1
|
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics (Basel) 2024; 14:1. [PMID: 39858288 PMCID: PMC11762488 DOI: 10.3390/antibiotics14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.
Collapse
Affiliation(s)
- Lenka Dzurová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic; (E.H.); (H.P.); (J.F.)
| | | | | | | | | |
Collapse
|
2
|
Schmidt S, Mondino S, Gomez-Valero L, Escoll P, Mascarenhas DPA, Gonçalves A, Camara PHM, Garcia Rodriguez FJ, Rusniok C, Sachse M, Moya-Nilges M, Fontaine T, Zamboni DS, Buchrieser C. The unique Legionella longbeachae capsule favors intracellular replication and immune evasion. PLoS Pathog 2024; 20:e1012534. [PMID: 39259722 PMCID: PMC11419355 DOI: 10.1371/journal.ppat.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/23/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.
Collapse
Affiliation(s)
- Silke Schmidt
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Sonia Mondino
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | | | - Augusto Gonçalves
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Pedro H. M. Camara
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | | | - Christophe Rusniok
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Martin Sachse
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Maryse Moya-Nilges
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Biologie et Pathogénicité fongiques, Institut Pasteur, Paris, France
| | - Dario S. Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| |
Collapse
|
3
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
4
|
Savitskaya A, Masso-Silva J, Haddaoui I, Enany S. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Biochimie 2023; 214:216-227. [PMID: 37499896 DOI: 10.1016/j.biochi.2023.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Antimicrobial peptides (AMPs) are essential for defence against pathogens in all living organisms and possessed activities against bacteria, fungi, viruses, parasites and even cancer cells. AMPs are short peptides containing 12-100 amino acids conferring a net positive charge and an amphiphilic property in most cases. Although, anionic AMPs also exist. AMPs can be classified based on the types of secondary structures, charge, hydrophobicity, amino acid composition, length, etc. Their mechanism of action usually includes a membrane disruption process through pore formation (three different models have been described, barrel-stave, toroidal or carpet model) but AMPs can also penetrate and impair intracellular functions. Besides their activity against pathogens, they have also shown immunomodulatory properties in complex scenarios through many different interactions. The aim of this review to summarize knowledge about AMP's and discuss the potential application of AMPs as therapeutics, the challenges due to their limitations, including their susceptibility to degradation, the potential generation of AMP resistance, cost, etc. We also discuss the current FDA-approved drugs based on AMPs and strategies to circumvent natural AMPs' limitations.
Collapse
Affiliation(s)
- Anna Savitskaya
- Institute of Bioorganic Chemistry of Russian Academy of Science, Moscow, Russian Federation
| | - Jorge Masso-Silva
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, La Jolla, CA, USA
| | - Imen Haddaoui
- National Research Institute of Rural Engineering, Water and Forestry, University of Carthage, LR Valorization of Unconventional Waters, Ariana, Tunisia
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| |
Collapse
|
5
|
Khalid K, Poh CL. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines (Basel) 2023; 11:1264. [PMID: 37515079 PMCID: PMC10385262 DOI: 10.3390/vaccines11071264] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
6
|
Kanojiya P, Saroj SD. Effect of respiratory tract co-colonizers on initial attachment of Neisseria meningitidis. Arch Microbiol 2023; 205:273. [PMID: 37400657 DOI: 10.1007/s00203-023-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Respiratory tract is a complex system comprising of unique microbiota inhabitants. Neisseria meningitidis, Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa and Klebsiella pneumoniae are few prevalent bacteria in the community composition during lung infections. Although, N. meningitidis resides asymptomatically in nasopharynx of the human host, it can cause fatal infections like meningitis. However, factors affecting transit from carriage to symptomatic infection are not well understood. Various host metabolites and environmental conditions affect the virulence of bacteria. Here, we report that presence of co-colonizers significantly reduces the initial attachment of N. meningitidis to A549 nasopharyngeal epithelial cells. Further, significant decrease in invasion to A549 nasopharyngeal epithelial cells was observed. Moreover, survival in J774A.1 murine macrophage also increases significantly when conditioned media (CM) from S. pyogenes and L. rhamnosus is used for culturing N. meningitidis. The increase in survival could be attributed to increased capsule synthesis. The gene expression studies revealed increased expression of siaC and ctrB in CM prepared from the growth S. pyogenes and L. rhamnosus. Overall, the results suggest change in the virulence of N. meningitidis is assisted by lung microbiota.
Collapse
Affiliation(s)
- Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|
7
|
Arredondo-Alonso S, Blundell-Hunter G, Fu Z, Gladstone RA, Fillol-Salom A, Loraine J, Cloutman-Green E, Johnsen PJ, Samuelsen Ø, Pöntinen AK, Cléon F, Chavez-Bueno S, De la Cruz MA, Ares MA, Vongsouvath M, Chmielarczyk A, Horner C, Klein N, McNally A, Reis JN, Penadés JR, Thomson NR, Corander J, Taylor PW, McCarthy AJ. Evolutionary and functional history of the Escherichia coli K1 capsule. Nat Commun 2023; 14:3294. [PMID: 37322051 PMCID: PMC10272209 DOI: 10.1038/s41467-023-39052-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | | | - Zuyi Fu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Rebecca A Gladstone
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Alfred Fillol-Salom
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | | | - Elaine Cloutman-Green
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - François Cléon
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana Chavez-Bueno
- University of Missouri Kansas City, Kansas City, USA
- Division of Infectious Diseases, Children's Mercy Hospital Kansas City, UMKC School of Medicine, Kansas City, USA
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Agnieszka Chmielarczyk
- Faculty of Medicine, Chair of Microbiology, Jagiellonian University Medical College, Czysta str. 18, 31-121, Kraków, Poland
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, UK
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joice N Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - José R Penadés
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK.
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Peter W Taylor
- School of Pharmacy, University College London, London, UK.
| | - Alex J McCarthy
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
8
|
Haldar T, Joshi R, Saroj SD. Antibiotics modulates the virulence of N. meningitidis by regulating capsule synthesis. Microb Pathog 2023; 179:106117. [PMID: 37084824 DOI: 10.1016/j.micpath.2023.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The opportunistic pathogens residing are frequently exposed to range of antimicrobials which affects virulence attributes. Neisseria meningitidis, is a host-restricted commensal of human upper respiratory tract which is subjected to a variety of stresses within the host, including antibiotic exposure. One of the most important virulence factors for pathogenesis is the meningococcal lipo-oligosaccharide capsule. Role of capsules in antimicrobial resistance and persistence is not yet established. In this study, different virulence factors of N. meningitidis were examined in presence of sub-MIC of four antibiotics: penicillin, ciprofloxacin, erythromycin and chloramphenicol. We observed increased production of the capsule by N. meningitidis when grown in the presence of penicillin, erythromycin, and chloramphenicol at sub-inhibitory concentration. Capsular production increase concurrently with increased resistance to inducing antibiotic which also confers increased survival in human serum. Finally, we show that increased capsule production in response to antibiotic exposure is aided by siaC, ctrB, lipA gene expression. These findings show that capsule synthesis, a major pathogenicity determinant, is regulated in response to antibiotic stress. Our findings support a model in which gene expression changes caused by ineffective antibiotic treatment cause N. meningitidis transition between states of low and high virulence potential, contributing to pathogen's opportunistic nature.
Collapse
Affiliation(s)
- Tiyasa Haldar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Riya Joshi
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India.
| |
Collapse
|
9
|
Schipper K, Preusting LC, van Sorge NM, Pannekoek Y, van der Ende A. Meningococcal virulence in zebrafish embryos depends on capsule polysaccharide structure. Front Cell Infect Microbiol 2022; 12:1020201. [PMID: 36211969 PMCID: PMC9538531 DOI: 10.3389/fcimb.2022.1020201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis or the meningococcus, can cause devasting diseases such as sepsis and meningitis. Its polysaccharide capsule, on which serogrouping is based, is the most important virulence factor. Non-encapsulated meningococci only rarely cause disease, due to their sensitivity to the host complement system. How the capsular polysaccharide structure of N. meningitidis relates to virulence is largely unknown. Meningococcal virulence can be modeled in zebrafish embryos as the innate immune system of the zebrafish embryo resembles that of mammals and is fully functional two days post-fertilization. In contrast, the adaptive immune system does not develop before 4 weeks post-fertilization. We generated isogenic meningococcal serogroup variants to study how the chemical composition of the polysaccharide capsule affects N. meningitidis virulence in the zebrafish embryo model. H44/76 serogroup B killed zebrafish embryos in a dose-dependent manner, whereas the non-encapsulated variant was completely avirulent. Neutrophil depletion was observed after infection with encapsulated H44/76, but not with its non-encapsulated variant HB-1. The survival of embryos infected with isogenic capsule variants of H44/76 was capsule specific. The amount of neutrophil depletion differed accordingly. Both embryo killing capacity and neutrophil depletion after infection correlated with the number of carbons used per repeat unit of the capsule polysaccharide during its biosynthesis (indicative of metabolic cost).ConclusionMeningococcal virulence in the zebrafish embryo largely depends on the presence of the polysaccharide capsule but the extent of the contribution is determined by its structure. The observed differences between the meningococcal isogenic capsule variants in zebrafish embryo virulence may depend on differences in metabolic cost.
