1
|
Jomehpour N, Sankian M, Soleimanpour S, Derakhshan M, Ghazvini K, Pordel S, Moghadam M. Effectiveness of Mycobacterium tuberculosis recombinant proteins-coated gold nanoparticles in improving the interferon-gamma release assay test. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2025; 43:148-155. [PMID: 40037743 DOI: 10.1016/j.eimce.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/21/2024] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Gold nanoparticles (GNPs) are chemically inert, have low toxicity, and are easy to modify and functionalize for the detection of many pathogens. They have excellent immune modulatory and adjuvant properties. The aim of this study was to improve the diagnosis of latent tuberculosis infection (LTBI) by adding GNPs in tests based on interferon-gamma (IFN-γ) measurement. METHODS GNPs were coated with Mycobacterium tuberculosis (Mtb) recombinant proteins including TB10.4, CFP-10, ESAT-6, and TB7.7. Then, they exposed the whole blood of subjects with active tuberculosis (aTB), LTBI, and healthy controls (HC). Subsequently, IFN-γ produced in GNP tubes (QFT-NG) was measured and compared with IFN-γ produced in tubes without GNPs [QFT-A: (CFP-10, ESAT-6, TB7.7, TB10.4), QFT-B: (CFP-10, ESAT-6, TB7.7)]. RESULTS The results showed that the IFN-γ production in the GNPs tubes was significantly higher than in tubes without GNPs in aTB, LTBI, and HC subjects. In aTB patients, the mean difference (MD) between the QFT-NG and QFT-A tubes was 0.44, with a P-value of 0.04, and a 95% CI: 0.07-0.88. Furthermore, in LTBI individuals, the QFT-NG and QFT-A tubes exhibited an MD=0.21, P-value=0.03, 95% CI: 0.15-0.4. In the aTB and LTBI subjects were detected in the QFT-NG tubes with a sensitivity of 95%, 100% and specificity 100%, 86%, respectively. CONCLUSION The use of GNPs coated with Mtb recombinant proteins can aid in detecting LTBI subjects by increasing IFN-γ levels.
Collapse
Affiliation(s)
- Najmeh Jomehpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunobiochemistry Laboratory, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran.
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Derakhshan
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safora Pordel
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunobiochemistry Laboratory, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
| |
Collapse
|
2
|
Londt R, Semple L, Esmail A, Pooran A, Meldau R, Davids M, Dheda K, Tomasicchio M. Autologous Human Dendritic Cells from XDR-TB Patients Polarize a Th1 Response Which Is Bactericidal to Mycobacterium tuberculosis. Microorganisms 2025; 13:345. [PMID: 40005712 PMCID: PMC11857998 DOI: 10.3390/microorganisms13020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Extensively drug-resistant tuberculosis (XDR-TB) is a public health concern as drug resistance is outpacing the drug development pipeline. Alternative immunotherapeutic approaches are needed. Peripheral blood mononuclear cells (PBMCs) were isolated from pre-XDR/XDR-TB (n = 25) patients and LTBI (n = 18) participants. Thereafter, monocytic-derived dendritic cells (mo-DCs) were co-cultured with M. tb antigens, with/without a maturation cocktail (interferon-γ, interferon-α, CD40L, IL-1β, and TLR3 and TLR7/8 agonists). Two peptide pools were evaluated: (i) an ECAT peptide pool (ESAT6, CFP10, Ag85B, and TB10.4 peptides) and (ii) a PE/PPE peptide pool. Sonicated lysate of the M. tb HN878 strain served as a control. Mo-DCs were assessed for DC maturation markers, Th1 cytokines, and the ability of the DC-primed PBMCs to restrict the growth of M. tb-infected monocyte-derived macrophages. In pre-XDR/XDR-TB, mo-DCs matured with M. tb antigens (ECAT or PE/PPE peptide pool, or HN878 lysate) + cocktail, compared to mo-DCs matured with M. tb antigens only, showed higher upregulation of co-stimulatory molecules and IL-12p70 (p < 0.001 for both comparisons). The matured mo-DCs had enhanced antigen-specific CD8+ T-cell responses to ESAT-6 (p = 0.05) and Ag85B (p = 0.03). Containment was higher with mo-DCs matured with the PE/PPE peptide pool cocktail versus mo-DCs matured with the PE/PPE peptide pool (p = 0.0002). Mo-DCs matured with the PE/PPE peptide pool + cocktail achieved better containment than the ECAT peptide pool + cocktail [50%, (IQR:39-75) versus 46%, (IQR:15-62); p = 0.02]. In patients with pre-XDR/XDR-TB, an effector response primed by mo-DCs matured with an ECAT or PE/PPE peptide pool + cocktail was capable of restricting the growth of M. tb in vitro.
Collapse
Affiliation(s)
- Rolanda Londt
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Lynn Semple
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Richard Meldau
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Malika Davids
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town 7925, South Africa
- South Africa MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
3
|
Granados-Tristán AL, Hernández-Luna CE, González-Escalante LA, Camacho-Moll ME, Silva-Ramírez B, Bermúdez de León M, Peñuelas-Urquides K. ESX-3 secretion system in Mycobacterium: An overview. Biochimie 2024; 216:46-55. [PMID: 37879428 DOI: 10.1016/j.biochi.2023.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Mycobacteria are microorganisms distributed in the environment worldwide, and some of them, such as Mycobacterium tuberculosis or M. leprae, are pathogenic. The hydrophobic mycobacterial cell envelope has low permeation and bacteria need to export products across their structure. Mycobacteria possess specialized protein secretion systems, such as the Early Secretory Antigenic Target 6 secretion (ESX) system. Five ESX loci have been described in M. tuberculosis, called ESX-1 to ESX-5. The ESX-3 secretion system has been associated with mycobacterial metabolism and growth. The locus of this system is highly conserved across mycobacterial species. Metallo-proteins regulate negative ESX-3 transcription in high conditions of iron and zinc. Moreover, this secretion system is part of an antioxidant regulatory pathway linked to Zinc. EccA3, EccB3, EccC3, EccD3, and EccE3 are components of the ESX-3 secretion machinery, whereas EsxG-EsxH, PE5-PPE4, and PE15-PPE20 are proteins secreted by this system. In addition, EspG3 and MycP3 are complementary proteins involved in transport and proteolysis respectively. This system is associated to mycobacterial virulence by releasing the bacteria from the phagosome and inhibiting endomembrane damage response. Furthermore, components of this system inhibit the host immune response by reducing the recognition of M. tuberculosis-infected cells. The components of the ESX-3 secretion system play a role in drug resistance and cell wall integrity. Moreover, the expression data of this system indicated that external and internal factors affect ESX-3 locus expression. This review provides an overview of new findings on the ESX-3 secretion system, its regulation, expression, and functions.
Collapse
Affiliation(s)
- Ana Laura Granados-Tristán
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico; Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Carlos Eduardo Hernández-Luna
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Laura Adiene González-Escalante
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| |
Collapse
|
4
|
Hildebrand RE, Hansen C, Kingstad-Bakke B, Wu CW, Suresh M, Talaat A. The Immunogenicity and Safety of Mycobacterium tuberculosis- mosR-Based Double Deletion Strain in Mice. Microorganisms 2023; 11:2105. [PMID: 37630665 PMCID: PMC10459135 DOI: 10.3390/microorganisms11082105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) remains a significant global health threat, accounting for ~1.7 million deaths annually. The efficacy of the current vaccine, M. bovis BCG, ranges from 0 to 80% in children and does not prevent adulthood tuberculosis. We explored the immune profile and safety of a live-attenuated M. tuberculosis construct with double deletions of the mosR and echA7 genes, where previously, single mutations were protective against an M. tuberculosis aerosol challenge. Over 32 weeks post-vaccination (WPV), immunized mice with M. tuberculosisΔmosRΔechA7 (double mutant) were sacrificed to evaluate the vaccine persistence, histopathology, and immune responses. Interestingly, despite similar tissue colonization between the vaccine double mutant and wild-type M. tuberculosis, the vaccine construct showed a greater reaction to the ESAT-6, TB.10, and Ag85B antigens with peptide stimulation. Additionally, there was a greater number of antigen-specific CD4 T cells in the vaccine group, accompanied by significant polyfunctional T-cell responses not observed in the other groups. Histologically, mild but widely distributed inflammatory responses were recorded in the livers and lungs of the immunized animals at early timepoints, which turned into organized inflammatory foci via 32WPV, a pathology not observed in BCG-immunized mice. A lower double-mutant dose resulted in significantly less tissue colonization and less tissue inflammation. Overall, the double-mutant vaccine elicited robust immune responses dominated by antigen-specific CD4 T cells, but also triggered tissue damage and vaccine persistence. The findings highlight key features associated with the immunogenicity and safety of the examined vaccine construct that can benefit the future evaluation of other live vaccines.
Collapse
Affiliation(s)
- Rachel E. Hildebrand
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Chungyi Hansen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Chia-Wei Wu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Marulasiddappa Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Adel Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
- Vireo Vaccine International, Middleton, WI 53562, USA
| |
Collapse
|
5
|
Intranasal multivalent adenoviral-vectored vaccine protects against replicating and dormant M.tb in conventional and humanized mice. NPJ Vaccines 2023; 8:25. [PMID: 36823425 PMCID: PMC9948798 DOI: 10.1038/s41541-023-00623-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route. In this study, we have developed a trivalent chimpanzee adenoviral-vectored vaccine to provide protective immunity against pulmonary TB through targeting antigens linked to the three different growth phases (acute/chronic/dormancy) of Mycobacterium tuberculosis (M.tb) by expressing an acute replication-associated antigen, Ag85A, a chronically expressed virulence-associated antigen, TB10.4, and a dormancy/resuscitation-associated antigen, RpfB. Single-dose respiratory mucosal immunization with our trivalent vaccine induced robust, sustained tissue-resident multifunctional CD4+ and CD8+ T-cell responses within the lung tissues and airways, which were further quantitatively and qualitatively improved following boosting of subcutaneously BCG-primed hosts. Prophylactic and therapeutic immunization with this multivalent trivalent vaccine in conventional BALB/c mice provided significant protection against not only actively replicating M.tb bacilli but also dormant, non-replicating persisters. Importantly, when used as a booster, it also provided marked protection in the highly susceptible C3HeB/FeJ mice, and a single respiratory mucosal inoculation was capable of significant protection in a humanized mouse model. Our findings indicate the great potential of this next-generation TB vaccine strategy and support its further clinical development for both prophylactic and therapeutic applications.
