1
|
Achi P, Christensen P, Iglesias V, McCarthy C, Pena R, Bavier L, Goldy C, Agrawal AA, Groen SC, Dillman AR. Entomopathogenic Nematode Species Vary in Their Behavior and Virulence in Response to Cardiac Glycosides Within and Around Insect Hosts. J Chem Ecol 2025; 51:12. [PMID: 39869279 PMCID: PMC11772503 DOI: 10.1007/s10886-025-01563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 01/28/2025]
Abstract
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system. We focus on toxic cardiac glycosides (CGs) from milkweeds (Asclepias spp.), which inhibit animal Na+/K+-ATPases, and two CG-resistant insects, the large milkweed bug Oncopeltus fasciatus and a CRISPR-edited Drosophila melanogaster. Both have CG-resistant Na+/K+-ATPases through a set of key amino acid substitutions, which facilitate CG sequestration. We conducted infection experiments with entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae, and S. hermaphroditum) as natural enemies on host insects containing mixtures of milkweed-derived CGs or purified CGs (ouabain, digoxin, and digitoxin) that vary in toxicity. The nematode S. carpocapsae is known to occur in soil near milkweed plants and naturally has several of the same Na+/K+-ATPase substitutions as the milkweed bug O. fasciatus and our Drosophila mutant. This nematode not only exhibited higher fecundity in hosts that carried CGs relative to the other nematode species (which have sensitive Na+/K+-ATPases), but also showed attraction to mixtures of CGs in milkweed root extracts and to purified ouabain when tested on agar plates. A coiling phenotype, which is a symptom of neurotoxicity, was observed more frequently in S. feltiae and S. hermaphroditum upon exposure to milkweed root extracts than in S. carpocapsae. Nematode behavior was further tested in sand, and while attraction to CGs was found for S. carpocapsae, nematodes of the other species tended to migrate away from milkweed root chemicals. Thus, S. carpocapsae can tolerate CGs and may use these as chemical cues to locate insect hosts that live on or around milkweed plants.
Collapse
Affiliation(s)
- Perla Achi
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Preston Christensen
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Victoria Iglesias
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Cullen McCarthy
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Robert Pena
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Lanie Bavier
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Connor Goldy
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, CA, USA.
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA.
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, CA, USA.
| | - Adler R Dillman
- Department of Nematology, University of California Riverside, Riverside, CA, USA.
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Garriga A, Toubarro D, Morton A, Simões N, García-Del-Pino F. Analysis of the immune transcriptome of the invasive pest spotted wing drosophila infected by Steinernema carpocapsae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:622-630. [PMID: 39328175 DOI: 10.1017/s0007485324000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Drosophila suzukii is a pest of global concern due to its great impact on several crops. The entomopathogenic nematode Steinernema carpocapsae was highly virulent to the larvae of the fly although some immune mechanisms were triggered along the infection course. Thus, to understand the gene activation profile we performed a comparative transcriptome of D. suzukii larvae infected with S. carpocapsae and Xenorhabdus nematophila to map the differentially expressed genes involved in the defence response. The analysis exposed the induction of genes involved in the humoral response such as the antimicrobial peptides and pattern-recognition receptors while there was a suppression of the cellular defence. Besides, genes involved in melanisation, and clot formation were downregulated hindering the encapsulation response and wound healing. After the infection, larvae were in a stress condition with an enrichment of metabolic and transport functionalities. Concerning the stress response, we observed variations of the heat-shock proteins, detoxification, and peroxidase enzymes. These findings set a genetical comprehensive knowledge of the host-pathogen relation of D. suzukii challenged with S. carpocapsae which could support further comparative studies with entomopathogenic nematodes.
Collapse
Affiliation(s)
- A Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - D Toubarro
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - A Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Simões
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - F García-Del-Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
3
|
Mallick S, Kenney E, Eleftherianos I. The Activin Branch Ligand Daw Regulates the Drosophila melanogaster Immune Response and Lipid Metabolism against the Heterorhabditis bacteriophora Serine Carboxypeptidase. Int J Mol Sci 2024; 25:7970. [PMID: 39063211 PMCID: PMC11277151 DOI: 10.3390/ijms25147970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Despite impressive advances in the broad field of innate immunity, our understanding of the molecules and signaling pathways that control the host immune response to nematode infection remains incomplete. We have shown recently that Transforming Growth Factor-β (TGF-β) signaling in the fruit fly Drosophila melanogaster is activated by nematode infection and certain TGF-β superfamily members regulate the D. melanogaster anti-nematode immune response. Here, we investigate the effect of an entomopathogenic nematode infection factor on host TGF-β pathway regulation and immune function. We find that Heterorhabditis bacteriophora serine carboxypeptidase activates the Activin branch in D. melanogaster adults and the immune deficiency pathway in Activin-deficient flies, it affects hemocyte numbers and survival in flies deficient for Activin signaling, and causes increased intestinal steatosis in Activin-deficient flies. Thus, insights into the D. melanogaster signaling pathways and metabolic processes interacting with H. bacteriophora pathogenicity factors will be applicable to entomopathogenic nematode infection of important agricultural insect pests and vectors of disease.
Collapse
Affiliation(s)
| | | | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA; (S.M.); (E.K.)
| |
Collapse
|
4
|
Chantab K, Rao Z, Zheng X, Han R, Cao L. Ascarosides and Symbiotic Bacteria of Entomopathogenic Nematodes Regulate Host Immune Response in Galleria mellonella Larvae. INSECTS 2024; 15:514. [PMID: 39057246 PMCID: PMC11277396 DOI: 10.3390/insects15070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Insects protect themselves through their immune systems. Entomopathogenic nematodes and their bacterial symbionts are widely used for the biocontrol of economically important pests. Ascarosides are pheromones that regulate nematode behaviors, such as aggregation, avoidance, mating, dispersal, and dauer recovery and formation. However, whether ascarosides influence the immune response of insects remains unexplored. In this study, we co-injected ascarosides and symbiotic Photorhabdus luminescens subsp. kayaii H06 bacteria derived from Heterorhabditis bacteriophora H06 into the last instar larvae of Galleria mellonella. We recorded larval mortality and analyzed the expressions of AMPs, ROS/RNS, and LPSs. Our results revealed a process in which ascarosides, acting as enhancers of the symbiotic bacteria, co-induced G. mellonella immunity by significantly increasing oxidative stress responses and secreting AMPs (gallerimycin, gloverin, and cecropin). This led to a reduction in color intensity and the symbiotic bacteria load, ultimately resulting in delayed host mortality compared to either ascarosides or symbiotic bacteria. These findings demonstrate the cross-kingdom regulation of insects and symbiotic bacteria by nematode pheromones. Furthermore, our results suggest that G. mellonella larvae may employ nematode pheromones secreted by IJs to modulate insect immunity during early infection, particularly in the presence of symbiotic bacteria, for enhancing resistance to invasive bacteria in the hemolymph.
Collapse
Affiliation(s)
- Kanjana Chantab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
- Department of Plant Sciences, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Xuehong Zheng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| |
Collapse
|
5
|
Raval D, Daley L, Eleftherianos I. Drosophila melanogaster larvae are tolerant to oral infection with the bacterial pathogen Photorhabdus luminescens. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000938. [PMID: 37711508 PMCID: PMC10498274 DOI: 10.17912/micropub.biology.000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
The fruit fly Drosophila melanogaster is an excellent model for dissecting the molecular and functional bases of bacterial pathogenicity and host antibacterial immune response. The Gram-negative bacterium Photorhabdus luminescens is an insect-specific pathogen that forms a mutualistic relationship with the entomopathogenic nematode Heterorhabditis bacteriophora . Here we find that oral infection of D. melanogaster larvae with P. luminescens moderately reduces their survival ability while the bacteria replicate efficiently in the infected insects. This information will contribute towards understanding host gut immunity against potent bacterial pathogens.
