1
|
Lacotte PA, Denis-Quanquin S, Chatonnat E, Le Bris J, Leparfait D, Lequeux T, Martin-Verstraete I, Candela T. The absence of surface D-alanylation, localized on lipoteichoic acid, impacts the Clostridioides difficile way of life and antibiotic resistance. Front Microbiol 2023; 14:1267662. [PMID: 37965542 PMCID: PMC10642750 DOI: 10.3389/fmicb.2023.1267662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The dlt operon encodes proteins responsible for the esterification of positively charged D-alanine on the wall teichoic acids and lipoteichoic acids of Gram-positive bacteria. This structural modification of the bacterial anionic surface in several species has been described to alter the physicochemical properties of the cell-wall. In addition, it has been linked to reduced sensibilities to cationic antimicrobial peptides and antibiotics. Methods We studied the D-alanylation of Clostridioides difficile polysaccharides with a complete deletion of the dltDABCoperon in the 630 strain. To look for D-alanylation location, surface polysaccharides were purified and analyzed by NMR. Properties of the dltDABCmutant and the parental strains, were determined for bacterial surface's hydrophobicity, motility, adhesion, antibiotic resistance. Results We first confirmed the role of the dltDABCoperon in D-alanylation. Then, we established the exclusive esterification of D-alanine on C. difficile lipoteichoic acid. Our data also suggest that D-alanylation modifies the cell-wall's properties, affecting the bacterial surface's hydrophobicity, motility, adhesion to biotic and abiotic surfaces,and biofilm formation. In addition, our mutant exhibitedincreased sensibilities to antibiotics linked to the membrane, especially bacitracin. A specific inhibitor DLT-1 of DltA reduces the D-alanylation rate in C. difficile but the inhibition was not sufficient to decrease the antibiotic resistance against bacitracin and vancomycin. Conclusion Our results suggest the D-alanylation of C. difficile as an interesting target to tackle C. difficile infections.
Collapse
Affiliation(s)
- Pierre-Alexandre Lacotte
- Micalis Institute, Université Paris-Saclay, INRAE AgroParisTech, Jouy-en-Josas, France
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | | | - Eva Chatonnat
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Julie Le Bris
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
| | - David Leparfait
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR6507, ENSICAEN, UNICAEN, CNRS, Caen, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR6507, ENSICAEN, UNICAEN, CNRS, Caen, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
2
|
Öhlmann S, Krieger AK, Gisch N, Meurer M, de Buhr N, von Köckritz-Blickwede M, Schütze N, Baums CG. d-Alanylation of Lipoteichoic Acids in Streptococcus suis Reduces Association With Leukocytes in Porcine Blood. Front Microbiol 2022; 13:822369. [PMID: 35509315 PMCID: PMC9058155 DOI: 10.3389/fmicb.2022.822369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis (S. suis) is a common swine pathogen but also poses a threat to human health in causing meningitis and severe cases of streptococcal toxic shock-like syndrome (STSLS). Therefore, it is crucial to understand how S. suis interacts with the host immune system during bacteremia. As S. suis has the ability to introduce d-alanine into its lipoteichoic acids (LTAs), we investigated the working hypothesis that cell wall modification by LTA d-alanylation influences the interaction of S. suis with porcine blood immune cells. We created an isogenic mutant of S. suis strain 10 by in-frame deletion of the d-alanine d-alanyl carrier ligase (DltA). d-alanylation of LTAs was associated with reduced phagocytosis of S. suis by porcine granulocytes, reduced deposition of complement factor C3 on the bacterial surface, increased hydrophobicity of streptococci, and increased resistance to cationic antimicrobial peptides (CAMPs). At the same time, survival of S. suis was not significantly increased by LTA d-alanylation in whole blood of conventional piglets with specific IgG. However, we found a distinct cytokine pattern as IL-1β but not tumor necrosis factor (TNF)-α levels were significantly reduced in blood infected with the ΔdltA mutant. In contrast to TNF-α, activation and secretion of IL-1β are inflammasome-dependent, suggesting a possible influence of LTA d-alanylation on inflammasome regulation. Especially in the absence of specific antibodies, the association of S. suis with porcine monocytes was reduced by d-alanylation of its LTAs. This dltA-dependent phenotype was also observed with a non-encapsulated dltA double mutant indicating that it is independent of capsular polysaccharides. High antibody levels caused high levels of S. suis—monocyte—association followed by inflammatory cell death and strong production of both IL-1β and TNF-α, while the influence of LTA d-alanylation of the streptococci became less visible. In summary, the results of this study expand previous findings on d-alanylation of LTAs in S. suis and suggest that this pathogen specifically modulates association with blood leukocytes through this modification of its surface.