Collapse
|
6
|
Antibiotic Treatment during Gestation Enhances Susceptibility to Mycobacterium tuberculosis in Offspring. Microbiol Spectr 2022; 10:e0249122. [PMID: 36314979 PMCID: PMC9769670 DOI: 10.1128/spectrum.02491-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whether antibiotic treatment during gestation impacts T cell immunity to vaccination in offspring is unexplored. Dams treated with polymyxin B (PMB) during gestation (Mg) displayed altered microbial communities prior to delivery compared to control dams (Mc). Differences in microbiota were also evident in pups born to polymyxin B-treated dams (Pg) compared to control pups (Pc). When pups were immunized with Bacille Calmette-Guerin (BCG), we observed no difference in TB10.4-specific T cells between Pc and Pg 4 weeks postimmunization. Significantly fewer splenic CD4 T cells from BCG-vaccinated Pg produced interleukin-2 (IL-2) upon stimulation, suggesting a possible functional deficiency. There was no difference in purified protein derivative (PPD)-specific IgG between Pc and Pg at this time point. However, when infected with Mycobacterium tuberculosis, Pg displayed significantly higher bacterial burden in the lung than Pc. Our results show that maternal PMB treatment during gestation may not impact splenic antigen-specific T cell responses following BCG vaccination but alters susceptibility to M. tuberculosis in offspring. IMPORTANCE The composition of the pioneer microbiota that colonize the infant gut are determined by the mother. Polymyxin B-induced changes in the maternal microbiota during pregnancy impact the offspring gut microbiota but not vaccine-specific CD4 T cell response. However, when infected with Mycobacterium tuberculosis, offspring born to mothers with an altered gut microbiota are susceptible to infection compared to those born to mothers not exposed to antibiotics.
Collapse
|
7
|
Bythrow GV, Farhat MF, Levendosky K, Mohandas P, Germain GA, Yoo B, Quadri LEN. Mycobacterium abscessus Mutants with a Compromised Functional Link between the Type VII ESX-3 System and an Iron Uptake Mechanism Reliant on an Unusual Mycobactin Siderophore. Pathogens 2022; 11:pathogens11090953. [PMID: 36145386 PMCID: PMC9505556 DOI: 10.3390/pathogens11090953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
The opportunistic pathogen Mycobacterium abscessus subsp. abscessus (Mab) has become an emerging public health threat due to the increasing number of Mab-associated chronic pulmonary disease cases. Treatment requires multiple drug courses and is often combined with surgical resection. Cure rates are only ~50% due to treatment failure and comorbidities. Deeper understanding of the biology of Mab is required to illuminate potential avenues for the development of better therapeutics against Mab infections. The ESX-3 type VII protein secretion system of Mab has an important role in host inflammatory and pathological responses during infection. In this work, we demonstrate a functional link between ESX-3 and an iron uptake system based on an unusual mycobactin-type siderophore (designated MBT Ab) and exploit this link to implement a large screen for transposon mutants with an impaired ESX-3. Most mutants we identified carry insertions in genes encoding predicted ESX-3 secretion machinery components or potential ESX-3 substrates. The mutants overproduce MBT Ab, a trait consistent with an iron uptake defect. Our characterization of MBT Ab revealed structural features reminiscent of nocardial mycobactin-like compounds with cytotoxicity. This finding raises the possibility that MBT Ab may play roles in pathogenesis unlinked to iron homeostasis. The mutants generated herein will facilitate research to better understand the role of ESX-3 and its interplay with the siderophore system.
Collapse
Affiliation(s)
- Glennon V. Bythrow
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Manal F. Farhat
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Poornima Mohandas
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Gabrielle A. Germain
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Barney Yoo
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Biochemistry Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
8
|
Lee YH, Hyun YS, Jo HA, Baek IC, Kim SM, Sohn HJ, Kim TG. Comprehensive analysis of mycobacterium tuberculosis antigen-specific CD4+ T cell responses restricted by single HLA class II allotype in an individual. Front Immunol 2022; 13:897781. [PMID: 35967347 PMCID: PMC9366214 DOI: 10.3389/fimmu.2022.897781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis infection is generally asymptomatic as latent tuberculosis, but it is still known as the world’s leading bacterial cause of death. The diagnosis of latent tuberculosis infection relies on the evidence of cellular immunity to mycobacterial antigens. Since the association between HLA class II and tuberculosis infection has been reported in several population groups, a detailed study on the CD4+ T cell response to major tuberculosis antigens is needed. To elucidate which HLA class II allotypes in an individual are preferentially used in tuberculosis, CD4+ T cells specific to TB10.4, Ag85b, ESAT-6, and CFP-10 of Mycobacterium tuberculosis antigens were analyzed comprehensively. A total of 33 healthy donors were analyzed by ex vivo and cultured ELISPOT using panels of artificial antigen-presenting cells expressing a single HLA class II allotype. The CD4+ T cell responses were increased by an average of 39-fold in cultured ELISPOT compared with ex vivo ELISPOT. In ex vivo and cultured ELISPOT, CD4+ T cell responses showed significantly higher by HLA-DR than those of HLA-DQ and HLA-DP locus. In cultured ELISPOT, 9 HLA-DR allotypes, 4 HLA-DQ allotypes, and 3 HLA-DP allotypes showed positive CD4+ T cell responses. Among ten donors with positive CD4+ T cell responses when tested for mixed Mycobacterium tuberculosis antigens, seven donors were positive for only a single allotype, and three were positive for two allotypes in an individual. However, only one allotype was used for a single antigen-specific response when a single tuberculosis antigen was used individually. These results on the distribution of HLA class II allotypes showing high CD4+ T-cell responses to Mycobacterium tuberculosis antigens and the intra-individual allotype dominance will provide valuable information for understanding the immunobiology and immunogenetics of tuberculosis, which can contribute to the development of more effective vaccines.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Mi Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Tai-Gyu Kim,
| |
Collapse
|
9
|
Lopez J, Anna F, Authié P, Pawlik A, Ku MW, Blanc C, Souque P, Moncoq F, Noirat A, Hardy D, Sougakoff W, Brosch R, Guinet F, Charneau P, Majlessi L. A lentiviral vector encoding fusion of light invariant chain and mycobacterial antigens induces protective CD4 + T cell immunity. Cell Rep 2022; 40:111142. [PMID: 35905717 DOI: 10.1016/j.celrep.2022.111142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022] Open
Abstract
Lentiviral vectors (LVs) are highly efficient at inducing CD8+ T cell responses. However, LV-encoded antigens are processed inside the cytosol of antigen-presenting cells, which does not directly communicate with the endosomal major histocompatibility complex class II (MHC-II) presentation pathway. LVs are thus poor at inducing CD4+ T cell response. To overcome this limitation, we devised a strategy whereby LV-encoded antigens are extended at their N-terminal end with the MHC-II-associated light invariant chain (li), which contains an endosome-targeting signal sequence. When evaluated with an LV-encoded polyantigen composed of CD4+ T cell targets from Mycobacterium tuberculosis, intranasal vaccination in mice triggers pulmonary polyfunctional CD4+ and CD8+ T cell responses. Adjuvantation of these LVs extends the mucosal immunity to Th17 and Tc17 responses. A systemic prime and an intranasal boost with one of these LV induces protection against M. tuberculosis. This strategy improves the protective power of LVs against infections and cancers, where CD4+ T cell immunity plays an important role.
Collapse
Affiliation(s)
- Jodie Lopez
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - François Anna
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Authié
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Alexandre Pawlik
- Institut Pasteur, Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Min-Wen Ku
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Catherine Blanc
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Philippe Souque
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Fanny Moncoq
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Amandine Noirat
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - David Hardy
- Institut Pasteur, Histopathology Platform, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Wladimir Sougakoff
- Sorbonne Universités, UPMC Université Paris 06, CIMI-Paris, AP-HP, Hôpital Pitié-Salpêtrière, CNR-MyRMA, 75013 Paris, France
| | - Roland Brosch
- Institut Pasteur, Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Françoise Guinet
- Institut Pasteur, Lymphocytes and Immunity Unit, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Charneau
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France
| | - Laleh Majlessi
- Institut Pasteur-TheraVectys Joint Lab, Université Paris Cité, 28 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
10
|
Listeria-Vectored Multiantigenic Tuberculosis Vaccine Enhances Protective Immunity against Aerosol Challenge with Virulent Mycobacterium tuberculosis in BCG-Immunized C57BL/6 and BALB/c Mice. mBio 2022; 13:e0068722. [PMID: 35642945 PMCID: PMC9239278 DOI: 10.1128/mbio.00687-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium tuberculosis infects approximately one-third of the world's population, causing active tuberculosis (TB) in ~10 million people and death in ~1.5 million people annually. A potent vaccine is needed to boost the level of immunity conferred by the current Mycobacterium bovis BCG vaccine that provides moderate protection against childhood TB but variable protection against adult pulmonary TB. Previously, we developed a recombinant attenuated Listeria monocytogenes (rLm)-vectored M. tuberculosis vaccine expressing the M. tuberculosis 30-kDa major secretory protein (r30/Ag85B), recombinant attenuated L. monocytogenes ΔactA ΔinlB prfA*30 (rLm30), and showed that boosting BCG-primed mice and guinea pigs with rLm30 enhances immunoprotection against challenge with aerosolized M. tuberculosis Erdman strain. To broaden the antigen repertoire and robustness of rLm30, we constructed 16 recombinant attenuated L. monocytogenes vaccine candidates expressing 3, 4, or 5 among 15 selected M. tuberculosis antigens, verified their protein expression, genetic stability, and growth kinetics in macrophages, and evaluated them for capacity to boost protective efficacy in BCG-primed mice. We found that boosting BCG-primed C57BL/6 and BALB/c mice with recombinant attenuated L. monocytogenes multiantigenic M. tuberculosis vaccines, especially the rLm5Ag(30) vaccine expressing a fusion protein of 23.5/Mpt64, TB10.4/EsxH, ESAT6/EsxA, CFP10/EsxB, and r30, enhances BCG-induced protective immunity against M. tuberculosis aerosol challenge. In immunogenicity studies, rLm5Ag(30) strongly boosts M. tuberculosis antigen-specific CD4-positive (CD4+) and CD8+ T cell-mediated TH1-type immune responses in the spleens and lungs of BCG-primed C57BL/6 mice but does so only weakly in BCG-primed BALB/c mice. Hence, rLm5Ag(30) boosts BCG-primed immunoprotection against M. tuberculosis aerosol challenge in both C57BL/6 and BALB/c mice despite major differences in the magnitude of the vaccine-induced Th1 response in these mouse strains. Given the consistency with which recombinant attenuated L. monocytogenes vaccines expressing the 5 M. tuberculosis antigens in rLm5Ag(30) are able to boost the already high level of protection conferred by BCG alone in two rigorous mouse models of pulmonary TB and the broad CD4+ and CD8+ T cell immunity induced by rLm5Ag(30), this vaccine holds considerable promise as a new vaccine to combat the TB pandemic, especially for the majority of the world’s population immunized with BCG in infancy.
