1
|
St. Louis BM, Quagliato SM, Su YT, Dyson G, Lee PC. The Hippo kinases control inflammatory Hippo signaling and restrict bacterial infection in phagocytes. mBio 2024; 15:e0342923. [PMID: 38624208 PMCID: PMC11078001 DOI: 10.1128/mbio.03429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The Hippo kinases MST1 and MST2 initiate a highly conserved signaling cascade called the Hippo pathway that limits organ size and tumor formation in animals. Intriguingly, pathogens hijack this host pathway during infection, but the role of MST1/2 in innate immune cells against pathogens is unclear. In this report, we generated Mst1/2 knockout macrophages to investigate the regulatory activities of the Hippo kinases in immunity. Transcriptomic analyses identified differentially expressed genes (DEGs) regulated by MST1/2 that are enriched in biological pathways, such as systemic lupus erythematosus, tuberculosis, and apoptosis. Surprisingly, pharmacological inhibition of the downstream components LATS1/2 in the canonical Hippo pathway did not affect the expression of a set of immune DEGs, suggesting that MST1/2 control these genes via alternative inflammatory Hippo signaling. Moreover, MST1/2 may affect immune communication by influencing the release of cytokines, including TNFα, CXCL10, and IL-1ra. Comparative analyses of the single- and double-knockout macrophages revealed that MST1 and MST2 differentially regulate TNFα release and expression of the immune transcription factor MAF, indicating that the two homologous Hippo kinases individually play a unique role in innate immunity. Notably, both MST1 and MST2 can promote apoptotic cell death in macrophages upon stimulation. Lastly, we demonstrate that the Hippo kinases are critical factors in mammalian macrophages and single-cell amoebae to restrict infection by Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Together, these results uncover non-canonical inflammatory Hippo signaling in macrophages and the evolutionarily conserved role of the Hippo kinases in the anti-microbial defense of eukaryotic hosts. IMPORTANCE Identifying host factors involved in susceptibility to infection is fundamental for understanding host-pathogen interactions. Clinically, individuals with mutations in the MST1 gene which encodes one of the Hippo kinases experience recurrent infection. However, the impact of the Hippo kinases on innate immunity remains largely undetermined. This study uses mammalian macrophages and free-living amoebae with single- and double-knockout in the Hippo kinase genes and reveals that the Hippo kinases are the evolutionarily conserved determinants of host defense against microbes. In macrophages, the Hippo kinases MST1 and MST2 control immune activities at multiple levels, including gene expression, immune cell communication, and programmed cell death. Importantly, these activities controlled by MST1 and MST2 in macrophages are independent of the canonical Hippo cascade that is known to limit tissue growth and tumor formation. Together, these findings unveil a unique inflammatory Hippo signaling pathway that plays an essential role in innate immunity.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Yu-Ting Su
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Gregory Dyson
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Pei-Chung Lee
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
3
|
Budziaszek J, Pilarczyk-Zurek M, Dobosz E, Kozinska A, Nowicki D, Obszanska K, Szalewska-Pałasz A, Kern-Zdanowicz I, Sitkiewicz I, Koziel J. Studies of Streptococcus anginosus Virulence in Dictyostelium discoideum and Galleria mellonella Models. Infect Immun 2023; 91:e0001623. [PMID: 37097148 DOI: 10.1128/iai.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus.
Collapse
Affiliation(s)
- Joanna Budziaszek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kozinska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | - Dariusz Nowicki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Obszanska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | | | | | - Izabela Sitkiewicz
- Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Meethai C, Vanaporn M, Intarak N, Lerdsittikul V, Withatanung P, Janesomboon S, Vattanaviboon P, Chareonsudjai S, Wilkinson T, Stevens MP, Stevens JM, Korbsrisate S. Analysis of the role of the QseBC two-component sensory system in epinephrine-induced motility and intracellular replication of Burkholderia pseudomallei. PLoS One 2023; 18:e0282098. [PMID: 36821630 PMCID: PMC9949665 DOI: 10.1371/journal.pone.0282098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Burkholderia pseudomallei is a facultative intracellular bacterial pathogen that causes melioidosis, a severe invasive disease of humans. We previously reported that the stress-related catecholamine hormone epinephrine enhances motility of B. pseudomallei, transcription of flagellar genes and the production of flagellin. It has been reported that the QseBC two-component sensory system regulates motility and virulence-associated genes in other Gram-negative bacteria in response to stress-related catecholamines, albeit disparities between studies exist. We constructed and whole-genome sequenced a mutant of B. pseudomallei with a deletion spanning the predicted qseBC homologues (bpsl0806 and bpsl0807). The ΔqseBC mutant exhibited significantly reduced swimming and swarming motility and reduced transcription of fliC. It also exhibited a defect in biofilm formation and net intracellular survival in J774A.1 murine macrophage-like cells. While epinephrine enhanced bacterial motility and fliC transcription, no further reduction in these phenotypes was observed with the ΔqseBC mutant in the presence of epinephrine. Plasmid-mediated expression of qseBC suppressed bacterial growth, complicating attempts to trans-complement mutant phenotypes. Our data support a role for QseBC in motility, biofilm formation and net intracellular survival of B. pseudomallei, but indicate that it is not essential for epinephrine-induced motility per se.
