-44. [PMID: 17967855 PMCID: PMC2223483 DOI: 10.1128/iai.01115-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/19/2007] [Accepted: 10/21/2007] [Indexed: 01/09/2023] Open
Abstract
To investigate how intracellular parasites manipulate their host cell environment at the molecular level, we undertook a quantitative proteomic study of cells following infection with the apicomplexan parasite Toxoplasma gondii. Using conventional two-dimensional electrophoresis, difference gel electrophoresis (DIGE), and mass spectrometry, we identified host proteins that were consistently modulated in expression following infection. We detected modification of protein expression in key metabolic pathways, including glycolysis, lipid and sterol metabolism, mitosis, apoptosis, and structural-protein expression, suggestive of global reprogramming of cell metabolism by the parasite. Many of the differentially expressed proteins had not been previously implicated in the response to the parasite, while others provide important corroborative protein evidence for previously proposed hypotheses of pathogen-cell interactions. Significantly, over one-third of all modulated proteins were mitochondrial, and this was further investigated by DIGE analysis of a mitochondrion-enriched preparation from infected cells. Comparison of our proteomic data with previous transcriptional studies suggested that a complex relationship exits between transcription and protein expression that may be partly explained by posttranslational modifications of proteins and revealed the importance of investigating protein changes when interpreting transcriptional data. To investigate this further, we used phosphatase treatment and DIGE to demonstrate changes in the phosphorylation states of several key proteins following infection. Overall, our findings indicate that the host cell proteome responds in a dramatic way to T. gondii invasion, in terms of both protein expression changes and protein modifications, and reveal a complex and intimate molecular relationship between host and parasite.
Collapse
Affiliation(s)
- M M Nelson
- Department of Pre-Clinical Veterinary Science and Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Welti R, Mui E, Sparks A, Wernimont S, Isaac G, Kirisits M, Roth M, Roberts CW, Botté C, Maréchal E, McLeod R. Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids. Biochemistry 2007; 46:13882-90. [PMID: 17988103 PMCID: PMC2576749 DOI: 10.1021/bi7011993] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Analysis of the polar lipids of Toxoplasma gondii by electrospray ionization tandem mass spectrometry provides a detailed picture of the lipid molecular species of this parasitic protozoan. Most notably, T. gondii contains a relatively high level, estimated to about 2% of the total polar lipid, of ceramide phosphoethanolamine. The ceramide phosphoethanolamine has a fatty amide profile with only 16- and 18-carbon species. Compared with the host fibroblasts in which it was grown, T. gondii also has higher levels of phosphatidylcholine but lower levels of sphingomyelin and phosphatidylserine. Analysis at the molecular species level indicated that T. gondii has greater amounts of shorter-chain fatty acid in its polar lipid molecular species than the host fibroblasts. Shorter-chain fatty acids with a combined total of 30 or fewer acyl carbons make up 21% of Toxoplasma's, but only 3% of the host's, diacyl phosphatidylcholine. Furthermore, diacyl phosphatidylcholine with two saturated acyl chains with 12, 14, or 16 carbons make up over 11% of parasite phosphatidylcholine but less than 3% of the host phosphatidylcholine molecular species. The distinctive T. gondii tachyzoite lipid profile may be particularly suited to the function of parasitic membranes and the interaction of the parasite with the host cell and the host's immune system. Combined with T. gondii genomic data, these lipidomic data will assist in elucidation of metabolic pathways for lipid biosynthesis in this important human pathogen.
Collapse
Affiliation(s)
- Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan KS 66506
| | - Ernie Mui
- Departments of Ophthalmology and Visual Sciences, Pediatrics (Infectious Diseases) Committees on Molecular Medicine, Immunology and Genetics and The College, University of Chicago, Chicago IL 60637
| | - Alexis Sparks
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan KS 66506
| | - Sarah Wernimont
- Departments of Ophthalmology and Visual Sciences, Pediatrics (Infectious Diseases) Committees on Molecular Medicine, Immunology and Genetics and The College, University of Chicago, Chicago IL 60637
| | - Giorgis Isaac
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan KS 66506
| | - Michael Kirisits
- Departments of Ophthalmology and Visual Sciences, Pediatrics (Infectious Diseases) Committees on Molecular Medicine, Immunology and Genetics and The College, University of Chicago, Chicago IL 60637
| | - Mary Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan KS 66506
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Cyrille Botté
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168 CNRS-CEA-INRA-Université J. Fourier, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168 CNRS-CEA-INRA-Université J. Fourier, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, Grenoble, France
| | - Rima McLeod
- Departments of Ophthalmology and Visual Sciences, Pediatrics (Infectious Diseases) Committees on Molecular Medicine, Immunology and Genetics and The College, University of Chicago, Chicago IL 60637
| |
Collapse
|
25
|
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, can infect humans in 3 different ways: ingestion of tissue cysts, ingestion of oocysts, or congenital infection with tachyzoites. After proliferation of tachyzoites in various organs during the acute stage, the parasite forms cysts preferentially in the brain and establishes a chronic infection, which is a balance between host immunity and the parasite's evasion of the immune response. A variety of brain cells, including astrocytes and neurons, can be infected. In vitro studies using non-brain cells have demonstrated profound effects of the infection on gene expression of host cells, including molecules that promote the immune response and those involved in signal transduction pathways, suggesting that similar effects could occur in infected brain cells. Interferon-gamma is the essential mediator of the immune response to control T. gondii in the brain and to maintain the latency of chronic infection. Infection also induces the production of a variety of cytokines by microglia, astrocytes, and neurons, which promote or suppress inflammatory responses. The strain (genotype) of T. gondii, genetic factors of the host, and probably the route of infection and the stage (tachyzoite, cyst, or oocyst) of the parasite initiating infection all contribute to the establishment of a balance between the host and the parasite and affect the outcome of the infection.
Collapse
Affiliation(s)
- Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Yasuhiro Suzuki
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- To whom correspondence should be addressed; tel: 540-231-2095, fax: 540-231-3426, e-mail:
| |
Collapse
|