Collapse
|
11
|
Anna F, Lopez J, Moncoq F, Blanc C, Authié P, Noirat A, Fert I, Souque P, Nevo F, Pawlik A, Hardy D, Goyard S, Hudrisier D, Brosch R, Guinet F, Neyrolles O, Charneau P, Majlessi L. A lentiviral vector expressing a dendritic cell-targeting multimer induces mucosal anti-mycobacterial CD4 + T-cell immunity. Mucosal Immunol 2022; 15:1389-1404. [PMID: 36104497 PMCID: PMC9473479 DOI: 10.1038/s41385-022-00566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
Most viral vectors, including the potently immunogenic lentiviral vectors (LVs), only poorly direct antigens to the MHC-II endosomal pathway and elicit CD4+ T cells. We developed a new generation of LVs encoding antigen-bearing monomers of collectins substituted at their C-terminal domain with the CD40 ligand ectodomain to target and activate antigen-presenting cells. Host cells transduced with such optimized LVs secreted soluble collectin-antigen polymers with the potential to be endocytosed in vivo and reach the MHC-II pathway. In the murine tuberculosis model, such LVs induced efficient MHC-II antigenic presentation and triggered both CD8+ and CD4+ T cells at the systemic and mucosal levels. They also conferred a significant booster effect, consistent with the importance of CD4+ T cells for protection against Mycobacterium tuberculosis. Given the pivotal role of CD4+ T cells in orchestrating innate and adaptive immunity, this strategy could have a broad range of applications in the vaccinology field.
Collapse
Affiliation(s)
- François Anna
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Jodie Lopez
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Fanny Moncoq
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Catherine Blanc
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Pierre Authié
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Amandine Noirat
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Ingrid Fert
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Philippe Souque
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Fabien Nevo
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Alexandre Pawlik
- grid.428999.70000 0001 2353 6535Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - David Hardy
- grid.428999.70000 0001 2353 6535Histopathology Platform, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Sophie Goyard
- grid.428999.70000 0001 2353 6535Platform for Innovation and Development of Diagnostic Tests, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Denis Hudrisier
- grid.508721.9Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Roland Brosch
- grid.428999.70000 0001 2353 6535Integrated Mycobacterial Pathogenomics Unit, CNRS UMR 3525, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Françoise Guinet
- grid.428999.70000 0001 2353 6535Lymphocytes and Immunity Unit, INSERM U1223, Institut Pasteur, Université Paris Cité, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Olivier Neyrolles
- grid.508721.9Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Pierre Charneau
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| | - Laleh Majlessi
- grid.428999.70000 0001 2353 6535Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, F-75015 Paris, France
| |
Collapse
|
12
|
Vasilyev K, Shurygina AP, Zabolotnykh N, Sergeeva M, Romanovskaya-Romanko E, Pulkina A, Buzitskaya J, Dogonadze MZ, Vinogradova TI, Stukova MA. Enhancement of the Local CD8 + T-Cellular Immune Response to Mycobacterium tuberculosis in BCG-Primed Mice after Intranasal Administration of Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens. Vaccines (Basel) 2021; 9:vaccines9111273. [PMID: 34835204 PMCID: PMC8626046 DOI: 10.3390/vaccines9111273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
BCG is the only licensed vaccine against Mycobacterium tuberculosis (M.tb) infection. Due to its intramuscular administration route, BCG is unable to induce a local protective immune response in the respiratory system. Moreover, BCG has a diminished ability to induce long-lived memory T-cells which are indispensable for antituberculosis protection. Recently we described the protective efficacy of new mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing TB10.4 and HspX proteins of M.tb within an NS1 influenza protein open reading frame. In the present work, the innate and adaptive immune response to immunization with the Flu/THSP and the immunological properties of vaccine candidate in the BCG-prime → Flu/THSP vector boost vaccination scheme are studied in mice. It was shown that the mucosal administration of Flu/THSP induces the incoming of interstitial macrophages in the lung tissue and stimulates the expression of co-stimulatory CD86 and CD83 molecules on antigen-presenting cells. The T-cellular immune response to Flu/THSP vector was mediated predominantly by the IFNγ-producing CD8+ lymphocytes. BCG-prime → Flu/THSP vector boost immunization scheme was shown to protect mice from severe lung injury caused by M.tb infection due to the enhanced T-cellular immune response, mediated by antigen-specific effector and central memory CD4+ and CD8+ T-lymphocytes.
Collapse
Affiliation(s)
- Kirill Vasilyev
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
- Correspondence:
| | - Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Natalia Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Mariia Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Ekaterina Romanovskaya-Romanko
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Anastasia Pulkina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Janna Buzitskaya
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Marine Z. Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Tatiana I. Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Marina A. Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| |
Collapse
|
13
|
Ku MW, Authié P, Nevo F, Souque P, Bourgine M, Romano M, Charneau P, Majlessi L. Lentiviral vector induces high-quality memory T cells via dendritic cells transduction. Commun Biol 2021; 4:713. [PMID: 34112936 PMCID: PMC8192903 DOI: 10.1038/s42003-021-02251-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
We report a lentiviral vector harboring the human β2-microglobulin promoter, with predominant expression in immune cells and minimal proximal enhancers to improve vector safety. This lentiviral vector efficiently transduces major dendritic cell subsets in vivo. With a mycobacterial immunogen, we observed distinct functional signatures and memory phenotype in lentiviral vector- or Adenovirus type 5 (Ad5)-immunized mice, despite comparable antigen-specific CD8+ T cell magnitudes. Compared to Ad5, lentiviral vector immunization resulted in higher multifunctional and IL-2-producing CD8+ T cells. Furthermore, lentiviral vector immunization primed CD8+ T cells towards central memory phenotype, while Ad5 immunization favored effector memory phenotype. Studies using HIV antigens in outbred rats demonstrated additional clear-cut evidence for an immunogenic advantage of lentiviral vector over Ad5. Additionally, lentiviral vector provided enhance therapeutic anti-tumor protection than Ad5. In conclusion, coupling lentiviral vector with β2-microglobulin promoter represents a promising approach to produce long-lasting, high-quality cellular immunity for vaccinal purposes.
Collapse
Affiliation(s)
- Min Wen Ku
- grid.428999.70000 0001 2353 6535Laboratoire Commun Pasteur-TheraVectys, Institut Pasteur, Paris, France ,grid.428999.70000 0001 2353 6535Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France ,Ecole Doctorale Frontières du Vivant (FdV), Paris, France
| | - Pierre Authié
- grid.428999.70000 0001 2353 6535Laboratoire Commun Pasteur-TheraVectys, Institut Pasteur, Paris, France
| | - Fabien Nevo
- grid.428999.70000 0001 2353 6535Laboratoire Commun Pasteur-TheraVectys, Institut Pasteur, Paris, France
| | - Philippe Souque
- grid.428999.70000 0001 2353 6535Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France
| | - Maryline Bourgine
- grid.428999.70000 0001 2353 6535Laboratoire Commun Pasteur-TheraVectys, Institut Pasteur, Paris, France ,grid.428999.70000 0001 2353 6535Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France
| | - Marta Romano
- grid.508031.fUnit In Vivo Models, Sciensano, Brussels, Belgium
| | - Pierre Charneau
- grid.428999.70000 0001 2353 6535Laboratoire Commun Pasteur-TheraVectys, Institut Pasteur, Paris, France ,grid.428999.70000 0001 2353 6535Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, Paris, France
| | - Laleh Majlessi
- grid.428999.70000 0001 2353 6535Laboratoire Commun Pasteur-TheraVectys, Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Bendre AD, Peters PJ, Kumar J. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. J Membr Biol 2021; 254:321-341. [PMID: 33954837 PMCID: PMC8099146 DOI: 10.1007/s00232-021-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the deadliest pathogens encountered by humanity. Over the decades, its characteristic membrane organization and composition have been understood. However, there is still limited structural information and mechanistic understanding of the constituent membrane proteins critical for drug discovery pipelines. Recent advances in single-particle cryo-electron microscopy and cryo-electron tomography have provided the much-needed impetus towards structure determination of several vital Mtb membrane proteins whose structures were inaccessible via X-ray crystallography and NMR. Important insights into membrane composition and organization have been gained via a combination of electron tomography and biochemical and biophysical assays. In addition, till the time of writing this review, 75 new structures of various Mtb proteins have been reported via single-particle cryo-EM. The information obtained from these structures has improved our understanding of the mechanisms of action of these proteins and the physiological pathways they are associated with. These structures have opened avenues for structure-based drug design and vaccine discovery programs that might help achieve global-TB control. This review describes the structural features of selected membrane proteins (type VII secretion systems, Rv1819c, Arabinosyltransferase, Fatty Acid Synthase, F-type ATP synthase, respiratory supercomplex, ClpP1P2 protease, ClpB disaggregase and SAM riboswitch), their involvement in physiological pathways, and possible use as a drug target. Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. The Cryo-EM and tomography have simplified the understanding of the mycobacterial membrane organization. Some proteins are located in the plasma membrane; some span the entire envelope, while some, like MspA, are located in the mycomembrane. Cryo-EM has made the study of such membrane proteins feasible.
