1
|
Castanheira S, Torronteras S, Cestero JJ, García-del Portillo F. Morphogenetic penicillin-binding proteins control virulence-associated type III secretion systems in Salmonella. Infect Immun 2025; 93:e0055524. [PMID: 39745378 PMCID: PMC11834469 DOI: 10.1128/iai.00555-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 02/19/2025] Open
Abstract
Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In Salmonella, incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus. Enigmatically, following invasion of host cell Salmonella enterica serovar Typhimurium modifies PG synthesis by upregulating two pathogen-specific enzymes, the penicillin-binding proteins PBP2SAL and PBP3SAL, with roles in cell elongation and division, respectively. In the mouse typhoid model, the amount of PBP2SAL and PBP3SAL produced by the pathogen exceeds by large those of the canonical enzymes PBP2 and PBP3. This change responds to acidity and high osmolarity, the same cues that intra-phagosomal S. Typhimurium perceives to switch the SPI-1 T3SS by that encoded in SPI-2. Using isogenic mutants lacking each of the four morphogenetic PBPs, we tested whether their activities and those of the T3SS encoded by SPI-1 and SPI-2, are interconnected. Our data show that PBP2 is required for proper function of SPI-1 T3SS but dispensable for motility, whereas the lack of any of the morphogenetic PBPs increases SPI-2 T3SS activity. The positive control exerted by PBP2 on SPI-1 takes place via the SPI-1-specific regulators HilA and InvF. To our knowledge, these findings provide the first evidence linking morphogenetic enzymes that synthesize PG with T3SS associated to virulence.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Sara Torronteras
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Juan J. Cestero
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | | |
Collapse
|
2
|
Soni J, Pandey R. Single cell genomics based insights into the impact of cell-type specific microbial internalization on disease severity. Front Immunol 2024; 15:1401320. [PMID: 38835769 PMCID: PMC11148356 DOI: 10.3389/fimmu.2024.1401320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Host-microbe interactions are complex and ever-changing, especially during infections, which can significantly impact human physiology in both health and disease by influencing metabolic and immune functions. Infections caused by pathogens such as bacteria, viruses, fungi, and parasites are the leading cause of global mortality. Microbes have evolved various immune evasion strategies to survive within their hosts, which presents a multifaceted challenge for detection. Intracellular microbes, in particular, target specific cell types for survival and replication and are influenced by factors such as functional roles, nutrient availability, immune evasion, and replication opportunities. Identifying intracellular microbes can be difficult because of the limitations of traditional culture-based methods. However, advancements in integrated host microbiome single-cell genomics and transcriptomics provide a promising basis for personalized treatment strategies. Understanding host-microbiota interactions at the cellular level may elucidate disease mechanisms and microbial pathogenesis, leading to targeted therapies. This article focuses on how intracellular microbes reside in specific cell types, modulating functions through persistence strategies to evade host immunity and prolong colonization. An improved understanding of the persistent intracellular microbe-induced differential disease outcomes can enhance diagnostics, therapeutics, and preventive measures.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Bullones-Bolaños A, Martín-Muñoz P, Vallejo-Grijalba C, Bernal-Bayard J, Ramos-Morales F. Specificities and redundancies in the NEL family of bacterial E3 ubiquitin ligases of Salmonella enterica serovar Typhimurium. Front Immunol 2024; 15:1328707. [PMID: 38361917 PMCID: PMC10867120 DOI: 10.3389/fimmu.2024.1328707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Salmonella enterica serovar Typhimurium expresses two type III secretion systems, T3SS1 and T3SS2, which are encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. These are essential virulent factors that secrete more than 40 effectors that are translocated into host animal cells. This study focuses on three of these effectors, SlrP, SspH1, and SspH2, which are members of the NEL family of E3 ubiquitin ligases. We compared their expression, regulation, and translocation patterns, their role in cell invasion and intracellular proliferation, their ability to interact and ubiquitinate specific host partners, and their effect on cytokine secretion. We found that transcription of the three genes encoding these effectors depends on the virulence regulator PhoP. Although the three effectors have the potential to be secreted through T3SS1 and T3SS2, the secretion of SspH1 and SspH2 is largely restricted to T3SS2 due to their expression pattern. We detected a role for these effectors in proliferation inside fibroblasts that is masked by redundancy. The generation of chimeric proteins allowed us to demonstrate that the N-terminal part of these proteins, containing the leucine-rich repeat motifs, confers specificity towards ubiquitination targets. Furthermore, the polyubiquitination patterns generated were different for each effector, with Lys48 linkages being predominant for SspH1 and SspH2. Finally, our experiments support an anti-inflammatory role for SspH1 and SspH2.
Collapse
Affiliation(s)
| | | | | | - Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
4
|
Chaussé AM, Roche SM, Moroldo M, Hennequet-Antier C, Holbert S, Kempf F, Barilleau E, Trotereau J, Velge P. Epithelial cell invasion by salmonella typhimurium induces modulation of genes controlled by aryl hydrocarbon receptor signaling and involved in extracellular matrix biogenesis. Virulence 2023; 14:2158663. [PMID: 36600181 PMCID: PMC9828750 DOI: 10.1080/21505594.2022.2158663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella is the only bacterium able to enter a host cell by the two known mechanisms: trigger and zipper. The trigger mechanism relies on the injection of bacterial effectors into the host cell through the Salmonella type III secretion system 1. In the zipper mechanism, mediated by the invasins Rck and PagN, the bacterium takes advantage of a cellular receptor for invasion. This study describes the transcriptomic reprogramming of the IEC-6 intestinal epithelial cell line to Salmonella Typhimurium strains that invaded cells by a trigger, a zipper, or both mechanisms. Using S. Typhimurium strains invalidated for one or other entry mechanism, we have shown that IEC-6 cells could support both entries. Comparison of the gene expression profiles of exposed cells showed that irrespective of the mechanism used for entry, the transcriptomic reprogramming of the cell was nearly the same. On the other hand, when gene expression was compared between cells unexposed or exposed to the bacterium, the transcriptomic reprogramming of exposed cells was significantly different. It is particularly interesting to note the modulation of expression of numerous target genes of the aryl hydrocarbon receptor showing that this transcription factor was activated by S. Typhimurium infection. Numerous genes associated with the extracellular matrix were also modified. This was confirmed at the protein level by western-blotting showing a dramatic modification in some extracellular matrix proteins. Analysis of a selected set of modulated genes showed that the expression of the majority of these genes was modulated during the intracellular life of S. Typhimurium.
Collapse
Affiliation(s)
| | | | - Marco Moroldo
- INRAE, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | | | | | | | | | | | - Philippe Velge
- INRAE, ISP, Université de Tours, Nouzilly, France,CONTACT Philippe Velge
| |
Collapse
|
5
|
Castanheira S, García-Del Portillo F. Evidence of two differentially regulated elongasomes in Salmonella. Commun Biol 2023; 6:923. [PMID: 37689828 PMCID: PMC10492807 DOI: 10.1038/s42003-023-05308-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cell shape is genetically inherited by all forms of life. Some unicellular microbes increase niche adaptation altering shape whereas most show invariant morphology. A universal system of peptidoglycan synthases guided by cytoskeletal scaffolds defines bacterial shape. In rod-shaped bacteria, this system consists of two supramolecular complexes, the elongasome and divisome, which insert cell wall material along major and minor axes. Microbes with invariant shape are thought to use a single morphogenetic system irrespective of the occupied niche. Here, we provide evidence for two elongasomes that generate (rod) shape in the same bacterium. This phenomenon was unveiled in Salmonella, a pathogen that switches between extra- and intracellular lifestyles. The two elongasomes can be purified independently, respond to different environmental cues, and are directed by distinct peptidoglycan synthases: the canonical PBP2 and the pathogen-specific homologue PBP2SAL. The PBP2-elongasome responds to neutral pH whereas that directed by PBP2SAL assembles in acidic conditions. Moreover, the PBP2SAL-elongasome moves at a lower speed. Besides Salmonella, other human, animal, and plant pathogens encode alternative PBPs with predicted morphogenetic functions. Therefore, contrasting the view of morphological plasticity facilitating niche adaptation, some pathogens may have acquired alternative systems to preserve their shape in the host.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
7
|
Kaewpan A, Duangurai T, Rungruengkitkun A, Muangkaew W, Kanjanapruthipong T, Jitprasutwit N, Ampawong S, Sukphopetch P, Chantratita N, Pumirat P. Burkholderia pseudomallei pathogenesis in human skin fibroblasts: A Bsa type III secretion system is involved in the invasion, multinucleated giant cell formation, and cellular damage. PLoS One 2022; 17:e0261961. [PMID: 35113856 PMCID: PMC8812868 DOI: 10.1371/journal.pone.0261961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Burkholderia pseudomallei-a causative agent of melioidosis that is endemic in Southeast Asia and Northern Australia-is a Gram-negative bacterium transmitted to humans via inhalation, inoculation through skin abrasions, and ingestion. Melioidosis causes a range of clinical presentations including skin infection, pneumonia, and septicemia. Despite skin infection being one of the clinical symptoms of melioidosis, the pathogenesis of B. pseudomallei in skin fibroblasts has not yet been elucidated. In this study, we investigated B. pseudomallei pathogenesis in the HFF-1 human skin fibroblasts. On the basis of co-culture assays between different B. pseudomallei clinical strains and the HFF-1 human skin fibroblasts, we found that all B. pseudomallei strains have the ability to mediate invasion, intracellular replication, and multinucleated giant cell (MNGC) formation. Furthermore, all strains showed a significant increase in cytotoxicity in human fibroblasts, which coincides with the augmented expression of matrix metalloproteinase-2. Using B. pseudomallei mutants, we showed that the B. pseudomallei Bsa type III secretion system (T3SS) contributes to skin fibroblast pathogenesis, but O-polysaccharide, capsular polysaccharide, and short-chain dehydrogenase metabolism do not play a role in this process. Taken together, our findings reveal a probable connection for the Bsa T3SS in B. pseudomallei infection of skin fibroblasts, and this may be linked to the pathogenesis of cutaneous melioidosis.