Collapse
|
10
|
Talà A, Guerra F, Calcagnile M, Romano R, Resta SC, Paiano A, Chiariello M, Pizzolante G, Bucci C, Alifano P. HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. J Biomed Sci 2022; 29:45. [PMID: 35765029 PMCID: PMC9241232 DOI: 10.1186/s12929-022-00829-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Mario Chiariello
- Core Research Laboratory-Siena, Institute for Cancer Research and Prevention (ISPRO), 53100, Siena, Italy.,Institute of Clinical Physiology (IFC), National Research Council (CNR), 53100, Siena, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| |
Collapse
|
11
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
12
|
Rhodes KA, Ma MC, Rendón MA, So M. Neisseria genes required for persistence identified via in vivo screening of a transposon mutant library. PLoS Pathog 2022; 18:e1010497. [PMID: 35580146 PMCID: PMC9140248 DOI: 10.1371/journal.ppat.1010497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms used by human adapted commensal Neisseria to shape and maintain a niche in their host are poorly defined. These organisms are common members of the mucosal microbiota and share many putative host interaction factors with Neisseria meningitidis and Neisseria gonorrhoeae. Evaluating the role of these shared factors during host carriage may provide insight into bacterial mechanisms driving both commensalism and asymptomatic infection across the genus. We identified host interaction factors required for niche development and maintenance through in vivo screening of a transposon mutant library of Neisseria musculi, a commensal of wild-caught mice which persistently and asymptomatically colonizes the oral cavity and gut of CAST/EiJ and A/J mice. Approximately 500 candidate genes involved in long-term host interaction were identified. These included homologs of putative N. meningitidis and N. gonorrhoeae virulence factors which have been shown to modulate host interactions in vitro. Importantly, many candidate genes have no assigned function, illustrating how much remains to be learned about Neisseria persistence. Many genes of unknown function are conserved in human adapted Neisseria species; they are likely to provide a gateway for understanding the mechanisms allowing pathogenic and commensal Neisseria to establish and maintain a niche in their natural hosts. Validation of a subset of candidate genes confirmed a role for a polysaccharide capsule in N. musculi persistence but not colonization. Our findings highlight the potential utility of the Neisseria musculi-mouse model as a tool for studying the pathogenic Neisseria; our work represents a first step towards the identification of novel host interaction factors conserved across the genus. The Neisseria genus contains many genetically related commensals of animals and humans, and two human pathogens, Neisseria gonorrhoeae and Neisseria meningitidis. The mechanisms allowing commensal Neisseria to maintain a niche in their host is little understood. To identify genes required for persistence, we screened a library of transposon mutants of Neisseria musculi, a commensal of wild-caught mice, in CAST/EiJ mice, which persistently and asymptomatically colonizes. Approximately 500 candidate host interaction genes were identified. A subset of these are homologs of N. meningitidis and N. gonorrhoeae genes known to modulate pathogen-host interactions in vitro. Many candidate genes have no known function, demonstrating how much remains to be learned about N. musculi niche maintenance. As many genes of unknown function are conserved in human adapted Neisseria, they provide a gateway for understanding Neisseria persistence mechanisms in general.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - María A. Rendón
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Magdalene So
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
13
|
Neri A, Fabiani M, Barbui AM, Vocale C, Miglietta A, Fazio C, Carannante A, Palmieri A, Vacca P, Ambrosio L, Stefanelli P. Evaluation of Meningococcal Serogroup C Bactericidal Antibodies after Primary Vaccination: A Multicentre Study, Italy. Vaccines (Basel) 2022; 10:778. [PMID: 35632534 PMCID: PMC9144765 DOI: 10.3390/vaccines10050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Here, we evaluated over time in different cohorts of children vaccinated against serogroup C Neisseria meningitidis, the presence of antibodies with neutralizing activity. A total of 348 sera samples of enrolled children by year since vaccination (<1 year- up to 5 years), starting from February 2016 to December 2017, were collected in three collaborating centers. Meningococcal serogroup C (MenC) antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (rSBA) following standard operating procedures. The cut-off of rSBA titer ≥ 8 is considered the correlate of protection. We observed a significantly declining of bactericidal rSBA titers by 23% every year, for every 1-year from vaccination (Adjusted PR = 0.77, 95% CI: 0.71−0.84). The proportions of children with bactericidal antibodies, immunized with the meningococcal serogroup C conjugate (MCC) vaccine, declined from 67.7% (95% CI: 48.6−83.3%) one year after vaccination, to 36.7% (95% CI: 19.9−56.1%) five years after vaccination (chi-square for linear trend, p < 0.001). Children vaccinated with the tetravalent meningococcal serogroup ACWY vaccine resulted in a high proportion of bactericidal rSBA MenC titer ≥ 1:8 (90.6%, 95% CI: 79.3−96.9%) after a mean time of seven months. Overall, the results provide some evidences on the evaluation of meningococcal serogroup C bactericidal antibodies after primary vaccination.
Collapse
Affiliation(s)
- Arianna Neri
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.N.); (M.F.); (C.F.); (A.C.); (P.V.); (L.A.)
| | - Massimo Fabiani
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.N.); (M.F.); (C.F.); (A.C.); (P.V.); (L.A.)
| | - Anna Maria Barbui
- Microbiology and Virology Laboratory, Città della Salute e della Scienza Hospital, 10126 Torino, Italy;
| | - Caterina Vocale
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | | | - Cecilia Fazio
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.N.); (M.F.); (C.F.); (A.C.); (P.V.); (L.A.)
| | - Anna Carannante
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.N.); (M.F.); (C.F.); (A.C.); (P.V.); (L.A.)
| | - Annapina Palmieri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Paola Vacca
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.N.); (M.F.); (C.F.); (A.C.); (P.V.); (L.A.)
| | - Luigina Ambrosio
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.N.); (M.F.); (C.F.); (A.C.); (P.V.); (L.A.)
| | - Paola Stefanelli
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.N.); (M.F.); (C.F.); (A.C.); (P.V.); (L.A.)