Collapse
Affiliation(s)
- Dhaivat Raval
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Lillia Daley
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
6
|
Chu X, Jiang D, Yu L, Li M, Wu S, Zhang F, Hu X. Heterologous Expression and Bioactivity Determination of Monochamus alternatus Antibacterial Peptide Gene in Komagataella phaffii (Pichia pastoris). Int J Mol Sci 2023; 24:ijms24065421. [PMID: 36982491 PMCID: PMC10049621 DOI: 10.3390/ijms24065421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Insects have evolved to form a variety of complex natural compounds to prevent pathogen infection in the process of a long-term attack and defense game with various pathogens in nature. Antimicrobial Peptides (AMPs) are important effector molecules of the insect immune response to the pathogen invasion involved in bacteria, fungi, viruses and nematodes. The discovery and creation of new nematicides from these natural compounds is a key path to pest control. A total of 11 AMPs from Monochamus alternatus were classified into 3 categories, including Attacin, Cecropin and Defensin. Four AMP genes were successfully expressed by Komagataella phaffii KM71. The bioassay results showed that the exogenous expressed AMPs represented antimicrobial activity against Serratia (G−), Bacillus thuringiensis (G+) and Beauveria bassiana and high nematicide activity against Bursaphelenchus xylophilus. All four purified AMPs’ protein against B. xylophilus reached LC50 at 3 h (LC50 = 0.19 mg·mL−1 of MaltAtt-1, LC50 = 0.20 mg·mL−1 of MaltAtt-2 and MaltCec-2, LC50 = 0.25 mg·mL−1 of MaltDef-1). Furthermore, the AMPs could cause significant reduction of the thrashing frequency and egg hatching rate, and the deformation or fracture of the body wall of B. xylophilus. Therefore, this study is a foundation for further study of insect biological control and provides a theoretical basis for the research and development of new insecticidal pesticides.
Collapse
Affiliation(s)
- Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-18350068276
| |
Collapse
|
7
|
Xiao Z, Yao X, Bai S, Wei J, An S. Involvement of an Enhanced Immunity Mechanism in the Resistance to Bacillus thuringiensis in Lepidopteran Pests. INSECTS 2023; 14:151. [PMID: 36835720 PMCID: PMC9965922 DOI: 10.3390/insects14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bacillus thuringiensis (Bt) is the safest, economically successful entomopathogen to date. It is extensively produced in transgenic crops or used in spray formulations to control Lepidopteran pests. The most serious threat to the sustainable usage of Bt is insect resistance. The resistance mechanisms to Bt toxins depend not only on alterations in insect receptors, but also on the enhancement of insect immune responses. In this work, we review the current knowledge of the immune response and resistance of insects to Bt formulations and Bt proteins, mainly in Lepidopteran pests. We discuss the pattern recognition proteins for recognizing Bt, antimicrobial peptides (AMPs) and their synthetic signaling pathways, the prophenoloxidase system, reactive oxygen species (ROS) generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates, which are involved in immune response reactions or resistance to Bt. This review also analyzes immune priming, which contributes to the evolution of insect resistance to Bt, and puts forward strategies to improve the insecticidal activity of Bt formulations and manage insect resistance, targeting the insect immune responses and resistance.
Collapse
|
8
|
Garriga A, Toubarro D, Simões N, Morton A, García-Del-Pino F. The modulation effect of the Steinernema carpocapsae - Xenorhabdus nematophila complex on immune-related genes in Drosophila suzukii larvae. J Invertebr Pathol 2023; 196:107870. [PMID: 36493843 DOI: 10.1016/j.jip.2022.107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Larvae of the invasive pest Drosophila suzukii are susceptible to the Steinernema carpocapsae - Xenorhabdus nematophila complex and an assessment of the immune-regulatory system activation in this insect was performed to understand the response to the nematode infection. The expressions of 14 immune-related genes of different pathways (Imd, Toll, Jak-STAT, ProPO, JNK, TGF-β) were analyzed using qRT-PCR to determine variations after nematode penetration (90 min and 4 h) and after bacterial release (14 h). Before the bacteria were present, the nematodes were not recognized by the immune system of the larvae and practically none of the analyzed pathways presented variations when compared with the non-infected larvae. However, after the X. nematophila were released, PGRP-LC was activated leading to the gene upregulation of antimicrobial peptides of both the Toll and Imd pathways. Interestingly, the cellular response was inactive during the infection course as Jak/STAT and pro-phenoloxidase genes remained unresponsive to the presence of both pathogens. These results illustrate how D. suzukii immune pathways responded differently to the nematode and bacteria along the infection course.
Collapse
Affiliation(s)
- A Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - D Toubarro
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - N Simões
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - A Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - F García-Del-Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
9
|
Ozakman Y, Eleftherianos I. Nematode infection and antinematode immunity in Drosophila. Trends Parasitol 2021; 37:1002-1013. [PMID: 34154933 DOI: 10.1016/j.pt.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The entomopathogenic nematodes Heterorhabditis and Steinernema form mutualistic complexes with Gram-negative bacteria. These insect parasites have emerged as excellent research tools for studying nematode pathogenicity and elucidating the features that allow them to persist and multiply within the host. A better understanding of the molecular mechanisms of nematode infection and host antinematode processes will lead to the development of novel means for parasitic nematode control. Recent work has demonstrated the power of using the Drosophila infection model to identify novel parasitic nematode infection factors and elucidate the genetic and functional bases of host antinematode defense. Here, we aim to highlight the recent advances and address their contribution to the development of novel means for parasitic nematode control.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
10
|
Susceptibility of Drosophila suzukii larvae to the combined administration of the entomopathogens Bacillus thuringiensis and Steinernema carpocapsae. Sci Rep 2021; 11:8149. [PMID: 33854098 PMCID: PMC8046782 DOI: 10.1038/s41598-021-87469-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-native pests are often responsible for serious crop damage. Since Drosophila suzukii has invaded North America and Europe, the global production of soft, thin-skinned fruits has suffered severe losses. The control of this dipteran by pesticides, although commonly used, is not recommended because of the negative impact on the environment and human health. A possible alternative is the use of bio-insecticides, including Bacillus thuringiensis and entomopathogenic nematodes, such as Steinernema carpocapsae. These biological control agents have a fair effectiveness when used individually on D. suzukii, but both have limits related to different environmental, methodological, and physiological factors. In this work, we tested various concentrations of B. thuringiensis and S. carpocapsae to evaluate their efficacy on D. suzukii larvae, when administered individually or in combination by using agar traps. In the combined trials, we added the nematodes after 16 h or concurrently to the bacteria, and assessed larvae lethality from 16 to 48 h. The assays demonstrated a higher efficacy of the combined administration, both time-shifted and concurrent; the obtained data also showed a relevant decrease of the time needed to kill the larvae. Particularly, the maximum mortality rate, corresponding to 79% already at 16 h, was observed with the highest concentrations (0.564 µg/mL of B. thuringiensis and 8 × 102 IJs of S. carpocapsae) in the concurrent trials. This study, conducted by laboratory tests under controlled conditions, is a good starting point to develop a further application step through field studies for the control of D. suzukii.
Collapse
|
11
|
Lara-Reyes N, Jiménez-Cortés JG, Canales-Lazcano J, Franco B, Krams I, Contreras-Garduño J. Insect Immune Evasion by Dauer and Nondauer Entomopathogenic Nematodes. J Parasitol 2021; 107:115-124. [DOI: 10.1645/20-61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Nancy Lara-Reyes
- Departamento de Biología, Universidad de Guanajuato, 36050, Guanajuato, Guanajuato, México
| | - J. Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510. México City, México
| | - Jorge Canales-Lazcano
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Bernardo Franco
- Departamento de Biología, Universidad de Guanajuato, 36050, Guanajuato, Guanajuato, México
| | - Indrikis Krams
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga, 1004, Latvia
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, 58190, Morelia, México
| |
Collapse
|
12
|
Eleftherianos I, Heryanto C. Transcriptomic Insights into the Insect Immune Response to Nematode Infection. Genes (Basel) 2021; 12:genes12020202. [PMID: 33573306 PMCID: PMC7911283 DOI: 10.3390/genes12020202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Insects in nature interact with a wide variety of microbial enemies including nematodes. These include entomopathogenic nematodes that contain mutualistic bacteria and together are able to infect a broad range of insects in order to complete their life cycle and multiply, filarial nematodes which are vectored by mosquitoes, and other parasitic nematodes. Entomopathogenic nematodes are commonly used in biological control practices and they form excellent research tools for understanding the genetic and functional bases of nematode pathogenicity and insect anti-nematode immunity. In addition, clarifying the mechanism of transmission of filarial nematodes by mosquitoes is critical for devising strategies to reduce disease transmission in humans. In all cases and in order to achieve these goals, it is vital to determine the number and type of insect host genes which are differentially regulated during infection and encode factors with anti-nematode properties. In this respect, the use of transcriptomic approaches has proven a key step for the identification of insect molecules with anti-nematode activity. Here, we review the progress in the field of transcriptomics that deals with the insect response to nematode infection. This information is important because it will expose conserved pathways of anti-nematode immunity in humans.