Collapse
Affiliation(s)
- Anek Kaewpan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Taksaon Duangurai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Niramol Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Peptidoglycan editing in non-proliferating intracellular Salmonella as source of interference with immune signaling. PLoS Pathog 2022; 18:e1010241. [PMID: 35077524 PMCID: PMC8815878 DOI: 10.1371/journal.ppat.1010241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 01/01/2022] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells. The peptidoglycan, built as a giant polymer of glycan chains crosslinked with short peptides, is essential for cell shape and survival in most bacteria. Its unique chemistry is recognized by innate immune receptors, thereby enabling neutralization of invading microbes. A striking feature of the peptidoglycan is its constant remodeling by a plethora of endogenous enzymes. In addition, some bacterial pathogens introduce structural modifications that interfere with immune recognition. These modifications have been characterized in pathogens mostly in laboratory nutrient media. Whether facultative intracellular pathogens modify peptidoglycan structure inside host cells, was unknown. The work presented here shows that non-proliferating Salmonella enterica serovar Typhimurium remodels the peptidoglycan structure in response to intracellular cues and that some of these modifications involve unprecedented changes as the presence of an amino alcohol that hampers activation of the master immune regulator NF-κB. Peptidoglycan editing might therefore empower persistence of bacterial pathogens in the intracellular niche.
Collapse
|
9
|
Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate. Sci Rep 2021; 11:22803. [PMID: 34815429 PMCID: PMC8611075 DOI: 10.1038/s41598-021-02054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have demonstrated the key role of the Salmonella Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of Salmonella in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization. Salmonella resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which Salmonella Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of Salmonella Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type Salmonella and T3SS1-invalidated Salmonella followed a common pathway leading to the formation of a Salmonella containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to Salmonella multiplication as well as the formation of a tubular network resembling Salmonella induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that Salmonella Typhimurium invasion and intracellular survival can be completely independent of T3SS1.
Collapse
|
10
|
Roche SM, Holbert S, Le Vern Y, Rossignol C, Rossignol A, Velge P, Virlogeux-Payant I. A large panel of chicken cells are invaded in vivo by Salmonella Typhimurium even when depleted of all known invasion factors. Open Biol 2021; 11:210117. [PMID: 34784793 PMCID: PMC8596019 DOI: 10.1098/rsob.210117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poultry are the main source of human infection by Salmonella. As infected poultry are asymptomatic, identifying infected poultry farms is difficult, thus controlling animal infections is of primary importance. As cell tropism is known to govern disease, our aim was therefore to identify infected host-cell types in the organs of chicks known to be involved in Salmonella infection and investigate the role of the three known invasion factors in this process (T3SS-1, Rck and PagN). Chicks were inoculated with wild-type or isogenic fluorescent Salmonella Typhimurium mutants via the intracoelomic route. Our results show that liver, spleen, gall bladder and aortic vessels could be foci of infection, and that phagocytic and non-phagocytic cells, including immune, epithelial and endothelial cells, are invaded in vivo in each organ. Moreover, a mutant defective for the T3SS-1, Rck and PagN remained able to colonize organs like the wild-type strain and invaded non-phagocytic cells in each organ studied. As the infection of the gall bladder had not previously been described in chicks, invasion of gall bladder cells was confirmed by immunohistochemistry and infection was shown to last several weeks after inoculation. Altogether, for the first time these findings provide insights into cell tropism of Salmonella in relevant organs involved in Salmonella infection in chicks and also demonstrate that the known invasion factors are not required for entry into these cell types.
Collapse
Affiliation(s)
- S. M. Roche
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - S. Holbert
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - Y. Le Vern
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - C. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - A. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - P. Velge
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | | |
Collapse
|
11
|
ARHGEF26 enhances Salmonella invasion and inflammation in cells and mice. PLoS Pathog 2021; 17:e1009713. [PMID: 34242364 PMCID: PMC8294491 DOI: 10.1371/journal.ppat.1009713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/21/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Salmonella hijack host machinery in order to invade cells and establish infection. While considerable work has described the role of host proteins in invasion, much less is known regarding how natural variation in these invasion-associated host proteins affects Salmonella pathogenesis. Here we leveraged a candidate cellular GWAS screen to identify natural genetic variation in the ARHGEF26 (Rho Guanine Nucleotide Exchange Factor 26) gene that renders lymphoblastoid cells susceptible to Salmonella Typhi and Typhimurium invasion. Experimental follow-up redefined ARHGEF26’s role in Salmonella epithelial cell infection. Specifically, we identified complex serovar-by-host interactions whereby ARHGEF26 stimulation of S. Typhi and S. Typhimurium invasion into host cells varied in magnitude and effector-dependence based on host cell type. While ARHGEF26 regulated SopB- and SopE-mediated S. Typhi (but not S. Typhimurium) infection of HeLa cells, the largest effect of ARHGEF26 was observed with S. Typhimurium in polarized MDCK cells through a SopB- and SopE2-independent mechanism. In both cell types, knockdown of the ARHGEF26-associated protein DLG1 resulted in a similar phenotype and serovar specificity. Importantly, we show that ARHGEF26 plays a critical role in S. Typhimurium pathogenesis by contributing to bacterial burden in the enteric fever murine model, as well as inflammation in the colitis infection model. In the enteric fever model, SopB and SopE2 are required for the effects of Arhgef26 deletion on bacterial burden, and the impact of sopB and sopE2 deletion in turn required ARHGEF26. In contrast, SopB and SopE2 were not required for the impacts of Arhgef26 deletion on colitis. A role for ARHGEF26 on inflammation was also seen in cells, as knockdown reduced IL-8 production in HeLa cells. Together, these data reveal pleiotropic roles for ARHGEF26 during infection and highlight that many of the interactions that occur during infection that are thought to be well understood likely have underappreciated complexity. During infection, Salmonella manipulates host cells into engulfing the bacteria and establishing an intracellular niche. While many studies have identified genes involved in different stages of this Salmonella invasion process, few studies have examined how differences between human hosts contribute to infection susceptibility. Here we leveraged a candidate genetic screen to identify natural genetic variation in the human ARHGEF26 gene that correlates with Salmonella invasion. Springboarding from this result, we experimentally tested and redefined ARHGEF26’s role in Salmonella invasion, discovered a new role for ARHGEF26 in regulating inflammation during Salmonella disease, and demonstrated the relevance of these findings in mouse models. Building on how ARHGEF26 functions in other contexts, we implicated two ARHGEF26-interacting host proteins as contributors to Salmonella pathobiology. Collectively, these results identify a potential source of inter-person diversity in susceptibility to Salmonella disease and expand our molecular understanding of Salmonella infection to include a multifaceted role for ARHGEF26. They further identify important future directions in understanding how Salmonella recruit and manipulate ARHGEF26 as well as how ARHGEF26 is able to drive Salmonella-beneficial processes.
