1
|
Ishizaki T, Asada M, Hakimi H, Chaiyawong N, Kegawa Y, Yahata K, Kaneko O. cAMP-dependent protein kinase regulates secretion of apical membrane antigen 1 (AMA1) in Plasmodium yoelii. Parasitol Int 2021; 85:102435. [PMID: 34390881 DOI: 10.1016/j.parint.2021.102435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Malaria remains a heavy global burden on human health, and it is important to understand the molecular and cellular biology of the parasite to find targets for drug and vaccine development. The mouse malaria model is an essential tool to characterize the function of identified molecules; however, robust technologies for targeted gene deletions are still poorly developed for the widely used rodent malaria parasite, Plasmodium yoelii. To overcome this problem, we established a DiCre-loxP inducible knockout (iKO) system in P. yoelii, which showed more than 80% excision efficacy of the target locus and more than 90% reduction of locus transcripts 24 h (one cell cycle) after RAP administration. Using this developed system, cAMP-dependent protein kinase (PKAc) was inducibly disrupted and the phenotypes of the resulting PKAc-iKO parasites were analyzed. We found that PKAc-iKO parasites showed severe growth and erythrocyte invasion defects. We also found that disruption of PKAc impaired the secretion of AMA1 in P. yoelii, in contrast to a report showing no role of PKAc in AMA1 secretion in P. falciparum. This discrepancy may be related to the difference in the timing of AMA1 distribution to the merozoite surface, which occurs just after egress for P. falciparum, but after several minutes for P. yoelii. Secretions of PyEBL, Py235, and RON2 were not affected by the disruption of PKAc in P. yoelii. PyRON2 was already secreted to the merozoite surface immediately after merozoite egress, which is inconsistent with the current model that RON2 is injected into the erythrocyte cytosol. Further investigations are required to understand the role of RON2 exposed on the merozoite surface.
Collapse
Affiliation(s)
- Takahiro Ishizaki
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate school of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | - Masahito Asada
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate school of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Obihiro, Hokkaido 080-0834, Japan.
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College station, TX 77843, USA.
| | - Nattawat Chaiyawong
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate school of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuto Kegawa
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate school of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Section on Integrative Biophysics, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institute of Health, 9000 Rockville Pike, Bethesda, Mary land 20892, USA
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Osamu Kaneko
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate school of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
2
|
Singh K, Burkhardt M, Nakuchima S, Herrera R, Muratova O, Gittis AG, Kelnhofer E, Reiter K, Smelkinson M, Veltri D, Swihart BJ, Shimp R, Nguyen V, Zhang B, MacDonald NJ, Duffy PE, Garboczi DN, Narum DL. Structure and function of a malaria transmission blocking vaccine targeting Pfs230 and Pfs230-Pfs48/45 proteins. Commun Biol 2020; 3:395. [PMID: 32709983 PMCID: PMC7381611 DOI: 10.1038/s42003-020-01123-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins Pfs230 and Pfs48/45 are Plasmodium falciparum transmission-blocking (TB) vaccine candidates that form a membrane-bound protein complex on gametes. The biological role of Pfs230 or the Pfs230-Pfs48/45 complex remains poorly understood. Here, we present the crystal structure of recombinant Pfs230 domain 1 (Pfs230D1M), a 6-cysteine domain, in complex with the Fab fragment of a TB monoclonal antibody (mAb) 4F12. We observed the arrangement of Pfs230 on the surface of macrogametes differed from that on microgametes, and that Pfs230, with no known membrane anchor, may exist on the membrane surface in the absence of Pfs48/45. 4F12 appears to sterically interfere with Pfs230 function. Combining mAbs against different epitopes of Pfs230D1 or of Pfs230D1 and Pfs48/45, significantly increased TB activity. These studies elucidate a mechanism of action of the Pfs230D1 vaccine, model the functional activity induced by a polyclonal antibody response and support the development of TB vaccines targeting Pfs230D1 and Pfs230D1-Pfs48/45. With the aim to advance the development of a P. falciparum transmission blocking vaccine, Singh et al. determine the crystal structure of Pfs230D1 in complex with the Fab fragment of TB mAb 4F12. They further study the cellular localization of Pfs230 on the surface of sexual stages of parasites and the effect of combining TB mAbs against Pfs230 and Pfs48/45.
Collapse
Affiliation(s)
- Kavita Singh
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Sofia Nakuchima
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Emily Kelnhofer
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20814, USA
| | - Daniel Veltri
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD, 20852, USA
| | - Bruce J Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD, 20852, USA
| | - Richard Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Horta MF, Andrade LO, Martins-Duarte ÉS, Castro-Gomes T. Cell invasion by intracellular parasites - the many roads to infection. J Cell Sci 2020; 133:133/4/jcs232488. [PMID: 32079731 DOI: 10.1242/jcs.232488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.
