1
|
Ruas ACL, Brito RMDM, Grossi de Oliveira AL, Pinto JC, Cirilo TM, Viana AG, Cunha JLR, Carvalho SAP, Bartholomeu DC, Graeff-Teixeira C, Dolabella SS, Geiger SM, Negrão-Corrêa DA, Bueno LL, Fujiwara RT. Immunoinformatic predictions and characterization of Schistosoma mansoni peptides as candidates for immunodiagnostic. Diagn Microbiol Infect Dis 2025; 111:116632. [PMID: 39642763 DOI: 10.1016/j.diagmicrobio.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Schistosoma mansoni represents a significant etiological agent of schistosomiasis, a neglected tropical disease with a global distribution. Although the Kato-Katz technique is an effective diagnostic tool in areas with a high prevalence of the disease, it lacks sensitivity in regions with lower prevalence. The objective of this study was to identify and validate novel immunogenic peptide targets derived from the S. mansoni proteome. The initial set of 14,499 predicted sequences were obtained from the WormBase database, and it was filtered to 8,308 by removing proteins lacking start or stop codons, shorter than 100 amino acids, or with undetermined amino acids. The sequences were then cross-referenced for cross-reactivity and ranked based on B-cell immunogenicity, resulting in the selection of 442 peptides for synthesis and screening. Immunoblotting revealed 22 reactive peptides, with 15 exhibiting specificities for sera from individuals at the initial infection (T0) stage and five reactive to both T0 and post-treatment (30D) sera. Subsequently, 19 peptides were subjected to further validation through molecular weight assessment and synthesized for ELISA testing. The multi-peptide pool demonstrated a reactivity frequency of 54.5 % in infected individuals, which surpassed the reactivity frequencies observed for individual peptides. The six peptides exhibiting the highest reactivity were subsequently analyzed according to infection intensity. The multi-peptide pool exhibited the highest reactivity (65.2 %) in low-intensity cases. ROC curve analysis indicated that Peptide 15 demonstrated the highest sensitivity (78.79 %) and specificity (87.5 %), while the multi-peptide pool exhibited 67.65 % sensitivity and 81.82 % specificity. These findings highlight the potential of peptide-based diagnostics to enhance the detection and control of schistosomiasis.
Collapse
Affiliation(s)
- Ana Cristina Loiola Ruas
- Laboratory of Immunobiology and Control of Parasites, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ramayana Morais de Medeiros Brito
- Laboratory of Immunobiology and Control of Parasites, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Laura Grossi de Oliveira
- Laboratory of Immunobiology and Control of Parasites, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jordânia Costa Pinto
- Laboratory of Immunobiology and Control of Parasites, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatyane Martins Cirilo
- Laboratory of Immunobiology and Control of Parasites, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Gonçalves Viana
- Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis Cunha
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Samuel Alexandre Pimenta Carvalho
- Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Castanheira Bartholomeu
- Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Graeff-Teixeira
- Center for Health Sciences, Center for Infectious Diseases, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Stefan Michael Geiger
- Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Deborah Aparecida Negrão-Corrêa
- Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Postgraduate Program in Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Inclan-Rico JM, Stephenson A, Napuri CM, Rossi HL, Hung LY, Pastore CF, Luo W, Herbert DR. TRPV1+ neurons promote cutaneous immunity against Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636930. [PMID: 39975236 PMCID: PMC11839022 DOI: 10.1101/2025.02.06.636930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Immunity against skin-invasive pathogens requires mechanisms that rapidly detect, repel or immobilize the infectious agent. While bacteria often cause painful cutaneous reactions, host skin invasion by the human parasitic helminth Schistosoma mansoni often goes unnoticed. This study investigated the role of pain-sensing skin afferents that express the ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) in the detection and initiation of skin immunity against S. mansoni . Data show that mice infected with S. mansoni have reduced behavioral responses to painful stimuli and sensory neurons exposed from infected mice have significantly less calcium influx and neuropeptide release in response to the TRPV1 agonist capsaicin. Using both gain- and loss-of-function approaches, data show that TRPV1+ neurons are critical regulators of S. mansoni survival during migration from the skin into the pulmonary tract. Moreover, TRPV1+ neurons were both necessary and sufficient to promote proliferation and cytokine production from dermal γδ T cells as well as neutrophil and monocyte skin accumulation post-infection. These results suggest a model in which S. mansoni may have evolved to inhibit TRPV1+ neuron activation as a countermeasure that limits IL-17-mediated inflammation, facilitating systemic dissemination and chronic parasitism. One sentence summary The parasitic helminth Schistosoma mansoni averts IL-17-dependent protective immunity by suppressing skin-innervating TRPV1+ neurons.