Collapse
|
12
|
Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021; 154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cellular Perforin-2 (MPEG1) is a pore-forming MACPF family protein that plays a critical role in the defense against bacterial pathogens. Macrophages, neutrophils, and several other cell types that are part of the front line of innate defenses constitutively express high levels of Perforin-2; whereas, most other cell types must be induced to express Perforin-2 by interferons (α, β and γ) and/or PAMPs such as LPS. In this study, we demonstrate that many bacterial pathogens can limit the expression of Perforin-2 in cells normally inducible for Perforin-2 expression, while ordinarily commensal or non-pathogenic bacteria triggered high levels of Perforin-2 expression in these same cell types. The mechanisms by which pathogens suppress Perforin-2 expression was explored further using Salmonella enterica serovar Typhimurium and cultured MEFs as well as intestinal epithelial cell lines. These studies identified multiple factors required to minimize the expression of Perforin-2 in cell types inducible for Perforin-2 expression. These included the PmrAB and PhoPQ two-component systems, select LPS modification enzymes and the Type III secretion effector protein AvrA.
Collapse
Affiliation(s)
- Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Patricia Alonso
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Noula Shembade
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Fattinger SA, Böck D, Di Martino ML, Deuring S, Samperio Ventayol P, Ek V, Furter M, Kreibich S, Bosia F, Müller-Hauser AA, Nguyen BD, Rohde M, Pilhofer M, Hardt WD, Sellin ME. Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathog 2020; 16:e1008503. [PMID: 32365138 PMCID: PMC7224572 DOI: 10.1371/journal.ppat.1008503] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/14/2020] [Accepted: 03/26/2020] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host’s gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through “discreet-invasion”. This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell–cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context. Bacterial pathogens can use secreted effector molecules to drive entry into host cells. Studies of the intestinal pathogen S.Tm have been central to uncover the mechanistic basis for the entry process. More than two decades of research have resulted in a detailed model for how S.Tm invades gut epithelial cells through effector triggering of large Rho-GTPase-dependent actin ruffles. However, the evidence for this model comes predominantly from studies in cultured cell lines. These experimental systems lack many of the architectural and signaling features of the intact gut epithelium. Our study surprisingly reveals that in the intact mouse gut, S.Tm invades absorptive epithelial cells through a process that does not require the Rho-GTPase-activating effectors and can proceed in the absence of the prototypical ruffling response. Instead, S.Tm exploits another effector, SipA, to sneak in through discreet entry structures close to cell–cell junctions. Our results challenge the current model for S.Tm epithelial cell entry and emphasizes the need of taking a physiological host cell context into account when studying bacterium–host cell interactions.
Collapse
Affiliation(s)
- Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Desirée Böck
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sabrina Deuring
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Pilar Samperio Ventayol
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Viktor Ek
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Saskia Kreibich
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Francesco Bosia
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (MP); (WDH); (MES)
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: (MP); (WDH); (MES)
| | - Mikael E. Sellin
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (MP); (WDH); (MES)
| |
Collapse
|
14
|
Nelson RH, Nelson DE. Signal Distortion: How Intracellular Pathogens Alter Host Cell Fate by Modulating NF-κB Dynamics. Front Immunol 2018; 9:2962. [PMID: 30619320 PMCID: PMC6302744 DOI: 10.3389/fimmu.2018.02962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/03/2018] [Indexed: 01/17/2023] Open
Abstract
By uncovering complex dynamics in the expression or localization of transcriptional regulators in single cells that were otherwise hidden at the population level, live cell imaging has transformed our understanding of how cells sense and orchestrate appropriate responses to changes in their internal state or extracellular environment. This has proved particularly true for the nuclear factor-kappaB (NF-κB) family of transcription factors, key regulators of the inflammatory response and innate immune function, which are capable of encoding information about the mode and intensity of stimuli in the dynamics of NF-κB nuclear accumulation and loss. While live cell imaging continues to serve as a useful tool in ongoing efforts to characterize the feedbacks that shape these dynamics and to connect dynamics to downstream gene expression, it is also proving invaluable for recent studies that seek to determine how intracellular pathogens subvert NF-κB signaling to survive and replicate within host cells by providing quantitative information about the pathogen and changes in NF-κB activity during different stages of an infection. Here, we provide a brief overview of NF-κB signaling in innate immune cells and review recent literature that uses live imaging to investigate the mechanisms by which bacterial and yeast pathogens modulate NF-κB in a variety of different host cell types to evade destruction or maintain the viability of an intracellular growth niche.
Collapse
Affiliation(s)
- Rachel H Nelson
- Cellular Generation and Phenotyping Core Facility, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - David E Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
15
|
Roche SM, Holbert S, Trotereau J, Schaeffer S, Georgeault S, Virlogeux-Payant I, Velge P. Salmonella Typhimurium Invalidated for the Three Currently Known Invasion Factors Keeps Its Ability to Invade Several Cell Models. Front Cell Infect Microbiol 2018; 8:273. [PMID: 30148118 PMCID: PMC6095967 DOI: 10.3389/fcimb.2018.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
To establish an infection, Salmonella has to interact with eukaryotic cells. Invasion of non-phagocytic cells (i.e., epithelial, fibroblast and endothelial cells) involves either a trigger or a zipper mechanism mediated by the T3SS-1 or the invasin Rck, respectively. Another outer membrane protein, PagN, was also implicated in the invasion. However, other unknown invasion factors have been previously suggested. Our goal was to evaluate the invasion capability of a Salmonella Typhimurium strain invalidated for the three known invasion factors. Non-phagocytic cell lines of several animal origins were tested in a gentamicin protection assay. In most cells, we observed a drastic decrease in the invasion rate between the wild-type and the triple mutant. However, in five cell lines, the triple mutant invaded cells at a similarly high level to the wild-type, suggesting the existence of unidentified invasion factors. For the wild-type and the triple mutant, scanning-electron microscopy, confocal imaging and use of biochemical inhibitors confirmed their cellular uptake and showed a zipper-like mechanism of internalization involving both clathrin- and non-clathrin-dependent pathways. Despite a functional T3SS-1, the wild-type bacteria seemed to use the same entry route as the mutant in our cell model. All together, these results demonstrate the existence of unknown Salmonella invasion factors, which require further characterization.
Collapse
Affiliation(s)
- Sylvie M. Roche
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Sébastien Holbert
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Jérôme Trotereau
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Samantha Schaeffer
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
- INSERM UMR 1162, Institut de Génétique Moléculaire, Paris, France
| | - Sonia Georgeault
- Plateforme des Microscopies, Université et CHRU de Tours, Tours, France
| | - Isabelle Virlogeux-Payant
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Philippe Velge
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| |
Collapse
|
16
|
Truong D, Boddy KC, Canadien V, Brabant D, Fairn GD, D'Costa VM, Coyaud E, Raught B, Pérez-Sala D, Park WS, Heo WD, Grinstein S, Brumell JH. Salmonella
exploits host Rho GTPase signalling pathways through the phosphatase activity of SopB. Cell Microbiol 2018; 20:e12938. [DOI: 10.1111/cmi.12938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Dorothy Truong
- Cell Biology Program; Hospital for Sick Children; Toronto ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto ON Canada
| | - Kirsten C. Boddy
- Cell Biology Program; Hospital for Sick Children; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
| | | | - Danielle Brabant
- Cell Biology Program; Hospital for Sick Children; Toronto ON Canada
| | - Gregory D. Fairn
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Keenan Research Centre for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
| | | | - Etienne Coyaud
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Brian Raught
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology; Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas; Madrid Spain
| | - Wei Sun Park
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- Center for Cognition and Sociality; Institute of Basic Science (IBS); Daejeon Republic of Korea
| | - Sergio Grinstein
- Cell Biology Program; Hospital for Sick Children; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Keenan Research Centre for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Department of Biochemistry; University of Toronto; Toronto ON Canada
| | - John H. Brumell
- Cell Biology Program; Hospital for Sick Children; Toronto ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Sickkids IBD Centre; Hospital for Sick Children; Toronto ON Canada
| |
Collapse
|
17
|
HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells. Sci Rep 2018; 8:4841. [PMID: 29555922 PMCID: PMC5859253 DOI: 10.1038/s41598-018-23068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
Collapse
|
18
|
Mambu J, Virlogeux-Payant I, Holbert S, Grépinet O, Velge P, Wiedemann A. An Updated View on the Rck Invasin of Salmonella: Still Much to Discover. Front Cell Infect Microbiol 2017; 7:500. [PMID: 29276700 PMCID: PMC5727353 DOI: 10.3389/fcimb.2017.00500] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Salmonella is a facultative intracellular Gram-negative bacterium, responsible for a wide range of food- and water-borne diseases ranging from gastroenteritis to typhoid fever depending on hosts and serotypes. Salmonella thus represents a major threat to public health. A key step in Salmonella pathogenesis is the invasion of phagocytic and non-phagocytic host cells. To trigger its own internalization into non-phagocytic cells, Salmonella has developed different mechanisms, involving several invasion factors. For decades, it was accepted that Salmonella could only enter cells through a type three secretion system, called T3SS-1. Recent research has shown that this bacterium expresses outer membrane proteins, such as the Rck protein, which is able to induce Salmonella entry mechanism. Rck mimics natural host cell ligands and triggers engulfment of the bacterium by interacting with the epidermal growth factor receptor. Salmonella is thus able to use multiple entry pathways during the Salmonella infection process. However, it is unclear how and when Salmonella exploits the T3SS-1 and Rck entry mechanisms. As a series of reviews have focused on the T3SS-1, this review aims to describe the current knowledge and the limitations of our understanding of the Rck outer membrane protein. The regulatory cascade which controls Rck expression and the molecular mechanisms underlying Rck-mediated invasion into cells are summarized. The potential role of Rck-mediated invasion in Salmonella pathogenesis and the intracellular behavior of the bacteria following a Salmonella Rck-dependent entry are discussed.