Collapse
Affiliation(s)
- Sophie Öhlmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Ann-Kathrin Krieger
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
- *Correspondence: Christoph Georg Baums,
| |
Collapse
|
3
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
4
|
Hirt H, Hall JW, Larson E, Gorr SU. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS One 2018; 13:e0194900. [PMID: 29566082 PMCID: PMC5864073 DOI: 10.1371/journal.pone.0194900] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides represent an alternative to traditional antibiotics that may be less susceptible to bacterial resistance mechanisms by directly attacking the bacterial cell membrane. However, bacteria have a variety of defense mechanisms that can prevent cationic antimicrobial peptides from reaching the cell membrane. The L- and D-enantiomers of the antimicrobial peptide GL13K were tested against the Gram-positive bacteria Enterococcus faecalis and Streptococcus gordonii to understand the role of bacterial proteases and cell wall modifications in bacterial resistance. GL13K was derived from the human salivary protein BPIFA2. Minimal inhibitory concentrations were determined by broth dilution and a serial assay used to determine bacterial resistance. Peptide degradation was determined in a bioassay utilizing a luminescent strain of Pseudomonas aeruginosa to detect peptide activity. Autolysis and D-alanylation-deficient strains of E. faecalis and S. gordonii were tested in autolysis assays and peptide activity assays. E. faecalis protease inactivated L-GL13K but not D-GL13K, whereas autolysis did not affect peptide activity. Indeed, the D-enantiomer appeared to kill the bacteria prior to initiation of autolysis. D-alanylation mutants were killed by L-GL13K whereas this modification did not affect killing by D-GL13K. The mutants regained resistance to L-GL13K whereas bacteria did not gain resistance to D-GL13K after repeated treatment with the peptides. D-alanylation affected the hydrophobicity of bacterial cells but hydrophobicity alone did not affect GL13K activity. D-GL13K evades two resistance mechanisms in Gram-positive bacteria without giving rise to substantial new resistance. D-GL13K exhibits attractive properties for further antibiotic development.
Collapse
Affiliation(s)
- Helmut Hirt
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Jeffrey W. Hall
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Elliot Larson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sitkiewicz I. How to become a killer, or is it all accidental? Virulence strategies in oral streptococci. Mol Oral Microbiol 2017; 33:1-12. [PMID: 28727895 DOI: 10.1111/omi.12192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Abstract
Streptococci are a diverse group of Gram-positive microorganisms sharing common virulence traits and similar strategies to escape the oral niche and establish an infection in other parts of the host organism. Invasive infection with oral streptococci is "a perfect storm" that requires the concerted action of multiple biotic and abiotic factors. Our understanding of streptococcal pathogenicity and infectivity should probably be less mechanistic and driven not only by the identification of novel virulence factors. The observed diversity of the genus, including the range of virulence and pathogenicity mechanisms, is most likely the result of interspecies interactions, a massive horizontal gene transfer between streptococci within a shared oral niche, recombination events, selection of specialized clones, and modification of regulatory circuits. Selective pressure by the host and bacterial communities is a driving force for the selection of virulence traits and shaping the streptococcal genome. Global regulatory events driving niche adaptation and interactions with bacterial communities and the host steer research interests towards attempts to define the oral interactome on the transcriptional level and define signal cross-feeding and co-expression and co-regulation of virulence genes.
Collapse
Affiliation(s)
- I Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
6
|
Kamar R, Réjasse A, Jéhanno I, Attieh Z, Courtin P, Chapot-Chartier MP, Nielsen-Leroux C, Lereclus D, El Chamy L, Kallassy M, Sanchis-Borja V. DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects. Front Microbiol 2017; 8:1437. [PMID: 28824570 PMCID: PMC5541007 DOI: 10.3389/fmicb.2017.01437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs.
Collapse
Affiliation(s)
- Rita Kamar
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France.,Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Agnès Réjasse
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Isabelle Jéhanno
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Zaynoun Attieh
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Pascal Courtin
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | | | | | - Didier Lereclus
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Laure El Chamy
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Mireille Kallassy
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Vincent Sanchis-Borja
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| |
Collapse
|
7
|
Ko EB, Kim SK, Seo HS, Yun CH, Han SH. Serine-Rich Repeat Adhesins Contribute to Streptococcus gordonii-Induced Maturation of Human Dendritic Cells. Front Microbiol 2017; 8:523. [PMID: 28408901 PMCID: PMC5374164 DOI: 10.3389/fmicb.2017.00523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the induction of immunity by recognition, capture, process, and presentation of antigens from infectious microbes. Streptococcus gordonii is able to cause life-threatening systemic diseases such as infective endocarditis. Serine-rich repeat (SRR) glycoproteins of S. gordonii are sialic acid-binding adhesins mediating the bacterial adherence to the host and the development of infective endocarditis. Thus, the SRR adhesins are potentially involved in the bacterial adherence to DCs and the maturation and activation of DCs required for the induction of immunity to S. gordonii. Here, we investigated the phenotypic and functional changes of human monocyte-derived DCs treated with wild-type S. gordonii or the SRR adhesin-deficient mutant. The mutant poorly bound to DCs and only weakly increased the expression of CD83, CD86, MHC class II, and PD-L1 on DCs compared with the wild-type. In addition, the mutant induced lower levels of TNF-α, IL-6, and IL-12 than the wild-type in DCs. When DCs sensitized with the mutant were co-cultured with autologous T cells, they induced weaker proliferation and activation of T cells than DCs stimulated with the wild-type. Blockade of SRR adhesin with 3′-sialyllactose markedly reduced S. gordonii binding and internalization, causing attenuation of the bacterial immunostimulatory potency in DC maturation. Collectively, our results suggest that SRR adhesins of S. gordonii are important for maturation and activation of DCs.