| |
Collapse
|
14
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
15
|
Chen X, Liu M, Zhang P, Xu M, Yuan W, Bian L, Liu Y, Xia J, Leung SSY. Phage-Derived Depolymerase as an Antibiotic Adjuvant Against Multidrug-Resistant Acinetobacter baumannii. Front Microbiol 2022; 13:845500. [PMID: 35401491 PMCID: PMC8990738 DOI: 10.3389/fmicb.2022.845500] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteriophage-encoded depolymerases are responsible for degrading capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) of the host bacteria during phage invasion. They have been considered as promising antivirulence agents in controlling bacterial infections, including those caused by multidrug-resistant (MDR) bacteria. This feature inspires hope of utilizing these enzymes to disarm the polysaccharide capsules of the bacterial cells, which then strengthens the action of antibiotics. Here we have identified, cloned, and expressed a depolymerase Dpo71 from a bacteriophage specific for the gram-negative bacterium Acinetobacter baumannii in a heterologous host Escherichia coli. Dpo71 sensitizes the MDR A. baumannii to the host immune attack, and also acts as an adjuvant to assist or boost the action of antibiotics, for example colistin. Specifically, Dpo71 at 10 μg/ml enables a complete bacterial eradication by human serum at 50% volume ratio. A mechanistic study shows that the enhanced bactericidal effect of colistin is attributed to the improved outer membrane destabilization capacity and binding rate to bacteria after stripping off the bacterial capsule by Dpo71. Dpo71 inhibits biofilm formation and disrupts the pre-formed biofilm. Combination of Dpo71 could significantly enhance the antibiofilm activity of colistin and improve the survival rate of A. baumannii infected Galleria mellonella. Dpo71 retains the strain-specificity of the parent phage from which Dpo71 is derived: the phage-sensitive A. baumannii strains respond to Dpo71 treatment, whereas the phage-insensitive strains do not. In summary, our work demonstrates the feasibility of using recombinant depolymerases as an antibiotic adjuvant to supplement the development of new antibacterials and to battle against MDR pathogens.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Miao Liu
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Pengfei Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Miao Xu
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Sharon S Y Leung
- School of Pharmacy, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| |
Collapse
|
16
|
Topalova Y, Belouhova M, Velkova L, Dolashki A, Zheleva N, Daskalova E, Kaynarov D, Voelter W, Dolashka P. Effect and Mechanisms of Antibacterial Peptide Fraction from Mucus of C. aspersum against Escherichia coli NBIMCC 8785. Biomedicines 2022; 10:biomedicines10030672. [PMID: 35327474 PMCID: PMC8945727 DOI: 10.3390/biomedicines10030672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Peptides isolated from the mucus of Cornu aspersum could be prototypes for antibiotics against pathogenic bacteria. Information regarding the mechanisms, effective concentration, and methods of application is an important tool for therapeutic, financial, and ecological regulation and a holistic approach to medical treatment. A peptide fraction with MW < 10 kDa was analyzed by MALDI-TOF-TOF using Autoflex™ III. The strain Escherichia coli NBIMCC 8785 (18 h and 48 h culture) was used. The changes in bacterial structure and metabolic activity were investigated by SEM, fluorescent, and digital image analysis. This peptide fraction had high inhibitory effects in surface and deep inoculations of E. coli of 1990.00 and 136.13 mm2/mgPr/µMol, respectively, in the samples. Thus, it would be effective in the treatment of infections involving bacterial biofilms and homogenous cells. Various deformations of the bacteria and inhibition of its metabolism were discovered and illustrated. The data on the mechanisms of impact of the peptides permitted the formulation of an algorithm for the treatment of infections depending on the phase of their development. The decrease in the therapeutic concentrations will be more sparing to the environment and will lead to a decrease in the cost of the treatment.
Collapse
Affiliation(s)
- Yana Topalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
- Correspondence: or (Y.T.); or (P.D.); Tel.: +359-887193423 (P.D.)
| | - Mihaela Belouhova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Nellie Zheleva
- Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Elmira Daskalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Wolfgang Voelter
- Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, D-72076 Tübingen, Germany;
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
- Correspondence: or (Y.T.); or (P.D.); Tel.: +359-887193423 (P.D.)
| |
Collapse
|
17
|
Yang Y, Sun J, Chen C, Zhou Y, Van Dover CL, Wang C, Qiu JW, Qian PY. Metagenomic and metatranscriptomic analyses reveal minor-yet-crucial roles of gut microbiome in deep-sea hydrothermal vent snail. Anim Microbiome 2022; 4:3. [PMID: 34980289 PMCID: PMC8722025 DOI: 10.1186/s42523-021-00150-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine animals often exhibit complex symbiotic relationship with gut microbes to attain better use of the available resources. Many animals endemic to deep-sea chemosynthetic ecosystems host chemoautotrophic bacteria endocellularly, and they are thought to rely entirely on these symbionts for energy and nutrition. Numerous investigations have been conducted on the interdependence between these animal hosts and their chemoautotrophic symbionts. The provannid snail Alviniconcha marisindica from the Indian Ocean hydrothermal vent fields hosts a Campylobacterial endosymbiont in its gill. Unlike many other chemosymbiotic animals, the gut of A. marisindica is reduced but remains functional; yet the contribution of gut microbiomes and their interactions with the host remain poorly characterised. RESULTS Metagenomic and metatranscriptomic analyses showed that the gut microbiome of A. marisindica plays key nutritional and metabolic roles. The composition and relative abundance of gut microbiota of A. marisindica were different from those of snails that do not depend on endosymbiosis. The relative abundance of microbial taxa was similar amongst three individuals of A. marisindica with significant inter-taxa correlations. These correlations suggest the potential for interactions between taxa that may influence community assembly and stability. Functional profiles of the gut microbiome revealed thousands of additional genes that assist in the use of vent-supplied inorganic compounds (autotrophic energy source), digest host-ingested organics (carbon source), and recycle the metabolic waste of the host. In addition, members of five taxonomic classes have the potential to form slime capsules to protect themselves from the host immune system, thereby contributing to homeostasis. Gut microbial ecology and its interplay with the host thus contribute to the nutritional and metabolic demands of A. marisindica. CONCLUSIONS The findings advance the understanding of how deep-sea chemosymbiotic animals use available resources through contributions from gut microbiota. Gut microbiota may be critical in the survival of invertebrate hosts with autotrophic endosymbionts in extreme environments.
Collapse
Affiliation(s)
- Yi Yang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yadong Zhou
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Cindy Lee Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Chunsheng Wang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
18
|
Colicchio R, Nigro E, Colavita I, Pagliuca C, Di Maro S, Tomassi S, Scaglione E, Carbone F, Carriero MV, Matarese G, Daniele A, Cosconati S, Pessi A, Salvatore F, Salvatore P. A novel smaller β-defensin-derived peptide is active against multidrug-resistant bacterial strains. FASEB J 2021; 35:e22026. [PMID: 34818435 DOI: 10.1096/fj.202002330rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance is becoming a severe obstacle in the fight against acute and chronic infectious diseases that accompany most degenerative illnesses from neoplasia to osteo-arthritis and obesity. Currently, the race is on to identify pharmaceutical molecules or combinations of molecules able to prevent or reduce the insurgence and/or progression of infectivity. Attempts to substitute antibiotics with antimicrobial peptides have, thus far, met with little success against multidrug-resistant (MDR) bacterial strains. During the last decade, we designed and studied the activity and features of human β-defensin analogs, which are salt-resistant, and hence active also under high salt concentrations as, for instance, in cystic fibrosis. Herein, we describe the design, synthesis, and major features of a new 21 aa long molecule, peptide γ2. The latter derives from the γ-core of the β-defensin natural molecules, a small fragment of these molecules still bearing high antibacterial activity. We found that peptide γ2, which contains only one disulphide bond, recapitulates most of the biological properties of natural human β-defensins and can also counteract both Gram-positive and Gram-negative MDR bacterial strains and biofilm formation. Moreover, it has great stability in human serum thereby enhancing its antibacterial presence and activity without cytotoxicity in human cells. In conclusion, peptide γ2 is a promising new weapon also in the battle against intractable infectious diseases.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ersilia Nigro
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy.,Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | | | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Maria Vincenza Carriero
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Aurora Daniele
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | | | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
19
|
Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, Zecconi A. Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. Pathogens 2021; 10:pathogens10111355. [PMID: 34832511 PMCID: PMC8618662 DOI: 10.3390/pathogens10111355] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The One Health approach emphasizes the importance of antimicrobial resistance (AMR) as a major concern both in public health and in food animal production systems. As a general classification, E. coli can be distinguished based on the ability to cause infection of the gastrointestinal system (IPEC) or outside of it (ExPEC). Among the different pathogens, E. coli are becoming of great importance, and it has been suggested that ExPEC may harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria. ExPEC strains are versatile bacteria that can cause urinary tract, bloodstream, prostate, and other infections at non-intestinal sites. In this context of rapidly increasing multidrug-resistance worldwide and a diminishingly effective antimicrobial arsenal to tackle resistant strains. ExPEC infections are now a serious public health threat worldwide. However, the clinical and economic impact of these infections and their optimal management are challenging, and consequently, there is an increasing awareness of the importance of ExPECs amongst healthcare professionals and the general public alike. This review aims to describe pathotype characteristics of ExPEC to increase our knowledge of these bacteria and, consequently, to increase our chances to control them and reduce the risk for AMR, following a One Health approach.