Collapse
|
13
|
Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes. Int J Parasitol 2021; 51:321-325. [PMID: 33421438 DOI: 10.1016/j.ijpara.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022]
Abstract
Much of the available knowledge of entomopathogenic virulence factors has been gleaned from studies in the nematode parasite Steinernema carpocapsae, but there is good reason to complement this knowledge with similar studies in Heterorhabditis bacteriophora. Three candidate virulence factors from H. bacteriophora have recently been characterised, and each was demonstrated to contribute to infection. This information can be used not only to advance efforts in the biocontrol of insect pests, but also to make inferences about the emergence of parasitism among Clade V nematodes.
Collapse
|
14
|
Vengateswari G, Arunthirumeni M, Shivakumar MS. Effect of food plants on Spodoptera litura (Lepidoptera: Noctuidae) larvae immune and antioxidant properties in response to Bacillus thuringiensis infection. Toxicol Rep 2020; 7:1428-1437. [PMID: 33134089 PMCID: PMC7585150 DOI: 10.1016/j.toxrep.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
The larvae of Spodoptera litura (Fabricius) were reared on five host plants, Brassica oleracea, Nicotiana tabacum, Ricinus communis, Gossypium hirsutum, and Arachis hypogaea. The larvae were immunized with Bacillus thuringiensis to observe the immune response. The results of total and differential hemocyte count were increased in B. oleracea, N. tabacum, and R. communis fed S. litura larval hemolymph. Similar results were observed in the parameter of nodulation, melanization, and phenoloxidase. Total protein was higher in R. communis fed larvae. Antioxidant levels like Catalase (CAT), Superoxide dismutase (SOD), Glutathione S- transferase (GST), Peroxidase (POX), Lipid peroxidase (LPO), and Esterase (EST) was found in moreover all plant-feeding insect. High CAT activity was observed 2-6 h in R. communis, G. hirsutum, and A. hypogaea fed S. litura larval midgut and fatbody samples. Increased SOD activity in both midgut and fatbody at 2-12 h of B. oleracea, G. hirsutum, and A. hypogaea fed. GST activity was increased initially 2-6 h in G. hirsutum and A. hypogaea. Increased POX activity was observed initially in all treated groups. Highest LPO observed at 6 h in N. tabacum in both midgut and fatbody. Whereas increased EST activity was observed in N. tabacum and B. oleracea. The results of the present study shows that nature of food influence the immunity against Bt infection. This information can be very useful for incorporating biological control program for insect pest.
Collapse
Affiliation(s)
- Govindaraj Vengateswari
- Molecular Entomology Laboratory, Department of Biotechnology, Periyar University, Salem-11, Tamil Nadu, India
| | - Murugan Arunthirumeni
- Molecular Entomology Laboratory, Department of Biotechnology, Periyar University, Salem-11, Tamil Nadu, India
| | | |
Collapse
|
15
|
Ozakman Y, Eleftherianos I. Immune interactions between Drosophila and the pathogen Xenorhabdus. Microbiol Res 2020; 240:126568. [PMID: 32781380 DOI: 10.1016/j.micres.2020.126568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022]
Abstract
Deciphering host innate immune function and bacterial pathogenic tactics require a system that facilitates both facets of host-pathogen interactions. In recent years, a model that becomes established in dissecting mechanisms of host antibacterial immune response through probing with a potent bacterial pathogen involves the fruit fly Drosophila melanogaster and the insect pathogenic bacteria Xenorhabdus spp. The elegance of this system involves not only the genetic tractability of D. melanogaster, but also the association of Xenorhabdus with parasitic nematodes of insects that supervise the release of the bacteria as well as influence their pathogenic properties during the infection process. These dynamic aspects have enabled us to start decoding the specific features of the D. melanogaster host defense that participate in confronting the activity of Xenorhabdus molecular components, which are designed to evade the immune system. Here we outline recent information on the cellular, humoral and phenoloxidase reactions that are induced in D. melanogaster larvae and adults to oppose the Xenorhabdus attack, and the bacterial factors responsible for triggering these effects. This knowledge is critical not only for understanding how invertebrate immunity operates, but also for devising novel approaches to exploit the virulence ability of certain bacteria with the ultimate goal to counteract harmful insect pests or vectors of infectious disease.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington DC 20052, USA.
| |
Collapse
|
16
|
A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling. Sci Rep 2020; 10:12312. [PMID: 32704134 PMCID: PMC7378173 DOI: 10.1038/s41598-020-69306-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Insect pathogens have adopted an array of mechanisms to subvert the immune pathways of their respective hosts. Suppression may occur directly at the level of host-pathogen interactions, for instance phagocytic capacity or phenoloxidase activation, or at the upstream signaling pathways that regulate these immune effectors. Insect pathogens of the family Baculoviridae, for example, are known to produce a UDP-glycosyltransferase (UGT) that negatively regulates ecdysone signaling. Normally, ecdysone positively regulates both molting and antimicrobial peptide production, so the inactivation of ecdysone by glycosylation results in a failure of host larvae to molt, and probably a reduced antimicrobial response. Here, we examine a putative ecdysteroid glycosyltransferase, Hba_07292 (Hb-ugt-1), which was previously identified in the hemolymph-activated transcriptome of the entomopathogenic nematode Heterorhabditis bacteriophora. Injection of recombinant Hb-ugt-1 (rHb-ugt-1) into Drosophila melanogaster flies resulted in diminished upregulation of antimicrobial peptides associated with both the Toll and Immune deficiency pathways. Ecdysone was implicated in this suppression by a reduction in Broad Complex expression and reduced pupation rates in r Hb-ugt-1-injected larvae. In addition to the finding that H. bacteriophora excreted-secreted products contain glycosyltransferase activity, these results demonstrate that Hb-ugt-1 is an immunosuppressive factor and that its activity likely involves the inactivation of ecdysone.
Collapse
|
17
|
Heryanto C, Eleftherianos I. Nematode endosymbiont competition: Fortune favors the fittest. Mol Biochem Parasitol 2020; 238:111298. [PMID: 32621939 DOI: 10.1016/j.molbiopara.2020.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Endosymbiotic bacteria that obligately associate with entomopathogenic nematodes as a complex are a unique model system to study competition. These nematodes seek an insect host and provide entry for their endosymbionts. Through their natural products, the endosymbionts nurture their nematodes by eliminating secondary infection, providing nutrients through bioconversion of the insect cadaver, and facilitating reproduction. On one hand, they cooperatively colonize the insect host and neutralize other opportunistic biotic threats. On the other hand, inside the insect cadaver as a fighting pit, they fiercely compete for the fittest partnership that will grant them the reproductive dominance. Here, we review the protective and nurturing nature of endosymbiotic bacteria for their nematodes and how their selective preference shapes the superior nematode-endosymbiont pairs as we know today.
Collapse
Affiliation(s)
- Christa Heryanto
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| |
Collapse
|
18
|
Garriga A, Mastore M, Morton A, Garcia del Pino F, Brivio MF. Immune Response of Drosophila suzukii Larvae to Infection with the Nematobacterial Complex Steinernema carpocapsae-Xenorhabdus nematophila. INSECTS 2020; 11:insects11040210. [PMID: 32231138 PMCID: PMC7240654 DOI: 10.3390/insects11040210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 01/06/2023]
Abstract
Entomopathogenic nematodes have been proposed as biological agents for the control of Drosophila suzukii, an invasive pest of small-stone and soft-skinned fruits. Larvae of the fly are susceptible to Steinernema carpocapsae infection but the reaction of immune defenses of the host are unknown. To determine the immune response, larvae were infected with S. carpocapsae and Xenorhabdus nematophila to evaluate the effector mechanisms of both humoral and cellular processes. The symbiont bacteria presented an inhibitory effect on the phenoloxidase cascade with a low level of melanization. Besides, X. nematophila activated the synthesis of putative antimicrobial peptides on the hemolymph of infected larvae. However, those peptides presented a lower antimicrobial activity compared to hemolymph from larvae infected with non-symbiont bacteria. Xenorhabdus nematophila avoided also the phagocytosis response of hemocytes. During in vitro and in vivo assays, S. carpocapsae was not encapsulated by cells, unless the cuticle was damaged with a lipase-treatment. Hemocyte counts confirmed differentiation of lamellocytes in the early phase of infection despite the unrecognition of the nematodes. Both X. nematophila and S. carpocapsae avoided the cellular defenses of D. suzukii larvae and depressed the humoral response. These results confirmed the potential of entomopathogenic nematodes to control D. suzukii.
Collapse
Affiliation(s)
- Anna Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
| | - Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | - Ana Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
| | - Fernando Garcia del Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.G.); (A.M.)