Collapse
Affiliation(s)
- Eun Byeol Ko
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National UniversitySeoul, South Korea
| | - Sun Kyung Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National UniversitySeoul, South Korea
| | - Ho Seong Seo
- Biotechnology Research Division, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
8
|
Kim HY, Baik JE, Ahn KB, Seo HS, Yun CH, Han SH. Streptococcus gordonii induces nitric oxide production through its lipoproteins stimulating Toll-like receptor 2 in murine macrophages. Mol Immunol 2016; 82:75-83. [PMID: 28038357 DOI: 10.1016/j.molimm.2016.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Streptococcus gordonii, a Gram-positive commensal in the oral cavity, is an opportunistic pathogen that can cause endodontic and systemic infections resulting in infective endocarditis. Lipoteichoic acid (LTA) and lipoprotein are major virulence factors of Gram-positive bacteria that are preferentially recognized by Toll-like receptor 2 (TLR2) on immune cells. In the present study, we investigated the effect of S. gordonii LTA and lipoprotein on the production of the representative inflammatory mediator nitric oxide (NO) by the mouse macrophages. Heat-killed S. gordonii wild-type and an LTA-deficient mutant (ΔltaS) but not a lipoprotein-deficient mutant (Δlgt) induced NO production in mouse primary macrophages and the cell line, RAW 264.7. S. gordonii wild-type and ΔltaS also induced the expression of inducible NO synthase (iNOS) at the mRNA and protein levels. In contrast, the Δlgt mutant showed little effect under the same condition. Furthermore, S. gordonii wild-type and ΔltaS induced NF-κB activation, STAT1 phosphorylation, and IFN-β expression, which are important for the induction of iNOS gene expression, with little activation by Δlgt. S. gordonii wild-type and ΔltaS showed an increased adherence and internalization to RAW 264.7 cells compared to Δlgt. In addition, S. gordonii wild-type and ΔltaS, but not Δlgt, substantially increased TLR2 activation while none of these induced NO production in TLR2-deficient macrophages. Triton X-114-extracted lipoproteins from S. gordonii were sufficient to induce NO production. Collectively, we suggest that lipoprotein is an essential cell wall component of S. gordonii to induce NO production in macrophages through TLR2 triggering NF-κB and STAT1 activation.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Bum Ahn
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Seong Seo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 34057, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Omardien S, Brul S, Zaat SAJ. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front Cell Dev Biol 2016; 4:111. [PMID: 27790614 PMCID: PMC5063857 DOI: 10.3389/fcell.2016.00111] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/21/2016] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed.
Collapse
Affiliation(s)
- Soraya Omardien
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
10
|
The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 2016; 48:298-304. [DOI: 10.1016/j.ijantimicag.2016.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 11/23/2022]
|
11
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Maria-Neto S, de Almeida KC, Macedo MLR, Franco OL. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3078-88. [PMID: 25724815 DOI: 10.1016/j.bbamem.2015.02.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 11/27/2022]
Abstract
Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Simone Maria-Neto
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Keyla Caroline de Almeida
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil; S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|
14
|
Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS One 2014; 9:e111579. [PMID: 25372402 PMCID: PMC4221044 DOI: 10.1371/journal.pone.0111579] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Infection is one of the most prevalent causes for dental implant failure. We have developed a novel antimicrobial peptide coating on titanium by immobilizing the antimicrobial peptide GL13K. GL13K was developed from the human salivary protein BPIFA2. The peptide exhibited MIC of 8 µg/ml against planktonic Pseudonomas aeruginosa and their biofilms were reduced by three orders of magnitude with 100 µg/ml GL13K. This peptide concentration also killed 100% of Streptococcus gordonii. At 1 mg/ml, GL13K caused less than 10% lysis of human red blood cells, suggesting low toxicity to mammalian cells. Our GL13K coating has also previously showed bactericidal effect and inhibition of biofilm growth against peri-implantitis related pathogens, such as Porphyromonas gingivalis. The GL13K coating was cytocompatible with human fibroblasts and osteoblasts. However, the bioactivity of antimicrobial coatings has been commonly tested under (quasi)static culture conditions that are far from simulating conditions for biofilm formation and growth in the oral cavity. Oral salivary flow over a coating is persistent, applies continuous shear forces, and supplies sustained nutrition to bacteria. This accelerates bacteria metabolism and biofilm growth. In this work, the antimicrobial effect of the coating was tested against Streptococcus gordonii, a primary colonizer that provides attachment for the biofilm accretion by P. gingivalis, using a drip-flow biofilm bioreactor with media flow rates simulating salivary flow. The GL13K peptide coatings killed bacteria and prevented formation and growth of S. gordonii biofilms in the drip-flow bioreactor and under regular mild-agitation conditions. Surprisingly the interaction of the bacteria with the GL13K peptide coatings ruptured the cell wall at their septum or polar areas leaving empty shell-like structures or exposed protoplasts. The cell wall rupture was not detected under regular culture conditions, suggesting that cell wall rupture induced by GL13K peptides also requires media flow and possible attendant biological sequelae of the conditions in the bioreactor.
Collapse
|
15
|
Villéger R, Saad N, Grenier K, Falourd X, Foucat L, Urdaci MC, Bressollier P, Ouk TS. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity. Antonie van Leeuwenhoek 2014; 106:693-706. [PMID: 25090957 PMCID: PMC4158176 DOI: 10.1007/s10482-014-0239-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/17/2014] [Indexed: 02/02/2023]
Abstract
Probiotics represent a potential strategy to influence the host’s immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with d-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure–activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove d-alanine. The molecular structure of native and modified LTAs was determined by 1H NMR and GC–MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their d-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on d-alanine substitutions. d-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.
Collapse
Affiliation(s)
- Romain Villéger
- Laboratoire de Chimie des Substances Naturelles, EA 1069, Antenne IUT, Département Génie Biologique, Allée André Maurois, 87065, Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ming F, Yang J, Chu P, Ma M, Shi J, Cai H, Huang C, Li H, Jiang Z, Wang H, Wang W, Zhang S, Zhang L. Immunization of aged pigs with attenuated pseudorabies virus vaccine combined with CpG oligodeoxynucleotide restores defective Th1 immune responses. PLoS One 2013; 8:e65536. [PMID: 23785433 PMCID: PMC3681863 DOI: 10.1371/journal.pone.0065536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/24/2013] [Indexed: 01/28/2023] Open
Abstract
Background and Aims Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner. Methodology Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses. Results CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation. Conclusions Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination.