Collapse
|
20
|
Herold R, Sünwoldt G, Stump-Guthier C, Weiss C, Ishikawa H, Schroten H, Adam R, Schwerk C. Invasion of the choroid plexus epithelium by Neisseria meningitidis is differently mediated by Arp2/3 signaling and possibly by dynamin dependent on the presence of the capsule. Pathog Dis 2021; 79:6354783. [PMID: 34410374 DOI: 10.1093/femspd/ftab042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neisseria meningitis (Nm) is a human-specific bacterial pathogen that can cause sepsis and meningitis. To cause meningitis Nm must enter the central nervous system (CNS) across one of the barriers between the blood and the brain. We have previously shown that a capsule-depleted Serogroup B strain of Nm displays enhanced invasion into human choroid plexus (CP) epithelial papilloma (HIBCPP) cells, which represent an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB). Still, the processes involved during CNS invasion by Nm, especially the role of host cell actin cytoskeleton remodeling, are not investigated in detail. Here, we demonstrate that invasion into CP epithelial cells by encapsulated and capsule-depleted Nm is mediated by distinct host cell pathways. Whereas a Serogroup B wild-type strain enters HIBCPP cells by a possibly dynamin-independent, but actin related protein 2/3 (Arp2/3)-dependent mechanism, invasion by a capsule-depleted mutant is reduced by the dynamin inhibitor dynasore and Arp2/3-independent. Both wild-type and mutant bacteria require Src kinase activity for entry into HIBCPP cells. Our data show that Nm can employ different mechanisms for invasion into the CP epithelium dependent on the presence of a capsule.
Collapse
Affiliation(s)
- Rosanna Herold
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Gina Sünwoldt
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christel Weiss
- Medical Faculty Mannheim, Department of Medical Statistics and Biomathematics, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Faculty of Medicine, Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Horst Schroten
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Rüdiger Adam
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christian Schwerk
- Medical Faculty Mannheim, Department of Pediatrics and Infectious Diseases, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
21
|
Findlow J, Lucidarme J, Taha MK, Burman C, Balmer P. Correlates of protection for meningococcal surface protein vaccines: lessons from the past. Expert Rev Vaccines 2021; 21:739-751. [PMID: 34287103 DOI: 10.1080/14760584.2021.1940144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Recombinant surface protein meningococcal serogroup B (MenB) vaccines are available but with different antigen compositions, leading to differences between vaccines in their immunogenicity and likely breadth of coverage. The serology and breadth of coverage assessment for MenB vaccines are multifaceted areas, and a comprehensive understanding of these complexities is required to appropriately compare licensed vaccines and those under development. AREAS COVERED In the first of two companion papers that comprehensively review the serology and breadth of coverage assessment for MenB vaccines, the history of early meningococcal vaccines is considered in this narrative review to identify transferable lessons applicable to the currently licensed MenB vaccines and those under development, as well as their serology. EXPERT OPINION Understanding correlates of protection and the breadth of coverage assessment for meningococcal surface protein vaccines is significantly more complex than that for capsular polysaccharide vaccines. Determination and understanding of the breadth of coverage of surface protein vaccines are clinically important and unique to each vaccine formulation. It is essential to estimate the proportion of MenB cases that are preventable by a specific vaccine to assess its overall potential impact and to compare the benefits and limitations of different vaccines in preventing invasive meningococcal disease.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | | | - Cynthia Burman
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
22
|
Surface architecture of Neisseria meningitidis capsule and outer membrane as revealed by Atomic Force Microscopy. Res Microbiol 2021; 172:103865. [PMID: 34284091 DOI: 10.1016/j.resmic.2021.103865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
An extensive morphological analysis of the Neisseria meningitidis cell envelope, including serogroup B capsule and outer membrane, based on atomic force microscopy (AFM) together with mechanical characterization by force spectroscopic measurements, has been carried out. Three meningococcal strains were used: the encapsulated serogroup B strain B1940, and the isogenic mutants B1940 siaD(+C) (lacking capsule), and B1940 cps (lacking both capsule and lipooligosaccharide outer core). regularly structured AFM experiments with the encapsulated strain B1940 provided unprecedented images of the meningococcal capsule, which seems to be characterized by protrusions ("bumps") with the lateral dimensions of about 30 nm. Measurement of the Young's modulus provided quantitative assessment of the property of the capsule to confer resistance to mechanical stress. Moreover, Raman spectroscopy gave a fingerprint by which it was possible to identify the specific molecular species of the three strains analyzed, and to highlight major differences between them.
Collapse
|
23
|
Wassing GM, Lidberg K, Sigurlásdóttir S, Frey J, Schroeder K, Ilehag N, Lindås AC, Jonas K, Jonsson AB. DNA Blocks the Lethal Effect of Human Beta-Defensin 2 Against Neisseria meningitidis. Front Microbiol 2021; 12:697232. [PMID: 34276631 PMCID: PMC8278289 DOI: 10.3389/fmicb.2021.697232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a gram-negative bacterium that often asymptomatically colonizes the human nasopharyngeal tract. These bacteria cross the epithelial barrier can cause life-threatening sepsis and/or meningitis. Antimicrobial peptides are one of the first lines of defense against invading bacterial pathogens. Human beta-defensin 2 (hBD2) is an antimicrobial peptide with broad antibacterial activity, although its mechanism of action is poorly understood. Here, we investigated the effect of hBD2 on N. meningitidis. We showed that hBD2 binds to and kills actively growing meningococcal cells. The lethal effect was evident after 2 h incubation with the peptide, which suggests a slow killing mechanism. Further, the membrane integrity was not changed during hBD2 treatment. Incubation with lethal doses of hBD2 decreased the presence of diplococci; the number and size of bacterial microcolonies/aggregates remained constant, indicating that planktonic bacteria may be more susceptible to the peptide. Meningococcal DNA bound hBD2 in mobility shift assays and inhibited the lethal effect of hBD2 in a dose-dependent manner both in suspension and biofilms, supporting the interaction between hBD2 and DNA. Taken together, the ability of meningococcal DNA to bind hBD2 opens the possibility that extracellular DNA due to bacterial lysis may be a means of N. meningitidis to evade immune defenses.
Collapse
Affiliation(s)
- Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kenny Lidberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sara Sigurlásdóttir
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jonas Frey
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nathalie Ilehag
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
24
|
Janssen AB, van Hout D, Bonten MJM, Willems RJL, van Schaik W. Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J Antimicrob Chemother 2021; 75:3135-3143. [PMID: 32712659 DOI: 10.1093/jac/dkaa305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colistin is an antibiotic that targets the LPS molecules present in the membranes of Gram-negative bacteria. It is used as a last-resort drug to treat infections with MDR strains. Colistin is also used in selective decontamination of the digestive tract (SDD), a prophylactic therapy used in patients hospitalized in ICUs to selectively eradicate opportunistic pathogens in the oropharyngeal and gut microbiota. OBJECTIVES To unravel the mechanisms of acquired colistin resistance in Gram-negative opportunistic pathogens obtained from SDD-treated patients. RESULTS Routine surveillance of 428 SDD-treated patients resulted in 13 strains with acquired colistin resistance (Escherichia coli, n = 9; Klebsiella aerogenes, n = 3; Enterobacter asburiae, n = 1) from 5 patients. Genome sequence analysis showed that these isolates represented multiple distinct colistin-resistant clones but that colistin-resistant strains within the same patient were clonally related. We identified previously described mechanisms that lead to colistin resistance, i.e. a G53 substitution in the response regulator PmrA/BasR and the acquisition of the mobile colistin resistance gene mcr-1.1, but we also observed novel variants of basR with an 18 bp deletion and a G19E substitution in the sensor histidine kinase BasS. We experimentally confirmed that these variants contribute to reduced colistin susceptibility. In a single patient, we observed that colistin resistance in a single E. coli clone evolved through two unique variants in basRS. CONCLUSIONS We show that prophylactic use of colistin during SDD can select for colistin resistance in species that are not intrinsically colistin resistant. This highlights the importance of continued surveillance for strains with acquired colistin resistance in patients treated with SDD.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Denise van Hout
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
A Structural Model for the Ligand Binding of Pneumococcal Serotype 3 Capsular Polysaccharide-Specific Protective Antibodies. mBio 2021; 12:e0080021. [PMID: 34061603 PMCID: PMC8262990 DOI: 10.1128/mbio.00800-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Capsular polysaccharides (CPSs) are major virulence factors that decorate the surfaces of many human bacterial pathogens. In their pure form or as glycoconjugate vaccines, CPSs are extensively used in vaccines deployed in clinical practice worldwide. However, our understanding of the structural requirements for interactions between CPSs and antibodies is limited. A longstanding model based on comprehensive observations of antibody repertoires binding to CPSs is that antibodies expressing heavy chain variable gene family 3 (VH3) predominate in these binding interactions in humans and VH3 homologs in mice. Toward understanding this highly conserved interaction, we generated a panel of mouse monoclonal antibodies (MAb) against Streptococcus pneumoniae serotype 3 CPS, determined an X-ray crystal structure of a protective MAb in complex with a hexasaccharide derived from enzymatic hydrolysis of the polysaccharide, and elucidated the structural requirements for this binding interaction. The crystal structure revealed a binding pocket containing aromatic side chains, suggesting the importance of hydrophobicity in the interaction. Through mutational analysis, we determined the amino acids that are critical in carbohydrate binding. Through elucidating the structural and functional properties of a panel of murine MAbs, we offer an explanation for the predominant use of the human VH3 gene family in antibodies against CPSs with implications in knowledge-based vaccine design.
