1
|
Jiang L, Chi C, Yuan F, Lu M, Hu D, Wang L, Liu X. Anti-inflammatory effects of anemonin on acute ulcerative colitis via targeted regulation of protein kinase C-θ. Chin Med 2022; 17:39. [PMID: 35346284 PMCID: PMC8962473 DOI: 10.1186/s13020-022-00599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease that causes continuous mucosal inflammation. Anemonin is a natural molecule from the Ranunculaceae and Gramineae plants that exerts anti-inflammatory properties. This study aimed to explore the effects and mechanisms of anemonin on UC. Methods C57BL/6 mice were administered dextran sulphate sodium (DSS; 3% [w/v]) to establish an animal model of UC. Mice were treated with an intraperitoneal injection of anemonin. Body weight and the disease activity index (DAI) were recorded. Haematoxylin and eosin staining, RT-qPCR, ELISA, and western blotting were performed to evaluate the histopathological changes and tissue inflammation. HT-29 cells were treated with lipopolysaccharide (LPS) and anemonin. Cell inflammation was evaluated using RT-qPCR and western blotting. The target proteins of anemonin were predicted using bioinformatics analysis and confirmed in vitro and in vivo. Results Anemonin improved DSS-induced body weight loss, shortened colon length, increased DAI, and induced pathological changes in the colon tissue of mice. Anemonin inhibited DSS-induced colon tissue inflammation as the release of IL-1β, TNF-α, and IL-6 was significantly suppressed. Additionally, anemonin attenuated LPS-induced cytokine production in HT-29 cells. PKC-θ was predicted as a target protein of anemonin. Anemonin did not affect PRKCQ gene transcription, but inhibited its translation. PRKCQ overexpression partially reversed the protective effects of anemonin on HT-29 cells. Adeno-associated virus delivery of the PRKCQ vector significantly reversed the protective effects of anemonin on the mouse colon. Conclusions Anemonin has the potential to treat UC. The anti-inflammatory effects of anemonin may be mediated through targeting PKC-θ.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua west road, Jinan, 250011, Shandong, China.
| | - Chunhua Chi
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Fang Yuan
- Department of Gastrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Meiqi Lu
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua west road, Jinan, 250011, Shandong, China
| | - Dongqing Hu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Lin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Xiaoming Liu
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua west road, Jinan, 250011, Shandong, China.
| |
Collapse
|
2
|
Nicolle A, Zhang Y, Belguise K. The Emerging Function of PKCtheta in Cancer. Biomolecules 2021; 11:biom11020221. [PMID: 33562506 PMCID: PMC7915540 DOI: 10.3390/biom11020221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C theta (PKCθ) is a serine/threonine kinase that belongs to the novel PKC subfamily. In normal tissue, its expression is restricted to skeletal muscle cells, platelets and T lymphocytes in which PKCθ controls several essential cellular processes such as survival, proliferation and differentiation. Particularly, PKCθ has been extensively studied for its role in the immune system where its translocation to the immunological synapse plays a critical role in T cell activation. Beyond its physiological role in immune responses, increasing evidence implicates PKCθ in the pathology of various diseases, especially autoimmune disorders and cancers. In this review, we discuss the implication of PKCθ in various types of cancers and the PKCθ-mediated signaling events controlling cancer initiation and progression. In these types of cancers, the high PKCθ expression leads to aberrant cell proliferation, migration and invasion resulting in malignant phenotype. The recent development and application of PKCθ inhibitors in the context of autoimmune diseases could benefit the emergence of treatment for cancers in which PKCθ has been implicated.