Collapse
Affiliation(s)
- Feiping Ming
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun Yang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pinpin Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Miaopeng Ma
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Juqing Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haiming Cai
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaoyuan Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Huazhou Li
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Zhenggu Jiang
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Houguang Wang
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Weifang Wang
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Shuiqing Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linghua Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
17
|
Basler T, Brumshagen C, Beineke A, Goethe R, Bäumer W. Mycobacterium avium subspecies impair dendritic cell maturation. Innate Immun 2013; 19:451-61. [DOI: 10.1177/1753425912470291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne’s disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.
Collapse
Affiliation(s)
- Tina Basler
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Brumshagen
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Bäumer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
18
|
Andrian E, Qi G, Wang J, Halperin SA, Lee SF. Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity. Microbiology (Reading) 2012; 158:2099-2106. [DOI: 10.1099/mic.0.058073-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elisoa Andrian
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - Gaofu Qi
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Scott A. Halperin
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Song F. Lee
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
19
|
Ma M, Wang L, Yang J, Cai H, Shi J, Zhang S, Huang Z, Zhang L. Age-related impaired Th1 responses to PRV vaccine in vivo in aged pigs. Mol Immunol 2012; 52:217-23. [PMID: 22750068 DOI: 10.1016/j.molimm.2012.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Murine model studies have shown that function of the immune system declines with aging, but data on aged pigs are scarce. Many physiological and pathophysiological data of pigs can be transferred to human, research in pigs is important to confirm murine data, therefore, aged pigs were chosen as an aged animal model. In this study, we demonstrated an age-related decline in Th1 responses in vivo to PRV vaccine in the pig model, and this decline in type 1 immune responses was associated with reduced PRV-specific T cell proliferation, IgG2/IgG1, and Th1 cytokines production. More importantly, these impaired Th1 responses correlated with reduced CD4(+) T cells and markedly increased CD4(+)CD8(+) T cells. Taken together, these data demonstrated that there was a decline in Th1 immune responses to PRV vaccine with aging in pigs, which may help to explain the age-related decline in vaccine efficacy and increase in morbidity and mortality of infectious diseases.
Collapse
Affiliation(s)
- Miaopeng Ma
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim H, Jung BJ, Jung JH, Kim JY, Chung SK, Chung DK. Lactobacillus plantarum lipoteichoic acid alleviates TNF-α-induced inflammation in the HT-29 intestinal epithelial cell line. Mol Cells 2012; 33:479-86. [PMID: 22526394 PMCID: PMC3887727 DOI: 10.1007/s10059-012-2266-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 01/04/2023] Open
Abstract
We recently observed that lipoteichoic acid (LTA) isolated from Lactobacillus plantarum inhibited endotoxin-mediated inflammation of the immune cells and septic shock in a mouse model. Here, we examined the inhibitory role of L. plantarum LTA (pLTA) on the inflammatory responses of intestinal epithelial cells (IEC). The human colon cell line, HT-29, increased interleukin (IL)-8 expression in response to recombinant human tumor necrosis factor (TNF)-alpha, but not in response to bacterial ligands and interferon (IFN)-gamma. TNF-α also increased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and intercellular adhesion molecule 1 (ICAM-1) through activation of p38 mitogen-activated protein kinase (MAPK) from HT-29 cells. However, the inflammatory response of HT-29 on TNF-α stimulation was significantly inhibited by pLTA treatment. This pLTA-mediated inhibition accompanied the inhibition of nuclear factor (NF)-kappa B and MAPKs. Our data suggest that pLTA regulates cytokine-mediated immune responses and may be a good candidate for maintaining intestinal homeostasis against excessive inflammation.
Collapse
Affiliation(s)
- Hangeun Kim
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104,
USA
| | - Bong Jun Jung
- School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Ji Hae Jung
- School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Joo Yun Kim
- School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Sung Kyun Chung
- Department of Dental Hygiene, Shinheung College, Uijeongbu 480-701,
Korea
| | - Dae Kyun Chung
- School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
- Skin Biotechnology Center, Kyung Hee University, Yongin 449-701,
Korea
- RNA Inc., College of Life Science, Kyung Hee University, Yongin 449-701,
Korea
| |
Collapse
|
21
|
CpsY influences Streptococcus iniae cell wall adaptations important for neutrophil intracellular survival. Infect Immun 2012; 80:1707-15. [PMID: 22354020 DOI: 10.1128/iai.00027-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of a pathogen to evade neutrophil phagocytic killing mechanisms is critically important for dissemination and establishment of a systemic infection. Understanding how pathogens overcome these innate defenses is essential for the development of optimal therapeutic strategies for invasive infections. CpsY is a conserved transcriptional regulator previously identified as an important virulence determinant for systemic infection of Streptococcus iniae. While orthologs of CpsY have been associated with the regulation of methionine metabolism and uptake pathways, CpsY additionally functions in protection from neutrophil-mediated killing. S. iniae does not alter neutrophil phagosomal maturation but instead is able to adapt to the extreme bactericidal environment of a mature neutrophil phagosome, a property dependent upon CpsY. This CpsY-dependent adaptation appears to involve stabilization of the cell wall through peptidoglycan O-acetylation and repression of cellular autolysins. Furthermore, S. iniae continues to be a powerful model for investigation of bacterial adaptations during systemic streptococcal infection.