Collapse
Affiliation(s)
- Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Luciana Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Érica Santos Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| |
Collapse
|
4
|
Siau A, Huang X, Loh HP, Zhang N, Meng W, Sze SK, Renia L, Preiser P. Immunomic Identification of Malaria Antigens Associated With Protection in Mice. Mol Cell Proteomics 2019; 18:837-853. [PMID: 30718293 DOI: 10.1074/mcp.ra118.000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/22/2019] [Indexed: 11/06/2022] Open
Abstract
Efforts to develop vaccines against malaria represent a major research target. The observations that 1) sterile protection can be obtained when the host is exposed to live parasites and 2) the immunity against blood stage parasite is principally mediated by protective antibodies suggest that a protective vaccine is feasible. However, only a small number of proteins have been investigated so far and most of the Plasmodium proteome has yet to be explored. To date, only few immunodominant antigens have emerged for testing in clinical trials but no formulation has led to substantial protection in humans. The nature of parasite molecules associated with protection remains elusive. Here, immunomic screening of mice immune sera with different protection efficiencies against the whole parasite proteome allowed us to identify a large repertoire of antigens validated by screening a library expressing antigens. The calculation of weighted scores reflecting the likelihood of protection of each antigen using five predictive criteria derived from immunomic and proteomic data sets, highlighted a priority list of protective antigens. Altogether, the approach sheds light on conserved antigens across Plasmodium that are amenable to targeting by the host immune system upon merozoite invasion and blood stage development. Most of these antigens have preliminary protection data but have not been widely considered as candidate for vaccine trials, opening new perspectives that overcome the limited choice of immunodominant, poorly protective vaccines currently being the focus of malaria vaccine researches.
Collapse
Affiliation(s)
- Anthony Siau
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| | - Ximei Huang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Han Ping Loh
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Neng Zhang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Wei Meng
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Siu Kwan Sze
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Laurent Renia
- §Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore
| | - Peter Preiser
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| |
Collapse
|
5
|
Buitrago SP, Garzón-Ospina D, Patarroyo MA. Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J 2016; 15:501. [PMID: 27756311 PMCID: PMC5069803 DOI: 10.1186/s12936-016-1563-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/12/2022] Open
Abstract
Background Designing a vaccine against Plasmodium vivax has focused on selecting antigens involved in invasion mechanisms that must have domains with low polymorphism for avoiding allele-specific immune responses. The rhoptry neck protein 4 (RON4) forms part of the tight junction, which is essential in the invasion of hepatocytes and/or erythrocytes; however, little is known about this locus’ genetic diversity. Methods DNA sequences from 73 Colombian clinical isolates from pvron4 gene were analysed for characterizing their genetic diversity; pvron4 haplotype number and distribution, as well as the evolutionary forces determining diversity pattern, were assessed by population genetics and molecular evolutionary approaches. Results ron4 has low genetic diversity in P. vivax at sequence level; however, a variable amount of tandem repeats at the N-terminal region leads to extensive size polymorphism. This region seems to be exposed to the immune system. The central region has a putative esterase/lipase domain which, like the protein’s C-terminal fragment, is highly conserved at intra- and inter-species level. Both regions are under purifying selection. Conclusions pvron4 is the locus having the lowest genetic diversity described to date for P. vivax. The repeat regions in the N-terminal region could be associated with immune evasion mechanisms while the central region and the C-terminal region seem to be under functional or structural constraint. Bearing such results in mind, the PvRON4 central and/or C-terminal portions represent promising candidates when designing a subunit-based vaccine as they are aimed at avoiding an allele-specific immune response, which might limit vaccine efficacy. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1563-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sindy P Buitrago
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia.,Microbiology Postgraduate Program, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Diego Garzón-Ospina
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.
| |
Collapse
|
6
|
Hierarchical phosphorylation of apical membrane antigen 1 is required for efficient red blood cell invasion by malaria parasites. Sci Rep 2016; 6:34479. [PMID: 27698395 PMCID: PMC5048298 DOI: 10.1038/srep34479] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/08/2016] [Indexed: 12/03/2022] Open
Abstract
Central to the pathogenesis of malaria is the proliferation of Plasmodium falciparum parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and host cell. One key ligand, Apical Membrane Antigen 1 (AMA1), is a leading blood-stage vaccine and previous work indicates that phosphorylation of its cytoplasmic domain (CPD) is important to its function during invasion. Here we investigate the significance of each of the six available phospho-sites in the CPD. We confirm that the cyclic AMP/protein kinase A (PKA) signalling pathway elicits a phospho-priming step upon serine 610 (S610), which enables subsequent phosphorylation in vitro of a conserved, downstream threonine residue (T613) by glycogen synthase kinase 3 (GSK3). Both phosphorylation steps are required for AMA1 to function efficiently during invasion. This provides the first evidence that the functions of key invasion ligands of the malaria parasite are regulated by sequential phosphorylation steps.