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
15
|
Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins (Basel) 2021; 13:toxins13020083. [PMID: 33499260 PMCID: PMC7911819 DOI: 10.3390/toxins13020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The adenylate cyclase toxin, CyaA, is one of the key virulent factors produced by Bordetella pertussis, the causative agent of whooping cough. This toxin primarily targets innate immunity to facilitate bacterial colonization of the respiratory tract. CyaA exhibits several remarkable characteristics that have been exploited for various applications in vaccinology and other biotechnological purposes. CyaA has been engineered as a potent vaccine vehicle to deliver antigens into antigen-presenting cells, while the adenylate cyclase catalytic domain has been used to design a robust genetic assay for monitoring protein-protein interactions in bacteria. These two biotechnological applications are briefly summarized in this chapter.
Collapse
|
16
|
Dalirfardouei R, Tafaghodi M, Meshkat Z, Najafi A, Gholoobi A, Nabavinia MS, Sajedifar S, Meshkat M, Badiee A, Ramezani M, Varasteh AR, Naderinasab M. A novel formulation of Mtb72F DNA vaccine for immunization against tuberculosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:826-832. [PMID: 32695300 PMCID: PMC7351443 DOI: 10.22038/ijbms.2020.41806.9881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective(s): Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogen, causes 1.5 million deaths globally. Bacilli Calmette-Guérin (BCG) is commonly administered to protect people against M. tuberculosis infection; however, there are some obstacles with this first-generation vaccine. DNA vaccines, the third generation vaccines, can induce cellular immune responses for tuberculosis (TB) protection. In this study, optimized DNA vaccine (pcDNA3.1-Mtb72F) entrapped in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was used to achieve higher immunogenicity. Materials and Methods: Plasmid Mtb72F was formulated in PLGA NPs using double emulsion method in the presence of TB10.4 and/or CpG as an adjuvant. Female BALB/c mice were immunized either with NP-encapsulated Mtb72F or naked Mtb72F with or without each adjuvant, using the BCG-prime DNA boost regimen. Results: These NPs were approximately 250 nm in diameter and the nucleic acid and protein encapsulation efficiency were 80% and 25%, respectively. The NPs smaller than 200 nm are able to promote cellular rather than humoral responses. The immunization with the formulation consisting of Mtb72F DNA vaccine and TB10.4 entrapped in PLGA NPs showed significant immunogenicity and induced predominantly interferon-ɣ (IFN-ɣ) production and higher INF-ɣ/interleukin-4 (IL-4) ratio in the cultured spleen cells supernatant. Conclusion: PLGA NPs loaded with Mtb72F DNA-based vaccine with TB10.4 could be considered as a promising candidate for vaccination against TB. These results represent an excellent initial step toward development of novel vaccine for TB protection.
Collapse
Affiliation(s)
- Razieh Dalirfardouei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adel Najafi
- Laboratory Division, Fatemieh Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Gholoobi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sadat Nabavinia
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ali Badiee
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Immunobiochemistry Lab, Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Naderinasab
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Keikha M, Eslami M, Yousefi B, Karbalaei M. Overview of multistage subunit tuberculosis vaccines: advantages and challenges. REVIEWS IN MEDICAL MICROBIOLOGY 2020; 31:144-149. [DOI: 10.1097/mrm.0000000000000213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, tuberculosis (TB) infection, is the most threatening infectious disease in all humans around the world. Mycobacterium tuberculosis is a facultative intracellular bacterium, possesses an exclusive life-cycle inside the macrophages, as one of the most important cells in the innate immune system. As soon as entrance in the lungs, bacteria actively replicate, but intracellular conditions such as hypoxia and nutrient starvation, lead to low replication of bacteria, or nonreplicating state. While Bacillus Calmette-Guerin vaccine is the most usable vaccine, especially in children and against active form, but this vaccine has no more protection in infected adults to latent forms of disease. Among the new generation of vaccines, fusion multistage subunit vaccines have prodigious effect on immune responses. By virtue of simultaneous presence of both expressed antigens from active and latent forms of TB in the structure of these recombinant subunit vaccines, they can strongly induce immune responses against all stages of the disease. The findings suggest subunit vaccines are the best candidates for immunization against TB, by virtue of their high safety, ease of production, specificity, and utilization of mycobacterial immunodominant antigens. Fusion multistage subunit vaccines, as novel subunit vaccines are the most ideal target for proper prevention against TB infection. Due to simultaneous use of both expressed antigens in active and latent forms of TB, these vaccines are able to induce strong immune responses versus all of TB stages.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad
| | | | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
18
|
Granados-Tristán AL, Borrego-Loya A, González-Escalante LA, Esquivel-Lucio GJ, Márquez-Uribe DY, Rigal-Leal J, Robles-González RJ, Arriaga-Guerrero AL, Silva-Ramírez B, Hernández-Luna CE, Contreras-Cordero JF, Villarreal-Treviño L, Mercado Hernández R, Bermúdez De León M, Peñuelas-Urquides K. Role of esxG and esxH Genes in Drug-Resistant Mycobacterium. Microb Drug Resist 2020; 26:1279-1290. [PMID: 32379526 DOI: 10.1089/mdr.2019.0391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Tuberculosis drug resistance (DR) is a global problem that is not fully elucidated. Previously, overexpression of esxG and esxH genes was reported in a multidrug-resistant (MDR) Mycobacterium tuberculosis isolate compared with a reference H37Rv strain. To evaluate the roles of esxG and esxH in DR, analysis of their regulatory and coding sequences in sensitive and resistant strains was performed, and the expression levels of their transcriptional regulators IdeR, Zur, and MntR were evaluated. esxG and esxH were expressed heterologously using mycobacterial constructs, and the orthologs Msmeg_0620 and Msmeg_0621 were attenuated in Mycobacterium smegmatis by antisense knockdown. We found no differences in the regulatory and coding sequences of esxG and esxH between the sensitive strain and the MDR isolate. Expression analysis of transcriptional regulators showed that ideR was upregulated in isoniazid (INH)-resistant isolates; in addition, growth inhibition of the M. smegmatis strain was observed in the presence of rifampicin (RIF) and INH when esxG and esxH were expressed heterologously, while faster growth in the presence of RIF was observed when the orthologs were attenuated. In conclusion, the expression of esxG and esxH altered the growth of Mycobacterium in the presence of INH and RIF, suggesting a potential association with DR.
Collapse
Affiliation(s)
- Ana Laura Granados-Tristán
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México.,Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Alejandra Borrego-Loya
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México.,Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Laura Adiene González-Escalante
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México
| | - Gladis Janeth Esquivel-Lucio
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México.,Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Dulce Yesenia Márquez-Uribe
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México.,Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Joyce Rigal-Leal
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México.,Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Rene J Robles-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Ana Leticia Arriaga-Guerrero
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México.,Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México
| | | | | | - Licet Villarreal-Treviño
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Roberto Mercado Hernández
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Mario Bermúdez De León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, México
| |
Collapse
|
19
|
Wang S, Zhou K, Yang X, Zhang B, Zhao Y, Xiao Y, Yang X, Yang H, Guddat LW, Li J, Rao Z. Structural insights into substrate recognition by the type VII secretion system. Protein Cell 2020; 11:124-137. [PMID: 31758528 PMCID: PMC6954902 DOI: 10.1007/s13238-019-00671-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/02/2019] [Indexed: 01/07/2023] Open
Abstract
Type VII secretion systems (T7SSs) are found in many disease related bacteria including Mycobacterium tuberculosis (Mtb). ESX-1 [early secreted antigen 6 kilodaltons (ESAT-6) system 1] is one of the five subtypes (ESX-1~5) of T7SSs in Mtb, where it delivers virulence factors into host macrophages during infection. However, little is known about the molecular details as to how this occurs. Here, we provide high-resolution crystal structures of the C-terminal ATPase3 domains of EccC subunits from four different Mtb T7SS subtypes. These structures adopt a classic RecA-like ɑ/β fold with a conserved Mg-ATP binding site. The structure of EccCb1 in complex with the C-terminal peptide of EsxB identifies the location of substrate recognition site and shows how the specific signaling module "LxxxMxF" for Mtb ESX-1 binds to this site resulting in a translation of the bulge loop. A comparison of all the ATPase3 structures shows there are significant differences in the shape and composition of the signal recognition pockets across the family, suggesting that distinct signaling sequences of substrates are required to be specifically recognized by different T7SSs. A hexameric model of the EccC-ATPase3 is proposed and shows the recognition pocket is located near the central substrate translocation channel. The diameter of the channel is ~25-Å, with a size that would allow helix-bundle shaped substrate proteins to bind and pass through. Thus, our work provides new molecular insights into substrate recognition for Mtb T7SS subtypes and also a possible transportation mechanism for substrate and/or virulence factor secretion.
Collapse
Affiliation(s)
- Shuhui Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaixuan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Xiao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, 300353, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
20
|
Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors. Cell Rep 2019; 23:1072-1084. [PMID: 29694886 PMCID: PMC5946722 DOI: 10.1016/j.celrep.2018.03.125] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023] Open
Abstract
The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs) of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. T cell hybridomas detect individual mycobacterial proteins without cross-reactivity Detection of mycobacterial proteins by T cells allows visualization of their cellular topography Measurement of intraphagocyte mycobacterial proteins can be performed with T cells A multiplexed assay of mycobacterial protein quantitation has numerous applications
Collapse
|
21
|
Chávez-Galán L, Illescas-Eugenio J, Alvarez-Sekely M, Baez-Saldaña R, Chávez R, Lascurain R. Tuberculosis patients display a high proportion of CD8 + T cells with a high cytotoxic potential. Microbiol Immunol 2019; 63:316-327. [PMID: 31254409 PMCID: PMC6772019 DOI: 10.1111/1348-0421.12724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/23/2019] [Indexed: 01/23/2023]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) and remains a major cause of morbidity and mortality worldwide. In the host's immune response system, T cells play a critical role in mediating protection against Mtb infection, but the role of CD8+ T cells is still controversial. We evaluated the phenotypical characterization and cytotoxic ability of CD8+ T cells by flow cytometry‐based assay. Cytokine levels in serum were measured by multiplex cytokine assay. Our data show that cells from TB patients have an increased percentage of peripheral blood CD8+αβ+ T (p = 0.02) and CD56+CD8+ T (p = 0.02) and a decreased frequency of NKG2D+CD8+ T (p = 0.02) compared with healthy donors. Unlike CD8+ T cells from healthy donors, CD8+ T cells from TB patients exhibit greater cytotoxicity, mediated by HLA class I molecules, on autologous monocytes in the presence of mycobacterial antigens (p = 0.005). Finally, TB patients have a proinflammatory profile characterized by serum high level of TNF‐α (p = 0.02) and IL‐8 (p = 0.0001), but, interestingly, IL‐4 (p = 0.002) was also increased compared with healthy donors. Our data show evidence regarding the highly cytotoxic status of CD8+ T cells in Mtb infection. These cytotoxic cells restricted to HLA‐A, B, and C could be used to optimize strategies for designing new TB vaccines or for identifying markers of disease progression.