- Correspondence: (F.G.d.P.); (M.F.B.); Tel.: +39-0332-421404 (M.F.B.)
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
- Correspondence: (F.G.d.P.); (M.F.B.); Tel.: +39-0332-421404 (M.F.B.)
| |
Collapse
|
19
|
Drosophila melanogaster Responses against Entomopathogenic Nematodes: Focus on Hemolymph Clots. INSECTS 2020; 11:insects11010062. [PMID: 31963772 PMCID: PMC7023112 DOI: 10.3390/insects11010062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022]
Abstract
Several insect innate immune mechanisms are activated in response to infection by entomopathogenic nematodes (EPNs). In this review, we focus on the coagulation of hemolymph, which acts to stop bleeding after injury and prevent access of pathogens to the body cavity. After providing a general overview of invertebrate coagulation systems, we discuss recent findings in Drosophila melanogaster which demonstrate that clots protect against EPN infections. Detailed analysis at the cellular level provided insight into the kinetics of the secretion of Drosophila coagulation factors, including non-classical modes of secretion. Roughly, clot formation can be divided into a primary phase in which crosslinking of clot components depends on the activity of Drosophila transglutaminase and a secondary, phenoloxidase (PO)-dependent phase, characterized by further hardening and melanization of the clot matrix. These two phases appear to play distinct roles in two commonly used EPN infection models, namely Heterorhabditis bacteriophora and Steinernema carpocapsae. Finally, we discuss the implications of the coevolution between parasites such as EPNs and their hosts for the dynamics of coagulation factor evolution.
Collapse
|
20
|
High-Resolution Infection Kinetics of Entomopathogenic Nematodes Entering Drosophila melanogaster. INSECTS 2020; 11:insects11010060. [PMID: 31963655 PMCID: PMC7023307 DOI: 10.3390/insects11010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/26/2022]
Abstract
Entomopathogenic nematodes (EPNs) have been a useful model for studying wound healing in insects due to their natural mechanism of entering an insect host either through the cuticle or an orifice. While many experiments have shed light on nematode and host behavior, as well as the host immune response, details regarding early nematode entry and proliferative events have been limited. Using high-resolution microscopy, we provide data on the early infection kinetics of Heterorhabditis bacteriophora and its symbiotic bacteria, Photorhabdus luminescens. EPNs appendage themselves to the host and enter through the host cuticle with a drill-like mechanism while leaving their outer sheath behind. EPNs immediately release their symbiotic bacteria in the host which leads to changes in host behavior and septicemia within 6 h while EPNs travel through the host in a predictable manner, congregating in the anterior end of the host. This paper sheds light on the entry and proliferative events of EPN infection, which will further aid in our understanding of wound healing and host immune activation at a high spatiotemporal resolution.
Collapse
|
21
|
Sanda NB, Hou B, Muhammad A, Ali H, Hou Y. Exploring the Role of Relish on Antimicrobial Peptide Expressions (AMPs) Upon Nematode-Bacteria Complex Challenge in the Nipa Palm Hispid Beetle, Octodonta nipae Maulik (Coleoptera: Chrysomelidae). Front Microbiol 2019; 10:2466. [PMID: 31736908 PMCID: PMC6834688 DOI: 10.3389/fmicb.2019.02466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The humoral immune responses of the nipa palm hispid beetle Octodonta nipae involves the inducible expression of the genes coding for antimicrobial peptides (AMPs) which are mediated by immune deficiency signaling pathways. In insects, the nuclear factor-κB (NF-κB) transcription factor, Relish, has been shown to regulate AMP gene expressions upon microbial infections. Here, we dissect the expression patterns of some AMPs in O. nipae during infections by entomopathogenic nematodes (EPNs) and their symbionts, before and after Relish knock down. Our results indicate that, prior to gene silencing, the AMPs attacin C1, attacin C2, and defensin 2B were especially expressed to great extents in the insects challenged with the nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora as well as with their respective symbionts Xenorhabdus nematophila and Photorhabdus luminescens. The study also established the partial sequence of OnRelish/NF-κB p110 subunit in O. nipae, with an open reading frame coding for a protein with 102 amino acid residues. A typical Death domain-containing protein was detected (as seen in Drosophila) at the C-terminus of the protein. Phylogenetic analysis revealed that in O. nipae, Relish is clustered with registered Relish/NF-κB p110 proteins from other species of insect especially Leptinotarsa decemlineata from the same order Coleoptera. Injection of OnRelish dsRNA remarkably brought down the expression of OnRelish and also reduced the magnitude of transcription of attacin C1 and defensin 2B upon S. carpocapsae and H. bacteriophora and their symbionts infections. Altogether, our data unveil the expression pattern of OnRelish as well as that of some AMP genes it influences during immune responses of O. nipae against EPNs and their symbionts.
Collapse
Affiliation(s)
- Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Crop Protection, Faculty of Agriculture, Bayero University Kano, Kano, Nigeria
| | - Bofeng Hou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Entomology, University of Agriculture Faisalabad, Okara, Pakistan
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Kenney E, Hawdon JM, O'Halloran D, Eleftherianos I. Heterorhabditis bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus luminescens Through Suppression of the Imd Pathway. Front Immunol 2019; 10:2372. [PMID: 31636642 PMCID: PMC6787769 DOI: 10.3389/fimmu.2019.02372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Upon entering the hemocoel of its insect host, the entomopathogenic nematode Heterorhabditis bacteriophora releases its symbiotic bacteria Photorhabdus luminescens, which is also a strong insect pathogen. P. luminescens is known to suppress the insect immune response independently following its release, but the nematode appears to enact its own immunosuppressive mechanisms during the earliest phases of an infection. H. bacteriophora was found to produce a unique set of excreted-secreted proteins in response to host hemolymph, and while basal secretions are immunogenic with regard to Diptericin expression through the Imd pathway, host-induced secretions suppress this expression to a level below that of controls in Drosophila melanogaster. This effect is consistent in adults, larvae, and isolated larval fat bodies, and the magnitude of suppression is dose-dependent. By reducing the expression of Diptericin, an antimicrobial peptide active against Gram-negative bacteria, the activated excreted-secreted products enable a more rapid propagation of P. luminescens that corresponds to more rapid host mortality. The identification and isolation of the specific proteins responsible for this suppression represents an exciting field of study with potential for enhancing the biocontrol of insect pests and treatment of diseases associated with excessive inflammation.
Collapse
Affiliation(s)
- Eric Kenney
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Damien O'Halloran
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States.,Institute for Neuroscience, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
23
|
Spodoptera frugiperda transcriptional response to infestation by Steinernema carpocapsae. Sci Rep 2019; 9:12879. [PMID: 31501491 PMCID: PMC6733877 DOI: 10.1038/s41598-019-49410-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode (EPN) used in biological control of agricultural pest insects. It enters the hemocoel of its host via the intestinal tract and releases its symbiotic bacterium Xenorhabdus nematophila. In order to improve our knowledge about the physiological responses of its different hosts, we examined the transcriptional responses to EPN infestation of the fat body, the hemocytes and the midgut in the lepidopteran pest Spodoptera frugiperda. The tissues poorly respond to the infestation at an early time post-infestation of 8 h with only 5 genes differentially expressed in the fat body of the caterpillars. Strong transcriptional responses are observed at a later time point of 15 h post-infestation in all three tissues. Few genes are differentially expressed in the midgut but tissue-specific panels of induced metalloprotease inhibitors, immune receptors and antimicrobial peptides together with several uncharacterized genes are up-regulated in the fat body and the hemocytes. Among the most up-regulated genes, we identified new potential immune effectors, unique to Lepidoptera, which show homology with bacterial genes of unknown function. Altogether, these results pave the way for further functional studies of the responsive genes' involvement in the interaction with the EPN.