Collapse
|
22
|
Mazda Y, Kawada-Matsuo M, Kanbara K, Oogai Y, Shibata Y, Yamashita Y, Miyawaki S, Komatsuzawa H. Association of CiaRH with resistance of Streptococcus mutans to antimicrobial peptides in biofilms. Mol Oral Microbiol 2012; 27:124-35. [DOI: 10.1111/j.2041-1014.2012.00637.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Lecours MP, Gottschalk M, Houde M, Lemire P, Fittipaldi N, Segura M. Critical Role for Streptococcussuis Cell Wall Modifications and Suilysin in Resistance to Complement-Dependent Killing by Dendritic Cells. J Infect Dis 2011; 204:919-29. [DOI: 10.1093/infdis/jir415] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Regulation of d-alanylation of lipoteichoic acid in Streptococcus gordonii. Microbiology (Reading) 2011; 157:2248-2256. [DOI: 10.1099/mic.0.048140-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d-Alanyl esters on lipoteichoic acid (LTA) are involved in adhesion, biofilm formation, resistance to cationic antimicrobial peptides, and immune stimulation. There is evidence that bacteria can modulate the level of d-alanyl esters on LTA in response to challenge, but the mechanism of regulation appears to be different among bacteria. In this study, expression of the dlt operon responsible for d-alanylation of LTA was examined in the commensal bacterium Streptococcus gordonii. dlt expression was assessed using the dlt promoter–lacZ reporter gene assay, LTA d-alanine content measurements and dlt mRNA quantification. The results showed that dlt expression was growth phase-dependent, with the greatest expression at the mid-exponential phase of growth. In contrast to Staphylococcus aureus, dlt expression in Strep. gordonii was not affected by the exogenous addition of Mg2+ or K+. Interestingly, dlt expression was upregulated under acidic conditions or when cells were stressed with polymyxin B, indicating that cell envelope stress may be a signal for dlt expression. In view of these results, mutants defective in the cell envelope stress LiaSR two-component regulatory system were constructed. The liaS and liaR mutants showed an increase in dlt expression over the parent strain at neutral pH. The mutants failed to respond to low pH and polymyxin B stress; dlt expression remained the same in the presence or absence of these stresses. These results suggest that dlt expression in Strep. gordonii is regulated by the LiaSR regulatory system in response to environmental signals such as pH and polymyxin B. The regulation appears to be complex, involving both repression and activation mechanisms.
Collapse
|
25
|
González OA, Ebersole JL, Huang CB. The oral commensal, Streptococcus gordonii, synergizes with Tat protein to induce HIV-1 promoter activation in monocytes/macrophages. Cell Immunol 2011; 269:38-45. [PMID: 21459369 DOI: 10.1016/j.cellimm.2011.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/24/2011] [Accepted: 03/09/2011] [Indexed: 01/02/2023]
Abstract
Trans-activator of transcription (Tat) is an HIV-1 protein essential for viral replication. Oral periodontopathogens (e.g. Fusobacterium nucleatum) enhance HIV-1LTR promoter activation in monocytes/macrophages in absence of Tat; however, some oral commensals fail to trigger this response. We sought to determine the effect of Tat on HIV-1LTR promoter activation induced by the representative oral commensal Streptococcus gordonii in monocytes/macrophages. S. gordonii enhanced HIV-1LTR reactivation in THP89GFP (Tat(+)), but not in BF24 (Tat(-)) cells. Interestingly, S. gordonii, but not Streptococcus sanguinis enhanced HIV-1LTR activation in the presence of recombinant Tat in BF24 cells. This response correlated with IL-8 but not TNFα or IL-6 production, and was abrogated by the NFκB inhibitor BAY 11-7082. Kinetics of NFκB-RelA activation did not explain the S. gordonii-induced HIV-1LTR activation in presence of Tat. These results suggest that S. gordonii-induced HIV-1 reactivation in monocytes/macrophages is Tat-dependent and appears to involve NFκB activation.
Collapse
Affiliation(s)
- Octavio A González
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
26
|
Cao D, Li H, Jiang Z, Cheng Q, Yang Z, Xu C, Cao G, Zhang L. CpG oligodeoxynucleotide synergizes innate defense regulator peptide for enhancing the systemic and mucosal immune responses to pseudorabies attenuated virus vaccine in piglets in vivo. Int Immunopharmacol 2011; 11:748-54. [PMID: 21310256 DOI: 10.1016/j.intimp.2011.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 11/26/2022]
Abstract
Oligonucleotides containing CpG motifs (CpG ODN) are strong adjuvants for humoral and cellular immune responses in mice, and innate defense-regulator peptides (IDRs) are known to facilitate the uptake of antigens into antigen presenting cells (APCs), but data on synergistic effects of CpG and IDRs in piglets are scarce. In this report, the combination of porcine-specific CpG ODN and HH2 (a kind of IDR which was selected for its better synergy with CpG ODN) was used as immunoadjuvant to enhance the immune responses of the newborn piglets to Pseudorabies attenuated virus (PRV) vaccine. The titers of specific antibodies and serum IgG1/IgG2 subtypes to PRV vaccine, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-12 and IL-4 were examined to identify the immune responses of the newborn piglets. The results showed that piglets immunized intranasally (IN) and subcutaneously (SC) with PRV vaccine and CpG-HH2 complex both presented high titers of PRV-specific antibodies and IgG2 isotype, a Th1-dominated (IFN-γ and IL-12) cytokine profiles, high levels of IgA in saliva, broncheoalveolar lavage (BAL) and intestinal washings. The results suggested that, CpG-HH2 complex augmented systemic (IgG in serum) and mucosal (IgA in saliva, BAL and intestinal washings) immune responses against antigen. CpG-HH2 complex stimulated both T-helper type1 (Th1) (IgG2) and Th2 (IgA) responses when delivered IN, and IN route could induce stronger mucosal immune responses than SC route. All these data indicate that CpG-HH2 complex is a potential effective adjuvant for the PRV vaccine in newborn piglets.