Collapse
Affiliation(s)
- Leslie Chávez-Galán
- Integrative Immunology Laboratory, National Institute of Respiratory Diseases "Ismael Cosío Villegas" (INER), Mexico City, Mexico
| | | | - Magaly Alvarez-Sekely
- Department of Hematology, National Institute of Cancerology (INCAN), Mexico City, Mexico
| | - Renata Baez-Saldaña
- Oncologic Pulmonology Clinic, National Institute of Respiratory Diseases "Ismael Cosío Villegas" (INER), Mexico City, Mexico
| | - Raúl Chávez
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ricardo Lascurain
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.,Homeopatic National Hospital, Chimalpopoca135, 06800, Mexico City, Mexico
| |
Collapse
|
22
|
Chenal A, Ladant D. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Antigen-Delivery and Immunotherapy. Toxins (Basel) 2018; 10:E302. [PMID: 30037010 PMCID: PMC6070788 DOI: 10.3390/toxins10070302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells where, upon activation by endogenous calmodulin, it synthesizes massive amounts of cAMP that alters cellular physiology. The CyaA toxin is a 1706 residues-long bifunctional protein: the catalytic domain is located in the 400 amino-proximal residues, whereas the carboxy-terminal 1306 residues are implicated in toxin binding to the cellular receptor, the αMβ₂ (CD11b/CD18) integrin, and subsequently in the translocation of the catalytic domain across the cytoplasmic membrane of the target cells. Indeed, this protein is endowed with the unique capability of delivering its N-terminal catalytic domain directly across the plasma membrane of eukaryotic target cells. These properties have been exploited to engineer the CyaA toxin as a potent non-replicating vector able to deliver antigens into antigen presenting cells and elicit specific cell-mediated immune responses. Antigens of interest can be inserted into the CyaA protein to yield recombinant molecules that are targeted in vivo to dendritic cells, where the antigens are processed and presented by the major class I and class II histocompatibility complexes (MHC-I and II). CyaA turned out to be a remarkably effective and versatile vaccine vector capable of inducing all the components of the immune response (T-CD4, T-CD8, and antibody). In this chapter, we summarize the basic knowledge on the adenylate cyclase toxin and then describe the application of CyaA in vaccinology, including some recent results of clinical trials of immunotherapy using a recombinant CyaA vaccine.
Collapse
Affiliation(s)
- Alexandre Chenal
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Daniel Ladant
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
23
|
Lin LCW, Chattopadhyay S, Lin JC, Hu CMJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv Healthc Mater 2018; 7:e1701395. [PMID: 29508547 DOI: 10.1002/adhm.201701395] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Indexed: 02/06/2023]
Abstract
As the dawn of the postantibiotic era we approach, antibacterial vaccines are becoming increasingly important for managing bacterial infection and reducing the need for antibiotics. Despite the success of vaccination, vaccines remain unavailable for many pressing microbial diseases, including tuberculosis, chlamydia, and staphylococcus infections. Amid continuing research efforts in antibacterial vaccine development, the advancement of nanomaterial engineering has brought forth new opportunities in vaccine designs. With increasing knowledge in antibacterial immunity and immunologic adjuvants, innovative nanoparticles are designed to elicit the appropriate immune responses for effective antimicrobial defense. Rationally designed nanoparticles are demonstrated to overcome delivery barriers to shape the adaptive immunity. This article reviews the advances in nanoparticle- and nanomaterial-based antibacterial vaccines and summarizes the development of nanoparticulate adjuvants for immune potentiation against microbial pathogens. In addition, challenges and progress in ongoing antibacterial vaccine development are discussed to highlight the opportunities for future vaccine designs.
Collapse
Affiliation(s)
- Leon Chien-Wei Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences; Academia Sinica; 128, Sec. 2, Academia Road Nangang District Taipei 11529 Taiwan
| |
Collapse
|
24
|
Ghosh MK, Muller HK, Walker AM. Lactation-Based Maternal Educational Immunity Crosses MHC Class I Barriers and Can Impart Th1 Immunity to Th2-Biased Recipients. THE JOURNAL OF IMMUNOLOGY 2017; 199:1729-1736. [PMID: 28747348 DOI: 10.4049/jimmunol.1601375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/23/2017] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated lactational transfer of T cell-based immunity from dam to foster pup. In the short term, a significant part of transferred immunity is passive cellular immunity. However, as time progresses, this is replaced by what we have described as maternal educational immunity such that by young adulthood, all immune cells responding to a foster dam immunogen are the product of the foster pup's thymus. To reduce confounding factors, this original demonstration used congenic/syngeneic dam and foster pup pairs. In this study, we investigated lactational transfer of immunity to Mycobacterium tuberculosis in MHC class I-mismatched animals, as well as from Th1-biased dams to Th2-biased foster pups. Using immunized C57BL/6J dams, lactational transfer to nonimmunized BALB/cJ foster pups resulted in much greater immunity than direct immunization in 5-wk-old pups (ex vivo assay of pup splenocytes). At this age, 82% of immunogen-responding cells in the pup spleen were produced through maternal educational immunity. FVB/NJ nonimmunized foster recipients had a greater number of maternal cells in the spleen and thymus but a much larger percentage was Foxp3+, resulting in equivalent immunity to direct immunization. Depletion of maternal Foxp3+ cells from pup splenocytes illustrated a substantial role for lactationally transferred dam regulatory T cells in suppression of the ex vivo response in FVB/NJ, but not BALB/cJ, recipients. We conclude that lactational transfer of immunity can cross MHC class I barriers and that Th1 immunity can be imparted to Th2-biased offspring; in some instances, it can be greater than that achieved by direct immunization.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521; and
| | - H Konrad Muller
- School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521; and
| |
Collapse
|
25
|
Norrby M, Vesikari T, Lindqvist L, Maeurer M, Ahmed R, Mahdavifar S, Bennett S, McClain JB, Shepherd BM, Li D, Hokey DA, Kromann I, Hoff ST, Andersen P, de Visser AW, Joosten SA, Ottenhoff THM, Andersson J, Brighenti S. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine 2017; 35:1652-1661. [PMID: 28216183 DOI: 10.1016/j.vaccine.2017.01.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/28/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Novel vaccine strategies are required to provide protective immunity in tuberculosis (TB) and prevent development of active disease. We investigated the safety and immunogenicity of a novel TB vaccine candidate, H4:IC31 (AERAS-404) that is composed of a fusion protein of M. tuberculosis antigens Ag85B and TB10.4 combined with an IC31® adjuvant. METHODS BCG-vaccinated healthy subjects were immunized with various antigen (5, 15, 50, 150μg) and adjuvant (0, 100, 500nmol) doses of the H4:IC31 vaccine (n=106) or placebo (n=18) in two randomized, double-blind, placebo-controlled phase I studies conducted in a low TB endemic setting in Sweden and Finland. The subjects were followed for adverse events and CD4+ T cell responses. RESULTS H4:IC31 vaccination was well tolerated with a safety profile consisting of mostly mild to moderate self-limited injection site pain, myalgia, arthralgia, fever and post-vaccination inflammatory reaction at the screening tuberculin skin test injection site. The H4:IC31 vaccine elicited antigen-specific CD4+ T cell proliferation and cytokine production that persisted 18weeks after the last vaccination. CD4+ T cell expansion, IFN-γ production and multifunctional CD4+ Th1 responses were most prominent after two doses of H4:IC31 containing 5, 15, or 50μg of H4 in combination with the 500nmol IC31 adjuvant dose. CONCLUSIONS The novel TB vaccine candidate, H4:IC31, demonstrated an acceptable safety profile and was immunogenic, capable of triggering multifunctional CD4+ T cell responses in previously BCG-vaccinated healthy individuals. These dose-escalation trials provided evidence that the optimal antigen-adjuvant dose combinations are 5, 15, or 50μg of H4 and 500nmol of IC31. TRIAL REGISTRATION ClinicalTrials.gov, NCT02066428 and NCT02074956.
Collapse
Affiliation(s)
- Maria Norrby
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Tampere, Finland
| | - Lars Lindqvist
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | - Raija Ahmed
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | - Shahnaz Mahdavifar
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | - Adriëtte W de Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Andersson
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Infectious Medicine (CIM), Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4 + T-cell activation. Nat Microbiol 2016; 2:16232. [PMID: 27918526 DOI: 10.1038/nmicrobiol.2016.232] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.
Collapse
|
27
|
Abstract
Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.
Collapse
|
28
|
Masin J, Osickova A, Sukova A, Fiser R, Halada P, Bumba L, Linhartova I, Osicka R, Sebo P. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci Rep 2016; 6:29137. [PMID: 27581058 PMCID: PMC5007505 DOI: 10.1038/srep29137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.