Collapse
|
24
|
Participation of the Serine Protease Jonah66Ci in the Drosophila Antinematode Immune Response. Infect Immun 2019; 87:IAI.00094-19. [PMID: 31182620 DOI: 10.1128/iai.00094-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Serine proteases and serine protease homologs form the second largest gene family in the Drosophila melanogaster genome. Certain genes in the Jonah multigene family encoding serine proteases have been implicated in the fly antiviral immune response. Here, we report the involvement of Jonah66Ci in the Drosophila immune defense against Steinernema carpocapsae nematode infection. We find that Drosophila Jonah66Ci is upregulated in response to symbiotic (carrying the mutualistic bacterium Xenorhabdus nematophila) or axenic (lacking Xenorhabdus) Steinernema nematodes and is expressed exclusively in the gut of Drosophila larvae. Inactivation of Jonah66Ci provides a survival advantage to larvae against axenic nematodes and results in differential expression of Toll and Imd pathway effector genes, specifically in the gut. Also, inactivation of Jonah66Ci increases the numbers of enteroendocrine and mitotic cells in the gut of uninfected larvae, and infection with Steinernema nematodes reduces their numbers, whereas the numbers of intestinal stem cells are unaffected by nematode infection. Jonah66Ci knockdown further reduces nitric oxide levels in response to infection with symbiotic Steinernema nematodes. Finally, we show that Jonah66Ci knockdown does not alter the feeding rates of uninfected Drosophila larvae; however, infection with axenic Steinernema nematodes lowers larval feeding. In conclusion, we report that Jonah66Ci participates in maintaining homeostasis of certain physiological processes in Drosophila larvae in the context of Steinernema nematode infection. Similar findings will take us a step further toward understanding the molecular and physiological mechanisms that take place during parasitic nematode infection in insects.
Collapse
|
25
|
Patrnogic J, Heryanto C, Ozakman Y, Eleftherianos I. Transcript analysis reveals the involvement of NF-κB transcription factors for the activation of TGF-β signaling in nematode-infected Drosophila. Immunogenetics 2019; 71:501-510. [PMID: 31147740 DOI: 10.1007/s00251-019-01119-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/11/2019] [Indexed: 11/27/2022]
Abstract
The common fruit fly Drosophila melanogaster is a powerful model for studying signaling pathway regulation. Conserved signaling pathways underlying physiological processes signify evolutionary relationship between organisms and the nature of the mechanisms they control. This study explores the cross-talk between the well-characterized nuclear factor kappa B (NF-κB) innate immune signaling pathways and transforming growth factor beta (TGF-β) signaling pathway in response to parasitic nematode infection in Drosophila. To understand the link between signaling pathways, we followed on our previous studies by performing a transcript-level analysis of different TGF-β signaling components following infection of immune-compromised Drosophila adult flies with the nematode parasites Heterorhabditis gerrardi and H. bacteriophora. Our findings demonstrate the requirement of NF-κB transcription factors for activation of TGF-β signaling pathway in Drosophila in the context of parasitic nematode infection. We observe significant decrease in transcript level of glass bottom boat (gbb) and screw (scw), components of the bone morphogenic protein (BMP) branch, as well as Activinβ (actβ) which is a component of the Activin branch of the TGF-β signaling pathway. These results are observed only in H. gerrardi nematode-infected flies compared to uninfected control. Also, this significant decrease in transcript level is found only for extracellular ligands. Future research examining the mechanisms regulating the interaction of these signaling pathways could provide further insight into Drosophila anti-nematode immune function against infection with potent parasitic nematodes.
Collapse
Affiliation(s)
- Jelena Patrnogic
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Yaprak Ozakman
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
26
|
The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Mol Immunol 2019; 109:88-98. [DOI: 10.1016/j.molimm.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
|
27
|
Aryal SK, Lu D, Le K, Allison L, Gerke C, Dillman AR. Sand crickets (Gryllus firmus) have low susceptibility to entomopathogenic nematodes and their pathogenic bacteria. J Invertebr Pathol 2018; 160:54-60. [PMID: 30528638 DOI: 10.1016/j.jip.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
Abstract
The entomopathogenic nematode, Steinernema scapterisci, a specialist parasite of crickets, has been successfully used to combat the southern mole cricket, Neoscapteriscus borellii, which is an invasive pest of turf grass. As an entomopathogenic nematode, S. scapterisci causes rapid death of the insects it infects and uses bacteria to facilitate its parasitism. However, our understanding of the relative contributions of the nematode, S. scapterisci, and its bacterial symbiont, Xenorhabdus innexi, to parasitism remains limited. Here we utilized the sand cricket, Gryllus firmus, as a model host to evaluate the contributions of the EPNs S. scapterisci and S. carpocapsae, as well as their symbiotic bacteria, X. innexi and X. nematophila, respectively, to the virulence of the nematode-bacterial complex. We found that G. firmus has reduced susceptibility to infection from both S. scapterisci and the closely related generalist parasite S. carpocapsae, but that S. scapterisci is much more virulent than S. carpocapsae. Further, we found that N. borellii has reduced susceptibility to X. nematophila, and that G. firmus has reduced susceptibility to X. nematophila, X. innexi, and Serratia marcescens, much more so than other insects that have been studied. We found that the reduced susceptibility of G. firmus to bacterial infection is dependent on development, with adults being less susceptible to infection than nymphs. Our data provide evidence that unlike other EPNs, the virulence of S. scapterisci to crickets is dependent on the nematode rather than the bacterial symbiont that it carries and we speculate that S. scapterisci may be evolving independence from X. innexi.
Collapse
Affiliation(s)
- Sudarshan K Aryal
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Dihong Lu
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Kathleen Le
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Lauren Allison
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Carter Gerke
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Adler R Dillman
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
28
|
Yadav S, Eleftherianos I. The Imaginal Disc Growth Factors 2 and 3 participate in the Drosophila response to nematode infection. Parasite Immunol 2018; 40:e12581. [PMID: 30107045 DOI: 10.1111/pim.12581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/11/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
Abstract
The Drosophila imaginal disc growth factors (IDGFs) induce the proliferation of imaginal disc cells and terminate cell proliferation at the end of larval development. However, the participation of Idgf-encoding genes in other physiological processes of Drosophila including the immune response to infection is not fully understood. Here, we show the contribution of Idgf2 and Idgf3 in the Drosophila response to infection with Steinernema carpocapsae nematodes carrying or lacking their mutualistic Xenorhabdus nematophila bacteria (symbiotic or axenic nematodes, respectively). We find that Idgf2 and Idgf3 are upregulated in Drosophila larvae infected with symbiotic or axenic Steinernema and inactivation of Idgf2 confers a survival advantage to Drosophila larvae against axenic nematodes. Inactivation of Idgf2 induces the Imd and Jak/Stat pathways, whereas inactivation of Idgf3 induces the Imd, Toll and Jak/Stat pathways. We also show that inactivation of the Imd pathway receptor PGRP-LE upregulates Idgf2 against Steinernema nematode infection. Finally, we demonstrate that inactivation of Idgf3 induces the recruitment of larval haemocytes in response to Steinernema. Our results indicate that Idgf2 and Idgf3 might be involved in different yet crucial immune functions in the Drosophila antinematode immune response. Similar findings will promote the development of new targets for species-specific pest control strategies.
Collapse
Affiliation(s)
- Shruti Yadav
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
29
|
Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. INSECTS 2018; 9:insects9030117. [PMID: 30208626 PMCID: PMC6164499 DOI: 10.3390/insects9030117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Entomopathogenic nematodes (EPNs) are widely used as biological control agents against insect pests, the efficacy of these organisms strongly depends on the balance between the parasitic strategies and the immune response of the host. This review summarizes roles and relationships between insect hosts and two well-known EPN species, Steinernema feltiae and Steinernema carpocapsae and outlines the main mechanisms of immune recognition and defense of insects. Analyzing information and findings about these EPNs, it is clear that these two species use shared immunosuppression strategies, mainly mediated by their symbiotic bacteria, but there are differences in both the mechanism of evasion and interference of the two nematodes with the insect host immune pathways. Based on published data, S. feltiae takes advantage of the cross reaction between its body surface and some host functional proteins, to inhibit defensive processes; otherwise, secretion/excretion products from S. carpocapsae seem to be the main nematode components responsible for the host immunosuppression.
Collapse
|
30
|
Stamps JA, Biro PA, Mitchell DJ, Saltz JB. Bayesian updating during development predicts genotypic differences in plasticity. Evolution 2018; 72:2167-2180. [PMID: 30133698 DOI: 10.1111/evo.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023]
Abstract
Interactions between genotypes and environments are central to evolutionary genetics, but such interactions are typically described, rather than predicted from theory. Recent Bayesian models of development generate specific predictions about genotypic differences in developmental plasticity (changes in the value of a given trait as a result of a given experience) based on genotypic differences in the value of the trait that is expressed by naïve subjects. We used these models to make a priori predictions about the effects of an aversive olfactory conditioning regime on the response of Drosophila melanogaster larvae to the odor of ethyl acetate. As predicted, across 116 genotypes initial trait values were related to plasticity. Genotypes most strongly attracted to the odor of ethyl acetate when naïve reduced their attraction scores more as a result of the aversive training regime than those less attracted to the same odor when naïve. Thus, as predicted, the variance across genotypes in attraction scores was higher before than after the shared experience. These results support predictions generated by Bayesian models of development and indicate that such models can be successfully used to investigate how variation across genotypes in information derived from ancestors combines with personal experience to differentially affect developmental plasticity in response to specific types of experience.