Collapse
|
7
|
Identification and Characterization of the Rhoptry Neck Protein 2 in Babesia divergens and B. microti. Infect Immun 2016; 84:1574-1584. [PMID: 26953328 DOI: 10.1128/iai.00107-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/01/2016] [Indexed: 01/07/2023] Open
Abstract
Apicomplexan parasites include those of the genera Plasmodium, Cryptosporidium, and Toxoplasma and those of the relatively understudied zoonotic genus Babesia In humans, babesiosis, particularly transfusion-transmitted babesiosis, has been emerging as a major threat to public health. Like malaria, the disease pathology is a consequence of the parasitemia which develops through cyclical replication of Babesia parasites in host erythrocytes. However, there are no exoerythrocytic stages in Babesia, so targeting of the blood stage and associated proteins to directly prevent parasite invasion is the most desirable option for effective disease control. Especially promising among such molecules are the rhoptry neck proteins (RONs), whose homologs have been identified in many apicomplexan parasites. RONs are involved in the formation of the moving junction, along with AMA1, but no RON has been identified and characterized in any Babesia spp. Here we identify the RON2 proteins of Babesia divergens (BdRON2) and B. microti (BmRON2) and show that they are localized apically and that anti-BdRON2 antibodies are significant inhibitors of parasite invasion in vitro Neither protein is immunodominant, as both proteins react only marginally with sera from infected animals. Further characterization of the direct role of both BdRON2 and BmRON2 in parasite invasion is required, but knowledge of the level of conformity of RON2 proteins within the apicomplexan phylum, particularly that of the AMA1-RON2 complex at the moving junction, along with the availability of an animal model for B. microti studies, provides a key to target this complex with a goal of preventing the erythrocytic invasion of these parasites and to further our understanding of the role of these conserved ligands in invasion.
Collapse
|
8
|
Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol 2016; 32:284-295. [DOI: 10.1016/j.pt.2015.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
|
9
|
Expression and localization of rhoptry neck protein 5 in merozoites and sporozoites of Plasmodium yoelii. Parasitol Int 2014; 63:794-801. [DOI: 10.1016/j.parint.2014.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 11/23/2022]
|
10
|
Chen L, Xu Y, Healer J, Thompson JK, Smith BJ, Lawrence MC, Cowman AF. Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. eLife 2014; 3. [PMID: 25296023 PMCID: PMC4356141 DOI: 10.7554/elife.04187] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023] Open
Abstract
Plasmodium falciparum causes the most severe form of malaria in humans and is responsible for over 700,000 deaths annually. It is an obligate intracellular parasite and invades erythrocytes where it grows in a relatively protected niche. Invasion of erythrocytes is essential for parasite survival and this involves interplay of multiple protein–protein interactions. One of the most important interactions is binding of parasite invasion ligand families EBLs and PfRhs to host receptors on the surface of erythrocytes. PfRh5 is the only essential invasion ligand within the PfRh family and is an important vaccine candidate. PfRh5 binds the host receptor basigin. In this study, we have determined the crystal structure of PfRh5 using diffraction data to 2.18 Å resolution. PfRh5 exhibits a novel fold, comprising nine mostly anti-parallel α-helices encasing an N-terminal β-hairpin, with the overall shape being an elliptical disk. This is the first three-dimensional structure determined for the PfRh family of proteins.
Collapse
Affiliation(s)
- Lin Chen
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Yibin Xu
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Julie Healer
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jenny K Thompson
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Brian J Smith
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Michael C Lawrence
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Alan F Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
11
|
Risco-Castillo V, Topçu S, Son O, Briquet S, Manzoni G, Silvie O. CD81 is required for rhoptry discharge during host cell invasion by Plasmodium yoelii sporozoites. Cell Microbiol 2014; 16:1533-48. [PMID: 24798694 DOI: 10.1111/cmi.12309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/29/2014] [Indexed: 11/30/2022]
Abstract
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and first infect the liver of their mammalian host, where they develop as liver stages before the onset of erythrocytic infection and malaria symptoms. Sporozoite entry into hepatocytes is an attractive target for anti-malarial prophylactic strategies but remains poorly understood at the molecular level. Apicomplexan parasites invade host cells by forming a parasitophorous vacuole that is essential for parasite development, a process that involves secretion of apical organelles called rhoptries. We previously reported that the host membrane protein CD81 is required for infection by Plasmodium falciparum and Plasmodium yoelii sporozoites. CD81 acts at an early stage of infection, possibly at the entry step, but the mechanisms involved are still unknown. To investigate the role of CD81 during sporozoite entry, we generated transgenic P. yoelii parasites expressing fluorescent versions of three known rhoptry proteins, RON2, RON4 and RAP2/3. We observed that RON2 and RON4 are lost following rhoptry discharge during merozoite and sporozoite entry. In contrast, our data indicate that RAP2/3 is secreted into the parasitophorous vacuole during infection. We further show that sporozoite rhoptry discharge occurs only in the presence of CD81, providing the first direct evidence for a role of CD81 during sporozoite productive invasion.