Collapse
Affiliation(s)
- Chatruthai Meethai
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narin Intarak
- Department of Physiology, Faculty of Dentistry, Genomics and Precision, Chulalongkorn University, Bangkok, Thailand
| | - Varintip Lerdsittikul
- Microbiology Laboratory, Faculty of Veterinary Science, Veterinary Diagnostic Center, Mahidol University, Nakhon Pathom, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Toby Wilkinson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Joanne M. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (JMS); (SK)
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: (JMS); (SK)
| |
Collapse
|
5
|
de Oliveira AL, Barbieri NL, Newman DM, Young MM, Nolan LK, Logue CM. Characterizing the Type 6 Secretion System (T6SS) and its role in the virulence of avian pathogenic Escherichia coli strain APECO18. PeerJ 2021; 9:e12631. [PMID: 35003930 PMCID: PMC8686734 DOI: 10.7717/peerj.12631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Avian pathogenic E. coli is the causative agent of extra-intestinal infections in birds known as colibacillosis, which can manifest as localized or systemic infections. The disease affects all stages of poultry production, resulting in economic losses that occur due to morbidity, carcass condemnation and increased mortality of the birds. APEC strains have a diverse virulence trait repertoire, which includes virulence factors involved in adherence to and invasion of the host cells, serum resistance factors, and toxins. However, the pathogenesis of APEC infections remains to be fully elucidated. The Type 6 secretion (T6SS) system has recently gained attention due to its role in the infection process and protection of bacteria from host defenses in human and animal pathogens. Previous work has shown that T6SS components are involved in the adherence to and invasion of host cells, as well as in the formation of biofilm, and intramacrophage bacterial replication. Here, we analyzed the frequency of T6SS genes hcp, impK, evpB, vasK and icmF in a collection of APEC strains and their potential role in virulence-associated phenotypes of APECO18. The T6SS genes were found to be significantly more prevalent in APEC than in fecal E. coli isolates from healthy birds. Expression of T6SS genes was analyzed in culture media and upon contact with host cells. Mutants were generated for hcp, impK, evpB, and icmF and characterized for their impact on virulence-associated phenotypes, including adherence to and invasion of host model cells, and resistance to predation by Dictyostelium discoideum. Deletion of the aforementioned genes did not significantly affect adherence and invasion capabilities of APECO18. Deletion of hcp reduced resistance of APECO18 to predation by D. discoideum, suggesting that T6SS is involved in the virulence of APECO18.
Collapse
Affiliation(s)
- Aline L. de Oliveira
- Department of Population Health, University of Georgia, Athens, GA, United States of America
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Nicolle L. Barbieri
- Department of Population Health, University of Georgia, Athens, GA, United States of America
| | - Darby M. Newman
- Department of Population Health, University of Georgia, Athens, GA, United States of America
| | - Meaghan M. Young
- Department of Population Health, University of Georgia, Athens, GA, United States of America
| | - Lisa K. Nolan
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| | - Catherine M. Logue
- Department of Population Health, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
6
|
Abstract
The regulation and timely expression of bacterial genes during infection is critical for a pathogen to cause an infection. Bacteria have multiple mechanisms to regulate gene expression in response to their environment, one of which is two-component systems (TCS). TCS have two components. One component is a sensory histidine kinase (HK) that autophosphorylates when activated by a signal. The activated sensory histidine kinase then transfers the phosphoryl group to the second component, the response regulator, which activates transcription of target genes. The genus Burkholderia contains members that cause human disease and are often extensively resistant to many antibiotics. The Burkholderia cepacia complex (BCC) can cause severe lung infections in patients with cystic fibrosis (CF) or chronic granulomatous disease (CGD). BCC members have also recently been associated with several outbreaks of bacteremia from contaminated pharmaceutical products. Separate from the BCC is Burkholderia pseudomallei, which is the causative agent of melioidosis, a serious disease that occurs in the tropics, and a potential bioterrorism weapon. Bioinformatic analysis of sequenced Burkholderia isolates predicts that most strains have at least 40 TCS. The vast majority of these TCS are uncharacterized both in terms of the signals that activate them and the genes that are regulated by them. This review will highlight TCS that have been described to play a role in virulence in either the BCC or B. pseudomallei Since many of these TCS are involved in virulence, TCS are potential novel therapeutic targets, and elucidating their function is critical for understanding Burkholderia pathogenesis.