Collapse
|
26
|
Bian S, Zeng W, Li Q, Li Y, Wong NK, Jiang M, Zuo L, Hu Q, Li L. Genetic Structure, Function, and Evolution of Capsule Biosynthesis Loci in Vibrio parahaemolyticus. Front Microbiol 2021; 11:546150. [PMID: 33505361 PMCID: PMC7829505 DOI: 10.3389/fmicb.2020.546150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Capsule-forming extracellular polysaccharides are crucial for bacterial host colonization, invasion, immune evasion, and ultimately pathogenicity. Due to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important foodborne enteropathogen implicated in acute gastroenteritis, wound infections, and septic shock. Conventionally, the antigenic properties of lipopolysaccharide (LPS, O antigen) and capsular polysaccharide (CPS, K antigen) have provided a basis for serotyping V. parahaemolyticus, whereas disclosure of genetic elements encoding 13 O-serogroups have allowed molecular serotyping methods to be developed. However, the genetic structure of CPS loci for 71 K-serogroups has remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure and their evolutionary relationship of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We found a distinct pattern of CPS gene cluster across different K-serogroups and expanded its new 3'-border by identifying glpX as a key gene conserved across all K-serogroups. A total of 217 genes involved in CPS biosynthesis were annotated. Functional contents and genetic structure of the 40 K-serogroups were analyzed. Based on inferences from species trees and gene trees, we proposed an evolution model of the CPS gene clusters of 40 K-serogroups. Horizontal gene transfer by recombination from other Vibrio species, gene duplication is likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. This is the first time, to the best of our knowledge, that a large scale of CPS gene clusters of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus and provide a framework for developing diagnostically relevant serotyping methods.
Collapse
Affiliation(s)
- Shengzhe Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wenhong Zeng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiwen Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| |
Collapse
|
27
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
28
|
Liu T, Liu J, Liu J, Yang R, Lu X, He X, Shi W, Guo L. Interspecies Interactions Between Streptococcus Mutans and Streptococcus Agalactiae in vitro. Front Cell Infect Microbiol 2020; 10:344. [PMID: 32733820 PMCID: PMC7358462 DOI: 10.3389/fcimb.2020.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023] Open
Abstract
Streptococcus mutans is an oral species closely associated with dental caries. As an early oral colonizer, S. mutans utilizes interspecies coaggregation to promote the colonization of subsequent species and affect polymicrobial pathogenesis. Previous studies have confirmed several adhering partner species of S. mutans, including Candida albicans and Fusobacterium nucleatum. In this study, we discovered new intergeneric co-adherence between S. mutans and the saliva isolate Streptococcus agalactiae (GBS-SI101). Research shows that GBS typically colonizes the human gastrointestinal and vaginal tracts. It is responsible for adverse pregnancy outcomes and life-threatening infections in neonates and immunocompromised people. Our results revealed that GtfB and GtfC of S. mutans, which contributed to extracellular polysaccharide synthesis, promoted coaggregation of S. mutans with GBS-SI101. In addition, oral streptococci, including Streptococcus sanguinis, Streptococcus gordonii and S. mutans, barely inhibited the growth of GBS-SI101. This study indicated that S. mutans could help GBS integrate into the Streptococcus-associated oral polymicrobial community and become a resident species in the oral cavity, increasing the risk of oral infections.
Collapse
Affiliation(s)
- Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianwei Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
29
|
A Tailspike with Exopolysaccharide Depolymerase Activity from a New Providencia stuartii Phage Makes Multidrug-Resistant Bacteria Susceptible to Serum-Mediated Killing. Appl Environ Microbiol 2020; 86:AEM.00073-20. [PMID: 32357999 DOI: 10.1128/aem.00073-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Providencia stuartii is emerging as a significant drug-resistant nosocomial pathogen, which encourages the search for alternative therapies. Here, we have isolated Providencia stuartii phage Stuart, a novel podovirus infecting multidrug-resistant hospital isolates of this bacterium. Phage Stuart is a proposed member of a new Autographivirinae subfamily genus, with a 41,218-bp genome, direct 345-bp repeats at virion DNA ends, and limited sequence similarity of proteins to proteins in databases. Twelve out of the 52 predicted Stuart proteins are virion components. We found one to be a tailspike with depolymerase activity. The tailspike could form a highly thermostable oligomeric β-structure migrating close to the expected trimer in a nondenaturing gel. It appeared to be essential for the infection of three out of four P. stuartii hosts infected by phage Stuart. Moreover, it degraded the exopolysaccharide of relevant phage Stuart hosts, making the bacteria susceptible to serum killing. Prolonged exposure of a sensitive host to the tailspike did not cause the emergence of bacteria resistant to the phage or to serum killing, opposite to the prolonged exposure to the phage. This indicates that phage tail-associated depolymerases are attractive antivirulence agents that could complement the immune system in the fight with P. stuartii IMPORTANCE The pace at which multidrug-resistant strains emerge has been alarming. P. stuartii is an infrequent but relevant drug-resistant nosocomial pathogen causing local to systemic life-threatening infections. We propose an alternative approach to fight this bacterium based on the properties of phage tailspikes with depolymerase activity that degrade the surface bacterial polymers, making the bacteria susceptible to the immune system. Unlike antibiotics, phage tailspikes have narrow and specific substrate spectra, and by acting as antivirulent but not bactericidal agents they do not cause the selection of resistant bacteria.
Collapse
|
30
|
Brynildsrud OB, Eldholm V, Rakhimova A, Kristiansen PA, Caugant DA. Gauging the epidemic potential of a widely circulating non-invasive meningococcal strain in Africa. Microb Genom 2020; 5. [PMID: 31454306 PMCID: PMC6755499 DOI: 10.1099/mgen.0.000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neisseria meningitidis colonizes the human oropharynx and transmits mainly via asymptomatic carriage. Actual outbreaks of meningococcal meningitis are comparatively rare and occur when susceptible populations are exposed to hypervirulent clones, genetically distinct from the main carriage isolates. However, carriage isolates can evolve into pathogens through a limited number of recombination events. The present study examines the potential for the sequence type (ST)-192, by far the dominant clone recovered in recent meningococcal carriage studies in sub-Saharan Africa, to evolve into a pathogen. We used whole-genome sequencing on a collection of 478 meningococcal isolates sampled from 1- to 29- year-old healthy individuals in Arba Minch, southern Ethiopia in 2014. The ST-192 clone was identified in nearly 60 % of the carriers. Using complementary short- and long-read techniques for whole-genome sequencing, we were able to completely resolve genomes and thereby identify genomic differences between the ST-192 carriage strain and known pathogenic clones with the highest possible resolution. We conclude that it is possible, but unlikely, that ST-192 could evolve into a significant pathogen, thus, becoming the major invasive meningococcus clone in the meningitis belt of Africa following upcoming mass vaccination with a polyvalent conjugate vaccine that targets the A, C, W, Y and X capsules.