Collapse
Affiliation(s)
- Veronica Risco-Castillo
- Sorbonne Universités, UPMC Univ Paris 06, UMRS CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013, Paris, France; INSERM, U1135, CIMI-Paris, F-75013, Paris, France; CNRS, ERL 8255, CIMI-Paris, F-75013, Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog 2014; 10:e1004273. [PMID: 25232721 PMCID: PMC4169498 DOI: 10.1371/journal.ppat.1004273] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Daniel Bargieri
- Institut Pasteur, Malaria Biology and Genetics Unit, Department of Parasitology and Mycology, Paris, France
| | - Vanessa Lagal
- Institut Cochin, Laboratory Barriers and Pathogens, INSERM U-1016, CNRS UMR-8104, University of Paris Descartes, Paris, France
| | - Nicole Andenmatten
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Isabelle Tardieux
- Institut Cochin, Laboratory Barriers and Pathogens, INSERM U-1016, CNRS UMR-8104, University of Paris Descartes, Paris, France
| | - Markus Meissner
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Ménard
- Institut Pasteur, Malaria Biology and Genetics Unit, Department of Parasitology and Mycology, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Harvey KL, Yap A, Gilson PR, Cowman AF, Crabb BS. Insights and controversies into the role of the key apicomplexan invasion ligand, Apical Membrane Antigen 1. Int J Parasitol 2014; 44:853-7. [PMID: 25157917 DOI: 10.1016/j.ijpara.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Apicomplexan parasites are obligate intracellular pathogens that cause a host of human and animal diseases. These parasites have developed a universal mechanism of invasion involving formation of a 'moving junction' that provides a stable anchoring point through which the parasite invades host cells. The composition of the moving junction, particularly the presence of the protein Apical Membrane Antigen 1 (AMA1), has recently been the subject of some controversy. In this commentary we review findings that led to the current model of the moving junction complex and dissect the major conflicts to determine whether a substantial reassessment of the role of AMA1 is justified.
Collapse
Affiliation(s)
- Katherine L Harvey
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan Yap
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Infection and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Paul R Gilson
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Alan F Cowman
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Infection and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Brendan S Crabb
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Immunology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
14
|
Takemae H, Sugi T, Kobayashi K, Gong H, Ishiwa A, Recuenco FC, Murakoshi F, Iwanaga T, Inomata A, Horimoto T, Akashi H, Kato K. Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular β-tubulin. Sci Rep 2013; 3:3199. [PMID: 24217438 PMCID: PMC3824165 DOI: 10.1038/srep03199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/24/2013] [Indexed: 02/02/2023] Open
Abstract
Toxoplasma rhoptry neck protein 4 (TgRON4) is a component of the moving junction macromolecular complex that plays a central role during invasion. TgRON4 is exposed on the cytosolic side of the host cell during invasion, but its molecular interactions remain unclear. Here, we identified host cellular β-tubulin as a binding partner of TgRON4, but not Plasmodium RON4. Coimmunoprecipitation studies in mammalian cells demonstrated that the C-terminal 15-kDa region of β-tubulin was sufficient for binding to TgRON4, and that a 17-kDa region in the proximal C-terminus of TgRON4 was required for binding to the C-terminal region of β-tubulin. Analysis of T. gondii-infected lysates from CHO cells expressing the TgRON4-binding region showed that the C-terminal region of β-tubulin interacted with TgRON4 at early invasion step. Our results provide evidence for a parasite-specific interaction between TgRON4 and the host cell cytoskeleton in parasite-infected cells.
Collapse
Affiliation(s)
- Hitoshi Takemae
- 1] National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan [2] Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, Kappe SHI. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics 2013; 12:1127-43. [PMID: 23325771 DOI: 10.1074/mcp.m112.024505] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage of infection.
Collapse
Affiliation(s)
- Scott E Lindner
- Malaria Program, Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Zuccala ES, Gout AM, Dekiwadia C, Marapana DS, Angrisano F, Turnbull L, Riglar DT, Rogers KL, Whitchurch CB, Ralph SA, Speed TP, Baum J. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. PLoS One 2012; 7:e46160. [PMID: 23049965 PMCID: PMC3458004 DOI: 10.1371/journal.pone.0046160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.