Collapse
|
7
|
Chen YL, Hsu DW, Hsueh PT, Chen JA, Shih PJ, Lee S, Lin HH, Chen YS. Distinct Pathogenic Patterns of Burkholderia pseudomallei Isolates Selected from Caenorhabditis elegans and Dictyostelium discoideum Models. Am J Trop Med Hyg 2020; 101:736-745. [PMID: 31392941 DOI: 10.4269/ajtmh.19-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Burkholderia pseudomallei is a selective agent that causes septic melioidosis and exhibits a broad range of lethal doses in animals. Host cellular virulence and phagocytic resistance are pathologic keys of B. pseudomallei. We first proposed Caenorhabditis elegans as the host cellular virulence model to mimic bacterial virulence against mammals and second established the resistance of B. pseudomallei to predation by Dictyostelium discoideum as the phagocytosis model. The saprophytic sepsis-causing Burkholderia sp. (B. pseudomallei, Burkholderia thailandensis, Burkholderia cenocepacia, and Burkholderia multivorans) exhibited different virulence patterns in both simple models, but B. pseudomallei was the most toxic. Using both models, attenuated isolates of B. pseudomallei were selected from a transposon-mutant library and a panel of environmental isolates and reconfirmed by in vitro mouse peritoneal exudate cell association and invasion assays. The distinct pathological patterns of melioidosis were inducted by different selected B. pseudomallei isolates. Fatal melioidosis was induced by the isolates with high virulence in both simple models within 4-5 day, whereas the low-virulence isolates resulted in prolonged survival greater than 30 day. Infection with the isolates having high resistance to D. discoideum predation but a low C. elegans killing effect led to 83% of mice with neurologic melioidosis. By contrast, infection with the isolates having low resistance to D. discoideum predation but high C. elegans killing effect led to 20% cases with inflammation in the salivary glands. Our results indicated that individual B. pseudomallei isolates selected from simple biological models contribute differently to disease progression and/or tissue tropism.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Pei-Tan Hsueh
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jou-An Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Pei-Jyun Shih
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Susan Lee
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- School of Medicine, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Medical Research Department, General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601. [PMID: 31379771 PMCID: PMC6650576 DOI: 10.3389/fmicb.2019.01601] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated a significant insurgence in the prevalence of infections over recent decades. With only a limited number of “traditional” virulence factors, the mechanisms underlying the success of this pathogen remain of great interest. Major advances have been made in the tools, reagents, and models to study A. baumannii pathogenesis, and this has resulted in a substantial increase in knowledge. This article provides a comprehensive review of the bacterial virulence factors, the host immune responses, and animal models applicable for the study of this important human pathogen. Collating the most recent evidence characterizing bacterial virulence factors, their cellular targets and genetic regulation, we have encompassed numerous aspects important to the success of this pathogen, including membrane proteins and cell surface adaptations promoting immune evasion, mechanisms for nutrient acquisition and community interactions. The role of innate and adaptive immune responses is reviewed and areas of paucity in our understanding are highlighted. Finally, with the vast expansion of available animal models over recent years, we have evaluated those suitable for use in the study of Acinetobacter disease, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Faye C Morris
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carina Dexter
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xenia Kostoulias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Muhammad Ikhtear Uddin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Gislason AS, Turner K, Domaratzki M, Cardona ST. Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia. Microb Genom 2019; 3. [PMID: 29208119 PMCID: PMC5729917 DOI: 10.1099/mgen.0.000140] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Burkholderia cenocepacia K56-2 belongs to the Burkholderia cepacia complex, a group of Gram-negative opportunistic pathogens that have large and dynamic genomes. In this work, we identified the essential genome of B. cenocepacia K56-2 using high-density transposon mutagenesis and insertion site sequencing (Tn-seq circle). We constructed a library of one million transposon mutants and identified the transposon insertions at an average of one insertion per 27 bp. The probability of gene essentiality was determined by comparing of the insertion density per gene with the variance of neutral datasets generated by Monte Carlo simulations. Five hundred and eight genes were not significantly disrupted, suggesting that these genes are essential for survival in rich, undefined medium. Comparison of the B. cenocepacia K56-2 essential genome with that of the closely related B. cenocepacia J2315 revealed partial overlapping, suggesting that some essential genes are strain-specific. Furthermore, 158 essential genes were conserved in B. cenocepacia and two species belonging to the Burkholderia pseudomallei complex, B. pseudomallei K96243 and Burkholderia thailandensis E264. Porins, including OpcC, a lysophospholipid transporter, LplT, and a protein involved in the modification of lipid A with aminoarabinose were found to be essential in Burkholderia genomes but not in other bacterial essential genomes identified so far. Our results highlight the existence of cell envelope processes that are uniquely essential in species of the genus Burkholderia for which the essential genomes have been identified by Tn-seq.
Collapse
Affiliation(s)
- April S Gislason
- 1Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith Turner
- 2Monsanto Company, 700 Chesterfield Parkway W, Chesterfield, MO, 63017, USA
| | - Mike Domaratzki
- 3Department of Computer Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Silvia T Cardona
- 4Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
10
|
Buckley CM, Heath VL, Guého A, Bosmani C, Knobloch P, Sikakana P, Personnic N, Dove SK, Michell RH, Meier R, Hilbi H, Soldati T, Insall RH, King JS. PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathog 2019; 15:e1007551. [PMID: 30730983 PMCID: PMC6382210 DOI: 10.1371/journal.ppat.1007551] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/20/2019] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
By engulfing potentially harmful microbes, professional phagocytes are continually at risk from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in the phagosome before they can escape or establish a survival niche. Here, we analyse the role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing, using the amoeba and model phagocyte Dictyostelium discoideum. PIKfyve plays important but poorly understood roles in vesicular trafficking by catalysing formation of the lipids phosphatidylinositol (3,5)-bisphosphate (PI(3,5)2) and phosphatidylinositol-5-phosphate (PI(5)P). Here we show that its activity is essential during early phagosome maturation in Dictyostelium. Disruption of PIKfyve inhibited delivery of both the vacuolar V-ATPase and proteases, dramatically reducing the ability of cells to acidify newly formed phagosomes and digest their contents. Consequently, PIKfyve- cells were unable to generate an effective antimicrobial environment and efficiently kill captured bacteria. Moreover, we demonstrate that cells lacking PIKfyve are more susceptible to infection by the intracellular pathogen Legionella pneumophila. We conclude that PIKfyve-catalysed phosphoinositide production plays a crucial and general role in ensuring early phagosomal maturation, protecting host cells from diverse pathogenic microbes.