Collapse
Affiliation(s)
- Ola Brønstad Brynildsrud
- Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway.,Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Adelina Rakhimova
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Wu F, Tan C. Dead bacterial absorption of antimicrobial peptides underlies collective tolerance. J R Soc Interface 2020; 16:20180701. [PMID: 30958185 DOI: 10.1098/rsif.2018.0701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The collective tolerance towards antimicrobial peptides (APs) is thought to occur primarily through mechanisms associated with live bacterial cells. In contrast to the focus on live cells, we discover that the LL37 antimicrobial peptide kills a subpopulation of Escherichia coli, forming dead cells that absorb the remaining LL37 from the environment. Combining mathematical modelling with population and single-cell experiments, we show that bacteria absorb LL37 at a timing that coincides with the permeabilization of their cytoplasmic membranes. Furthermore, we show that one bacterial strain can absorb LL37 and protect another strain from killing by LL37. Finally, we demonstrate that the absorption of LL37 by dead bacteria can be reduced using a peptide adjuvant. In contrast to the known collective tolerance mechanisms, we show that the absorption of APs by dead bacteria is a dynamic process that leads to emergent population behaviour.
Collapse
Affiliation(s)
- Fan Wu
- Department of Biomedical Engineering, University of California Davis , Davis, CA 95616 , USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis , Davis, CA 95616 , USA
| |
Collapse
|
32
|
Duperthuy M. Antimicrobial Peptides: Virulence and Resistance Modulation in Gram-Negative Bacteria. Microorganisms 2020; 8:microorganisms8020280. [PMID: 32092866 PMCID: PMC7074834 DOI: 10.3390/microorganisms8020280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/03/2023] Open
Abstract
Growing resistance to antibiotics is one of the biggest threats to human health. One of the possibilities to overcome this resistance is to use and develop alternative molecules such as antimicrobial peptides (AMPs). However, an increasing number of studies have shown that bacterial resistance to AMPs does exist. Since AMPs are immunity molecules, it is important to ensure that their potential therapeutic use is not harmful in the long term. Recently, several studies have focused on the adaptation of Gram-negative bacteria to subinhibitory concentrations of AMPs. Such concentrations are commonly found in vivo and in the environment. It is therefore necessary to understand how bacteria detect and respond to low concentrations of AMPs. This review focuses on recent findings regarding the impact of subinhibitory concentrations of AMPs on the modulation of virulence and resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Marylise Duperthuy
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
33
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
34
|
Feldman C, Anderson R. Meningococcal pneumonia: a review. Pneumonia (Nathan) 2019; 11:3. [PMID: 31463180 PMCID: PMC6708554 DOI: 10.1186/s41479-019-0062-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although Neisseria meningitidis is one of the major causes of meningitis, meningococcal pneumonia is the most common non-neurological organ disease caused by this pathogen. Methods We conducted a review of the literature to describe the risk factors, pathogenesis, clinical features, diagnosis, treatment and prevention of meningococcal pneumonia. Results Meningococcal pneumonia was first described in 1907 and during the 1918–1919 influenza pandemic large numbers of cases of meningococcal pneumonia occurred in patients following the initial viral infection. A number of publications, mainly case series or case reports, has subsequently appeared in the literature. Meningococcal pneumonia occurs mainly with serogroups Y, W-135 and B. Risk factors for meningococcal pneumonia have not been well characterised, but appear to include older age, smoking, people living in close contact (e.g. military recruits and students at university), preceding viral and bacterial infections, haematological malignancies, chronic respiratory conditions and various other non-communicable and primary and secondary immunodeficiency diseases. Primary meningococcal pneumonia occurs in 5–10% of patients with meningococcal infection and is indistinguishable clinically from pneumonia caused by other common pathogens. Fever, chills and pleuritic chest pain are the most common symptoms, occurring in > 50% of cases. Productive sputum and dyspnoea are less common. Diagnosis of meningococcal pneumonia may be made by the isolation of the organism in sputum, blood, or normally sterile site cultures, but is likely to underestimate the frequency of meningococcal pneumonia. If validated, PCR-based techniques may be of value for diagnosis in the future. While penicillin was the treatment of choice for meningococcal infection, including pneumonia, prior to 1991, a third generation cephalosporin has been more commonly used thereafter, because of concerns of penicillin resistance. Chemoprophylaxis, using one of a number of antibiotics, has been recommended for close contacts of patients with meningococcal meningitis, and similar benefits may be seen in contacts of patients with meningococcal pneumonia. Effective vaccines are available for the prevention of infection with certain meningococcal serogroups, but this field is still evolving. Conclusion Meningococcal pneumonia occurs fairly frequently and should be considered as a possible cause of pneumonia, particularly in patients with specific risk factors.
Collapse
Affiliation(s)
- Charles Feldman
- 1Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- 2Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
35
|
Lanzoni O, Plotnikov A, Khlopko Y, Munz G, Petroni G, Potekhin A. The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Sci Rep 2019; 9:11356. [PMID: 31388025 PMCID: PMC6684585 DOI: 10.1038/s41598-019-47701-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Microbiomes of multicellular organisms are one of the hottest topics in microbiology and physiology, while only few studies addressed bacterial communities associated with protists. Protists are widespread in all environments and can be colonized by plethora of different bacteria, including also human pathogens. The aim of this study was to characterize the prokaryotic community associated with the sessile ciliate Stentor coeruleus. 16S rRNA gene metabarcoding was performed on single cells of S. coeruleus and on their environment, water from the sewage stream. Our results showed that the prokaryotic community composition differed significantly between Stentor cells and their environment. The core microbiome common for all ciliate specimens analyzed could be defined, and it was composed mainly by representatives of bacterial genera which include also potential human pathogens and commensals, such as Neisseria, Streptococcus, Capnocytophaga, Porphyromonas. Numerous 16S rRNA gene contigs belonged to endosymbiont “Candidatus Megaira polyxenophila”. Our data suggest that each ciliate cell can be considered as an ecological microniche harboring diverse prokaryotic organisms. Possible benefits for persistence and transmission in nature for bacteria associated with protists are discussed. Our results support the hypothesis that ciliates attract potentially pathogenic bacteria and play the role of natural reservoirs for them.
Collapse
Affiliation(s)
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Yuri Khlopko
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Division of RAS, Orenburg, Russia
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
36
|
Pal S, Verma J, Mallick S, Rastogi SK, Kumar A, Ghosh AS. Absence of the glycosyltransferase WcaJ in Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation. Microbiology (Reading) 2019; 165:891-904. [PMID: 31246167 DOI: 10.1099/mic.0.000827] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shilpa Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Sathi Mallick
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Sumit Kumar Rastogi
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Akash Kumar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Anindya S. Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| |
Collapse
|
37
|
Muñoz VL, Porsch EA, St Geme JW. Kingella kingae Surface Polysaccharides Promote Resistance to Neutrophil Phagocytosis and Killing. mBio 2019; 10:e00631-19. [PMID: 31239373 PMCID: PMC6593399 DOI: 10.1128/mbio.00631-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
Bacterial pathogens have evolved strategies that enable them to evade neutrophil-mediated killing. The Gram-negative coccobacillus Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a common etiological agent of osteoarticular infections and bacteremia in young children. K. kingae produces a polysaccharide capsule and an exopolysaccharide, both of which are important for protection against complement-mediated lysis and are required for full virulence in an infant rat model of infection. In this study, we examined the role of the K. kingae polysaccharide capsule and exopolysaccharide in protection against neutrophil killing. In experiments with primary human neutrophils, we found that the capsule interfered with the neutrophil oxidative burst response and prevented neutrophil binding of K. kingae but had no effect on neutrophil internalization of K. kingae In contrast, the exopolysaccharide resisted the bactericidal effects of antimicrobial peptides and efficiently blocked neutrophil phagocytosis of K. kingae This work demonstrates that the K. kingae polysaccharide capsule and exopolysaccharide promote evasion of neutrophil-mediated killing through distinct yet complementary mechanisms, providing additional support for the K. kingae surface polysaccharides as potential vaccine antigens. In addition, these studies highlight a novel interplay between a bacterial capsule and a bacterial exopolysaccharide and reveal new properties for a bacterial exopolysaccharide, with potential applicability to other bacterial pathogens.IMPORTANCEKingella kingae is a Gram-negative commensal in the oropharynx and represents a leading cause of joint and bone infections in young children. The mechanisms by which K. kingae evades host innate immunity during pathogenesis of disease remain poorly understood. In this study, we established that the K. kingae polysaccharide capsule and exopolysaccharide function independently to protect K. kingae against reactive oxygen species (ROS) production, neutrophil phagocytosis, and antimicrobial peptides. These results demonstrate the intricacies of K. kingae innate immune evasion and provide valuable information that may facilitate development of a polysaccharide-based vaccine against K. kingae.