Collapse
Affiliation(s)
- Elizabeth S. Zuccala
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander M. Gout
- Bioinformatics Divisions, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chaitali Dekiwadia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Danushka S. Marapana
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Fiona Angrisano
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Lynne Turnbull
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - David T. Riglar
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L. Rogers
- Imaging Facility, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Cynthia B. Whitchurch
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Terence P. Speed
- Bioinformatics Divisions, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jake Baum
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Giovannini D, Späth S, Lacroix C, Perazzi A, Bargieri D, Lagal V, Lebugle C, Combe A, Thiberge S, Baldacci P, Tardieux I, Ménard R. Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 2012; 10:591-602. [PMID: 22177563 DOI: 10.1016/j.chom.2011.10.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/01/2011] [Accepted: 10/07/2011] [Indexed: 10/14/2022]
Abstract
During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite. Further, in the Toxoplasma gondii tachyzoite, AMA1 is dispensable for normal RON4 ring and functional TJ assembly but enhances tachyzoite apposition to the cell and internalization frequency. We propose that while the RON proteins act at the TJ, AMA1 mainly functions on the zoite surface to permit correct attachment to the cell, which may facilitate invasion depending on the zoite-cell combination.
Collapse
Affiliation(s)
- Donatella Giovannini
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, 75724 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bargieri D, Lagal V, Tardieux I, Ménard R. Host cell invasion by apicomplexans: what do we know? Trends Parasitol 2012; 28:131-5. [PMID: 22326913 DOI: 10.1016/j.pt.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
Apicomplexan zoites enter host cells by forming and actively moving through a tight junction (TJ) formed between the parasite and host cell surfaces. Although the TJ was first described decades ago, its molecular characterization has proved difficult mainly because of its transient existence during an internalization process that lasts only seconds. In the past 7 years, work has led to a model of the TJ in which the association between AMA1 and RON proteins structures the TJ and bridges the cytoskeletons of the two cells. However, more recent work questions this view. Here, we critically discuss the current model and speculate on alternative models of the AMA1-RON association and of the apicomplexan TJ.
Collapse
Affiliation(s)
- Daniel Bargieri
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, 75015 Paris, France
| | | | | | | |
Collapse
|
19
|
Rashid I, Hedhli D, Moiré N, Pierre J, Debierre-Grockiego F, Dimier-Poisson I, Mévélec MN. Immunological responses induced by a DNA vaccine expressing RON4 and by immunogenic recombinant protein RON4 failed to protect mice against chronic toxoplasmosis. Vaccine 2011; 29:8838-46. [PMID: 21983362 DOI: 10.1016/j.vaccine.2011.09.099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/20/2011] [Accepted: 09/25/2011] [Indexed: 11/15/2022]
Abstract
The development of an effective vaccine against Toxoplasma gondii infection is an important issue due to the seriousness of the related public health problems, and the economic importance of this parasitic disease worldwide. Rhoptry neck proteins (RONs) are components of the moving junction macromolecular complex formed during invasion. The aim of this study was to evaluate the vaccine potential of RON4 using two vaccination strategies: DNA vaccination by the intramuscular route, and recombinant protein vaccination by the nasal route. We produced recombinant RON4 protein (RON4S2) using the Schneider insect cells expression system, and validated its antigenicity and immunogenicity. We also constructed optimized plasmids encoding full length RON4 (pRON4), or only the N-terminal (pNRON4), or the C-terminal part (pCRON4) of RON4. CBA/J mice immunized with pRON4, pNRON4 or pCRON4 plus a plasmid encoding the granulocyte-macrophage-colony-stimulating factor showed high IgG titers against rRON4S2. Mice immunized by the nasal route with rRON4S2 plus cholera toxin exhibited low levels of anti-RON4S2 IgG antibodies, and no intestinal IgA antibodies specific to RON4 were detected. Both DNA and protein vaccination generated a mixed Th1/Th2 response polarized towards the IgG1 antibody isotype. Both DNA and protein vaccination primed CD4+ T cells in vivo. In addition to the production of IFN-γ, and IL-2, Il-10 and IL-5 were also produced by the spleen cells of the immunized mice stimulated with RON4S2, suggesting that a mixed Th1/Th2 type immune response occurred in all the immunized groups. No cytokine was detectable in stimulated mesenteric lymph nodes from mice immunized by the nasal route. Immune responses were induced by both DNA and protein vaccination, but failed to protect the mice against a subsequent oral challenge with T. gondii cysts. In conclusion, strategies designed to enhance the immunogenicity and to redirect the cellular response towards a Th1 type response against RON4 could lead to more encouraging results.