Collapse
Affiliation(s)
- Judy A Stamps
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Peter A Biro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - David J Mitchell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Julia B Saltz
- Department of BioSciences, Rice University, Houston, Texas 77005
| |
Collapse
|
31
|
Entomopathogenic nematode Steinernema carpocapsae surpasses the cellular immune responses of the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae). Microb Pathog 2018; 124:337-345. [PMID: 30172903 DOI: 10.1016/j.micpath.2018.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022]
Abstract
The Nipa palm hispid, Octodonta nipae (Maulik) is an important invasive pest of palm trees particularly in Southern China. How this beetle interacts with invading pathogens via its immune system remains to be dissected. Steinernema carpocapsae is a pathogenic nematode that attacks a number of insects of economic importance. The present study systematically investigates the cellular immune responses of O. nipae against S. carpocapsae infection using combined immunological, biochemical and transcriptomics approaches. Our data reveal that S. carpocapsae efficiently resists being encapsulated and melanized within the host's hemolymph and most of the nematodes were observed moving freely in the hemolymph even at 24 h post incubation. Consistently, isolated cuticles from the parasite also withstand encapsulation by the O. nipae hemocytes at all-time points. However, significant encapsulation and melanization of the isolated cuticles were recorded following heat treatment of the cuticles. The host's phenoloxidase activity was found to be slightly suppressed due to S. carpocapsae infection. Furthermore, the expression levels of some antimicrobial peptide (AMP) genes were significantly up-regulated in the S. carpocapsae-challenged O. nipae. Taken together, our data suggest that S. carpocapsae modulates and surpasses the O. nipae immune responses and hence can serve as an excellent biological control agent of the pest.
Collapse
|
32
|
Yadav S, Eleftherianos I. Prolonged Storage Increases Virulence of Steinernema Entomopathogenic Nematodes Toward Drosophila Larvae. J Parasitol 2018; 104:722-725. [PMID: 30088785 DOI: 10.1645/18-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Entomopathogenic nematodes are excellent organisms for dissecting the molecular basis of parasitism and probing the insect innate immune system. The nematode parasite Steinernema carpocapsae is a potent pathogen of insects that has emerged recently as a model for parasitic infection and anti-nematode immune signaling and response. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila, which are also pathogenic to insects. Separation of nematodes from their associated bacteria facilitates mechanistic studies focusing on the impact of the parasites without considering the contribution of their bacterial partners. An important aspect in insect infection experiments with entomopathogenic nematodes includes the storage duration of the parasites. Here we have infected larvae of the model insect Drosophila melanogaster with S. carpocapsae nematodes that had been stored for 3 wk or 3 mo. Survival data consistently revealed that infective juveniles with prolonged storage exhibit substantially increased virulence toward D. melanogaster larvae compared with those that had been stored for a shorter time, and the presence of mutualistic X. nematophila in the nematodes does not influence this result. Although the basis for this effect is currently unknown, these surprising findings indicate that prolonged nematode storage can markedly alter virulence. This is significant knowledge that should be taken into account in functional assays involving infection with parasitic nematodes. Future efforts will focus on the identification and characterization of the factors that might determine the interrelationship between prolonged storage and virulence in nematode parasites.
Collapse
Affiliation(s)
- Shruti Yadav
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, District of Columbia 20052
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, District of Columbia 20052
| |
Collapse
|
33
|
Patrnogic J, Heryanto C, Eleftherianos I. Transcriptional up-regulation of the TGF-β intracellular signaling transducer Mad of Drosophila larvae in response to parasitic nematode infection. Innate Immun 2018; 24:349-356. [PMID: 30049242 PMCID: PMC6830907 DOI: 10.1177/1753425918790663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The common fruit fly Drosophila melanogaster is an exceptional
model for dissecting innate immunity. However, our knowledge on responses to
parasitic nematode infections still lags behind. Recent studies have
demonstrated that the well-conserved TGF-β signaling pathway participates in
immune processes of the fly, including the anti-nematode response. To elucidate
the molecular basis of TGF-β anti-nematode activity, we performed a transcript
level analysis of different TGF-β signaling components following infection of
D. melanogaster larvae with the nematode parasite
Heterorhabditis gerrardi. We found no significant changes
in the transcript level of most extracellular ligands in both bone morphogenic
protein (BMP) and activin branches of the TGF-β signaling pathway between
nematode-infected larvae and uninfected controls. However, extracellular ligand,
Scw, and Type I receptor, Sax, in the BMP pathway as well as the Type I
receptor, Babo, in the activin pathway were substantially up-regulated following
H. gerrardi infection. Our results suggest that receptor
up-regulation leads to transcriptional up-regulation of the intracellular
component Mad in response to H. gerrardi following changes in
gene expression of intracellular receptors of both TGF-β signaling branches.
These findings identify the involvement of certain TGF-β signaling pathway
components in the immune signal transduction of D. melanogaster
larvae against parasitic nematodes.
Collapse
Affiliation(s)
- Jelena Patrnogic
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| |
Collapse
|
34
|
Labaude S, Griffin CT. Transmission Success of Entomopathogenic Nematodes Used in Pest Control. INSECTS 2018; 9:insects9020072. [PMID: 29925806 PMCID: PMC6023359 DOI: 10.3390/insects9020072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
Entomopathogenic nematodes from the two genera Steinernema and Heterorhabditis are widely used as biological agents against various insect pests and represent a promising alternative to replace pesticides. Efficacy and biocontrol success can be enhanced through improved understanding of their biology and ecology. Many endogenous and environmental factors influence the survival of nematodes following application, as well as their transmission success to the target species. The aim of this paper is to give an overview of the major topics currently considered to affect transmission success of these biological control agents, including interactions with insects, plants and other members of the soil biota including conspecifics.
Collapse
Affiliation(s)
- Sophie Labaude
- Department of Biology, Maynooth University, W23 A023 Maynooth, Co. Kildare, Ireland.
| | - Christine T Griffin
- Department of Biology, Maynooth University, W23 A023 Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
35
|
Yadav S, Frazer J, Banga A, Pruitt K, Harsh S, Jaenike J, Eleftherianos I. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection. PLoS One 2018; 13:e0192183. [PMID: 29466376 PMCID: PMC5821453 DOI: 10.1371/journal.pone.0192183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022] Open
Abstract
Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.
Collapse
Affiliation(s)
- Shruti Yadav
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Joanna Frazer
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Ashima Banga
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, United States of America
| | - Katherine Pruitt
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, United States of America
| | - Sneh Harsh
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
36
|
Yadav S, Gupta S, Eleftherianos I. Differential Regulation of Immune Signaling and Survival Response in Drosophila melanogaster Larvae upon Steinernema carpocapsae Nematode Infection. INSECTS 2018; 9:insects9010017. [PMID: 29419764 PMCID: PMC5872282 DOI: 10.3390/insects9010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 01/11/2023]
Abstract
Drosophila melanogaster is an excellent model to dissect the molecular components and pathways of the innate anti-pathogen immune response. The nematode parasite Steinernema carpocapsae and its mutualistic bacterium Xenorhabdus nematophila form a complex that is highly pathogenic to insects, including D. melanogaster. We have used symbiotic (carrying X. nematophila) and axenic (lacking X. nematophila) nematodes to probe the regulation of genes belonging to different immune signaling pathways in D. melanogaster larvae and assess the survival response of certain mutants to these pathogens. We found that both types of S. carpocapsae upregulate MyD88 (Toll), but not PGRP-LE (Imd); whereas axenic S. carpocapsae strongly upregulate Wengen (Jnk), Domeless (Jak/Stat), Dawdle (TGFβ, Activin), and Decapentaplegic (TGFβ, BMP). We further found that inactivation of Wengen and Decapentaplegic confers a survival advantage to larvae infected with axenic S. carpocapsae, whereas mutating PGRP-LE promotes the survival of larvae infected with symbiotic nematodes.