Collapse
Affiliation(s)
- Catherine M. Buckley
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Victoria L. Heath
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Aurélie Guého
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Phumzile Sikakana
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Stephen K. Dove
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robert H. Michell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Roger Meier
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Robert H. Insall
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Jason S. King
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
11
|
Brock DA, Haselkorn TS, Garcia JR, Bashir U, Douglas TE, Galloway J, Brodie F, Queller DC, Strassmann JE. Diversity of Free-Living Environmental Bacteria and Their Interactions With a Bactivorous Amoeba. Front Cell Infect Microbiol 2018; 8:411. [PMID: 30533398 PMCID: PMC6266680 DOI: 10.3389/fcimb.2018.00411] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
A small subset of bacteria in soil interact directly with eukaryotes. Which ones do so can reveal what is important to a eukaryote and how eukaryote defenses might be breached. Soil amoebae are simple eukaryotic organisms and as such could be particularly good for understanding how eukaryote microbiomes originate and are maintained. One such amoeba, Dictyostelium discoideum, has both permanent and temporary associations with bacteria. Here we focus on culturable bacterial associates in order to interrogate their relationship with D. discoideum. To do this, we isolated over 250 D. discoideum fruiting body samples from soil and deer feces at Mountain Lake Biological Station. In one-third of the wild D. discoideum we tested, one to six bacterial species were found per fruiting body sorus (spore mass) for a total of 174 bacterial isolates. The remaining two-thirds of D. discoideum fruiting body samples did not contain culturable bacteria, as is thought to be the norm. A majority (71.4%) of the unique bacterial haplotypes are in Proteobacteria. The rest are in either Actinobacteria, Bacteriodetes, or Firmicutes. The highest bacterial diversity was found in D. discoideum fruiting bodies originating from deer feces (27 OTUs), greater than either of those originating in shallow (11 OTUs) or in deep soil (4 OTUs). Rarefaction curves and the Chao1 estimator for species richness indicated the diversity in any substrate was not fully sampled, but for soil it came close. A majority of the D. discoideum-associated bacteria were edible by D. discoideum and supported its growth (75.2% for feces and 81.8% for soil habitats). However, we found several bacteria genera were able to evade phagocytosis and persist in D. discoideum cells through one or more social cycles. This study focuses not on the entire D. discoideum microbiome, but on the culturable subset of bacteria that have important eukaryote interactions as prey, symbionts, or pathogens. These eukaryote and bacteria interactions may provide fertile ground for investigations of bacteria using amoebas to gain an initial foothold in eukaryotes and of the origins of symbiosis and simple microbiomes.
Collapse
Affiliation(s)
- Debra A Brock
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Tamara S Haselkorn
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Justine R Garcia
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Usman Bashir
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Tracy E Douglas
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Jesse Galloway
- Mountain Lake Biological Laboratory, University of Virginia, Mountain Lake, VA, United States
| | - Fisher Brodie
- Mountain Lake Biological Laboratory, University of Virginia, Mountain Lake, VA, United States
| | - David C Queller
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Joan E Strassmann
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| |
Collapse
|
12
|
Varas MA, Riquelme-Barrios S, Valenzuela C, Marcoleta AE, Berríos-Pastén C, Santiviago CA, Chávez FP. Inorganic Polyphosphate Is Essential for Salmonella Typhimurium Virulence and Survival in Dictyostelium discoideum. Front Cell Infect Microbiol 2018; 8:8. [PMID: 29441327 PMCID: PMC5797601 DOI: 10.3389/fcimb.2018.00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/26/2023] Open
Abstract
Inorganic polyphosphate (polyP) deficiency in enteric bacterial pathogens reduces their ability to invade and establish systemic infections in different hosts. For instance, inactivation of the polyP kinase gene (ppk) encoding the enzyme responsible for polyP biosynthesis reduces invasiveness and intracellular survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) in epithelial cells and macrophages in vitro. In addition, the virulence in vivo of a S. Typhimurium Δppk mutant is significantly reduced in a murine infection model. In spite of these observations, the role played by polyP during the Salmonella-host interaction is not well understood. The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In fact, many intracellular pathogens can survive within D. discoideum cells using molecular mechanisms also required to survive within macrophages. Recently, we established that S. Typhimurium is able to survive intracellularly in D. discoideum and identified relevant genes linked to virulence that are crucial for this process. The aim of this study was to determine the effect of a polyP deficiency in S. Typhimurium during its interaction with D. discoideum. To do this, we evaluated the intracellular survival of wild-type and Δppk strains of S. Typhimurium in D. discoideum and the ability of these strains to delay the social development of the amoeba. In contrast to the wild-type strain, the Δppk mutant was unable to survive intracellularly in D. discoideum and enabled the social development of the amoeba. Both phenotypes were complemented using a plasmid carrying a copy of the ppk gene. Next, we simultaneously evaluated the proteomic response of both S. Typhimurium and D. discoideum during host-pathogen interaction via global proteomic profiling. The analysis of our results allowed the identification of novel molecular signatures that give insight into Salmonella-Dictyostelium interaction. Altogether, our results indicate that inorganic polyP is essential for S. Typhimurium virulence and survival in D. discoideum. In addition, we have validated the use of global proteomic analyses to simultaneously evaluate the host-pathogen interaction of S. Typhimurium and D. discoideum. Furthermore, our infection assays using these organisms can be exploited to screen for novel anti-virulence molecules targeting inorganic polyP biosynthesis.
Collapse
Affiliation(s)
- Macarena A Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrés E Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
|
14
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
15
|
A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum. mSphere 2016; 1:mSphere00075-15. [PMID: 27303689 PMCID: PMC4863597 DOI: 10.1128/msphere.00075-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections.
Collapse
|
16
|
Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum. Appl Environ Microbiol 2015; 82:1586-1598. [PMID: 26712555 DOI: 10.1128/aem.02950-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism.
Collapse
|
17
|
Harrison CF, Chiriano G, Finsel I, Manske C, Hoffmann C, Steiner B, Kranjc A, Patthey-Vuadens O, Kicka S, Trofimov V, Ouertatani-Sakouhi H, Soldati T, Scapozza L, Hilbi H. Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila. ACS Infect Dis 2015; 1:327-38. [PMID: 27622823 DOI: 10.1021/acsinfecdis.5b00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s).