Collapse
Affiliation(s)
- Julien Mambu
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Sébastien Holbert
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Olivier Grépinet
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
19
|
Castanheira S, García-Del Portillo F. Salmonella Populations inside Host Cells. Front Cell Infect Microbiol 2017; 7:432. [PMID: 29046870 PMCID: PMC5632677 DOI: 10.3389/fcimb.2017.00432] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Hume PJ, Singh V, Davidson AC, Koronakis V. Swiss Army Pathogen: The Salmonella Entry Toolkit. Front Cell Infect Microbiol 2017; 7:348. [PMID: 28848711 PMCID: PMC5552672 DOI: 10.3389/fcimb.2017.00348] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS), a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.
Collapse
Affiliation(s)
- Peter J Hume
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Anthony C Davidson
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
21
|
Pucciarelli MG, García-Del Portillo F. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0009-2016. [PMID: 28730976 PMCID: PMC11687531 DOI: 10.1128/microbiolspec.mtbp-0009-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella-containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
22
|
Ramos-Marquès E, Zambrano S, Tiérrez A, Bianchi ME, Agresti A, García-Del Portillo F. Single-cell analyses reveal an attenuated NF-κB response in the Salmonella-infected fibroblast. Virulence 2016; 8:719-740. [PMID: 27575017 DOI: 10.1080/21505594.2016.1229727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic transcriptional regulator Nuclear Factor kappa B (NF-κB) plays a central role in the defense to pathogens. Despite this, few studies have analyzed NF-κB activity in single cells during infection. Here, we investigated at the single cell level how NF-κB nuclear localization - a proxy for NF-κB activity - oscillates in infected and uninfected fibroblasts co-existing in cultures exposed to Salmonella enterica serovar Typhimurium. Fibroblasts were used due to the capacity of S. Typhimurium to persist in this cell type. Real-time dynamics of NF-κB was examined in microfluidics, which prevents cytokine accumulation. In this condition, infected (ST+) cells translocate NF-κB to the nucleus at higher rate than the uninfected (ST-) cells. Surprisingly, in non-flow (static) culture conditions, ST- fibroblasts exhibited higher NF-κB nuclear translocation than the ST+ population, with these latter cells turning refractory to external stimuli such as TNF-α or a second infection. Sorting of ST+ and ST- cell populations confirmed enhanced expression of NF-κB target genes such as IL1B, NFKBIA, TNFAIP3, and TRAF1 in uninfected (ST-) fibroblasts. These observations proved that S. Typhimurium dampens the NF-κB response in the infected fibroblast. Higher expression of SOCS3, encoding a "suppressor of cytokine signaling," was also observed in the ST+ population. Intracellular S. Typhimurium subverts NF-κB activity using protein effectors translocated by the secretion systems encoded by pathogenicity islands 1 (T1) and 2 (T2). T1 is required for regulating expression of SOCS3 and all NF-κB target genes analyzed whereas T2 displayed no role in the control of SOCS3 and IL1B expression. Collectively, these data demonstrate that S. Typhimurium attenuates NF-κB signaling in fibroblasts, an effect only perceptible when ST+ and ST- populations are analyzed separately. This tune-down in a central host defense might be instrumental for S. Typhimurium to establish intracellular persistent infections.
Collapse
Affiliation(s)
- Estel Ramos-Marquès
- a Laboratory of Intracellular Bacterial Pathogens , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | | | - Alberto Tiérrez
- a Laboratory of Intracellular Bacterial Pathogens , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Marco E Bianchi
- c Genetics and Cell Biology Division , San Raffaele Scientific Institute , Milan , Italy
| | - Alessandra Agresti
- c Genetics and Cell Biology Division , San Raffaele Scientific Institute , Milan , Italy
| | - Francisco García-Del Portillo
- a Laboratory of Intracellular Bacterial Pathogens , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| |
Collapse
|
23
|
López-Montero N, Ramos-Marquès E, Risco C, García-Del Portillo F. Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections. Autophagy 2016; 12:1886-1901. [PMID: 27485662 DOI: 10.1080/15548627.2016.1208888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Xenophagy has been studied in epithelial cells infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). Distinct autophagy receptors target this pathogen to degradation after interacting with ubiquitin on the surface of cytosolic bacteria, and the phagophore- and autophagosome-associated protein MAP1LC3/LC3. Glycans exposed in damaged phagosomal membranes and diacylglycerol accumulation in the phagosomal membrane also trigger S. Typhimurium xenophagy. How these responses control intraphagosomal and cytosolic bacteria remains poorly understood. Here, we examined S. Typhimurium interaction with autophagy in fibroblasts, in which the pathogen displays limited growth and does not escape into the cytosol. Live-cell imaging microscopy revealed that S. Typhimurium recruits late endosomal or lysosomal compartments that evolve into a membranous aggregate connected to the phagosome. Active dynamics and integrity of the phagosomal membrane are requisite to induce such aggregates. This membranous structure increases over time to become an aggresome that engages autophagy machinery at late infection times (> 6 h postentry). The newly formed autophagosome harbors LC3 and the autophagy receptor SQSTM1/p62 but is devoid of ubiquitin and the receptor CALCOCO2/NDP52. Live-cell imaging showed that this autophagosome captures and digests within the same vacuole the aggresome and some apposed intraphagosomal bacteria. Other phagosomes move away from the aggresome and avoid destruction. Thus, host endomembrane accumulation resulting from activity of intracellular S. Typhimurium stimulates a novel type of aggrephagy that acts independently of ubiquitin and CALCOCO2, and destroys only a few bacteria. Such selective degradation might allow the pathogen to reduce its progeny and, as a consequence, to establish persistent infections.
Collapse
Affiliation(s)
- Noelia López-Montero
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Estel Ramos-Marquès
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Cristina Risco
- b Cell Structure Laboratory, Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Francisco García-Del Portillo
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| |
Collapse
|
24
|
Youn S, Kwon Y, Song C, Lee H, Jeong O, Choi B, Jung S, Kang M. Increased efficacy of inactivated vaccine candidates prepared with Salmonella enterica serovar Typhimurium strains of predominant genotypes in ducks. Poult Sci 2016; 95:1764-73. [DOI: 10.3382/ps/pew104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 11/20/2022] Open
|
25
|
Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China. J Clin Microbiol 2016; 54:2014-22. [PMID: 27225410 DOI: 10.1128/jcm.00052-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/21/2016] [Indexed: 11/20/2022] Open
Abstract
Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with exposure to poultry flocks, farm environments, or contaminated food. The recent emergence of multidrug-resistant isolates has raised public health concerns. In this study, comparative genomics and phenotypic analysis were used to characterize 14 Salmonella Senftenberg clinical isolates recovered from multiple outbreaks in Shenzhen and Shanghai, China, between 2002 and 2011. Single-nucleotide polymorphism analyses identified two phylogenetically distinct clades of S Senftenberg, designated SC1 and SC2, harboring variations in Salmonella pathogenicity island 1 (SPI-1) and SPI-2 and exhibiting distinct biochemical and phenotypic signatures. Although the two variants shared the same serotype, the SC2 isolates of sequence type 14 (ST14) harbored intact SPI-1 and -2 and hence were characterized by possessing efficient invasion capabilities. In contrast, the SC1 isolates had structural deletion patterns in both SPI-1 and -2 that correlated with an impaired capacity to invade cultured human cells and also the year of their isolation. These atypical SC1 isolates also lacked the capacity to produce hydrogen sulfide. These findings highlight the emergence of atypical Salmonella Senftenberg variants in China and provide genetic validation that variants lacking SPI-1 and regions of SPI-2, which leads to impaired invasion capacity, can still cause clinical disease. These data have identified an emerging public health concern and highlight the need to strengthen surveillance to detect the prevalence and transmission of nontyphoidal Salmonella species.