Collapse
Affiliation(s)
- Shruti Yadav
- Insect Infection and Immunity Lab., Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Sonali Gupta
- Insect Infection and Immunity Lab., Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Lab., Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
37
|
Eleftherianos I, Yadav S, Kenney E, Cooper D, Ozakman Y, Patrnogic J. Role of Endosymbionts in Insect-Parasitic Nematode Interactions. Trends Parasitol 2017; 34:430-444. [PMID: 29150386 DOI: 10.1016/j.pt.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/12/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Endosymbiotic bacteria exist in many animals where they develop relationships that affect certain physiological processes in the host. Insects and their nematode parasites form great models for understanding the genetic and molecular basis of immune and parasitic processes. Both organisms contain endosymbionts that possess the ability to interfere with certain mechanisms of immune function and pathogenicity. This review summarizes recent information on the involvement of insect endosymbionts in the response to parasitic nematode infections, and the influence of nematode endosymbionts on specific aspects of the insect immune system. Analyzing this information will be particularly useful for devising endosymbiont-based strategies to intervene in insect immunity or nematode parasitism for the efficient management of noxious insects in the field.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Eric Kenney
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Dustin Cooper
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Yaprak Ozakman
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Jelena Patrnogic
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| |
Collapse
|
38
|
RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema. G3-GENES GENOMES GENETICS 2017; 7:1955-1967. [PMID: 28450373 PMCID: PMC5473771 DOI: 10.1534/g3.117.041004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host-pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae, which lives in mutualism with its endosymbiotic bacteria Xenorhabdus nematophila, to examine the transcriptomic basis of the interaction between D. melanogaster and entomopathogenic nematodes. We have employed next-generation RNA sequencing (RNAseq) to investigate the transcriptomic profile of D. melanogaster larvae in response to infection by S. carpocapsae symbiotic (carrying X. nematophila) or axenic (lacking X. nematophila) nematodes. Bioinformatic analyses have identified the strong induction of genes that are associated with the peritrophic membrane and the stress response, as well as several genes that participate in developmental processes. We have also found that genes with different biological functions are enriched in D. melanogaster larvae responding to either symbiotic or axenic nematodes. We further show that while symbiotic nematode infection enriched certain known immune-related genes, axenic nematode infection enriched several genes associated with chitin binding, lipid metabolic functions, and neuroactive ligand receptors. In addition, we have identified genes with a potential role in nematode recognition and genes with potential antinematode activity. Findings from this study will undoubtedly set the stage for the identification of key regulators of antinematode immune mechanisms in D. melanogaster, as well as in other insects of socioeconomic importance.
Collapse
|
39
|
Heve WK, El-Borai FE, Carrillo D, Duncan LW. Biological control potential of entomopathogenic nematodes for management of Caribbean fruit fly, Anastrepha suspensa Loew (Tephritidae). PEST MANAGEMENT SCIENCE 2017; 73:1220-1228. [PMID: 27717178 DOI: 10.1002/ps.4447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Caribbean fruit fly (Caribfly) is a serious economic insect pest because of development of larvae that hatch from eggs oviposited into fruits by female adults. This study assessed the virulence of twelve entomopathogenic nematode (EPN) isolates to Caribfly in laboratory bioassays as a starting point toward evaluation of management strategies for the fruit-to-soil-dwelling stages of A. suspensa in fields infested by Caribfly. RESULTS Inoculation of A. suspensa with 1 mL of ca 200 IJs larva-1 killed Caribfly at either larval or pupal stage. Pupae were more resistant to EPN infections than larvae. Adult emergence from inoculated pupae in soil microcosms was significantly lower than that observed in filter paper assays. Longest or largest steinernematids suppressed emergence of more adult Caribfly from pupae in soils, whereas shorter heterorhabditids were more infectious to Caribfly larvae. The highest mortalities of A. suspensa were caused by exotic nematodes Steinernema feltiae and Heterorhabditis bacteriophora, followed by the native Heterorhabditis indica and the exotic Steinernema carpocapsae. CONCLUSION Entomopathogenic nematodes reduced the development of Caribfly larvae and pupae to adult in our bioassays, suggesting that EPNs have potential for biological control of A. suspensa. Future work will assess management strategies, using the virulent EPNs, in orchards infested by A. suspensa. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- William K Heve
- Institute of Food and Agricultural Science, University of Florida, Citrus Research and Education Centre, Lake Alfred, FL, USA
| | - Fahiem E El-Borai
- Institute of Food and Agricultural Science, University of Florida, Citrus Research and Education Centre, Lake Alfred, FL, USA
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Daniel Carrillo
- Institute of Food and Agricultural Science, University of Florida, Tropical Research and Education Centre, Homestead, FL, USA
| | - Larry W Duncan
- Institute of Food and Agricultural Science, University of Florida, Citrus Research and Education Centre, Lake Alfred, FL, USA
| |
Collapse
|
40
|
The Global Transcription Factor Lrp Is both Essential for and Inhibitory to Xenorhabdus nematophila Insecticidal Activity. Appl Environ Microbiol 2017; 83:AEM.00185-17. [PMID: 28411220 DOI: 10.1128/aem.00185-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/06/2017] [Indexed: 01/04/2023] Open
Abstract
In the entomopathogenic bacterium Xenorhabdus nematophila, cell-to-cell variation in the abundance of the Lrp transcription factor leads to virulence modulation; low Lrp levels are associated with a virulent phenotype and suppression of antimicrobial peptides (AMPs) in Manduca sexta insects, while cells that lack lrp or express high Lrp levels are virulence attenuated and elicit AMP expression. To better understand the basis of these phenotypes, we examined X. nematophila strains expressing fixed Lrp levels. Unlike the lrp-null mutant, the high-lrp strain is fully virulent in Drosophila melanogaster, suggesting that these two strains have distinct underlying causes of virulence attenuation in M. sexta Indeed, the lrp-null mutant was defective in cytotoxicity against M. sexta hemocytes relative to that in the high-lrp and low-lrp strains. Further, supernatant derived from the lrp-null mutant but not from the high-lrp strain was defective in inhibiting weight gain when fed to 1st instar M. sexta These data suggest that contributors to the lrp-null mutant virulence attenuation phenotype are the lack of Lrp-dependent cytotoxic and extracellular oral growth inhibitory activities, which may be particularly important for virulence in D. melanogaster In contrast, the high-Lrp strain was sensitive to the antimicrobial peptide cecropin, had a transient survival defect in M. sexta, and had reduced extracellular levels of insecticidal activity, measured by injection of supernatant into 4th instar M. sexta Thus, high-lrp strain virulence attenuation may be explained by its hypersensitivity to M. sexta host immunity and its inability to secrete one or more insecticidal factors.IMPORTANCE Adaptation of a bacterial pathogen to host environments can be achieved through the coordinated regulation of virulence factors that can optimize success under prevailing conditions. In the insect pathogen Xenorhabdus nematophila, the global transcription factor Lrp is necessary for virulence when injected into Manduca sexta or Drosophila melanogaster insect hosts. However, high levels of Lrp, either naturally occurring or artificially induced, cause attenuation of X. nematophila virulence in M. sexta but not D. melanogaster Here, we present evidence suggesting that the underlying cause of high-Lrp-dependent virulence attenuation in M. sexta is hypersensitivity to host immune responses and decreased insecticidal activity and that high-Lrp virulence phenotypes are insect host specific. This knowledge suggests that X. nematophila faces varied challenges depending on the type of insect host it infects and that its success in these environments depends on Lrp-dependent control of a multifactorial virulence repertoire.