Collapse
Affiliation(s)
- Imran Rashid
- Université François Rabelais, INRA, UMR 0483 Université-INRA d'Immunologie Parasitaire, Vaccinologie et Biothérapie anti-infectieuse, IFR136 Agents Transmissibles et Infectiologie, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee EF, Yao S, Sabo JK, Fairlie WD, Stevenson RA, Harris KS, Anders RF, Foley M, Norton RS. Peptide inhibitors of the malaria surface protein, apical membrane antigen 1: identification of key binding residues. Biopolymers 2011; 95:354-64. [PMID: 21213258 PMCID: PMC3164155 DOI: 10.1002/bip.21582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/10/2022]
Abstract
Apical membrane antigen 1 (AMA1) is essential for malaria parasite invasion of erythrocytes and is therefore an attractive target for drug development. Peptides that bind AMA1 have been identified from random peptide libraries expressed on the surface of phage. Of these, R1, which binds to a hydrophobic ligand binding site on AMA1, was a particularly potent inhibitor of parasite invasion of erythrocytes in vitro. The solution structure of R1 contains a turn-like conformation between residues 5-10. Here the importance of residues in this turn-like structure for binding to AMA1 was examined by site-directed mutagenesis and NMR spectroscopy. The peptide was expressed as a fusion protein following replacement of Met16 by Leu in order to accommodate cyanogen bromide cleavage. This modified peptide (R2) displayed the same affinity for AMA1 as R1, showing that the identity of the side chain at position 16 was not critical for binding. Substitution of Phe5, Pro7, Leu8, and Phe9 with alanine led to significant (7.5- to >350-fold) decreases in affinity for AMA1. Comparison of backbone amide and C(α) H chemical shifts for these R2 analogues with corresponding values for R2 showed no significant changes, with the exception of R2(P7A), where slightly larger differences were observed, particularly for residues flanking position 7. The absence of significant changes in the secondary chemical shifts suggests that these mutations had little effect on the solution conformation of R2. The identification of a nonpolar region of these peptides containing residues essential for AMA1 binding establishes a basis for the design of anti-malarial drugs based on R1 mimetics.
Collapse
Affiliation(s)
- Erinna F. Lee
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shenggen Yao
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jennifer K. Sabo
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - W. Douglas Fairlie
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Rachel A. Stevenson
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Karen S. Harris
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Michael Foley
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Raymond S. Norton
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
21
|
Marugán-Hernández V, Alvarez-García G, Tomley F, Hemphill A, Regidor-Cerrillo J, Ortega-Mora LM. Identification of novel rhoptry proteins in Neospora caninum by LC/MS-MS analysis of subcellular fractions. J Proteomics 2011; 74:629-42. [PMID: 21315855 DOI: 10.1016/j.jprot.2011.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
Apicomplexan parasites possess an apical complex that is composed of two secretory organelles recognized as micronemes and rhoptries. Rhoptry contents are secreted into the parasitophorous vacuole during the host cell invasion process. Several rhoptry proteins have been identified in Toxoplasma gondii and seem to be involved in host-pathogen interactions and some of them are considered to be important virulence factors. Only one rhoptry protein, NcROP2, has been identified and extensively characterized in the closely related parasite Neospora caninum, and this has showed immunoprotective properties. Thus, with the aim of increasing knowledge of the rhoptry protein repertoire in N. caninum, a subcellular fractionation of tachyzoites was performed to obtain fractions enriched for this secretory organelle. 2-D SDS-PAGE followed by MS and LC/MS-MS were applied for fraction analysis and 8 potential novel rhoptry components (NcROP1, 5, 8, 30 and NcRON2, 3, 4, 8) and several kinases, proteases and phosphatases proteins were identified with a high homology to those previously found in T. gondii. Their existence in N. caninum tachyzoites suggests their involvement in similar events or pathways that occur in T. gondii. These novel proteins may be considered as targets that could be useful in the future development of immunoprophylactic measures.