Collapse
Affiliation(s)
- Christopher F. Harrison
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Gianpaolo Chiriano
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ivo Finsel
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Christian Manske
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Christine Hoffmann
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Bernhard Steiner
- Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| | - Agata Kranjc
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ophelie Patthey-Vuadens
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | | | | | | | | | - Leonardo Scapozza
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
- Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| |
Collapse
|
18
|
Zhang J, Ketola T, Örmälä-Odegrip AM, Mappes J, Laakso J. Coincidental loss of bacterial virulence in multi-enemy microbial communities. PLoS One 2014; 9:e111871. [PMID: 25365586 PMCID: PMC4218854 DOI: 10.1371/journal.pone.0111871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/03/2014] [Indexed: 01/17/2023] Open
Abstract
The coincidental virulence evolution hypothesis suggests that outside-host selection, such as predation, parasitism and resource competition can indirectly affect the virulence of environmentally-growing bacterial pathogens. While there are some examples of coincidental environmental selection for virulence, it is also possible that the resource acquisition and enemy defence is selecting against it. To test these ideas we conducted an evolutionary experiment by exposing the opportunistic pathogen bacterium Serratia marcescens to the particle-feeding ciliate Tetrahymena thermophila, the surface-feeding amoeba Acanthamoeba castellanii, and the lytic bacteriophage Semad11, in all possible combinations in a simulated pond water environment. After 8 weeks the virulence of the 384 evolved clones were quantified with fruit fly Drosophila melanogaster oral infection model, and several other life-history traits were measured. We found that in comparison to ancestor bacteria, evolutionary treatments reduced the virulence in most of the treatments, but this reduction was not clearly related to any changes in other life-history traits. This suggests that virulence traits do not evolve in close relation with these life-history traits, or that different traits might link to virulence in different selective environments, for example via resource allocation trade-offs.
Collapse
Affiliation(s)
- Ji Zhang
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jouni Laakso
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 2014; 12:1487-99. [PMID: 25312349 DOI: 10.1586/14787210.2014.970634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Joshua K Stone
- Department of Microbiology and Immunology, University of South Alabama, 610 Clinic Drive, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
20
|
Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons. J Bacteriol 2014; 196:3862-71. [PMID: 25182491 DOI: 10.1128/jb.01974-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei.
Collapse
|
21
|
Chen Y, Schröder I, French CT, Jaroszewicz A, Yee XJ, Teh BE, Toesca IJ, Miller JF, Gan YH. Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol 2014; 14:206. [PMID: 25085508 PMCID: PMC4236580 DOI: 10.1186/s12866-014-0206-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/18/2014] [Indexed: 01/06/2023] Open
Abstract
Background Burkholderia pseudomallei is a facultative intracellular pathogen and the causative agent of melioidosis. A conserved type III secretion system (T3SS3) and type VI secretion system (T6SS1) are critical for intracellular survival and growth. The T3SS3 and T6SS1 genes are coordinately and hierarchically regulated by a TetR-type regulator, BspR. A central transcriptional regulator of the BspR regulatory cascade, BsaN, activates a subset of T3SS3 and T6SS1 loci. Results To elucidate the scope of the BsaN regulon, we used RNAseq analysis to compare the transcriptomes of wild-type B. pseudomallei KHW and a bsaN deletion mutant. The 60 genes positively-regulated by BsaN include those that we had previously identified in addition to a polyketide biosynthesis locus and genes involved in amino acid biosynthesis. BsaN was also found to repress the transcription of 51 genes including flagellar motility loci and those encoding components of the T3SS3 apparatus. Using a promoter-lacZ fusion assay in E. coli, we show that BsaN together with the chaperone BicA directly control the expression of the T3SS3 translocon, effector and associated regulatory genes that are organized into at least five operons (BPSS1516-BPSS1552). Using a mutagenesis approach, a consensus regulatory motif in the promoter regions of BsaN-regulated genes was shown to be essential for transcriptional activation. Conclusions BsaN/BicA functions as a central regulator of key virulence clusters in B. pseudomallei within a more extensive network of genetic regulation. We propose that BsaN/BicA controls a gene expression program that facilitates the adaption and intracellular survival of the pathogen within eukaryotic hosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
22
|
Assessing Pseudomonas aeruginosa virulence using a nonmammalian host: Dictyostelium discoideum. Methods Mol Biol 2014; 1149:671-80. [PMID: 24818941 DOI: 10.1007/978-1-4939-0473-0_51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dictyostelium discoideum, a soil amoeba, can be used as an alternative host to study the virulence of various bacterial species, including Pseudomonas aeruginosa. A simple quantitative test based on the ability of D. discoideum to grow on a bacterial lawn has been developed using this amoeba to assay the virulence of P. aeruginosa strains. The assay needs to be customized for the strains to be tested in order to be able to discriminate between virulent and avirulent P. aeruginosa strains. These steps are described in this protocol.
Collapse
|
23
|
Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon. J Bacteriol 2014; 196:1412-24. [PMID: 24464461 DOI: 10.1128/jb.01405-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei.