Collapse
|
3
|
Han C, Lei D, Liu L, Xie S, He L, Wen S, Zhou H, Ma T, Li S. Morphine induces the differentiation of T helper cells to Th2 effector cells via the PKC-θ-GATA3 pathway. Int Immunopharmacol 2020; 80:106133. [PMID: 31931364 DOI: 10.1016/j.intimp.2019.106133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND T help 2 (Th2) cell differentiation by morphine has been verified. However, the underlying mechanism of morphine induces Th2 cell differentiation remains elusive. The aim of the present study was to explore the possible basis of morphine induced Th2 cell differentiation. METHODS Flow cytometry analysis was used to detect the content of T help 1(Th1) cell and Th2 cell. Enzyme linked immunosorbent assay (ELISA) was performed to determine the levels of IL-4 and IFN-γ. Real-time quantitative polymerase chain reaction, electrophoretic mobility shift assay and Western blotting was conducted in this study. RESULTS Th2 cell subset and IL-4 level were elevated in morphine induced naïve T cells. Pathway determining found the protein phosphorylation level of PKC-θ and the expression and activity of the transcription factor GATA3 was also enhanced in the naïve T cells challenged by morphine. Moreover, inhibitor of morphine(naltrexone) or PKC-θ(AEB071) can reverse morphine-induced Th2 cell differentiation. CONCLUSION These results suggested that morphine induce naïve T cell differentiation to Th2 cells via the PKC-θ/GATA3 signal pathway.
Collapse
Affiliation(s)
- Chao Han
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China; Yixing Clinical College, Medical College of Yangzhou University, Yixing, Jiangsu, China
| | - Daoyun Lei
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Songhui Xie
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Lianping He
- School of Experience Industry, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tieliang Ma
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China; Yixing Clinical College, Medical College of Yangzhou University, Yixing, Jiangsu, China.
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
4
|
Schmid U, Stenzel W, Koschel J, Raptaki M, Wang X, Naumann M, Matuschewski K, Schlüter D, Nishanth G. The Deubiquitinating Enzyme Cylindromatosis Dampens CD8 + T Cell Responses and Is a Critical Factor for Experimental Cerebral Malaria and Blood-Brain Barrier Damage. Front Immunol 2017; 8:27. [PMID: 28203236 PMCID: PMC5285367 DOI: 10.3389/fimmu.2017.00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria is a severe complication of human malaria and may lead to death of Plasmodium falciparum-infected individuals. Cerebral malaria is associated with sequestration of parasitized red blood cells within the cerebral microvasculature resulting in damage of the blood-brain barrier and brain pathology. Although CD8+ T cells have been implicated in the development of murine experimental cerebral malaria (ECM), several other studies have shown that CD8+ T cells confer protection against blood-stage infections. Since the role of host deubiquitinating enzymes (DUBs) in malaria is yet unknown, we investigated how the DUB cylindromatosis (CYLD), an important inhibitor of several cellular signaling pathways, influences the outcome of ECM. Upon infection with Plasmodium berghei ANKA (PbA) sporozoites or PbA-infected red blood cells, at least 90% of Cyld-/- mice survived the infection, whereas all congenic C57BL/6 mice displayed signatures of ECM, impaired parasite control, and disruption of the blood-brain barrier integrity. Cyld deficiency prevented brain pathology, including hemorrhagic lesions, enhanced activation of astrocytes and microglia, infiltration of CD8+ T cells, and apoptosis of endothelial cells. Furthermore, PbA-specific CD8+ T cell responses were augmented in the blood of Cyld-/- mice with increased production of interferon-γ and granzyme B and elevated activation of protein kinase C-θ and nuclear factor "kappa light-chain enhancer" of activated B cells. Importantly, accumulation of CD8+ T cells in the brain of Cyld-/- mice was significantly reduced compared to C57BL/6 mice. Bone marrow chimera experiments showed that the absence of ECM signatures in infected Cyld-/- mice could be attributed to hematopoietic and radioresistant parenchymal cells, most likely endothelial cells that did not undergo apoptosis. Together, we were able to show that host deubiqutinating enzymes play an important role in ECM and that CYLD promotes ECM supporting it as a potential therapeutic target for adjunct therapy to prevent cerebral complications of severe malaria.