Collapse
Affiliation(s)
- Ding Cao
- College of Life Sciences, South China Agricultural University, Wushan Road, Guangzhou, GuangDong, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Role of the cell wall microenvironment in expression of a heterologous SpaP-S1 fusion protein by Streptococcus gordonii. Appl Environ Microbiol 2010; 77:1660-6. [PMID: 21193663 DOI: 10.1128/aem.02178-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The charge density in the cell wall microenvironment of Gram-positive bacteria is believed to influence the expression of heterologous proteins. To test this, the expression of a SpaP-S1 fusion protein, consisting of the surface protein SpaP of Streptococcus mutans and a pertussis toxin S1 fragment, was studied in the live vaccine candidate bacterium Streptococcus gordonii. Results showed that the parent strain PM14 expressed very low levels of SpaP-S1. By comparison, the dlt mutant strain, which has a mutation in the dlt operon preventing d-alanylation of the cell wall lipoteichoic acids, and another mutant strain, OB219(pPM14), which lacks the LPXTG major surface proteins SspA and SspB, expressed more SpaP-S1 than the parent. Both the dlt mutant and the OB219(pPM14) strain had a more negatively charged cell surface than PM14, suggesting that the negative charged cell wall played a role in the increase in SpaP-S1 production. Accordingly, the addition of Ca(2+), Mg(2+), and K(+), presumably increasing the positive charge of the cell wall, led to a reduction in SpaP-S1 production, while the addition of bicarbonate resulted in an increase in SpaP-S1 production. The level of SpaP-S1 production could be correlated with the level of PrsA, a peptidyl-prolyl cis/trans isomerase, in the cells. PrsA expression appears to be regulated by the cell envelope stress two-component regulatory system LiaSR. The results collectively indicate that the charge density of the cell wall microenvironment can modulate heterologous SpaP-S1 protein expression in S. gordonii and that this modulation is mediated by the level of PrsA, whose expression is regulated by the LiaSR two-component regulatory system.
Collapse
|
28
|
Reimundo P, Menéndez A, Méndez J, Pérez-Pascual D, Navais R, Gómez E, Braña A, Guijarro J. dltA gene mutation in the teichoic acids alanylation system of Lactococcus garvieae results in diminished proliferation in its natural host. Vet Microbiol 2010; 143:434-9. [DOI: 10.1016/j.vetmic.2009.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
|
29
|
Shiratsuchi A, Shimizu K, Watanabe I, Hashimoto Y, Kurokawa K, Razanajatovo IM, Park KH, Park HK, Lee BL, Sekimizu K, Nakanishi Y. Auxiliary role for D-alanylated wall teichoic acid in Toll-like receptor 2-mediated survival of Staphylococcus aureus in macrophages. Immunology 2009; 129:268-77. [PMID: 19845797 DOI: 10.1111/j.1365-2567.2009.03168.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We previously reported that Staphylococcus aureus avoids killing within macrophages by exploiting the action of Toll-like receptor 2 (TLR2), which leads to the c-Jun N-terminal kinase (JNK)-mediated inhibition of superoxide production. To search for bacterial components responsible for this event, a series of S. aureus mutants, in which the synthesis of the cell wall was interrupted, were screened for the level of JNK activation in macrophages. In addition to a mutant lacking the lipoproteins that have been suggested to act as a TLR2 ligand, two mutant strains were found to activate the phosphorylation of JNK to a lesser extent than the parental strain, and this defect was recovered by acquisition of the corresponding wild-type genes. Macrophages that had phagocytosed the mutant strains produced more superoxide than those engulfing the parental strain, and the mutant bacteria were more efficiently killed in macrophages than the parent. The genes mutated, dltA and tagO, encoded proteins involved in the synthesis of D-alanylated wall teichoic acid. Unlike a cell wall fraction rich in lipoproteins, D-alanine-bound wall teichoic acid purified from the parent strain by itself did not activate JNK phosphorylation in macrophages. These results suggest that the d-alanylated wall teichoic acid of S. aureus modulates the cell wall milieu for lipoproteins so that they effectively serve as a ligand for TLR2.
Collapse
Affiliation(s)
- Akiko Shiratsuchi
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kindrachuk J, Jenssen H, Elliott M, Townsend R, Nijnik A, Lee SF, Gerdts V, Babiuk LA, Halperin SA, Hancock REW. A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine 2009; 27:4662-71. [PMID: 19539585 DOI: 10.1016/j.vaccine.2009.05.094] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 11/25/2022]
Abstract
There has been an increased demand for the development of novel vaccine adjuvants that lead to enhanced induction of protection from infectious challenges and development of immunological memory. A novel vaccine adjuvant was developed comprising a complex containing CpG oligonucleotide and the synthetic cationic innate defence regulator peptide HH2 that has enhanced immune modulating activities. The complex of HH2 and the CpG oligonucleotide 10101 was a potent inducer of cytokine/chemokine expression ex vivo, retained activity following extended storage, had low associated cytotoxicity, and upregulated surface marker expression in dendritic cells, a critical activity for a vaccine adjuvant. Immunization of mice with a coformulation of the HH2-CpG complex and pertussis toxoid significantly enhanced the induction of toxoid-specific antibody titres when compared to toxoid alone, inducing high titres of IgG1 and IgG2a, typical of a balanced Th1/Th2 response, and also led to high IgA titres. This study demonstrates the potential application of the HH2-CpG complex as a vaccine adjuvant.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mayer ML, Phillips CM, Townsend RA, Halperin SA, Lee SF. Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii. Scand J Immunol 2009; 69:351-6. [PMID: 19284500 DOI: 10.1111/j.1365-3083.2009.02232.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oral commensal bacterium Streptococcus gordonii has been gathering interest as a candidate live mucosal vaccine delivery vector. S. gordonii has been shown to be capable of activating antigen presenting immune cells in a manner which leads to their activation and maturation, yet the mechanism used by S. gordonii to do so is poorly understood. The aim of this work was to investigate the immunostimulatory components of S. gordonii in inducing murine dendritic cell (DC) activation and maturation. Lipoteichoic acid (LTA), lipoprotein (LP), peptidoglycan (PGN), and DNA were isolated from S. gordonii, and used to stimulate murine DC. Cytokine production and DC surface marker upregulation in response to the bacterial components was quantified by enzyme-linked immunosorbent assay and flow cytometry respectively. The results were contrasted against data obtained from DC derived from MyD88, TRIF [TIR(Toll/Interleukin-1 Receptor)-domain-containing adapter-inducing interferon-beta] or toll-like receptor-2 (TLR-2) knockout mice. The four S. gordonii bacterial components were found to differentially induce cytokine production and surface marker upregulation by murine DC. Activation of DC by both whole S. gordonii cells and the four bacterial components was abrogated in the absence of MyD88, but not in the absence of TRIF. LTA, LP and PGN, but not DNA and whole S. gordonii, required TLR-2 to induce a DC response. The results collectively indicate that S. gordonii activates DC predominantly through a MyD88-dependent and TRIF-independent pathway. This activation can be attributed to multiple immunostimulatory components present within S. gordonii bacterial cells.