Collapse
|
26
|
Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. mBio 2015; 6:e00712. [PMID: 26037124 PMCID: PMC4453011 DOI: 10.1128/mbio.00712-15] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invasion of nonphagocytic cells through rearrangement of the actin cytoskeleton is a common immune evasion mechanism used by most intracellular bacteria. However, some pathogens modulate host microtubules as well by a still poorly understood mechanism. In this study, we aim at deciphering the mechanisms by which the opportunistic bacterial pathogen Pseudomonas aeruginosa invades nonphagocytic cells, although it is considered mainly an extracellular bacterium. Using confocal microscopy and immunofluorescence, we show that the evolved VgrG2b effector of P. aeruginosa strain PAO1 is delivered into epithelial cells by a type VI secretion system, called H2-T6SS, involving the VgrG2a component. An in vivo interactome of VgrG2b in host cells allows the identification of microtubule components, including the γ-tubulin ring complex (γTuRC), a multiprotein complex catalyzing microtubule nucleation, as the major host target of VgrG2b. This interaction promotes a microtubule-dependent internalization of the bacterium since colchicine and nocodazole, two microtubule-destabilizing drugs, prevent VgrG2b-mediated P. aeruginosa entry even if the invasion still requires actin. We further validate our findings by demonstrating that the type VI injection step can be bypassed by ectopic production of VgrG2b inside target cells prior to infection. Moreover, such uncoupling between VgrG2b injection and bacterial internalization also reveals that they constitute two independent steps. With VgrG2b, we provide the first example of a bacterial protein interacting with the γTuRC. Our study offers key insight into the mechanism of self-promoting invasion of P. aeruginosa into human cells via a directed and specific effector-host protein interaction. Innate immunity and specifically professional phagocytic cells are key determinants in the ability of the host to control P. aeruginosa infection. However, among various virulence strategies, including attack, this opportunistic bacterial pathogen is able to avoid host clearance by triggering its own internalization in nonphagocytic cells. We previously showed that a protein secretion/injection machinery, called the H2 type VI secretion system (H2-T6SS), promotes P. aeruginosa uptake by epithelial cells. Here we investigate which H2-T6SS effector enables P. aeruginosa to enter nonphagocytic cells. We show that VgrG2b is delivered by the H2-T6SS machinery into epithelial cells, where it interacts with microtubules and, more particularly, with the γ-tubulin ring complex (γTuRC) known as the microtubule-nucleating center. This interaction precedes a microtubule- and actin-dependent internalization of P. aeruginosa. We thus discovered an unprecedented target for a bacterial virulence factor since VgrG2b constitutes, to our knowledge, the first example of a bacterial protein interacting with the γTuRC.
Collapse
|
27
|
Baisón-Olmo F, Galindo-Moreno M, Ramos-Morales F. Host cell type-dependent translocation and PhoP-mediated positive regulation of the effector SseK1 of Salmonella enterica. Front Microbiol 2015; 6:396. [PMID: 25972862 PMCID: PMC4413795 DOI: 10.3389/fmicb.2015.00396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica expresses two virulence-related type III secretion systems (T3SSs) encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. SseK1 is a poorly characterized substrate of the SPI2-encoded T3SS. Here, we show that this effector is essential to get full virulence both in oral and intraperitoneal mice infections, in spite of not having a role in invasion or intracellular proliferation in cultured mammalian cells. In vitro, expression of sseK1 was higher in media mimicking intracellular conditions, when SPI2 was induced, but it was also significant under SPI1 inducing conditions. A detailed analysis of translocation of SseK1 into host cells unveiled that it was a substrate of both, T3SS1 and T3SS2, although with different patterns and kinetics depending on the specific host cell type (epithelial, macrophages, or fibroblasts). The regulation of the expression of sseK1 was examined using lacZ and bioluminescent lux fusions. The two-component system PhoQ/PhoP is a positive regulator of this gene. A combination of sequence analysis, directed mutagenesis and electrophoretic mobility shift assays showed that phosphorylated PhoP binds directly to the promoter region of sseK1 and revealed a PhoP binding site located upstream of the predicted -35 hexamer of this promoter.
Collapse
Affiliation(s)
- Fernando Baisón-Olmo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla Sevilla, Spain
| | - María Galindo-Moreno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla Sevilla, Spain
| | | |
Collapse
|
28
|
ATG16L1 and IL23R variants and genetic susceptibility to crohn's disease: mode of inheritance based on meta-analysis of genetic association studies. Inflamm Bowel Dis 2015; 21:768-76. [PMID: 25738374 DOI: 10.1097/mib.0000000000000305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autophagy and regulation of IL-23 signaling pathways have been implicated in the pathogenesis of Crohn's disease (CD). We studied the mode of inheritance and reviewed the association of 2 polymorphic variants of ATG16L1 and IL23R with CD. METHODS We searched the PubMed and ISI Web of Science databases (up to May 2014) for pertinent articles. We included all studies that had a case-control design, with cases having CD and controls being healthy and reported full genotype frequencies for the ATG16L1 and/or IL23R variant of interest. We quantified the relative genetic risk using the model-free approach of the generalized odds ratio metric (ORG) and reported 95% precision estimates. Also, we explored the mode of inheritance using the degree of dominance h-index. RESULTS Fifty-one studies fulfilled these requirements and were included in the analysis. These studies involved 12,762 patients and 16,735 controls evaluating the association of ATG16L1 (rs2241880 p.Thr300Ala) and 8110 patients and 11,900 controls evaluating the association of IL23R (rs11209026 p.Arg381Gln) with CD. The ATG16L1 variant rs2241880 was associated with increased susceptibility to CD (combined ORG = 1.38; 95% confidence interval, 1.29-1.48) and a nondominant mode of inheritance (suggesting that the effect of heterozygosity lies exactly in the middle of extreme homozygotes, h = 0). The IL23R variant rs11209026 was associated with significant protection (ORG = 0.46; 95% confidence interval, 0.41-0.53) and a recessive mode of inheritance, indicating that the effect of a heterozygous genotype would lie close to the wild-type homozygous genotype. In subgroup analysis, the significant effects persisted across Caucasian ancestry studies and pediatric populations but were lacking across studies in Asian populations. CONCLUSIONS The ATG16L1 variant rs2241880 was associated with 38% increase in the risk for CD for higher mutational load, whereas IL23R variant rs11209026 decreased the risk by 54% for higher mutational load. The mode of inheritance for ATG16L1 variant demonstrated perfect additivity for genetic risk, whereas it showed recessiveness for the IL23R variant. This analysis permits risk stratification for CD based on the mutational status and highlight the need for additional studies in certain populations.
Collapse
|
29
|
Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 2015; 5:9374. [PMID: 25792384 PMCID: PMC4366850 DOI: 10.1038/srep09374] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/02/2015] [Indexed: 02/02/2023] Open
Abstract
Toxin-antitoxin (TA) modules contribute to the generation of non-growing cells in response to stress. These modules abound in bacterial pathogens although the bases for this profusion remain largely unknown. Using the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as a model, here we show that a selected group of TA modules impact bacterial fitness inside eukaryotic cells. We characterized in this pathogen twenty-seven TA modules, including type I and type II TA modules encoding antisense RNA and proteinaceous antitoxins, respectively. Proteomic and gene expression analyses revealed that the pathogen produces numerous toxins of TA modules inside eukaryotic cells. Among these, the toxins HokST, LdrAST, and TisBST, encoded by type I TA modules and T4ST and VapC2ST, encoded by type II TA modules, promote bacterial survival inside fibroblasts. In contrast, only VapC2ST shows that positive effect in bacterial fitness when the pathogen infects epithelial cells. These results illustrate how S. Typhimurium uses distinct type I and type II TA modules to regulate its intracellular lifestyle in varied host cell types. This function specialization might explain why the number of TA modules increased in intracellular bacterial pathogens.