Collapse
Affiliation(s)
- Ursula Schmid
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Werner Stenzel
- Department of Neuropathology, Charite , Berlin , Germany
| | - Josephin Koschel
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Maria Raptaki
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany; Department of Molecular Parasitology, Humboldt University, Berlin, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Organ-Specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| |
Collapse
|
5
|
Abstract
Activating as well as inhibitory circuits tightly regulate T-cell activation thresholds and effector differentiation processes enabling proper immune response outcomes. Recently, an additional molecular link between T-cell receptor signalling and CD4⁺ Th17 cell skewing has been reported, namely that protein kinase C (PKC) θ critically regulates Th17/Th1 phenotypic differentiation and plasticity in CD4⁺ T-cells by selectively acting as a 'reprogramming element' that suppresses Th1-typical genes during Th17-mediated immune activation in order to stabilize a Th17 cell phenotype.
Collapse
|
6
|
Biswas A, Bruder D, Wolf SA, Jeron A, Mack M, Heimesaat MM, Dunay IR. Ly6Chigh Monocytes Control Cerebral Toxoplasmosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:3223-35. [DOI: 10.4049/jimmunol.1402037] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Wachowicz K, Hermann-Kleiter N, Meisel M, Siegmund K, Thuille N, Baier G. Protein kinase C θ regulates the phenotype of murine CD4+ Th17 cells. PLoS One 2014; 9:e96401. [PMID: 24788550 PMCID: PMC4008503 DOI: 10.1371/journal.pone.0096401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/06/2014] [Indexed: 02/07/2023] Open
Abstract
Protein kinase C θ (PKCθ) is involved in signaling downstream of the T cell antigen receptor (TCR) and is important for shaping effector T cell functions and inflammatory disease development. Acquisition of Th1-like effector features by Th17 cells has been linked to increased pathogenic potential. However, the molecular mechanisms underlying Th17/Th1 phenotypic instability remain largely unknown. In the current study, we address the role of PKCθ in differentiation and function of Th17 cells by using genetic knock-out mice. Implementing in vitro (polarizing T cell cultures) and in vivo (experimental autoimmune encephalomyelitis model, EAE) techniques, we demonstrated that PKCθ-deficient CD4+ T cells show normal Th17 marker gene expression (interleukin 17A/F, RORγt), accompanied by enhanced production of the Th1-typical markers such as interferon gamma (IFN-γ) and transcription factor T-bet. Mechanistically, this phenotype was linked to aberrantly elevated Stat4 mRNA levels in PKCθ−/− CD4+ T cells during the priming phase of Th17 differentiation. In contrast, transcription of the Stat4 gene was suppressed in Th17-primed wild-type cells. This change in cellular effector phenotype was reflected in vivo by prolonged neurological impairment of PKCθ-deficient mice during the course of EAE. Taken together, our data provide genetic evidence that PKCθ is critical for stabilizing Th17 cell phenotype by selective suppression of the STAT4/IFN-γ/T-bet axis at the onset of differentiation.
Collapse
Affiliation(s)
- Katarzyna Wachowicz
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marlies Meisel
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Thuille
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
8
|
Möhle L, Parlog A, Pahnke J, Dunay IR. Spinal cord pathology in chronic experimental Toxoplasma gondii infection. Eur J Microbiol Immunol (Bp) 2014; 4:65-75. [PMID: 24678407 DOI: 10.1556/eujmi.4.2014.1.6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 01/01/2023] Open
Abstract
Infection with the protozoan Toxoplasma (T.) gondii causes chronic infection of the central nervous system and can lead to life-threatening encephalomyelitis in immunocompromised patients. While infection with T. gondii has long time been considered asymptomatic in immunocompetent hosts, this view is challenged by recent reports describing links between seropositivity and behavioral alterations. However, past and current researches are mainly focused on the brain during Toxoplasma encephalitis, neglecting the spinal cord as a key structure conveying brain signals into motion. Therefore, our study aimed to fill the gap and describes the spinal cord pathology in an experimental murine model of toxoplasmosis. In the spinal cord, we found distinct histopathological changes, inflammatory foci and T. gondii cysts similar to the brain. Furthermore, the recruitment of immune cells from the periphery was detected. Moreover, resident microglia as well as recruited monocytes displayed an increased MHC classes I and II expression. Additionally, the expression of pro- and anti-inflammatory cytokines was enhanced in the brain as well as in the spinal cord. In summary, the pathology observed in the spinal cord was similar to the previously described changes in the brain during the infection. This study provides the first detailed description of histopathological and immunological alterations due to experimental T. gondii induced myelitis in mice. Thus, our comparison raises awareness of the importance of the spinal cord in chronic T. gondii infection.