Collapse
|
41
|
Flores-Ponce M, Vallebueno-Estrada M, González-Orozco E, Ramos-Aboites HE, García-Chávez JN, Simões N, Montiel R. Signatures of co-evolutionary host-pathogen interactions in the genome of the entomopathogenic nematode Steinernema carpocapsae. BMC Evol Biol 2017; 17:108. [PMID: 28446150 PMCID: PMC5405473 DOI: 10.1186/s12862-017-0935-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Background The entomopathogenic nematode Steinernema carpocapsae has been used worldwide as a biocontrol agent for insect pests, making it an interesting model for understanding parasite-host interactions. Two models propose that these interactions are co-evolutionary processes in such a way that equilibrium is never reached. In one model, known as “arms race”, new alleles in relevant genes are fixed in both host and pathogens by directional positive selection, producing recurrent and alternating selective sweeps. In the other model, known as“trench warfare”, persistent dynamic fluctuations in allele frequencies are sustained by balancing selection. There are some examples of genes evolving according to both models, however, it is not clear to what extent these interactions might alter genome-level evolutionary patterns and intraspecific diversity. Here we investigate some of these aspects by studying genomic variation in S. carpocapsae and other pathogenic and free-living nematodes from phylogenetic clades IV and V. Results To look for signatures of an arms-race dynamic, we conducted massive scans to detect directional positive selection in interspecific data. In free-living nematodes, we detected a significantly higher proportion of genes with sites under positive selection than in parasitic nematodes. However, in these genes, we found more enriched Gene Ontology terms in parasites. To detect possible effects of dynamic polymorphisms interactions we looked for signatures of balancing selection in intraspecific genomic data. The observed distribution of Tajima’s D values in S. carpocapsae was more skewed to positive values and significantly different from the observed distribution in the free-living Caenorhabditis briggsae. Also, the proportion of significant positive values of Tajima’s D was elevated in genes that were differentially expressed after induction with insect tissues as compared to both non-differentially expressed genes and the global scan. Conclusions Our study provides a first portrait of the effects that lifestyle might have in shaping the patterns of selection at the genomic level. An arms-race between hosts and pathogens seems to be affecting specific genetic functions but not necessarily increasing the number of positively selected genes. Trench warfare dynamics seem to be acting more generally in the genome, likely focusing on genes responding to the interaction, rather than targeting specific genetic functions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0935-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitzi Flores-Ponce
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Miguel Vallebueno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Eduardo González-Orozco
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Hilda E Ramos-Aboites
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - J Noé García-Chávez
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Nelson Simões
- CIRN/Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 13, 9500-321, Ponta Delgada, S. Miguel - Açores, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
42
|
Darsouei R, Karimi J, Ghadamyari M, Hosseini M. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria. J Parasitol 2017; 103:349-358. [PMID: 28395586 DOI: 10.1645/16-162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The expression of antimicrobial peptides (AMPs) as the main humoral defense reactions of insects during infection by entomopathogenic nematodes (EPNs) and their symbiont is addressed herein. Three AMPs, attacin, cecropin, and spodoptericin, were evaluated in the fifth instar larvae of Spodoptera exigua Hübner (beet armyworm) when challenged with Steinernema carpocapsae or Heterorhabditis bacteriophora. The results indicated that attacin was expressed to a greater extent than either cecropin or spodoptericin. While spodoptericin was expressed to a much lesser extent, this AMP was induced against Gram-positive bacteria, and thus not expressed after penetration of Xenorhabdus nematophila and Photorhabdus luminescens. Attacin and cecropin in the larvae treated with S. carpocapsae at 8 hr post-injection (PI) attained the maximum expression levels and were 138.42-fold and 65.84-fold greater than those of larvae infected with H. bacteriophora, respectively. Generally, the ability of H. bacteriophora to suppress attacin, cecropin, and spodoptericin was greater than that of S. carpocapsae. According to the results, the expression of AMPs by Sp. exigua larvae against S. carpocapsae was determined in the 4 statuses of monoxenic nematode, axenic nematode, live symbiotic bacterium, and dead symbiotic bacterium. The expression of attacin in larvae treated with a monoxenic nematode and live bacterium at 8 and 2 hr PI, respectively, were increased to the maximum amount. Live X. nematophila was the strongest agent for the suppression of attacin. The expression of cecropin against monoxenic nematodes and live symbiotic bacteria at 8 and 4 hr PI, respectively, reached the maximum amount while the expression levels of attacin and cecropin for axenic nematodes were lesser and stable. The results highlighted that the ability of P. luminescens in AMPs suppression was much more than X. nematophila. The results also showed that the effect of symbiotic bacterium in suppressing attacin and cecropin expression was greater than that of a monoxenic nematode; this result provided deep insight into the expression pattern parallels and fluctuations of the main AMPs during nematode infection.
Collapse
Affiliation(s)
- Reyhaneh Darsouei
- Biocontrol and Insect Pathology Laboratory, Department of Plant Protection, School of Agriculture, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| | - Javad Karimi
- Biocontrol and Insect Pathology Laboratory, Department of Plant Protection, School of Agriculture, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| | - Mohammad Ghadamyari
- Biocontrol and Insect Pathology Laboratory, Department of Plant Protection, School of Agriculture, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| | - Mojtaba Hosseini
- Biocontrol and Insect Pathology Laboratory, Department of Plant Protection, School of Agriculture, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| |
Collapse
|
43
|
Kunc M, Arefin B, Hyrsl P, Theopold U. Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae. Fly (Austin) 2017. [PMID: 28631995 PMCID: PMC5552269 DOI: 10.1080/19336934.2017.1297350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
One of the key factors that determine the interaction between hosts and their parasites is the frequency of their interactions, which depends on the locomotory behavior of both parts. To address host behavior we used natural infections involving insect pathogenic nematodes and Drosophila melanogaster larvae as hosts. Using a modified version of a recently described method (FIMTrack) to assess several parameters in larger sets of animals, we initially detected specific differences in larval food searching when comparing Drosophila strains. These differences were further influenced by the presence of nematodes. Given a choice, Drosophila larvae clearly avoided nematodes irrespective of their genetic background. Our newly developed methods will be useful to test candidate genes and pathways involved in host/pathogen interactions in general and to assess specific parameters of their interaction.
Collapse
Affiliation(s)
- Martin Kunc
- a Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) , Stockholm University , Stockholm , Sweden.,b Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science , Masaryk University , Brno , Czech Republic
| | - Badrul Arefin
- a Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) , Stockholm University , Stockholm , Sweden
| | - Pavel Hyrsl
- b Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science , Masaryk University , Brno , Czech Republic
| | - Ulrich Theopold
- a Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) , Stockholm University , Stockholm , Sweden
| |
Collapse
|
44
|
Lu D, Baiocchi T, Dillman AR. Genomics of Entomopathogenic Nematodes and Implications for Pest Control. Trends Parasitol 2016; 32:588-598. [PMID: 27142565 PMCID: PMC4969101 DOI: 10.1016/j.pt.2016.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
Entomopathogenic nematodes (EPNs) have been used in biological control but improvement is needed to realize their full potential for broader application in agriculture. Some improvements have been gained through selective breeding and the isolation of additional species and populations. Having genomic sequences for at least six EPNs opens the possibility of genetic improvement, either by facilitating the selection of candidate genes for hypothesis-driven studies of gene-trait relations or by genomics-assisted breeding for desirable traits. However, the genomic data will be of limited use without a more mechanistic understanding of the genes underlying traits that are important for biological control. Additionally, molecular tools are required to fully translate the genomic resources into further functional studies and better biological control.
Collapse
Affiliation(s)
- Dihong Lu
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Tiffany Baiocchi
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
45
|
Eleftherianos I, Castillo JC, Patrnogic J. TGF-β signaling regulates resistance to parasitic nematode infection in Drosophila melanogaster. Immunobiology 2016; 221:1362-1368. [PMID: 27473342 DOI: 10.1016/j.imbio.2016.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022]
Abstract
Over the past decade important advances have been made in the field of innate immunity; however, our appreciation of the signaling pathways and molecules that participate in host immune responses to parasitic nematode infections lags behind that of responses to microbial challenges. Here we have examined the regulation and immune activity of Transforming Growth Factor-beta (TGF-β) signaling in the model host Drosophila melanogaster upon infection with the nematode parasites Heterorhabditis gerrardi and H. bacteriophora containing their mutualistic bacteria Photorhabdus. We have found that the genes encoding the Activin and Bone Morphogenic Protein (BMP) ligands Dawdle (Daw) and Decapentaplegic (Dpp) are transcriptionally induced in flies responding to infection with the nematode parasites, containing or lacking their associated bacteria. We also show that deficient Daw or Dpp regulates the survival of D. melanogaster adults to the pathogens, whereas inactivation of Daw reduces the persistence of the nematodes in the mutant flies. These findings demonstrate a novel role for the TGF-β signaling pathways in the host anti-nematode immune response. Understanding the molecular mechanisms of host anti-nematode processes will potentially lead to the development of novel means for the efficient control of parasitic nematodes.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| | - Julio Cesar Castillo
- Department of Biological Sciences, The George Washington University, Washington, DC, USA; Laboratory of Malaria and Vector Research, National Institutes of Health, MD, USA
| | - Jelena Patrnogic
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
46
|
Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Curr Top Microbiol Immunol 2016; 402:123-156. [PMID: 27995342 DOI: 10.1007/82_2016_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode-bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.
Collapse
|
47
|
Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. J Invertebr Pathol 2016; 133:110-9. [DOI: 10.1016/j.jip.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/26/2023]
|
48
|
Yadav S, Shokal U, Forst S, Eleftherianos I. An improved method for generating axenic entomopathogenic nematodes. BMC Res Notes 2015; 8:461. [PMID: 26386557 PMCID: PMC4575472 DOI: 10.1186/s13104-015-1443-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Background Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. Findings To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophilarpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. Conclusion Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections.
Collapse
Affiliation(s)
- Shruti Yadav
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC, USA.
| | - Upasana Shokal
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC, USA.
| | - Steven Forst
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC, USA.
| |
Collapse
|