Collapse
Affiliation(s)
- Vanessa L Muñoz
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eric A Porsch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph W St Geme
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Colicchio R, Pagliuca C, Ricci S, Scaglione E, Grandgirard D, Masouris I, Farina F, Pagliarulo C, Mantova G, Paragliola L, Leib SL, Koedel U, Pozzi G, Alifano P, Salvatore P. Virulence Traits of a Serogroup C Meningococcus and Isogenic cssA Mutant, Defective in Surface-Exposed Sialic Acid, in a Murine Model of Meningitis. Infect Immun 2019; 87:e00688-18. [PMID: 30718288 PMCID: PMC6434112 DOI: 10.1128/iai.00688-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
In serogroup C Neisseria meningitidis, the cssA (siaA) gene codes for an UDP-N-acetylglucosamine 2-epimerase that catalyzes the conversion of UDP-N-acetyl-α-d-glucosamine into N-acetyl-d-mannosamine and UDP in the first step in sialic acid biosynthesis. This enzyme is required for the biosynthesis of the (α2→9)-linked polysialic acid capsule and for lipooligosaccharide (LOS) sialylation. In this study, we have used a reference serogroup C meningococcal strain and an isogenic cssA knockout mutant to investigate the pathogenetic role of surface-exposed sialic acids in a model of meningitis based on intracisternal inoculation of BALB/c mice. Results confirmed the key role of surface-exposed sialic acids in meningococcal pathogenesis. The 50% lethal dose (LD50) of the wild-type strain 93/4286 was about four orders of magnitude lower than that of the cssA mutant. Compared to the wild-type strain, the ability of this mutant to replicate in brain and spread systemically was severely impaired. Evaluation of brain damage evidenced a significant reduction in cerebral hemorrhages in mice infected with the mutant in comparison with the levels in those challenged with the wild-type strain. Histological analysis showed the typical features of bacterial meningitis, including inflammatory cells in the subarachnoid, perivascular, and ventricular spaces especially in animals infected with the wild type. Noticeably, 80% of mice infected with the wild-type strain presented with massive bacterial localization and accompanying inflammatory infiltrate in the corpus callosum, indicating high tropism of meningococci exposing sialic acids toward this brain structure and a specific involvement of the corpus callosum in the mouse model of meningococcal meningitis.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Susanna Ricci
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Fabrizio Farina
- Department of Law, Economics, Management and Quantitative Methods, University of Sannio, Benevento, Italy
| | | | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Laura Paragliola
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Uwe Koedel
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
39
|
Functional Analysis and Antivirulence Properties of a New Depolymerase from a Myovirus That Infects Acinetobacter baumannii Capsule K45. J Virol 2019; 93:JVI.01163-18. [PMID: 30463964 DOI: 10.1128/jvi.01163-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen causative of health care-associated infections and is able to rapidly develop resistance to all known antibiotics, including colistin. As an alternative therapeutic agent, we have isolated a novel myovirus (vB_AbaM_B9) which specifically infects and makes lysis from without in strains of the K45 and K30 capsule types, respectively. Phage B9 has a genome of 93,641 bp and encodes 167 predicted proteins, of which 29 were identified by mass spectrometry. This phage holds a capsule depolymerase (B9gp69) able to digest extracted exopolysaccharides of both K30 and K45 strains and remains active in a wide range of pH values (5 to 9), ionic strengths (0 to 500 mM), and temperatures (20 to 80°C). B9gp69 was demonstrated to be nontoxic in a cell line model of the human lung and to make the K45 strain fully susceptible to serum killing in vitro Contrary to the case with phage, no resistance development was observed by bacteria targeted with the B9gp69. Therefore, capsular depolymerases may represent attractive antimicrobial agents against A. baumannii infections.IMPORTANCE Currently, phage therapy has revived interest for controlling hard-to-treat bacterial infections. Acinetobacter baumannii is an emerging Gram-negative pathogen able to cause a variety of nosocomial infections. Additionally, this species is becoming more resistant to several classes of antibiotics. Here we describe the isolation of a novel lytic myophage B9 and its recombinant depolymerase. While the phage can be a promising alternative antibacterial agent, its success in the market will ultimately depend on new regulatory frameworks and general public acceptance. We therefore characterized the phage-encoded depolymerase, which is a natural enzyme that can be more easily managed and used. To our knowledge, the therapeutic potential of phage depolymerase against A. baumannii is still unknown. We show for the first time that the K45 capsule type is an important virulence factor of A. baumannii and that capsule removal via the recombinant depolymerase activity helps the host immune system to combat the bacterial infection.
Collapse
|
40
|
|
41
|
Rendueles O, de Sousa JAM, Bernheim A, Touchon M, Rocha EPC. Genetic exchanges are more frequent in bacteria encoding capsules. PLoS Genet 2018; 14:e1007862. [PMID: 30576310 PMCID: PMC6322790 DOI: 10.1371/journal.pgen.1007862] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/07/2019] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Capsules allow bacteria to colonize novel environments, to withstand numerous stresses, and to resist antibiotics. Yet, even though genetic exchanges with other cells should be adaptive under such circumstances, it has been suggested that capsules lower the rates of homologous recombination and horizontal gene transfer. We analysed over one hundred pan-genomes and thousands of bacterial genomes for the evidence of an association between genetic exchanges (or lack thereof) and the presence of a capsule system. We found that bacteria encoding capsules have larger pan-genomes, higher rates of horizontal gene transfer, and higher rates of homologous recombination in their core genomes. Accordingly, genomes encoding capsules have more plasmids, conjugative elements, transposases, prophages, and integrons. Furthermore, capsular loci are frequent in plasmids, and can be found in prophages. These results are valid for Bacteria, independently of their ability to be naturally transformable. Since we have shown previously that capsules are commonly present in nosocomial pathogens, we analysed their co-occurrence with antibiotic resistance genes. Genomes encoding capsules have more antibiotic resistance genes, especially those encoding efflux pumps, and they constitute the majority of the most worrisome nosocomial bacteria. We conclude that bacteria with capsule systems are more genetically diverse and have fast-evolving gene repertoires, which may further contribute to their success in colonizing novel niches such as humans under antibiotic therapy. Previous works showed that bacteria encoding capsules are better colonizers and are dominant in most environments suggesting a positive role for capsules in the genetic diversification of bacteria. Yet, it has been repeatedly suggested, based almost exclusively studies in few model species, that such bacteria are less diverse and engage in fewer genetic exchanges. Here, we reverse the current paradigm and show that bacteria encoding capsules have larger and more diverse gene repertoires, which change faster by horizontal gene transfer and recombination. Our study alters the traditional view of the capsule as a barrier to gene flow and raises novel questions about the role of capsules in bacterial adaptation.
Collapse
Affiliation(s)
- Olaya Rendueles
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
- * E-mail:
| | - Jorge A. Moura de Sousa
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| | - Aude Bernheim
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
42
|
Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:28-38. [PMID: 30439931 DOI: 10.5507/bp.2018.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria.
Collapse
|
43
|
Tzeng YL, Berman Z, Toh E, Bazan JA, Turner AN, Retchless AC, Wang X, Nelson DE, Stephens DS. Heteroresistance to the model antimicrobial peptide polymyxin B in the emerging Neisseria meningitidis lineage 11.2 urethritis clade: mutations in the pilMNOPQ operon. Mol Microbiol 2018; 111:254-268. [PMID: 30338585 DOI: 10.1111/mmi.14153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 02/02/2023]
Abstract
Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple US cities have been attributed to a unique non-encapsulated meningococcal clade (the US Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related species, Neisseria gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model AMP, polymyxin B (PmB, MICs 64-256 µg ml-1 ). The isolates also demonstrated stable subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384-1024 µg ml-1 ) and colistin (MIC 256 µg ml-1 ) as well as enhanced LL-37 resistance. This is the first observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB resistance in US_NmUC isolates was due to active Mtr efflux and LptA-mediated lipid A modification. However, whole genome sequencing, variant analyses and directed mutagenesis revealed that the heteroresistance phenotypes and very high-level AMP resistance were the result of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV pilin biogenesis apparatus. Cross-resistance to other classes of antibiotics was also observed in the heteroresistant colonies. High-level resistance to AMPs may contribute to the pathogenesis of US_NmUC.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zachary Berman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jose A Bazan
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, 43210, USA.,Sexual Health Clinic, Columbus Public Health, Columbus, OH, 43210, USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Adam C Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David S Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
44
|
Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. RNA Thermometers in Bacterial Pathogens. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0012-2017. [PMID: 29623874 PMCID: PMC11633587 DOI: 10.1128/microbiolspec.rwr-0012-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Temperature variation is one of the multiple parameters a microbial pathogen encounters when it invades a warm-blooded host. To survive and thrive at host body temperature, human pathogens have developed various strategies to sense and respond to their ambient temperature. An instantaneous response is mounted by RNA thermometers (RNATs), which are integral sensory structures in mRNAs that modulate translation efficiency. At low temperatures outside the host, the folded RNA blocks access of the ribosome to the translation initiation region. The temperature shift upon entering the host destabilizes the RNA structure and thus permits ribosome binding. This reversible zipper-like mechanism of RNATs is ideally suited to fine-tune virulence gene expression when the pathogen enters or exits the body of its host. This review summarizes our present knowledge on virulence-related RNATs and discusses recent developments in the field.