Collapse
Affiliation(s)
- Jiri Masin
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Sukova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Irena Linhartova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
29
|
Testing the H56 Vaccine Delivered in 4 Different Adjuvants as a BCG-Booster in a Non-Human Primate Model of Tuberculosis. PLoS One 2016; 11:e0161217. [PMID: 27525651 PMCID: PMC4985151 DOI: 10.1371/journal.pone.0161217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/02/2016] [Indexed: 11/19/2022] Open
Abstract
The search for new and improved tuberculosis (TB) vaccines has focused on IFN-γ both for selecting antigens and for evaluating vaccine delivery strategies. The essential role of IFN-γ in endogenous host protection is well established, but it is still uncertain whether this also holds true for vaccine protection. Here we evaluate the H56 fusion protein vaccine as a BCG booster in a non-human primate (NHP) model of TB that closely recapitulates human TB pathogenesis. To date, only a handful of novel adjuvants have been tested in the NHP model of TB, and therefore we administered H56 in 3 novel cationic liposome adjuvants of increasing immunogenicity (CAF01, CAF04, CAF05) and compared them to H56 in the IC31® adjuvant previously reported to promote protection in this model. The individual clinical parameters monitored during infection (weight, ESR, X-ray) all correlated with survival, and boosting BCG with H56 in all adjuvants resulted in better survival rates compared to BCG alone. The adjuvants promoted IFN-γ-responses of increasing intensity as measured by ELISPOT in the peripheral blood, but the level of vaccine-specific IFN-γ production did not correlate with or predict disease outcome. This study’s main outcome underscores the importance of the choice of adjuvant for TB subunit vaccines, and secondly it highlights the need for better correlates of protection in preclinical models of TB.
Collapse
|
30
|
Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis. Infect Immun 2016; 84:2255-2263. [PMID: 27245412 DOI: 10.1128/iai.00197-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
More people die every year from Mycobacterium tuberculosis infection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogen Mycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. In M. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. With M. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of the esx-3 locus to these metals. While iron regulated the esx-3 expression in both M. tuberculosis and M. smegmatis, there is a significant difference in the dynamics of this regulation. In M. smegmatis, the esx-3 locus behaved like other iron-regulated genes such as mbtB In M. tuberculosis, both iron and zinc modestly repressed esx-3 expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction of M. tuberculosis with macrophages, leading to impaired intracellular M. tuberculosis survival. Our findings detail the regulatory differences of esx-3 in M. tuberculosis and M. smegmatis and demonstrate the importance of metal-dependent regulation of ESX-3 for virulence in M. tuberculosis.
Collapse
|
31
|
Kaveh DA, Garcia-Pelayo MC, Webb PR, Wooff EE, Bachy VS, Hogarth PJ. Parenteral adenoviral boost enhances BCG induced protection, but not long term survival in a murine model of bovine TB. Vaccine 2016; 34:4003-11. [PMID: 27317453 DOI: 10.1016/j.vaccine.2016.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Boosting BCG using heterologous prime-boost represents a promising strategy for improved tuberculosis (TB) vaccines, and adenovirus (Ad) delivery is established as an efficacious boosting vehicle. Although studies demonstrate that intranasal administration of Ad boost to BCG offers optimal protection, this is not currently possible in cattle. Using Ad vaccine expressing the mycobacterial antigen TB10.4 (BCG/Ad-TB10.4), we demonstrate, parenteral boost of BCG immunised mice to induce specific CD8(+) IFN-γ producing T cells via synergistic priming of new epitopes. This induces significant improvement in pulmonary protection against Mycobacterium bovis over that provided by BCG when assessed in a standard 4week challenge model. However, in a stringent, year-long survival study, BCG/Ad-TB10.4 did not improve outcome over BCG, which we suggest may be due to the lack of additional memory cells (IL-2(+)) induced by boosting. These data indicate BCG-prime/parenteral-Ad-TB10.4-boost to be a promising candidate, but also highlight the need for further understanding of the mechanisms of T cell priming and associated memory using Ad delivery systems. That we were able to generate significant improvement in pulmonary protection above BCG with parenteral, rather than mucosal administration of boost vaccine is critical; suggesting that the generation of effective mucosal immunity is possible, without the risks and challenges of mucosal administration, but that further work to specifically enhance sustained protective immunity is required.
Collapse
Affiliation(s)
- Daryan A Kaveh
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - M Carmen Garcia-Pelayo
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Paul R Webb
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Esen E Wooff
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Véronique S Bachy
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Philip J Hogarth
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1).
| |
Collapse
|
32
|
Boosting BCG with inert spores improves immunogenicity and induces specific IL-17 responses in a murine model of bovine tuberculosis. Tuberculosis (Edinb) 2016; 98:97-103. [PMID: 27156624 DOI: 10.1016/j.tube.2016.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/19/2016] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) remains a global pandemic, in both animals and man, and novel vaccines are urgently required. Heterologous prime-boost of BCG represents a promising strategy for improved TB vaccines, with respiratory delivery the most efficacious to date. Such an approach may be an ideal vaccination strategy against bovine TB (bTB), but respiratory vaccination presents a technical challenge in cattle. Inert bacterial spores represent an attractive vaccine vehicle. Therefore we evaluated whether parenterally administered spores are efficacious when used as a BCG boost in a murine model of immunity against Mycobacterium bovis. Here we report the use of heat-killed, TB10.4 adsorbed, Bacillus subtilis spores delivered via subcutaneous injection to boost immunity primed by BCG. We demonstrate that this approach improves the immunogenicity of BCG. Interestingly, this associated with substantial boosting of IL-17 responses; considered to be important in protective immunity against TB. These data demonstrate that parenteral delivery of spores represents a promising vaccine vehicle for boosting BCG, and identifies potential for optimisation for use as a vaccine for bovine TB.
Collapse
|
33
|
Teng X, Tian M, Li J, Tan S, Yuan X, Yu Q, Jing Y, Zhang Z, Yue T, Zhou L, Fan X. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Hum Vaccin Immunother 2016; 11:1456-64. [PMID: 25905680 DOI: 10.1080/21645515.2015.1037057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.
Collapse
Affiliation(s)
- Xindong Teng
- a Department of Pathogen Biology; School of Basic Medicine; Huazhong University of Science & Technology ; Wuhan , PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilchèze C, Jones CM, Cole LE, Tinaztepe E, Thompson V, Fenyö D, Niederweis M, Ueberheide B, Philips JA, Jacobs WR. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci U S A 2016; 113:E348-57. [PMID: 26729876 PMCID: PMC4725510 DOI: 10.1073/pnas.1523321113] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1-ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG-EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG-EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15-PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5-PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion.
Collapse
Affiliation(s)
- JoAnn M Tufariello
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jessica R Chapman
- Office of Collaborative Science, New York University School of Medicine, New York, NY 10016
| | - Christopher A Kerantzas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ka-Wing Wong
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of the Ministry of Education/Health, School of Basic Medical Sciences, Fudan University, Shanghai 201508, China
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher M Jones
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laura E Cole
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Emir Tinaztepe
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Victor Thompson
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - David Fenyö
- Laboratory of Computational Proteomics, Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Beatrix Ueberheide
- Office of Collaborative Science, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016;
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461;
| |
Collapse
|
35
|
Rashidian S, Teimourpour R, Meshkat Z. Designing and Construction of a DNA Vaccine Encoding Tb10.4 Gene of Mycobacterium tuberculosis. IRANIAN JOURNAL OF PATHOLOGY 2016; 11:112-119. [PMID: 27499771 PMCID: PMC4939640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 07/08/2015] [Indexed: 06/06/2023]
Abstract
BACKGROUND Tuberculosis (TB) remains as a major cause of death. Construction of a new vaccine against tuberculosis is an effective way to control it. Several vaccines against this disease have been developed. The aim of the present study was to cloning of tb10.4 gene in pcDNA3.1(+) plasmid and evaluation of its expression in eukaryotic cells. METHODS Firstly, tb10.4 fragment was amplified by PCR and the PCR product was digested with restriction enzymes. Next, it was cloned into pcDNA3.1(+) plasmid. Following that, pcDNA3.1(+)/tb10.4 recombinant plasmid was transfected into eukaryotic cells. RESULTS 5700 bp band for pcDNA3.1(+)/tb10.4 recombinant plasmid and 297 bp fragment for tb10.4 were observed. Cloning and transfection were successful. CONCLUSION Successful cloning provides a basis for the development of new DNA vaccines against tuberculosis.
Collapse
Affiliation(s)
- Samira Rashidian
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Teimourpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Iwaki M, Konda T. Adenylate cyclase toxin-mediated delivery of the S1 subunit of pertussis toxin into mammalian cells. Pathog Dis 2015; 74:ftv110. [PMID: 26607401 DOI: 10.1093/femspd/ftv110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/14/2022] Open
Abstract
The adenylate cyclase toxin (ACT) of Bordetella pertussis internalizes its catalytic domain into target cells. ACT can function as a tool for delivering foreign protein antigen moieties into immune effector cells to induce a cytotoxic T lymphocyte response. In this study, we replaced the catalytic domain of ACT with an enzymatically active protein moiety, the S1 (ADP-ribosyltransferase) subunit of pertussis toxin (PT). The S1 moiety was successfully internalized independent of endocytosis into sheep erythrocytes. The introduced polypeptide exhibited ADP-ribosyltransferase activity in CHO cells and induced clustering typical to PT. The results indicate that ACT can act as a vehicle for not only epitopes but also enzymatically active peptides to mammalian cells.
Collapse
Affiliation(s)
- Masaaki Iwaki
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Toshifumi Konda
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
37
|
Majlessi L, Prados-Rosales R, Casadevall A, Brosch R. Release of mycobacterial antigens. Immunol Rev 2015; 264:25-45. [PMID: 25703550 DOI: 10.1111/imr.12251] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycobacterium tuberculosis has evolved from a Mycobacterium canettii-like progenitor pool into one of the most successful and widespread human pathogens. The pathogenicity of M. tuberculosis is linked to its ability to secrete/export/release selected mycobacterial proteins, and it is also established that active release of mycobacterial antigens is a prerequisite for strong immune recognition. Recent research has enabled mycobacterial secretion systems and vesicle-based release of mycobacterial antigens to be elucidated, which together with host-related specificities constitute key variables that determine the outcome of infection. Here, we discuss recently discovered, novel aspects on the nature and the regulation of antigen release of the tuberculosis agent with particular emphasis on the biological characterization of mycobacteria-specific ESX/type VII secretion systems and their secreted proteins, belonging to the Esx, PE, and PPE categories. The importance of specific mycobacterial antigen release is probably best exemplified by the striking differences observed between the cellular events during infection with the ESX-1-deficient, attenuated Mycobacterium bovis BCG compared to the virulent M. tuberculosis, which are clearly important for design of more specific diagnostics and more efficient vaccines.