Collapse
|
30
|
Schreiber F, Kay S, Frankel G, Clare S, Goulding D, van de Vosse E, van Dissel JT, Strugnell R, Thwaites G, Kingsley RA, Dougan G, Baker S. The Hd, Hj, and Hz66 flagella variants of Salmonella enterica serovar Typhi modify host responses and cellular interactions. Sci Rep 2015; 5:7947. [PMID: 25609312 PMCID: PMC4302301 DOI: 10.1038/srep07947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/15/2014] [Indexed: 11/09/2022] Open
Abstract
Salmonella Typhi, the causative agent of typhoid fever, is a monophyletic, human-restricted bacterium that exhibits limited phenotypic variation. S. Typhi from Indonesia are a notable exception, with circulating strains expressing diverse flagella antigens including Hj, Hd and Hz66. Hypothesizing that S. Typhi flagella plays a key role during infection, we constructed an S. Typhi fliC mutant and otherwise isogenic S. Typhi strains expressing the Hj, Hd, Hz66 flagella antigens. Phenotyping revealed differences in flagellum structure, strain motility and immunogenicity, but not in the ability of flagellated isolates to induce TLR5 activity. Invasion assays using epithelial and macrophage cell lines revealed differences in the ability of these S. Typhi derivatives to invade cells or induce cellular restructuring in the form of ruffles. Notably, the Hj variant induced substantial ruffles that were not fully dependent on the GTPases that contribute to this process. These data highlight important differences in the phenotypic properties of S. Typhi flagella variation and how they impact on the pathogenesis of S. Typhi.
Collapse
Affiliation(s)
| | - Sally Kay
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Imperial College, London, United Kingdom
| | - Simon Clare
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David Goulding
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaap T. van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Guy Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, United Kingdom
| | | | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, United Kingdom
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
31
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
32
|
Boumart Z, Velge P, Wiedemann A. Multiple invasion mechanisms and different intracellular Behaviors: a new vision ofSalmonella-host cell interaction. FEMS Microbiol Lett 2014; 361:1-7. [DOI: 10.1111/1574-6968.12614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zineb Boumart
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Laboratoire de Ploufragan-Plouzané; Unité Hygiène et Qualité des Produits Avicoles et Porcins; Plouragan France
| | - Philippe Velge
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
| |
Collapse
|
33
|
Patterns of expression and translocation of the ubiquitin ligase SlrP in Salmonella enterica serovar Typhimurium. J Bacteriol 2014; 196:3912-22. [PMID: 25182488 DOI: 10.1128/jb.02158-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SlrP is an E3 ubiquitin ligase that can be translocated into eukaryotic host cells by the two type III secretion systems that are expressed by Salmonella enterica serovar Typhimurium and are encoded in Salmonella pathogenicity islands 1 (SPI1) and 2 (SPI2). Expression of slrP and translocation of its product were examined using lac, 3×FLAG, and cyaA' translational fusions. Although slrP was expressed in different media, optimal expression was found under conditions that imitate the intravacuolar environment and promote synthesis of the SPI2-encoded type III secretion system. Translocation into mammalian cells took place through the SPI1- or the SPI2-encoded type III secretion system, depending on specific host cell type and timing. A search for genetic factors involved in controlling the expression of slrP unveiled LeuO, Lon, and the two-component system PhoQ/PhoP as novel regulators of slrP. Our experiments suggest that LeuO and Lon act through HilD under SPI1-inducing conditions, whereas PhoP directly interacts with the slrP promoter to activate transcription under SPI2 inducing conditions.
Collapse
|
34
|
Baltierra-Uribe SL, García-Vásquez MDJ, Castrejón-Jiménez NS, Estrella-Piñón MP, Luna-Herrera J, García-Pérez BE. Mycobacteria entry and trafficking into endothelial cells. Can J Microbiol 2014; 60:569-77. [PMID: 25113069 DOI: 10.1139/cjm-2014-0087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cells are susceptible to infection by mycobacteria, but the endocytic mechanisms that mycobacteria exploit to enter host cells and their mechanisms of intracellular transport are completely unknown. Using pharmacological inhibitors, we determined that the internalization of Mycobacterium tuberculosis (MTB), Mycobacterium smegmatis (MSM), and Mycobacterium abscessus (MAB) is dependent on the cytoskeleton and is differentially inhibited by cytochalasin D, nocodazole, cycloheximide, wortmannin, and amiloride. Using confocal microscopy, we investigated their endosomal trafficking by analyzing Rab5, Rab7, LAMP-1, and cathepsin D. Our results suggest that MSM exploits macropinocytosis to enter endothelial cells and that the vacuoles containing these bacteria fuse with lysosomes. Conversely, the entry of MTB seems to depend on more than one endocytic route, and the observation that only a subset of the intracellular bacilli was associated with phagolysosomes suggests that these bacteria are able to inhibit endosomal maturation to persist intracellularly. The route of entry for MAB depends mainly on microtubules, which suggests that MAB uses a different trafficking pathway. However, MAB is also able to inhibit endosomal maturation and can replicate intracellularly. Together, these findings provide the first evidence that mycobacteria modulate proteins of host endothelial cells to enter and persist within these cells.
Collapse
Affiliation(s)
- Shantal Lizbeth Baltierra-Uribe
- Department of Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 México, D.F., México
| | | | | | | | | | | |
Collapse
|
35
|
Guerra CR, Seabra SH, de Souza W, Rozental S. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment. PLoS One 2014; 9:e89250. [PMID: 24586631 PMCID: PMC3931709 DOI: 10.1371/journal.pone.0089250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/17/2014] [Indexed: 12/26/2022] Open
Abstract
Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.
Collapse
Affiliation(s)
- Caroline Rezende Guerra
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Sergio Henrique Seabra
- Laboratório de Tecnologia em Bioquímica e Microscopia, Colegiado de Ciências Biológicas e da Saúde, Centro Universitário Estadual da Zona Oeste, Campo Grande/RJ, Brazil
| | - Wanderley de Souza
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Duque de Caxias/RJ, Brazil
- Instituto Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
36
|
Mariscotti JF, Quereda JJ, García-Del Portillo F, Pucciarelli MG. The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin. Int J Med Microbiol 2014; 304:393-404. [PMID: 24572033 DOI: 10.1016/j.ijmm.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
Many Gram-positive bacterial pathogens use surface proteins covalently anchored to the peptidoglycan to cause disease. Bacteria of the genus Listeria have the largest number of surface proteins of this family. Every Listeria genome sequenced to date contains more than forty genes encoding surface proteins bearing anchoring-domains with an LPXTG motif that is recognized for covalent linkage to the peptidoglycan. About one-third of these proteins are present exclusively in pathogenic Listeria species, with some of them acting as adhesins or invasins that promote bacterial entry into eukaryotic cells. Here, we investigated two LPXTG surface proteins of the pathogen L. monocytogenes, Lmo1413 and Lmo2085, of unknown function and absent in non-pathogenic Listeria species. Lack of these two proteins does not affect bacterial adhesion or invasion of host cells using in vitro infection models. However, expression of Lmo1413 promotes entry of the non-invasive species L. innocua into non-phagocytic host cells, an effect not observed with Lmo2085. Moreover, overproduction of Lmo1413, but not Lmo2085, increases the invasion rate in non-phagocytic eukaryotic cells of an L. monocytogenes mutant deficient in the acting-binding protein ActA. Unexpectedly, production of full-length Lmo1413 and InlA exhibited opposite trends in a high percentage of L. monocytogenes isolates obtained from different sources. The idea of Lmo1413 playing a role as a new auxiliary invasin was also sustained by assays revealing that purified Lmo1413 binds to mucin via its MucBP domains. Taken together, these data indicate that Lmo1413, which we rename LmiA, for Listeria-mucin-binding invasin-A, may promote interaction of bacteria with adhesive host protective components and, in this manner, facilitate bacterial entry.
Collapse
Affiliation(s)
- Javier F Mariscotti
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Juan J Quereda
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - M Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa'-Consejo Superior de Investigaciones Científicas (CBMSO-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
37
|
Knodler LA, Nair V, Steele-Mortimer O. Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS One 2014; 9:e84681. [PMID: 24400108 PMCID: PMC3882239 DOI: 10.1371/journal.pone.0084681] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/17/2013] [Indexed: 12/21/2022] Open
Abstract
Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV). We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1), but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.