Collapse
Affiliation(s)
- M L Mayer
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
32
|
Mayer ML, Phillips CM, Stadnyk AW, Halperin SA, Lee SF. Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor. Mol Immunol 2009; 46:1883-91. [PMID: 19278729 DOI: 10.1016/j.molimm.2009.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 12/29/2022]
Abstract
Streptococcus gordonii, a potential mucosal vaccine delivery vector, is proficient at colonizing murine oral mucosa; however, it often fails to elicit significant antibody titers against its vaccine antigen payloads. The poor response may be due to an inability of S. gordonii to elicit cytokines needed to suppress mucosal tolerance; exogenously supplied cytokines, such as TNF, could overcome this effect. To test this, murine bone marrow-derived dendritic cells (BM-DCs) were stimulated with UV-killed S. gordonii PM14, that surface expresses a fragment of the immunodominant S1 subunit of pertussis toxin. Peptidoglycan (PGN), lipoteichoic acid (LTA), lipoprotein (LP), and DNA were also isolated from the bacteria, and used to stimulate BM-DCs. Stimulation with TNF, S. gordonii, PGN, LTA, or LP all resulted in increased surface expression of MHCII, CD80, and CD86, compared to unstimulated BM-DCs. Stimulation with S. gordonii elicited IL-6, IL-10, and IL-12p70 production from the BM-DCs, while stimulation with the bacterial components induced some or all of the three cytokines. When BM-DCs were simultaneously stimulated with S. gordonii and TNF, a marginal increase in surface marker upregulation was observed, and the two stimuli synergized to elicit substantially greater quantities of IL-6, IL-10, and IL-12p70. Synergy between TNF and the purified bacterial components was also observed. The effect of TNF was abolished when BM-DCs were obtained from mice deficient for either TNFR1 or TNFR2, and cytokine induction by S. gordonii was entirely dependent on functional MyD88. Synergistic IL-10 induction by S. gordonii and TNF was not observed in TLR-2(-/-) BM-DCs, and TNF was found to cause TLR-2 upregulation, providing at least a partial mechanism for the observed synergy. When S. gordonii and TNF were used to immunize mice, a more robust anti-S. gordonii IgG response was elicited as compared to immunization with S. gordonii alone. However, the addition of TNF did not result in stronger responses against the antigenic insert (S1 fragment) in immunized mice. These findings collectively demonstrate that TNF is able to prime BM-DCs to better respond to S. gordonii, through a mechanism at least partially involving TLR-2 upregulation.
Collapse
Affiliation(s)
- Matthew L Mayer
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
33
|
Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection. Infect Immun 2008; 77:694-8. [PMID: 19015247 DOI: 10.1128/iai.01004-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Treponema denticola is considered to be an agent strongly associated with periodontal disease. The lack of an animal infection model has hampered the understanding of T. denticola pathogenesis and the host's immune response to infection. In this study, we have established an oral infection model in mice, demonstrating that infection by oral inoculation is feasible. The presence of T. denticola in the oral cavities of the animals was confirmed by PCR. Mice given T. denticola developed a specific immune response to the bacterium. The antibodies generated from the infection were mainly of the immunoglobulin G1 subclass, indicating a Th2-tilted response. The antibodies recognized 11 T. denticola proteins, of which a 62-kDa and a 53-kDa protein were deemed immunodominant. The two proteins were identified, respectively, as dentilisin and the major outer sheath protein by mass spectrometry. Splenocytes cultured from the infected mice no longer produced interleukin-10 and produced markedly reduced levels of gamma interferon relative to those produced by naïve splenocytes upon stimulation with T. denticola. Mandibles of infected mice showed significantly greater bone resorption (P < 0.01) than those of mock-infected controls.