Collapse
Affiliation(s)
- Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | | | | | | |
Collapse
|
38
|
Villarreal DO, Walters J, Laddy DJ, Yan J, Weiner DB. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum Vaccin Immunother 2015; 10:2188-98. [PMID: 25424922 DOI: 10.4161/hv.29574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.
Collapse
Affiliation(s)
- Daniel O Villarreal
- a Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
39
|
Geldenhuys H, Mearns H, Miles DJC, Tameris M, Hokey D, Shi Z, Bennett S, Andersen P, Kromann I, Hoff ST, Hanekom WA, Mahomed H, Hatherill M, Scriba TJ, van Rooyen M, Bruce McClain J, Ryall R, de Bruyn G. The tuberculosis vaccine H4:IC31 is safe and induces a persistent polyfunctional CD4 T cell response in South African adults: A randomized controlled trial. Vaccine 2015; 33:3592-9. [PMID: 26048780 DOI: 10.1016/j.vaccine.2015.05.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/17/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND New, more effective vaccines to prevent tuberculosis (TB) disease are needed urgently. H4:IC31 is an investigational vaccine that contains a fusion protein of the immunodominant antigens TB10.4 and Ag85B, formulated in IC31 adjuvant. We assessed the safety and immunogenicity of H4:IC31 in South African adults from a TB endemic setting. METHODS In this double blind, placebo controlled, phase I trial, Mycobacterium tuberculosis-uninfected, HIV-uninfected, healthy adults with a history of childhood BCG vaccination were randomly allocated to two intramuscular vaccinations with 5, 15, 50 or 150 μg H4 formulated in 500nmol IC31, two months apart. Vaccinees were followed for six months to assess safety; immunogenicity was measured by ELISpot and intracellular cytokine staining assays. RESULTS Thirty-two participants received H4:IC31 and 8 received placebo. Injection site adverse events were common but mild; mild fatigue was the most common systemic adverse event. Frequencies of adverse events did not differ between dosage groups. Detectable antigen-specific CD4 T cell responses were induced by all doses of H4:IC31, but doses below 50 μg induced the highest frequencies of CD4 T cells, comprised predominantly of IFN-γ(+)TNF-α(+)IL-2(+) or TNF-α(+)IL-2(+) cells. These memory responses persisted up to the end of follow up, on study day 182. CONCLUSIONS H4:IC31 demonstrated an acceptable safety profile and was immunogenic in South African adults. In this trial, the 15 μg dose appeared to induce the most optimal immune response.
Collapse
Affiliation(s)
- Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Helen Mearns
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - David J C Miles
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Michele Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Sean Bennett
- Clinical Research-HIV Therapeutics Group, Gilead Sciences Inc, Foster City, CA, USA
| | | | | | | | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.
| | | | - Michele van Rooyen
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - J Bruce McClain
- Clinical Research-HIV Therapeutics Group, Gilead Sciences Inc, Foster City, CA, USA
| | | | | | | |
Collapse
|
40
|
Lemoine S, Jaron B, Tabka S, Ettreiki C, Deriaud E, Zhivaki D, Le Ray C, Launay O, Majlessi L, Tissieres P, Leclerc C, Lo-Man R. Dectin-1 activation unlocks IL12A expression and reveals the TH1 potency of neonatal dendritic cells. J Allergy Clin Immunol 2015; 136:1355-68.e1-15. [PMID: 25865351 DOI: 10.1016/j.jaci.2015.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/04/2015] [Accepted: 02/13/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Early life is characterized by a high susceptibility to infection and a TH2-biased CD4 T-cell response to vaccines. Toll-like receptor (TLR) agonists are currently being implemented as new vaccine adjuvants for TH1 activation, but their translation to the field of pediatric vaccines is facing the impairment of neonatal innate TLR responses. OBJECTIVE We sought to analyze C-type lectin receptor pathways as an alternative or a coactivator to TLRs for neonatal dendritic cell activation for TH1 polarization. METHODS Neonatal monocyte-derived dendritic cells (moDCs) were exposed to various combinations of TLR agonists with or without Dectin-1 agonist. IL-12 and IL-23 responses were analyzed at the transcriptional and protein levels after stimulation. The intracellular pathways triggered by combined TLR plus Dectin-1 stimulation was determined by using pharmacologic inhibitors. The capacity of neonatal moDCs to differentiate naive CD4 TH cells was evaluated in cocultures with heterologous neonatal naive T cells. Curdlan was finally tested as an adjuvant within a subunit tuberculosis vaccine in neonatal mice. RESULTS Simultaneous coactivation through Dectin-1 and TLRs induced robust secretion of IL-12p70 by neonatal moDCs by unlocking transcriptional control on the p35 subunit of IL-12. Both the spleen tyrosine kinase and Raf-1 pathways were involved in this process, allowing differentiation of neonatal naive T cells toward IFN-γ-producing TH1 cells. In vivo a Dectin-1 agonist as adjuvant was sufficient to induce TH1 responses after vaccination of neonatal mice. CONCLUSION Coactivation of neonatal moDCs through Dectin-1 allows TLR-mediated IL-12p70 secretion and TH1 polarization of neonatal T cells. Dectin-1 agonists represent a promising TH1 adjuvant for pediatric vaccination.
Collapse
Affiliation(s)
- Sébastien Lemoine
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Barbara Jaron
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Sabrine Tabka
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Chourouk Ettreiki
- Unité de Réanimation Pédiatrique et Médecine Néonatale, AP-HP, Hôpitaux Universitaires Paris-Sud, Le Kremlin Bicêtre, France; Groupe Equipe Endotoxine, Structures et Activité, Institut de Génétique et Microbiologie, UMR 8621, Université Paris Sud, Orsay, France
| | - Edith Deriaud
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Dania Zhivaki
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France; Université Paris Diderot, Paris, France
| | - Camille Le Ray
- APHP, Department of Obstetrics and Gynecology, Maternité Port Royal, Paris, France; Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Odile Launay
- Université Paris Descartes, Faculté de Médecine, Paris, France; INSERM CIC1417, Paris, France
| | - Laleh Majlessi
- Unité de Pathogénomique Mycobactérienne Intégrée, Institut Pasteur, Paris, France
| | - Pierre Tissieres
- Unité de Réanimation Pédiatrique et Médecine Néonatale, AP-HP, Hôpitaux Universitaires Paris-Sud, Le Kremlin Bicêtre, France; Groupe Equipe Endotoxine, Structures et Activité, Institut de Génétique et Microbiologie, UMR 8621, Université Paris Sud, Orsay, France; Faculté de Médecine, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France.
| |
Collapse
|
41
|
Choudhary S, Kusum Devi V. Potential of nanotechnology as a delivery platform against tuberculosis: Current research review. J Control Release 2015; 202:65-75. [DOI: 10.1016/j.jconrel.2015.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
|
42
|
Garcia-Pelayo MC, Bachy VS, Kaveh DA, Hogarth PJ. BALB/c mice display more enhanced BCG vaccine induced Th1 and Th17 response than C57BL/6 mice but have equivalent protection. Tuberculosis (Edinb) 2014; 95:48-53. [PMID: 25467292 DOI: 10.1016/j.tube.2014.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 11/24/2022]
Abstract
It is generally assumed that the inbred mouse strains BALB/c (H-2(d)) and C57BL/6 (H-2(b)) respond to mycobacterial infection with distinct polarisation of T helper responses, with C57BL/6 predisposed to Th1 and BALB/c to Th2. We investigated this in a BCG-immunisation, Mycobacterium bovis challenge model. Following immunisation, lung and spleen cell cytokine responses to in vitro re-stimulation with a cocktail of seven secreted, immunogenic, recombinant mycobacterial proteins were determined. In both lung and spleen, BALB/c cells produced at least 2-fold more IFN-γ, and up to 7-fold more IL-2 and IL-17 than C57BL/6 cells, whereas IL-10 production was reciprocally increased in C57BL/6 mice. These data suggest that, contrary to reports in the literature, specific mycobacterial antigens are able to induce strong Th1 and Th17 responses in BALB/c mice following BCG vaccination, whilst in C57BL/6 mice, the Th1 response is partly counterbalanced by IL-10. After subsequent M. bovis low dose challenge, protection, as measured in the lungs and dissemination to the spleen, was equivalent in BALB/c and C57BL/6 mice, indicating that BCG-induced immunity was equivalent in both strains. Thus, the differential immune responses do not appear to have a role in protection, but further, as yet unidentified, specific immune responses play a significant role.
Collapse
Affiliation(s)
| | - Véronique S Bachy
- Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone KT15 3NB, United Kingdom; Current address: Orbio Laboratoire, 12C rue du 35eme Regiment d'Aviation, 69500 Bron, France
| | - Daryan A Kaveh
- Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone KT15 3NB, United Kingdom
| | - Philip J Hogarth
- Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone KT15 3NB, United Kingdom.
| |
Collapse
|
43
|
Liu S, Jia H, Hou S, Zhang G, Xin T, Li H, Yuan W, Guo X, Gao X, Li M, Wu J, Zhu H. Recombinant TB10.4 of Mycobacterium bovis induces cytokine production in RAW264.7 macrophages through activation of the MAPK and NF-κB pathways via TLR2. Mol Immunol 2014; 62:227-34. [DOI: 10.1016/j.molimm.2014.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022]
|
44
|
Sebo P, Osicka R, Masin J. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev Vaccines 2014; 13:1215-27. [PMID: 25090574 DOI: 10.1586/14760584.2014.944900] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenylate cyclase toxin-hemolysin (ACT, AC-Hly or CyaA) is a key virulence factor of Bordetella pertussis. It targets bactericidal activities of phagocytes, such as oxidative burst and complement- or antibody-mediated opsonophagocytic killing of bacteria. Through cAMP signaling, CyaA also skews TLR-triggered maturation of dendritic cells, inhibiting proinflammatory IL-12 and TNF-α secretion and enhancing IL-10 production and Treg expansion, likely hampering induction of adaptive immune responses to Bordetella infections. Non-enzymatic CyaA toxoid is a potent protective antigen and adjuvant that boosts immunogenicity of co-administered B. pertussis antigens and improves potency of acellular pertussis (aP) vaccines in mice. This makes CyaA a prime antigen candidate for inclusion into a next generation of aP vaccines. Moreover, recombinant CyaA toxoids were recently shown to be safe in humans in frame of Phase I clinical evaluation of a CyaA-based immunotherapeutic vaccine that induces Th1-polarized CD8(+) cytotoxic T-lymphocyte responses targeting cervical tumors.