Collapse
Affiliation(s)
- Leigh A. Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| | - Vinod Nair
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
38
|
Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts. Infect Immun 2013; 82:221-32. [PMID: 24144726 DOI: 10.1128/iai.01304-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bacteria persisting inside fibroblasts, but its induction mode and the effectors involved remain unknown. Here, we show that nongrowing dormant intracellular bacteria use the two-component system OmpR-EnvZ to induce SPI-2 expression and the PhoP-PhoQ system to regulate the time at which induction takes place, 2 h postentry. Dormant bacteria were shown to discriminate the usage of SPI-2 effectors. Among the effectors tested, SseF, SseG, and SseJ were required for survival, while others, such as SifA and SifB, were not. SifA and SifB dispensability correlated with the inability of intracellular bacteria to secrete these effectors even when overexpressed. Conversely, SseJ overproduction resulted in augmented secretion and exacerbated bacterial growth. Dormant bacteria produced other effectors, such as PipB and PipB2, that, unlike what was reported for epithelial cells, did not to traffic outside the phagosomal compartment. Therefore, permissiveness for secreting only a subset of SPI-2 effectors may be instrumental for dormancy. We propose that the S. enterica serovar Typhimurium nonproliferative intracellular lifestyle is sustained by selection of SPI-2 effectors that are produced in tightly defined amounts and delivered to phagosome-confined locations.
Collapse
|
39
|
Messer JS, Murphy SF, Logsdon MF, Lodolce JP, Grimm WA, Bartulis SJ, Vogel TP, Burn M, Boone DL. The Crohn's disease: associated ATG16L1 variant and Salmonella invasion. BMJ Open 2013; 3:bmjopen-2013-002790. [PMID: 23794574 PMCID: PMC3686164 DOI: 10.1136/bmjopen-2013-002790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE A common genetic coding variant in the core autophagy gene ATG16L1 is associated with increased susceptibility to Crohn's disease (CD). The variant encodes an amino acid change in ATG16L1 such that the threonine at position 300 is substituted with an alanine (ATG16L1 T300A). How this variant contributes to increased risk of CD is not known, but studies with transfected cell lines and gene-targeted mice have demonstrated that ATG16L1 is required for autophagy, control of interleukin-1-β and autophagic clearance of intracellular microbes. In addition, studies with human cells expressing ATG16L1 T300A indicate that this variant reduces the autophagic clearance of intracellular microbes. DESIGN/RESULTS We demonstrate, using somatically gene-targeted human cells that the ATG16L1 T300A variant confers protection from cellular invasion by Salmonella. In addition, we show that ATG16L1-deficient cells are resistant to bacterial invasion. CONCLUSIONS These results suggest that cellular expression of ATG16L1 facilitates bacterial invasion and that the CD-associated ATG16L1 T300A variant may confer protection from bacterial infection.
Collapse
|
40
|
Santos AJM, Meinecke M, Fessler MB, Holden DW, Boucrot E. Preferential invasion of mitotic cells by Salmonella reveals that cell surface cholesterol is maximal during metaphase. J Cell Sci 2013; 126:2990-6. [PMID: 23687374 DOI: 10.1242/jcs.115253] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell surface-exposed cholesterol is crucial for cell attachment and invasion of many viruses and bacteria, including the bacterium Salmonella, which causes typhoid fever and gastroenteritis. Using flow cytometry and 3D confocal fluorescence microscopy, we found that mitotic cells, although representing only 1-4% of an exponentially growing population, were much more efficiently targeted for invasion by Salmonella. This targeting was not dependent on the spherical shape of mitotic cells, but was instead SipB and cholesterol dependent. Thus, we measured the levels of plasma membrane and cell surface cholesterol throughout the cell cycle using, respectively, brief staining with filipin and a fluorescent ester of polyethylene glycol-cholesterol that cannot flip through the plasma membrane, and found that both were maximal during mitosis. This increase was due not only to the rise in global cell cholesterol levels along the cell cycle but also to a transient loss in cholesterol asymmetry at the plasma membrane during mitosis. We measured that cholesterol, but not phosphatidylserine, changed from a ∼2080 outerinner leaflet repartition during interphase to ∼5050 during metaphase, suggesting this was specific to cholesterol and not due to a broad change of lipid asymmetry during metaphase. This explains the increase in outer surface levels that make dividing cells more susceptible to Salmonella invasion and perhaps to other viruses and bacteria entering cells in a cholesterol-dependent manner. The change in cholesterol partitioning also favoured the recruitment of activated ERM (Ezrin, Radixin, Moesin) proteins at the plasma membrane and thus supported mitotic cell rounding.
Collapse
Affiliation(s)
- António J M Santos
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
41
|
Zhao X, Kumar P, Shah-Simpson S, Caradonna KL, Galjart N, Teygong C, Blader I, Wittmann T, Burleigh BA. Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process. Cell Microbiol 2012; 15:571-84. [PMID: 23107073 DOI: 10.1111/cmi.12056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022]
Abstract
Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin-dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodelling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus-end tracking proteins (+TIPs) in the co-ordination of T. cruzi trypomastigote internalization and post-entry events is reported. Acute silencing of CLASP1, a +TIP that participates in microtubule stabilization at the cell periphery, impairs trypomastigote internalization without diminishing the capacity for calcium-regulated lysosome exocytosis. Subsequent fusion of the T. cruzi vacuole with host lysosomes and its juxtanuclear positioning are also delayed in CLASP1-depleted cells. These post-entry phenotypes correlate with a generalized impairment of minus-end directed transport of lysosomes in CLASP1 knock-down cells and mimic the effects of dynactin disruption. Consistent with GSK3β acting as a negative regulator of CLASP function, inhibition of GSK3β activity enhances T. cruzi entry in a CLASP1-dependent manner and expression of constitutively active GSK3β dampens infection. This study provides novel molecular insights into the T. cruzi infection process, emphasizing functional links between parasite-elicited signalling, host microtubule plus-end tracking proteins and dynein-based retrograde transport. Highlighted in this work is a previously unrecognized role for CLASPs in dynamic lysosome positioning, an important aspect of the nutrient sensing response in mammalian cells.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 2012; 81:154-65. [PMID: 23090959 DOI: 10.1128/iai.01080-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.
Collapse
|
43
|
López-Gómez A, Cano V, Moranta D, Morey P, García Del Portillo F, Bengoechea JA, Garmendia J. Host cell kinases, α5 and β1 integrins, and Rac1 signalling on the microtubule cytoskeleton are important for non-typable Haemophilus influenzae invasion of respiratory epithelial cells. MICROBIOLOGY-SGM 2012; 158:2384-2398. [PMID: 22723286 DOI: 10.1099/mic.0.059972-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-typable Haemophilus influenzae (NTHi) is a common commensal of the human nasopharynx, but causes opportunistic infection when the respiratory tract is compromised by infection or disease. The ability of NTHi to invade epithelial cells has been described, but the underlying molecular mechanisms are poorly characterized. We previously determined that NTHi promotes phosphorylation of the serine-threonine kinase Akt in A549 human lung epithelial cells, and that Akt phosphorylation and NTHi cell invasion are prevented by inhibition of phosphoinositide 3-kinase (PI3K). Because PI3K-Akt signalling is associated with several host cell networks, the purpose of the current study was to identify eukaryotic molecules important for NTHi epithelial invasion. We found that inhibition of Akt activity reduced NTHi internalization; differently, bacterial entry was increased by phospholipase Cγ1 inhibition but was not affected by protein kinase inhibition. We also found that α5 and β1 integrins, and the tyrosine kinases focal adhesion kinase and Src, are important for NTHi A549 cell invasion. NTHi internalization was shown to be favoured by activation of Rac1 guanosine triphosphatase (GTPase), together with the guanine nucleotide exchange factor Vav2 and the effector Pak1. Also, Pak1 might be associated with inactivation of the microtubule destabilizing agent Op18/stathmin, to facilitate microtubule polymerization and NTHi entry. Conversely, inhibition of RhoA GTPase and its effector ROCK increased the number of internalized bacteria. Src and Rac1 were found to be important for NTHi-triggered Akt phosphorylation. An increase in host cyclic AMP reduced bacterial entry, which was linked to protein kinase A. These findings suggest that NTHi finely manipulates host signalling molecules to invade respiratory epithelial cells.
Collapse
Affiliation(s)
- Antonio López-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - Victoria Cano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - David Moranta
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - Pau Morey
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | | | - José Antonio Bengoechea
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Bunyola, Spain.,Laboratory Microbial Pathogenesis, Fundación Investigación Sanitaria Illes Balears, Bunyola, Spain
| |
Collapse
|
44
|
Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012; 1:243-58. [PMID: 23170225 PMCID: PMC3496970 DOI: 10.1002/mbo3.28] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/27/2023] Open
Abstract
The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food- and water-borne diseases ranging from self-limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold- and warm-blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island-1. However, recent evidence shows that Salmonella can cause infection in a T3SS-1-independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper-like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper-like or Trigger-like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella-induced diseases and to Salmonella-host specificity.