Collapse
Affiliation(s)
- V Marugán-Hernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol 2011; 13:797-805. [DOI: 10.1111/j.1462-5822.2011.01597.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog 2011; 7:e1002007. [PMID: 21423671 PMCID: PMC3053350 DOI: 10.1371/journal.ppat.1002007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/27/2010] [Indexed: 11/21/2022] Open
Abstract
The apicomplexan moving junction (MJ) is a highly conserved structure formed during host cell entry that anchors the invading parasite to the host cell and serves as a molecular sieve of host membrane proteins that protects the parasitophorous vacuole from host lysosomal destruction. While recent work in Toxoplasma and Plasmodium has reinforced the composition of the MJ as an important association of rhoptry neck proteins (RONs) with micronemal AMA1, little is known of the precise role of RONs in the junction or how they are targeted to the neck subcompartment. We report the first functional analysis of a MJ/RON protein by disrupting RON8 in T. gondii. Parasites lacking RON8 are severely impaired in both attachment and invasion, indicating that RON8 enables the parasite to establish a firm clasp on the host cell and commit to invasion. The remaining junction components frequently drag in trails behind invading knockout parasites and illustrate a malformed complex without RON8. Complementation of Δron8 parasites restores invasion and reveals a processing event at the RON8 C-terminus. Replacement of an N-terminal region of RON8 with a mCherry reporter separates regions within RON8 that are necessary for rhoptry targeting and complex formation from those required for function during invasion. Finally, the invasion defects in Δron8 parasites seen in vitro translate to radically impaired virulence in infected mice, promoting a model in which RON8 has a crucial and unprecedented task in committing Toxoplasma to host cell entry. Apicomplexan parasites actively invade host cells to survive, with an important step being the formation of a tight interface between parasite and host cell membranes called the moving junction (MJ). Passing over the length of the invading parasite, the MJ anchors the pathogen to enable propulsion into a parasitophorous vacuole (PV) formed from host membrane. This structure also selectively filters transmembrane proteins from the membrane surrounding the PV, preventing its targeting to host lysosomes. The MJ's molecular nature is understood as an association between proteins secreted from rhoptry and microneme organelles, but the functional significance of the rhoptry neck (RON) components that predominate within this complex is entirely unknown. Our study describes the first functional analysis of any MJ/RON protein in Toxoplasma, RON8. RON8 knockout parasites are severely deficient in both attachment and entry, likely due to the inability of the parasite to firmly engage the host cell. When Δron8 parasites do invade, MJ proteins are often secreted in disorganized trails, indicating the MJ is unstably formed without RON8. From this data, we propose that loss of RON8 produces a crippled parasite frequently incapable of firm attachment, drastically retarding the establishment of vacuoles in vitro and subsequent disease in vivo.
Collapse
Affiliation(s)
- Kurtis W. Straub
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Eric D. Peng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Bettina E. Hajagos
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jessica S. Tyler
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 2011; 7:e1001276. [PMID: 21347343 PMCID: PMC3037350 DOI: 10.1371/journal.ppat.1001276] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/07/2011] [Indexed: 11/20/2022] Open
Abstract
Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.
Collapse
|
25
|
Ogun SA, Tewari R, Otto TD, Howell SA, Knuepfer E, Cunningham DA, Xu Z, Pain A, Holder AA. Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein. PLoS Pathog 2011; 7:e1001288. [PMID: 21379566 PMCID: PMC3040676 DOI: 10.1371/journal.ppat.1001288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/10/2011] [Indexed: 11/19/2022] Open
Abstract
Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Antigens, Protozoan/genetics
- Blotting, Southern
- Blotting, Western
- Erythrocyte Count
- Erythrocytes/immunology
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Fluorescent Antibody Technique
- Gene Deletion
- Genome, Protozoan
- Immunoprecipitation
- Malaria/genetics
- Malaria/parasitology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Molecular Sequence Data
- Multigene Family
- Plasmodium yoelii/genetics
- Plasmodium yoelii/growth & development
- Plasmodium yoelii/pathogenicity
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Solabomi A. Ogun
- Division of Parasitology, MRC National
Institute for Medical Research, London, United Kingdom
| | - Rita Tewari
- Institute of Genetics, University of
Nottingham, Nottingham, United Kingdom
| | - Thomas D. Otto
- Parasite Genomics, Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United
Kingdom
| | - Steven A. Howell
- Protein Structure, MRC National Institute for
Medical Research, London, United Kingdom
| | - Ellen Knuepfer
- Division of Parasitology, MRC National
Institute for Medical Research, London, United Kingdom
| | - Deirdre A. Cunningham
- Division of Parasitology, MRC National
Institute for Medical Research, London, United Kingdom
| | - Zhengyao Xu
- Protein Structure, MRC National Institute for
Medical Research, London, United Kingdom
| | - Arnab Pain
- Parasite Genomics, Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United
Kingdom
- Computational Bioscience Research Center,
Chemical and Life Sciences and Engineering Division, King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia
| | - Anthony A. Holder
- Division of Parasitology, MRC National
Institute for Medical Research, London, United Kingdom
| |
Collapse
|
26
|
Ranjan R, Chugh M, Kumar S, Singh S, Kanodia S, Hossain MJ, Korde R, Grover A, Dhawan S, Chauhan VS, Reddy VS, Mohmmed A, Malhotra P. Proteome analysis reveals a large merozoite surface protein-1 associated complex on the Plasmodium falciparum merozoite surface. J Proteome Res 2010; 10:680-91. [PMID: 21175202 DOI: 10.1021/pr100875y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine.
Collapse
Affiliation(s)
- Ravi Ranjan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol 2010; 26:297-304. [PMID: 20347614 DOI: 10.1016/j.pt.2010.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/13/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Apicomplexan parasites possess specialized secretory organelles (rhoptries and micronemes) that release their contents during host cell invasion. Although the rhoptries were once thought to be merely a bulbous 'protein reservoir' connected to an anterior neck region, the localization of a protein specifically to the neck suggested that this region was more than just a duct. Recent studies have shown that the rhoptry neck sub-compartment possesses a distinct protein repertoire. Some of these proteins share common features, including conservation across the phylum and involvement in tight-junction formation. A sub-group of rhoptry neck proteins, the RONs, their association with the microneme protein apical membrane antigen AMA1, and their involvement in invasion are discussed.