Collapse
|
24
|
Abstract
We constructed a near-saturation transposon mutant library for Burkholderia thailandensis, a low-virulence surrogate for the causative agent of melioidosis (Burkholderia pseudomallei). A primary set of nearly 42,000 unique mutants (~7.5 mutants/gene) was generated using transposon Tn5 derivatives. The strains carry insertions in 87% of the predicted protein-coding genes of the organism, corresponding to nearly all of those nonessential for growth on nutrient agar. To achieve high genome coverage, we developed procedures for efficient sequence identification of insertions in extremely GC-rich regions of DNA. To facilitate strain distribution, we created a secondary library with two mutants per gene for which most transposon locations had been confirmed by resequencing. A map of mutations in the two-allele library and procedures for obtaining strains can be found at http://tools.nwrce.org/tn_mutants/ and http://www.gs.washington.edu/labs/manoil/. The library should facilitate comprehensive mutant screens and serve as a source of strains to test predicted genotype-phenotype associations. The Gram-negative bacterium Burkholderia pseudomallei is a biothreat agent due to its potential for aerosol delivery and intrinsic antibiotic resistance and because exposure produces pernicious infections. Large-scale studies of B. pseudomallei are limited by the fact that the organism must be manipulated under biological safety level 3 conditions. A close relative of B. pseudomallei called Burkholderia thailandensis, which can be studied under less restrictive conditions, has been validated as a low-virulence surrogate in studies of virulence, antibiotic resistance and other traits. To facilitate large-scale studies of B. thailandensis, we created a near-saturation, sequence-defined transposon mutant library of the organism. The library facilitates genetic studies that identify genotype-phenotype associations conserved in B. pseudomallei.
Collapse
|
25
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|
26
|
Nasser W, Santhanam B, Miranda ER, Parikh A, Juneja K, Rot G, Dinh C, Chen R, Zupan B, Shaulsky G, Kuspa A. Bacterial discrimination by dictyostelid amoebae reveals the complexity of ancient interspecies interactions. Curr Biol 2013; 23:862-72. [PMID: 23664307 DOI: 10.1016/j.cub.2013.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/12/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Amoebae and bacteria interact within predator-prey and host-pathogen relationships, but the general response of amoeba to bacteria is not well understood. The amoeba Dictyostelium discoideum feeds on, and is colonized by, diverse bacterial species, including Gram-positive [Gram(+)] and Gram-negative [Gram(-)] bacteria, two major groups of bacteria that differ in structure and macromolecular composition. RESULTS Transcriptional profiling of D. discoideum revealed sets of genes whose expression is enriched in amoebae interacting with different species of bacteria, including sets that appear specific to amoebae interacting with Gram(+) or with Gram(-) bacteria. In a genetic screen utilizing the growth of mutant amoebae on a variety of bacteria as a phenotypic readout, we identified amoebal genes that are only required for growth on Gram(+) bacteria, including one that encodes the cell-surface protein gp130, as well as several genes that are only required for growth on Gram(-) bacteria, including one that encodes a putative lysozyme, AlyL. These genes are required for parts of the transcriptional response of wild-type amoebae, and this allowed their classification into potential response pathways. CONCLUSIONS We have defined genes that are critical for amoebal survival during feeding on Gram(+), or Gram(-), bacteria that we propose form part of a regulatory network that allows D. discoideum to elicit specific cellular responses to different species of bacteria in order to optimize survival.
Collapse
Affiliation(s)
- Waleed Nasser
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Isolation of pathogen-containing vacuoles. Methods Mol Biol 2013. [PMID: 23494321 DOI: 10.1007/978-1-62703-302-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Dictyostelium discoideum cells are "professional phagocytes," as they ingest a large variety of bacteria, yeast, and inert particles. Several bacterial pathogens are able to survive intracellularly within specialized vacuoles of D. discoideum by interfering with host signaling pathways. To better understand the molecular mechanisms underlying these evolutionary conserved processes we have established a method for the isolation of pathogen-containing vacuoles (PCVs). The isolation protocol describes the infection of D. discoideum cells with the intracellular pathogen Legionella pneumophila, loading of the lysosomal compartment with colloidal iron, mechanical lysis of host cells, iodophenylnitrophenyltetrazolium (INT) heavy labeling of mitochondria, removal of nucleic acid by Benzonase treatment, separation of nuclei by low-speed centrifugation, and the magnetic removal of lysosomes. The subcellular fractionation in a discontinuous sucrose density OptiPrep gradient allows the separation of mitochondria and to prepare PCVs with high purity. The proteins isolated from PCVs have been successfully subjected to mass spectrometry and allowed to analyze pathogen-directed maturation processes of vacuoles. The method can also be applied for subsequent protein modification analyses and lipidome comparisons.
Collapse
|
28
|
Abstract
Much of our knowledge of molecular cellular functions is based on studies with a few number of model organisms that were established during the last 50 years. The social amoeba Dictyostelium discoideum is one such model, and has been particularly useful for the study of cell motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more recently, autophagy and social evolution. As nonmammalian model of human diseases D. discoideum is a newcomer, yet it has proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections, for mitochondrial diseases, and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human genes responsible for a variety of diseases, -including Chediak-Higashi syndrome, lissencephaly, mucolipidosis, Huntington disease, IBMPFD, and Shwachman-Diamond syndrome. A few genes have already been studied, providing new insights on the mechanism of action of the encoded proteins and in some cases on the defect underlying the disease. The opportunities offered by the organism and its place among the nonmammalian models for human diseases will be discussed.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| |
Collapse
|
29
|
Abstract
Although the study of protozoology has been active for centuries, very few current academic curricula incorporate requirements or even options for coursework on the study of protists; yet, protozoa are becoming widely recognized by investigators as organisms that play a significant role in the evolution, pathogenicity, protection and amplification of human pathogens in the environment. This is particularly true for the study of Legionella, as this accidental human pathogen has naturally evolved to infect protozoa in fresh water environments. Researchers have made great progress in the study of pathogenicity, evolution, and ecology of Legionella and its protozoan hosts, which include amoebae and ciliated protozoa. Our own collaboration in this field has been active for over a decade, and we have gained a valuable experience working with these protozoa, particularly aspects of their biology and the methods needed to address new experimental concepts. Therefore, in this chapter we provide the most effective procedures that we have developed or modified through our years of practice. We also offer notes on what procedures, in our opinion, should be avoided; and we provide the rationale for such precautions.