Collapse
Affiliation(s)
- P Velge
- INRA, UMR1282 Infectiologie et Santé Publique F-37380, Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique F-37000, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ortega AD, Gonzalo-Asensio J, García-del Portillo F. Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. RNA Biol 2012; 9:469-88. [PMID: 22336761 DOI: 10.4161/rna.19317] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Small non-coding regulatory RNAs (sRNAs) have been studied in many bacterial pathogens during infection. However, few studies have focused on how intracellular pathogens modulate sRNA expression inside eukaryotic cells. Here, we monitored expression of all known sRNAs of Salmonella enterica serovar Typhimurium (S. Typhimurium) in bacteria located inside fibroblasts, a host cell type in which this pathogen restrains growth. sRNA sequences known in S. Typhimurium and Escherichia coli were searched in the genome of S. Typhimurium virulent strain SL1344, the subject of this study. Expression of 84 distinct sRNAs was compared in extra- and intracellular bacteria. Non-proliferating intracellular bacteria upregulated six sRNAs, including IsrA, IsrG, IstR-2, RyhB-1, RyhB-2 and RseX while repressed the expression of the sRNAs DsrA, GlmZ, IsrH-1, IsrI, SraL, SroC, SsrS(6S) and RydC. Interestingly, IsrH-1 was previously reported as an sRNA induced by S. Typhimurium inside macrophages. Kinetic analyses unraveled changing expression patterns for some sRNAs along the infection. InvR and T44 expression dropped after an initial induction phase while IstR-2 was induced exclusively at late infection times (> 6 h). Studies focused on the Salmonella-specific sRNA RyhB-2 revealed that intracellular bacteria use this sRNA to regulate negatively YeaQ, a cis-encoded protein of unknown function. RyhB-2, together with RyhB-1, contributes to attenuate intracellular bacterial growth. To our knowledge, these data represent the first comprehensive study of S. Typhimurium sRNA expression in intracellular bacteria and provide the first insights into sRNAs that may direct pathogen adaptation to a non-proliferative state inside the host cell.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | |
Collapse
|
46
|
Salmonella enterica serotype Typhimurium usurps the scaffold protein IQGAP1 to manipulate Rac1 and MAPK signalling. Biochem J 2012; 440:309-18. [PMID: 21851337 DOI: 10.1042/bj20110419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salmonella enterica serotype Typhimurium invades eukaryotic cells by re-arranging the host-cell cytoskeleton. However, the precise mechanisms by which Salmonella induces cytoskeletal changes remain undefined. IQGAP1 (IQ motif-containing GTPase-activating protein 1) is a scaffold protein that binds multiple proteins including actin, the Rho GTPases Rac1 and Cdc42 (cell division cycle 42), and components of the MAPK (mitogen-activated protein kinase) pathway. We have shown previously that optimal invasion of Salmonella into HeLa cells requires IQGAP1. In the present paper, we use IQGAP1-null MEFs (mouse embryonic fibroblasts) and selected well-characterized IQGAP1 mutant constructs to dissect the molecular determinants of Salmonella invasion. Knockout of IQGAP1 expression reduced Salmonella invasion into MEFs by 75%. Reconstituting IQGAP1-null MEFs with wild-type IQGAP1 completely rescued invasion. By contrast, reconstituting IQGAP1-null cells with mutant IQGAP1 constructs that specifically lack binding to either Cdc42 and Rac1 (termed IQGAP1ΔMK24), actin, MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase] or ERK only partially restored Salmonella entry. Cell-permeant inhibitors of Rac1 activation or MAPK signalling reduced Salmonella invasion into control cells by 50%, but had no effect on bacterial entry into IQGAP1-null MEFs. Importantly, the ability of IQGAP1ΔMK24 to promote Salmonella invasion into IQGAP1-null cells was abrogated by chemical inhibition of MAPK signalling. Collectively, these results imply that the scaffolding function of IQGAP1, which integrates Rac1 and MAPK signalling, is usurped by Salmonella to invade fibroblasts and suggest that IQGAP1 may be a potential therapeutic target for Salmonella pathogenesis.
Collapse
|
47
|
Haglund CM, Welch MD. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. ACTA ACUST UNITED AC 2011; 195:7-17. [PMID: 21969466 PMCID: PMC3187711 DOI: 10.1083/jcb.201103148] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins. The study of pathogen interactions with the cytoskeleton has illuminated key cellular processes such as phagocytosis, macropinocytosis, membrane trafficking, motility, autophagy, and signal transduction.
Collapse
Affiliation(s)
- Cat M Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
48
|
Activation of a RhoA/myosin II-dependent but Arp2/3 complex-independent pathway facilitates Salmonella invasion. Cell Host Microbe 2011; 9:273-85. [PMID: 21501827 DOI: 10.1016/j.chom.2011.03.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 11/05/2010] [Accepted: 03/08/2011] [Indexed: 12/23/2022]
Abstract
Salmonella stimulates host cell invasion using virulence effectors translocated by the pathogen's type-three secretion system (T3SS). These factors manipulate host signaling pathways, primarily driven by Rho family GTPases, which culminates in Arp2/3 complex-dependent activation of host actin nucleation to mediate the uptake of Salmonella into host cells. However, recent data argue for the existence of additional mechanisms that cooperate in T3SS-dependent Salmonella invasion. We identify a myosin II-mediated mechanism, operating independent of but complementary to the Arp2/3-dependent pathway, as contributing to Salmonella invasion into nonphagocytic cells. We also establish that the T3SS effector SopB constitutes an important regulator of this Rho/Rho kinase and myosin II-dependent invasion pathway. Thus, Salmonella enters nonphagocytic cells by manipulating the two core machineries of actin-based motility in the host: Arp2/3 complex-driven actin polymerization and actomyosin-mediated contractility.
Collapse
|
49
|
Bäumler AJ, Winter SE, Thiennimitr P, Casadesús J. Intestinal and chronic infections: Salmonella lifestyles in hostile environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:508-517. [PMID: 23761329 DOI: 10.1111/j.1758-2229.2011.00242.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The main disease syndromes caused by Salmonella serovars in immunocompetent individuals are gastroenteritis and typhoid fever. These syndromes differ with regard to the host niches in which Salmonella serovars grow and survive to ensure their transmission. During gastroenteritis, non-typhoidal Salmonella serovars such as Salmonella enterica serovar Typhimurium (S. Typhimurium) use their virulence factors to elicit acute intestinal inflammation, thereby creating a novel luminal niche. Reactive oxygen species produced by phagocytes in the intestinal lumen oxidize endogenous sulfur compounds to produce a new respiratory electron acceptor, tetrathionate. Respiration of tetrathionate confers a growth advantage to S. Typhimurium over competing microbes. This growth advantage ensures transmission of the pathogen by the faecal-oral route. In typhoid fever, S. enterica serovar Typhi (S. Typhi) establishes a chronic infection in the gall bladder, and perhaps in additional niches. Studies using the mouse model of typhoid fever suggest that survival and proliferation in the gall bladder may involve several strategies. Invasion of the gallbladder epithelium and formation of biofilms on gallstones may protect the pathogen from the bactericidal activities of bile salts. In the gallbladder lumen, activation of bile defence responses may permit survival of planktonic Salmonella cells. Individuals developing chronic carriage after an episode of typhoid fever can transmit the disease for the remainder of their lives by shedding the pathogen through the cystic duct. Shedding promotes S. Typhi transmission to new susceptible hosts. Here we review Salmonella virulence strategies for growth and survival in host niches that represent reservoirs for transmission.
Collapse
Affiliation(s)
- Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA. Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41080 Sevilla, Spain
| | | | | | | |
Collapse
|
50
|
Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr 2011; 5:409-20. [PMID: 21975550 PMCID: PMC3218608 DOI: 10.4161/cam.5.5.17644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 01/22/2023] Open
Abstract
The goal of this review is to highlight how emerging new models of filopodia assembly, which include tissue specific actin-bundling proteins, could provide more comprehensive representations of filopodia assembly that would describe more adequately and effectively the complexity and plasticity of epithelial cells. This review also describes how the true diversity of actin bundling proteins must be considered to predict the far-reaching significance and versatile functions of filopodia in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | |
Collapse
|