Collapse
|
9
|
Yan Zhang E, Kong KF, Altman A. The yin and yang of protein kinase C-theta (PKCθ): a novel drug target for selective immunosuppression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:267-312. [PMID: 23433459 PMCID: PMC3903317 DOI: 10.1016/b978-0-12-404717-4.00006-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
Collapse
Affiliation(s)
| | | | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
10
|
Pfeifhofer-Obermair C, Thuille N, Baier G. Involvement of distinct PKC gene products in T cell functions. Front Immunol 2012; 3:220. [PMID: 22888329 PMCID: PMC3412260 DOI: 10.3389/fimmu.2012.00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/08/2012] [Indexed: 01/07/2023] Open
Abstract
It is well established that members of the protein kinase C (PKC) family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the "flavor of PKC" in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Gottfried Baier
- Division of Cell Genetics, Department of Pharmacology and Genetics, Medical University Innsbruck, Innsbruck,Tyrol, Austria
| |
Collapse
|
11
|
Interferon-gamma- and perforin-mediated immune responses for resistance against Toxoplasma gondii in the brain. Expert Rev Mol Med 2011; 13:e31. [PMID: 22005272 DOI: 10.1017/s1462399411002018] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that causes various diseases, including lymphadenitis, congenital infection of fetuses and life-threatening toxoplasmic encephalitis in immunocompromised individuals. Interferon-gamma (IFN-γ)-mediated immune responses are essential for controlling tachyzoite proliferation during both acute acquired infection and reactivation of infection in the brain. Both CD4+ and CD8+ T cells produce this cytokine in response to infection, although the latter has more potent protective activity. IFN-γ can activate microglia, astrocytes and macrophages, and these activated cells control the proliferation of tachyzoites using different molecules, depending on cell type and host species. IFN-γ also has a crucial role in the recruitment of T cells into the brain after infection by inducing expression of the adhesion molecule VCAM-1 on cerebrovascular endothelial cells, and chemokines such as CXCL9, CXCL10 and CCL5. A recent study showed that CD8+ T cells are able to remove T. gondii cysts, which represent the stage of the parasite in chronic infection, from the brain through their perforin-mediated activity. Thus, the resistance to cerebral infection with T. gondii requires a coordinated network using both IFN-γ- and perforin-mediated immune responses. Elucidating how these two protective mechanisms function and collaborate in the brain against T. gondii will be crucial in developing a new method to prevent and eradicate this parasitic infection.
Collapse
|
12
|
CD8 T Cells and Toxoplasma gondii: A New Paradigm. J Parasitol Res 2011; 2011:243796. [PMID: 21687650 PMCID: PMC3112509 DOI: 10.1155/2011/243796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/10/2011] [Indexed: 01/09/2023] Open
Abstract
CD8 T cells are essential for control of Toxoplasma gondii infection. Once activated they undergo differentiation into short-lived effector and memory precursor effector cells. As effector cells, CD8 T cells exert immune pressure on the parasite via production of inflammatory cytokines and through their cytolytic activity. Once immune control has been established, the parasite encysts and develops into chronic infection regulated by the memory CD8 T-cell population. Several signals are needed for this process to be initiated and for development of fully differentiated memory CD8 T cells. With newly developed tools including CD8 T-cell tetramers and TCR transgenic mice, dissecting the biology behind T. gondii-specific CD8 T-cell responses can now be more effectively addressed. In this paper, we discuss what is known about the signals required for effective T. gondii-specific CD8 T-cell development, their differentiation, and effector function.
Collapse
|