Collapse
Affiliation(s)
- Sharon G Berk
- Center for Management, Utilization and Protection of Water Resources, Tennessee Technological University, Cookeville, TN, USA.
| | | |
Collapse
|
30
|
Khoo JS, Chai SF, Mohamed R, Nathan S, Firdaus-Raih M. Computational discovery and RT-PCR validation of novel Burkholderia conserved and Burkholderia pseudomallei unique sRNAs. BMC Genomics 2012; 13 Suppl 7:S13. [PMID: 23282220 PMCID: PMC3521395 DOI: 10.1186/1471-2164-13-s7-s13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts. RESULTS By integrating several proven sRNA prediction programs into a computational pipeline, available Burkholderia spp. genomes were screened to identify sRNA gene candidates. Orthologous sRNA candidates were then identified via comparative analysis. From the total prediction, 21 candidates were found to have Rfam homologs. RT-PCR and sequencing of candidate sRNA genes of unknown functions revealed six putative sRNAs which were highly conserved in Burkholderia spp. and two that were unique to B. pseudomallei present in a normal culture conditions transcriptome. The validated sRNAs include potential cis-acting elements associated with the modulation of methionine metabolism and one B. pseudomallei-specific sRNA that is expected to bind to the Hfq protein. CONCLUSIONS The use of the pipeline developed in this study and subsequent comparative analysis have successfully aided in the discovery and shortlisting of sRNA gene candidates for validation. This integrated approach identified 29 B. pseudomallei sRNA genes - of which 21 have Rfam homologs and 8 are novel.
Collapse
Affiliation(s)
- Jia-Shiun Khoo
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | | | | | | | | |
Collapse
|
31
|
Saxer G, Havlak P, Fox SA, Quance MA, Gupta S, Fofanov Y, Strassmann JE, Queller DC. Whole genome sequencing of mutation accumulation lines reveals a low mutation rate in the social amoeba Dictyostelium discoideum. PLoS One 2012; 7:e46759. [PMID: 23056439 PMCID: PMC3466296 DOI: 10.1371/journal.pone.0046759] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA) experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10(-9), with a Poisson confidence interval of 4.1×10(-9) - 9.5×10(-9), per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10(-11), with a Poisson confidence interval ranging from 7.4×10(-13) to 1.6×10(-10), is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.
Collapse
Affiliation(s)
- Gerda Saxer
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Biggins JB, Ternei MA, Brady SF. Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc 2012; 134:13192-5. [PMID: 22765305 DOI: 10.1021/ja3052156] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequenced bacterial genomes are routinely found to contain gene clusters that are predicted to encode metabolites not seen in fermentation-based studies. Pseudomallei group Burkholderia are emerging pathogens whose genomes are particularly rich in cryptic natural product biosynthetic gene clusters. We systematically probed the influence of the cryptic secondary metabolome on the virulence of these bacteria and found that disruption of the MAL gene cluster, which is natively silent in laboratory fermentation experiments and conserved across this group of pathogens, attenuates virulence in animal models. Using a promoter exchange strategy to activate the MAL cluster, we identified malleilactone, a polyketide synthase-derived cytotoxic siderophore encoded by this gene cluster. Small molecules targeting malleilactone biosynthesis either alone or in conjunction with antibiotics could prove useful as therapeutics to combat melioidosis and glanders.
Collapse
Affiliation(s)
- John B Biggins
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10068, USA
| | | | | |
Collapse
|
33
|
Janjua HA, Segata N, Bernabò P, Tamburini S, Ellen A, Jousson O. Clinical populations of Pseudomonas aeruginosa isolated from acute infections show a wide virulence range partially correlated with population structure and virulence gene expression. Microbiology (Reading) 2012; 158:2089-2098. [DOI: 10.1099/mic.0.056689-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Hussnain A. Janjua
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Nicola Segata
- Biostatistics Department, School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Paola Bernabò
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Sabrina Tamburini
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Albert Ellen
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Olivier Jousson
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
34
|
Fisher NA, Ribot WJ, Applefeld W, DeShazer D. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis. BMC Microbiol 2012; 12:117. [PMID: 22892068 PMCID: PMC3431275 DOI: 10.1186/1471-2180-12-117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC). Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50) is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. RESULTS Madagascar hissing cockroaches (MH cockroaches) possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was <10 colony-forming units (cfu) for all three species. In comparison, the LD50 for Escherichia coli in MH cockroaches was >105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1) mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs) with intracellular B. pseudomallei, which indicates that infected hemocytes can fuse while flowing through the insect's open circulatory system in vivo. CONCLUSIONS The results demonstrate that MH cockroaches are an attractive alternative to mammals to study host-pathogen interactions and may allow the identification of new Burkholderia virulence determinants. The importance of T6SS-1 as a virulence factor in MH cockroaches and rodents suggests that the primary role of this secretion system is to target evasion of the innate immune system.