Collapse
|
34
|
Henneke P, Dramsi S, Mancuso G, Chraibi K, Pellegrini E, Theilacker C, Hübner J, Santos-Sierra S, Teti G, Golenbock DT, Poyart C, Trieu-Cuot P. Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. THE JOURNAL OF IMMUNOLOGY 2008; 180:6149-58. [PMID: 18424736 DOI: 10.4049/jimmunol.180.9.6149] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Group B streptococcus (GBS) is the most important cause of neonatal sepsis, which is mediated in part by TLR2. However, GBS components that potently induce cytokines via TLR2 are largely unknown. We found that GBS strains of the same serotype differ in released factors that activate TLR2. Several lines of genetic and biochemical evidence indicated that lipoteichoic acid (LTA), the most widely studied TLR2 agonist in Gram-positive bacteria, was not essential for TLR2 activation. We thus examined the role of GBS lipoproteins in this process by inactivating two genes essential for bacterial lipoprotein (BLP) maturation: the prolipoprotein diacylglyceryl transferase gene (lgt) and the lipoprotein signal peptidase gene (lsp). We found that Lgt modification of the N-terminal sequence called lipobox was not critical for Lsp cleavage of BLPs. In the absence of lgt and lsp, lipoprotein signal peptides were processed by the type I signal peptidase. Importantly, both the Deltalgt and the Deltalsp mutant were impaired in TLR2 activation. In contrast to released factors, fixed Deltalgt and Deltalsp GBS cells exhibited normal inflammatory activity indicating that extracellular toxins and cell wall components activate phagocytes through independent pathways. In addition, the Deltalgt mutant exhibited increased lethality in a model of neonatal GBS sepsis. Notably, LTA comprised little, if any, inflammatory potency when extracted from Deltalgt GBS. In conclusion, mature BLPs, and not LTA, are the major TLR2 activating factors from GBS and significantly contribute to GBS sepsis.
Collapse
Affiliation(s)
- Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, University Medical Centre Freiburg, Mathildenstrasse 1, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
D-alanylation of lipoteichoic acid contributes to the virulence of Streptococcus suis. Infect Immun 2008; 76:3587-94. [PMID: 18474639 DOI: 10.1128/iai.01568-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We generated by allelic replacement a DeltadltA mutant of a virulent Streptococcus suis serotype 2 field strain and evaluated the contribution of lipoteichoic acid (LTA) d-alanylation to the virulence traits of this swine pathogen and zoonotic agent. The absence of LTA D-alanylation resulted in increased susceptibility to the action of cationic antimicrobial peptides. In addition, and in contrast to the wild-type strain, the DeltadltA mutant was efficiently killed by porcine neutrophils and showed diminished adherence to and invasion of porcine brain microvascular endothelial cells. Finally, the DeltadltA mutant was attenuated in both the CD1 mouse and porcine models of infection, probably reflecting a decreased ability to escape immune clearance mechanisms and an impaired capacity to move across host barriers. The results of this study suggest that LTA D-alanylation is an important factor in S. suis virulence.
Collapse
|
36
|
Expression of a functional single-chain variable-fragment antibody against complement receptor 1 in Streptococcus gordonii. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:925-31. [PMID: 18385459 DOI: 10.1128/cvi.00500-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus gordonii, an oral commensal organism, is a candidate vector for oral-vaccine development. Previous studies have shown that recombinant S. gordonii expressing heterologous antigens was weakly immunogenic when delivered intranasally. In this study, antigen was specifically targeted to antigen-presenting cells (APC) in order to potentiate antigen-APC interactions and increase the humoral immune response to the antigen. To achieve this goal, a single-chain variable-fragment (scFv) antibody against complement receptor 1 (CR1) was constructed. Anti-CR1 scFv purified from Escherichia coli was able to bind to mouse mixed lymphocytes and bone marrow-derived dendritic cells. The in vivo function of the anti-CR1 scFv protein was assessed by immunizing mice intranasally with soluble scFv and determining the immune response against the hemagglutinin (HA) peptide located on the carboxy terminus of the scFv. The serum anti-HA immunoglobulin G (IgG) immune response was dose dependent; as little as 100 ng of anti-CR1 scFv induced a significant IgG immune response, while such a response was minimal when the animals were given an unrelated scFv. The anti-CR1 scFv was expressed in S. gordonii as a secreted protein, which was functional, as it bound to dendritic cells. Mice orally colonized by the anti-CR1-secreting S. gordonii produced an anti-HA IgG immune response, indicating that such an approach can be used to increase the immune response to antigens produced by this bacterium.
Collapse
|
37
|
A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J Bacteriol 2008; 190:2379-87. [PMID: 18245291 DOI: 10.1128/jb.01795-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipoteichoic acid (LTA) is an essential bacterial membrane polysaccharide (cell wall component) that is attached to the membrane via a lipid anchor. According to the currently accepted structure of pneumococcal LTA, the polysaccharide is comprised of several repeating units, each of which starts with glucose and ends with ribitol, with the lipid anchor predicted to be Glc(beta1-->3)AATGal(beta1-->3)Glc(alpha1-->3)-acyl(2)Gro, where AATGal is 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose. However, this lipid anchor has not been detected in pneumococcal membranes. Furthermore, the currently accepted structure does not explain the Forssman antigen properties of LTA and predicts a molecular weight for LTA that is larger than its actual observed molecular weight. To resolve these problems, we used mass spectrometry to analyze the structure of LTA isolated from several pneumococcal strains. Our study found that the R36A pneumococcal strain produces LTA that is more representative of pneumococci than that previously characterized from the R6 strain. Analysis of LTA fragments obtained after hydrofluoric acid and nitrous treatments showed that the fragments were consistent with an LTA nonreducing terminus consisting of GalNAc(alpha1-->3)GalNAc(beta1-->, which is the minimal structure for the Forssman antigen. Based on these data, we propose a revised model of LTA structure: its polysaccharide repeating unit begins with GalNAc and ends with AATGal, and its lipid anchor is Glc(alpha1-->3)-acyl(2)Gro, a common lipid anchor found in pneumococcal membranes. This new model accurately predicts the observed molecular weights. The revised model should facilitate investigation of the relationship between LTA's structure and its function.
Collapse
|