Collapse
Affiliation(s)
- Peter Sebo
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i, Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | |
Collapse
|
45
|
Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, Rogan D, Vidal M, Hill DE, Bean AJ, Philips JA. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog 2013; 9:e1003734. [PMID: 24204276 PMCID: PMC3814348 DOI: 10.1371/journal.ppat.1003734] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis. Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis, one of the world's most deadly infections. The host immune system can't eradicate Mtb because it grows within macrophages, cells that normally kill bacteria. One of the intracellular survival strategies of Mtb is to avoid delivery to lysosomes, a phenomenon described over 40 years ago, but for which the mechanism and molecular details remain incomplete. Mtb possess specialized secretion systems (Type VII secretion systems; TSSS) that transfer particular proteins out of the bacteria, but how these proteins promote infection is not well understood. In this study, we used a high stringency yeast two-hybrid system to identify interactions between secreted effectors from Mtb and human host factors. We identified ninety-nine such interactions and focused our attention on the interaction between EsxH, secreted by Esx-3, a TSSS of Mtb, and Hrs, a component of the host ESCRT machinery. We provide evidence that Mtb EsxH directly targets host Hrs to disrupt delivery of bacteria to lysosomes. Thus, this study demonstrates the role of a TSSS effector and the ESCRT machinery in what is one of the central features of tuberculosis pathogenesis, thereby providing molecular insight into why humans can't clear Mtb infection.
Collapse
Affiliation(s)
- Alka Mehra
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aleena Zahra
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Victor Thompson
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Natalie Sirisaengtaksin
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ashley Wells
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maura Porto
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Stefan Köster
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Kristen Penberthy
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Yoshihisha Kubota
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Amelie Dricot
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Rogan
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David E. Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Bean
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Induction of protective immunity against Mycobacterium tuberculosis by delivery of ESX antigens into airway dendritic cells. Mucosal Immunol 2013; 6:522-34. [PMID: 23032790 DOI: 10.1038/mi.2012.92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As the Bacillus Calmette-Guérin (BCG) vaccine does not confer long-lasting protection against lung Mycobacterium tuberculosis infection, the development of more efficient vaccines is greatly needed. Here, we used mycobacterial low-molecular weight proteins of the 6-kDa Early Secreted Antigenic Target (ESAT-6) protein family (ESX) antigens for the evaluation of a novel vaccine delivery strategy that enables versatile in vivo targeting of antigens into specialized dendritic cell (DC) subsets. ESX antigens were genetically fused to the tetramerizing core of streptavidin (SA) to form high-affinity complexes with biotin (biot)-conjugated antibodies recognizing DC surface receptors. When directed through the CD11b or CD11c β2-integrins or diverse C-type lectins, the ESX-SA:biot-antibody complexes were efficiently captured and presented on major histocompatibility complex molecules of DCs to specific T-cell receptors. Robust ESX-specific T-cell responses were induced by immunization with as little as several picomoles of ESX-SA targeted to DC subsets. Moreover, directing of TB10.4-SA to airway CD205(+) cells enabled the induction of mucosal T-cell responses and provided significant protection against virulent M. tuberculosis.
Collapse
|
47
|
Zárate-Bladés CR, Rodrigues RF, Souza PRM, Rios WM, Soares LS, Rosada RS, Brandão IT, Masson AP, Floriano EM, Ramos SG, Silva CL. Evaluation of the overall IFN-γ and IL-17 pro-inflammatory responses after DNA therapy of tuberculosis. Hum Vaccin Immunother 2013; 9:1093-103. [PMID: 23324590 DOI: 10.4161/hv.23417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite the enormous efforts displayed globally in the fight against tuberculosis, the disease incidence has modified slightly, which has led to a renewed interest in immunotherapy. In general, successful immunotherapeutic candidates against tuberculosis are agents that can trigger strong, specific pro-inflammatory responses, especially of the T-helper (Th) 1 pattern. However, how these pro-inflammatory agents effectively kill the bacteria without eliciting immunopathology is not well understood. We reasoned that, in addition to the specific immune response elicited by immunotherapy, the evaluation of the overall pro-inflammatory responses should provide additional and valuable information that will be useful in avoiding immunopathology. We evaluated the overall IFN-γ and IL-17 pro-inflammatory responses among CD4(+), CD8(+) and γδ T cells in the lungs of mice that were infected with M. tuberculosis and treated with a DNA vaccine in an immunotherapeutic regimen. Our results demonstrate that mice that effectively combat the pathogen develop a strong, specific Th1 immune response against the therapeutic antigen and have reduced lung inflammation, present in parallel a fine-tuning in the total IFN-γ- and IL-17-mediated immunity in the lungs. This modulation of the total immune response involves reducing the Th17 cell population, augmenting CD8(+) T cells that produce IFN-γ and increasing the total γδ T cell frequency. These results stress the importance of a broad evaluation of not only the specific immune response at the time to evaluate new immune interventional strategies against tuberculosis but also non-conventional T cells, such as γδ T lymphocytes.
Collapse
Affiliation(s)
- Carlos R Zárate-Bladés
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Medicine School of Ribeirão Preto; University of São Paulo; São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stanek O, Linhartova I, Majlessi L, Leclerc C, Sebo P. Complexes of streptavidin-fused antigens with biotinylated antibodies targeting receptors on dendritic cell surface: a novel tool for induction of specific T-cell immune responses. Mol Biotechnol 2012; 51:221-32. [PMID: 22006508 DOI: 10.1007/s12033-011-9459-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choice of tools that enable efficient targeting of exogenous antigens (Ag) for processing and presentation by professional Ag-presenting cells (APC) remains limited. This represents, indeed, a bottleneck in development of vaccines inducing specific T-cell responses. Here, we describe a novel strategy of Ag delivery into APCs. The Ag of choice is fused to the N- or C-terminus of streptavidin (SA) and tetrameric Ag-SA or SA-Ag fusion proteins are produced in E. coli and purified by 2-Iminobiotin-Agarose affinity chromatography. Alternatively, Ag-SA proteins are purified from urea extracts of E. coli inclusion bodies and refolded in vitro into functional tetramers. Complexes with biotinylated antibodies targeting cell surface receptors are formed and used to deliver the Ags of choice for processing and presentation by APCs and induction of Ag-specific CD4+ and CD8+ T-cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Ondrej Stanek
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
49
|
Analysis of immune responses against a wide range of Mycobacterium tuberculosis antigens in patients with active pulmonary tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1907-15. [PMID: 23015647 DOI: 10.1128/cvi.00482-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Characterizing host immune responses to molecular targets of Mycobacterium tuberculosis is essential to develop effective immunodiagnostics and better vaccines. We investigated the immune response against a large series of M. tuberculosis antigens, including 5 classical and 64 nonclassical (39 DosR regulon-encoded, 4 resuscitation-promoting factor [RPF], and 21 reactivation-associated) antigens in active-pulmonary-tuberculosis (TB) patients. Whole blood from TB patients (n = 34) was stimulated in vitro with M. tuberculosis antigens. Gamma interferon (IFN-γ) was measured after 7 days of stimulation, using an enzyme-linked immunosorbent assay (ELISA). The majority of the study participants responded to the classical M. tuberculosis antigens TB10.4 (84.8%), early secreted antigenic target-6 kDa (ESAT-6)/CFP-10 (70.6%), and purified protein derivative (PPD) (55.9%). However, only 26.5% and 24.2% responded to HSP65 and Ag85A/B, respectively. Of the 64 nonclassical antigens, 23 (33.3%) were immunogenic (IFN-γ levels, >62 pg/ml) and 8 were strong inducers of IFN-γ (IFN-γ levels, ≥100 pg/ml). The RPF antigens were the most immunogenic. In addition, we observed distinct cytokine expression profiles in response to several M. tuberculosis antigens by multiplex immunoassay. Tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), and IL-6 were commonly detected at high levels after stimulation with 4/15 latency antigens (Rv0081, Rv2006, Rv2629, and Rv1733c) and were found especially in supernatants of the three strong IFN-γ inducers (Rv2629, Rv1009, and Rv2389c). IL-8, IL-6, and IL-17 were exclusively detected after stimulation with Rv0574c, Rv2630, Rv1998, Rv054c, and Rv2028c. In conclusion, in active-pulmonary-TB patients, we identified 23 new immunogenic M. tuberculosis antigens. The distinct expression levels of IFN-γ, TNF-α, IL-6, and IL-10 in response to specific subsets of M. tuberculosis antigens may be promising for the development of immunodiagnostics.
Collapse
|
50
|
The duration of antigen-stimulation significantly alters the diversity of multifunctional CD4 T cells measured by intracellular cytokine staining. PLoS One 2012; 7:e38926. [PMID: 22719990 PMCID: PMC3373578 DOI: 10.1371/journal.pone.0038926] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/15/2012] [Indexed: 12/25/2022] Open
Abstract
The assessment of antigen-specific T cell responses by intracellular cytokine staining (ICS) has become a routine technique in studies of vaccination and immunity. Here, we highlight how the duration of in vitro antigen pre-stimulation, combined with the cytokine accumulation period, are critical parameters of these methods. The effect of varying these parameters upon the diversity and frequency of multifunctional CD4 T cell subsets has been investigated using a murine model of TB vaccination and in cattle naturally infected with Mycobacterium bovis. We demonstrate a substantial influence of the duration of the antigen pre-stimulation period on the repertoire of the antigen-specific CD4 T cell responses. Increasing pre-stimulation from 2 to 6 hours amplified the diversity of the seven potential multifunctional CD4 T cell subsets that secreted any combination of IFN-γ, IL-2 and TNF-α. However, increasing pre-stimulation from 6 to 16 hours markedly altered the multifunctional CD4 T cell repertoire to a dominant IFN-γ(+) only response. This was observed in both murine and cattle models.Whilst these data are of particular relevance to the measurement of vaccine and infection induced immunity in TB, more generally, they demonstrate the importance of the empirical determination of the optimum duration of the individual culture steps of ICS assays for any model. We highlight the potential significance of variations in these parameters, particularly when comparing data between studies and/or models including clinical trials.
Collapse
|