Collapse
Affiliation(s)
- Nathan A Fisher
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | | | | | | |
Collapse
|
35
|
Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, Feldman MF. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 2012; 8:e1002758. [PMID: 22685409 PMCID: PMC3369928 DOI: 10.1371/journal.ppat.1002758] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/01/2012] [Indexed: 01/12/2023] Open
Abstract
Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening “superbugs” for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics. Multidrug resistant (MDR) Acinetobacter baumannii strains are an increasing cause of nosocomial infections worldwide. Due to the remarkable ability of A. baumannii to gain resistance to antibiotics, this bacterium is now considered to be a “superbug”. A. baumannii strains resistant to all clinically relevant antibiotics known have also been isolated. Although MDR A. baumannii continues to disseminate globally, very little is known about its pathogenesis mechanisms. Our experiments revealed that A. baumannii ATCC 17978 has a functional O-linked protein glycosylation system, which seems to be present in all strains of A. baumannii sequenced to date and several clinical isolates. We identified seven glycoproteins and elucidated the structure of the glycan moiety. A glycosylation-deficient strain was generated. This strain produced severely reduced biofilms, and exhibited attenuated virulence in amoeba, insect, and murine models. These experiments suggest that glycosylation may play an important role in virulence and may lay the foundation for new drug discovery strategies that could stop the dissemination of this emerging human pathogen, which has become a major threat for healthcare systems.
Collapse
Affiliation(s)
- Jeremy A. Iwashkiw
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea Seper
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria
| | - Brent S. Weber
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nichollas E. Scott
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Chad Stratilo
- Defence Research and Development Canada Suffield, Medicine Hat, Alberta, Canada
| | - Bela Reiz
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart J. Cordwell
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Randy Whittal
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stefan Schild
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria
| | - Mario F. Feldman
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
36
|
Dallaire-Dufresne S, Paquet VE, Charette SJ. [Dictyostelium discoideum: a model for the study of bacterial virulence]. Can J Microbiol 2012; 57:699-707. [PMID: 21877947 DOI: 10.1139/w11-072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The amoeba Dictyostelium discoideum, a bacterial predator, has emerged as a valuable tool for studying bacterial virulence. All its features make this unicellular eukaryote a versatile model organism. It can be used to study virulence factors of pathogenic bacteria as well as host elements involved in resistance to pathogens. The virulence of more than 20 bacterial species pathogenic for humans or animals has been studied using D. discoideum so far. These bacteria are either extracellular or intracellular pathogens. This review presents an overview of the question, with special emphasis on the reasons why D. discoideum is a suitable host model to study bacterial virulence, as well as on the type of information on host–pathogen relationship this amoeba can provide.
Collapse
Affiliation(s)
- Stéphanie Dallaire-Dufresne
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | | | | |
Collapse
|
37
|
Patel N, Conejero L, De Reynal M, Easton A, Bancroft GJ, Titball RW. Development of vaccines against burkholderia pseudomallei. Front Microbiol 2011; 2:198. [PMID: 21991263 PMCID: PMC3180847 DOI: 10.3389/fmicb.2011.00198] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium which is the causative agent of melioidosis, a disease which carries a high mortality and morbidity rate in endemic areas of South East Asia and Northern Australia. At present there is no available human vaccine that protects against B. pseudomallei, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. This review considers the multiple elements of melioidosis vaccine research including: (i) the immune responses required for protective immunity, (ii) animal models available for preclinical testing of potential candidates, (iii) the different experimental vaccine strategies which are being pursued, and (iv) the obstacles and opportunities for eventual registration of a licensed vaccine in humans.
Collapse
Affiliation(s)
- Natasha Patel
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine London, UK
| | | | | | | | | | | |
Collapse
|
38
|
Lipscomb L, Schell MA. Elucidation of the regulon and cis-acting regulatory element of HrpB, the AraC-type regulator of a plant pathogen-like type III secretion system in Burkholderia pseudomallei. J Bacteriol 2011; 193:1991-2001. [PMID: 21335458 PMCID: PMC3133045 DOI: 10.1128/jb.01379-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/04/2011] [Indexed: 12/17/2022] Open
Abstract
The human pathogen Burkholderia pseudomallei possesses multiple type III secretion system (T3SS) gene clusters. One of these, the B. pseudomallei T3SS2 (T3SS2(bp)) gene cluster, which apparently plays no role in animal virulence, is also found in six additional Burkholderia spp. and is very similar to T3SSs found in phytopathogenic Xanthomonas spp. and Ralstonia solanacearum. The T3SS2(bp) gene cluster also encodes an AraC-type regulatory protein (HrpB(bp)) that is an ortholog of HrpB, the master regulator of the R. solanacearum T3SS (T3SS(rso)) and its secreted effectors. Transcriptome analysis showed that HrpB(bp) activates the expression of T3SS2(bp) genes, as well as their orthologs in R. solanacearum. In addition to activating T3SS2(bp), HrpB(bp) also upregulates the expression of ~30 additional B. pseudomallei genes, including some that may confer production of adhesive pili, a polyketide toxin, several putative T3SS2(bp)-secreted effectors, and components of a regulatory cascade. T3SS2(bp) promoter regions were found to contain a conserved DNA motif (p2(bp) box) identical in sequence and position to the hrp(II) box required for HrpB-dependent T3SS(rso) transcription activation. The p2(bp) box is also present in the promoter regions of the essentially identical T3SS found in the very closely related species Burkholderia thailandensis (T3SS2(bt)). Analysis of p2(bp) box mutants showed that it is essential for HrpB(bp)-mediated transcription activation in both species. Although it has been suggested that T3SS2(bp) and T3SS2(bt) may function in phytopathogenicity, we were unable to demonstrate a phytopathogenic phenotype for B. thailandensis in three different plant hosts.
Collapse
Affiliation(s)
- Lyla Lipscomb
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Mark A. Schell
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|