Collapse
Affiliation(s)
- Edmund Loh
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- SCELSE, Nanyang Technological University, 639798, Singapore
| | - Francesco Righetti
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hannes Eichner
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
45
|
Coty JB, Vauthier C. Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success. J Control Release 2018; 275:254-268. [DOI: 10.1016/j.jconrel.2018.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
|
46
|
Ma KC, Unemo M, Jeverica S, Kirkcaldy RD, Takahashi H, Ohnishi M, Grad YH. Genomic Characterization of Urethritis-Associated Neisseria meningitidis Shows that a Wide Range of N. meningitidis Strains Can Cause Urethritis. J Clin Microbiol 2017; 55:3374-3383. [PMID: 28904187 PMCID: PMC5703804 DOI: 10.1128/jcm.01018-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, typically a resident of the oro- or nasopharynx and the causative agent of meningococcal meningitis and meningococcemia, is capable of invading and colonizing the urogenital tract. This can result in urethritis, akin to the syndrome caused by its sister species, N. gonorrhoeae, the etiologic agent of gonorrhea. Recently, meningococcal strains associated with outbreaks of urethritis were reported to share genetic characteristics with the gonococcus, raising the question of the extent to which these strains contain features that promote adaptation to the genitourinary niche, making them gonococcus-like and distinguishing them from other N. meningitidis strains. Here, we analyzed the genomes of 39 diverse N. meningitidis isolates associated with urethritis, collected independently over a decade and across three continents. In particular, we characterized the diversity of the nitrite reductase gene (aniA), the factor H-binding protein gene (fHbp), and the capsule biosynthetic locus, all of which are loci previously suggested to be associated with urogenital colonization. We observed notable diversity, including frameshift variants, in aniA and fHbp and the presence of intact, disrupted, and absent capsule biosynthetic genes, indicating that urogenital colonization and urethritis caused by N. meningitidis are possible across a range of meningococcal genotypes. Previously identified allelic patterns in urethritis-associated N. meningitidis strains may reflect genetic diversity in the underlying meningococcal population rather than novel adaptation to the urogenital tract.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Samo Jeverica
- Institute for Microbiology and Immunology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert D Kirkcaldy
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, CDC, Atlanta, Georgia, USA
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Ji X, Yao PP, Zhang LY, Li Y, Xu F, Mei LL, Zhu SR, Zhang YJ, Zhu HP, van der Veen S. Capsule switching of Neisseria meningitidis sequence type 7 serogroup A to serogroup X. J Infect 2017; 75:521-531. [PMID: 28916450 DOI: 10.1016/j.jinf.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The bacterial pathogen Neisseria meningitidis is able to escape the currently available capsule-based vaccines by undergoing capsule switching. In this study, we investigated whether capsule switching has occurred in a recently emerged sequence type (ST) 7 serogroup X isolate in China, for which currently no vaccine is available. METHODS To identify capsule switching breakpoints, the capsule locus and flanking regions of the ST-7 serogroup X isolate and three endemic ST-7 serogroup A isolates were sequenced and compared. To obtain further insight into capsule switching frequency and length of DNA fragments involved, capsule switching assays were performed using genomic DNA containing combinations of antibiotic selection markers at various locations in the capsule locus and flanking regions. RESULTS Sequence analyses showed that capsule switching has occurred and involved a 8450 bp serogroup X DNA fragment spanning the region from galE to ctrC. Capsule switching assays indicate that capsule switching occurs at a frequency of 6.3 × 10-6 per bacterium per μg of DNA and predominantly involved DNA fragments of about 8.1-9.6 kb in length. CONCLUSIONS Our results show that capsule switching in N. meningitidis occurs at high frequency and involves recombination in the flanking regions of the capsule biosynthesis genes.
Collapse
Affiliation(s)
- Xuemeng Ji
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ping-Ping Yao
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Le-Yi Zhang
- Wenzhou City Center for Disease Control and Prevention, China
| | - Yi Li
- Wenzhou City Center for Disease Control and Prevention, China
| | - Fang Xu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Ling-Ling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Shui-Rong Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Yan-Jun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Han-Ping Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Mubaiwa TD, Semchenko EA, Hartley-Tassell LE, Day CJ, Jennings MP, Seib KL. The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease. Pathog Dis 2017; 75:3867065. [PMID: 28633281 PMCID: PMC5808653 DOI: 10.1093/femspd/ftx063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhoea, are responsible for significant morbidity and mortality worldwide. Neisseria meningitidis displays a range of surface glycosylations including capsule polysaccharide, lipooligosaccharide and O-linked glycoproteins. While N. gonorrhoeae does not have a capsule, it does express both lipooligosaccharide and O-linked glycoproteins. Neisseria gonorrhoeae also has the ability to scavenge host sialic acids, while several N. meningitidis serogroups can synthesise sialic acid. Surface expressed sialic acid is key in serum resistance and survival in the host. On the host side, the pathogenic Neisseria protein adhesins such as Opc and NHBA bind to host glycans for adherence and colonisation of host cells. Essentially, from both the bacterial and host perspective, glycan interactions are fundamental in colonisation and disease of pathogenic Neisseria. The key aspects of glycobiology of the pathogenic Neisseria are reviewed herein.
Collapse
Affiliation(s)
- Tsitsi D. Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
49
|
Guo FB, Xiong L, Zhang KY, Dong C, Zhang FZ, Woo PCY. Identification and analysis of genomic islands in Burkholderia cenocepacia AU 1054 with emphasis on pathogenicity islands. BMC Microbiol 2017; 17:73. [PMID: 28347342 PMCID: PMC5369199 DOI: 10.1186/s12866-017-0986-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 03/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic islands (GIs) are genomic regions that reveal evidence of horizontal DNA transfer. They can code for many functions and may augment a bacterium's adaptation to its host or environment. GIs have been identified in strain J2315 of Burkholderia cenocepacia, whereas in strain AU 1054 there has been no published works on such regions according to our text mining and keyword search in Medline. RESULTS In this study, we identified 21 GIs in AU 1054 by combining two computational tools. Feature analyses suggested that the predictions are highly reliable and hence illustrated the advantage of joint predictions by two independent methods. Based on putative virulence factors, four GIs were further identified as pathogenicity islands (PAIs). Through experiments of gene deletion mutants in live bacteria, two putative PAIs were confirmed, and the virulence factors involved were identified as lipA and copR. The importance of the genes lipA (from PAI 1) and copR (from PAI 2) for bacterial invasion and replication indicates that they are required for the invasive properties of B. cenocepacia and may function as virulence determinants for bacterial pathogenesis and host infection. CONCLUSIONS This approach of in silico prediction of GIs and subsequent identification of potential virulence factors in the putative island regions with final validation using wet experiments could be used as an effective strategy to rapidly discover novel virulence factors in other bacterial species and strains.
Collapse
Affiliation(s)
- Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Key Laboratory for Neuro-information of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Department of Microbiology, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Lifeng Xiong
- Department of Microbiology, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Kai-Yue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Key Laboratory for Neuro-information of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuan Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Key Laboratory for Neuro-information of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Fa-Zhan Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Key Laboratory for Neuro-information of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China.
| |
Collapse
|
50
|
Arenas J, Tommassen J. Meningococcal Biofilm Formation: Let's Stick Together. Trends Microbiol 2017; 25:113-124. [DOI: 10.1016/j.tim.2016.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
|