Collapse
|
28
|
Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J, Ralph SA, Norton RS, Cowman AF. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 2010; 285:14815-22. [PMID: 20228060 PMCID: PMC2863225 DOI: 10.1074/jbc.m109.080770] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.
Collapse
Affiliation(s)
- Dave Richard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Plassmeyer ML, Reiter K, Shimp RL, Kotova S, Smith PD, Hurt DE, House B, Zou X, Zhang Y, Hickman M, Uchime O, Herrera R, Nguyen V, Glen J, Lebowitz J, Jin AJ, Miller LH, MacDonald NJ, Wu Y, Narum DL. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem 2009; 284:26951-63. [PMID: 19633296 PMCID: PMC2785382 DOI: 10.1074/jbc.m109.013706] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/17/2009] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (R(h) 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21-25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.
Collapse
Affiliation(s)
- Matthew L. Plassmeyer
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Karine Reiter
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Richard L. Shimp
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Svetlana Kotova
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul D. Smith
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Darrell E. Hurt
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Brent House
- United States Navy, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Xiaoyan Zou
- United States Navy, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Yanling Zhang
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Merrit Hickman
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Onyinyechukwu Uchime
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Raul Herrera
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Vu Nguyen
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Jacqueline Glen
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Jacob Lebowitz
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Albert J. Jin
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892
| | - Louis H. Miller
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Nicholas J. MacDonald
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Yimin Wu
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - David L. Narum
- From the Malaria Vaccine Development Branch, NIAID, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
30
|
Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009; 122:280-8. [PMID: 19442663 DOI: 10.1016/j.exppara.2009.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/07/2009] [Accepted: 04/29/2009] [Indexed: 11/16/2022]
Abstract
The Apicomplexan parasites Toxoplasma and Plasmodium, respectively, cause toxoplasmosis and malaria in humans and although they invade different host cells they share largely conserved invasion mechanisms. Plasmodium falciparum merozoite invasion of red blood cells results from a series of co-ordinated events that comprise attachment of the merozoite, its re-orientation, release of the contents of the invasion-related apical organelles (the rhoptries and micronemes) followed by active propulsion of the merozoite into the cell via an actin-myosin motor. During this process, a tight junction between the parasite and red blood cell plasma membranes is formed and recent studies have identified rhoptry neck proteins, including PfRON4, that are specifically associated with the tight junction during invasion. Here, we report the structure of the gene that encodes PfRON4 and its apparent limited diversity amongst geographically diverse P. falciparum isolates. We also report that PfRON4 protein sequences elicit immunogenic responses in natural human malaria infections.
Collapse
Affiliation(s)
- Belinda J Morahan
- Department of Microbiology, Monash University, Clayton, Vic. 3800, Australia
| | | | | | | | | |
Collapse
|
31
|
Collins CR, Withers-Martinez C, Hackett F, Blackman MJ. An inhibitory antibody blocks interactions between components of the malarial invasion machinery. PLoS Pathog 2009; 5:e1000273. [PMID: 19165323 PMCID: PMC2621342 DOI: 10.1371/journal.ppat.1000273] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/16/2008] [Indexed: 11/18/2022] Open
Abstract
Host cell invasion by apicomplexan pathogens such as the malaria parasite Plasmodium spp. and Toxoplasma gondii involves discharge of proteins from secretory organelles called micronemes and rhoptries. In Toxoplasma a protein complex comprising the microneme apical membrane antigen 1 (AMA1), two rhoptry neck proteins, and a protein called Ts4705, localises to the moving junction, a region of close apposition between parasite and host cell during invasion. Antibodies against AMA1 prevent invasion and are protective in vivo, and so AMA1 is of widespread interest as a malaria vaccine candidate. Here we report that the AMA1 complex identified in Toxoplasma is conserved in Plasmodium falciparum. We demonstrate that the invasion-inhibitory monoclonal antibody (mAb) 4G2, which recognises P. falciparum AMA1 (PfAMA1), cannot bind when PfAMA1 is in a complex with its partner proteins. We further show that a single completely conserved PfAMA1 residue, Tyr251, lying within a conserved hydrophobic groove adjacent to the mAb 4G2 epitope, is required for complex formation. We propose that mAb 4G2 inhibits invasion by preventing PfAMA1 from interacting with other components of the invasion complex. Our findings should aid the rational design of subunit malaria vaccines based on PfAMA1.
Collapse
Affiliation(s)
- Christine R. Collins
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | - Fiona Hackett
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Michael J. Blackman
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| |
Collapse
|