Collapse
|
3
|
Inclan-Rico JM, Napuri CM, Lin C, Hung LY, Ferguson AA, Liu X, Wu Q, Pastore CF, Stephenson A, Femoe UM, Musaigwa F, Rossi HL, Freedman BD, Reed DR, Macháček T, Horák P, Abdus-Saboor I, Luo W, Herbert DR. MrgprA3 neurons drive cutaneous immunity against helminths through selective control of myeloid-derived IL-33. Nat Immunol 2024; 25:2068-2084. [PMID: 39354200 PMCID: PMC12032830 DOI: 10.1038/s41590-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Skin uses interdependent cellular networks for barrier integrity and host immunity, but most underlying mechanisms remain obscure. Herein, we demonstrate that the human parasitic helminth Schistosoma mansoni inhibited pruritus evoked by itch-sensing afferents bearing the Mas-related G-protein-coupled receptor A3 (MrgprA3) in mice. MrgprA3 neurons controlled interleukin (IL)-17+ γδ T cell expansion, epidermal hyperplasia and host resistance against S. mansoni through shaping cytokine expression in cutaneous antigen-presenting cells. MrgprA3 neuron activation downregulated IL-33 but induced IL-1β and tumor necrosis factor in macrophages and type 2 conventional dendritic cells partially through the neuropeptide calcitonin gene-related peptide. Macrophages exposed to MrgprA3-derived secretions or bearing cell-intrinsic IL-33 deletion showed increased chromatin accessibility at multiple inflammatory cytokine loci, promoting IL-17/IL-23-dependent changes to the epidermis and anti-helminth resistance. This study reveals a previously unrecognized intercellular communication mechanism wherein itch-inducing MrgprA3 neurons initiate host immunity against skin-invasive parasites by directing cytokine expression patterns in myeloid antigen-presenting cell subsets.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila M Napuri
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annabel A Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinxue Wu
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher F Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adriana Stephenson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulrich M Femoe
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fungai Musaigwa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ishmail Abdus-Saboor
- Department of Biological Sciences, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
| | - Wenqin Luo
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Houlder EL, Stam KA, Koopman JPR, König MH, Langenberg MCC, Hoogerwerf MA, Niewold P, Sonnet F, Janse JJ, Partal MC, Sijtsma JC, de Bes-Roeleveld LHM, Kruize YCM, Yazdanbakhsh M, Roestenberg M. Early symptom-associated inflammatory responses shift to type 2 responses in controlled human schistosome infection. Sci Immunol 2024; 9:eadl1965. [PMID: 38968336 DOI: 10.1126/sciimmunol.adl1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Schistosomiasis is an infection caused by contact with Schistosoma-contaminated water and affects more than 230 million people worldwide with varying morbidity. The roles of T helper 2 (TH2) cells and regulatory immune responses in chronic infection are well documented, but less is known about human immune responses during acute infection. Here, we comprehensively map immune responses during controlled human Schistosoma mansoni infection using male or female cercariae. Immune responses to male or female parasite single-sex infection were comparable. An early TH1-biased inflammatory response was observed at week 4 after infection, which was particularly apparent in individuals experiencing symptoms of acute schistosomiasis. By week 8 after infection, inflammatory responses were followed by an expansion of TH2 and regulatory cell subsets. This study demonstrates the shift from TH1 to both TH2 and regulatory responses, typical of chronic schistosomiasis, in the absence of egg production and provides immunological insight into the clinical manifestations of acute schistosomiasis.
Collapse
Affiliation(s)
- Emma L Houlder
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Koen A Stam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jan Pieter R Koopman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marion H König
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marijke C C Langenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marie-Astrid Hoogerwerf
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Paula Niewold
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Friederike Sonnet
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Miriam Casacuberta Partal
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Laura H M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| |
Collapse
|
5
|
Inclan-Rico JM, Napuri CM, Lin C, Hung LY, Ferguson AA, Wu Q, Pastore CF, Stephenson A, Femoe UM, Rossi HL, Reed DR, Luo W, Abdus-Saboor I, Herbert DR. "MrgprA3 neurons selectively control myeloid-derived cytokines for IL-17 dependent cutaneous immunity". RESEARCH SQUARE 2023:rs.3.rs-3644984. [PMID: 38076920 PMCID: PMC10705600 DOI: 10.21203/rs.3.rs-3644984/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.
Collapse
Affiliation(s)
- Juan M. Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila M. Napuri
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annabel A. Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinxue Wu
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher F. Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adriana Stephenson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulrich M. Femoe
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heather L. Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Wenqin Luo
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ishmail Abdus-Saboor
- Department of Biological Sciences, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York, USA
| | - De’Broski R. Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Marascio N, Loria MT, Pavia G, Peronace C, Adams NJ, Campolo M, Divenuto F, Lamberti AG, Giancotti A, Barreca GS, Mazzitelli M, Trecarichi EM, Torti C, Perandin F, Bisoffi Z, Quirino A, Matera G. Evaluation of IL-35, as a Possible Biomarker for Follow-Up after Therapy, in Chronic Human Schistosoma Infection. Vaccines (Basel) 2023; 11:vaccines11050995. [PMID: 37243099 DOI: 10.3390/vaccines11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The host response to helminth infections is characterized by systemic and tissue-related immune responses that play a crucial role in pathological diseases. Recently, experimental studies have highlighted the role of regulatory T (Tregs) and B (Bregs) cells with secreted cytokines as important markers in anti-schistosomiasis immunity. We investigated the serical levels of five cytokines (TNFα, IFN-γ, IL-4, IL-10 and IL-35) in pre- and post-treatment samples from chronic Schistosoma infected patients to identify potential serological markers during follow-up therapy. Interestingly, we highlighted an increased serum level of IL-35 in the pre-therapy samples (median 439 pg/mL for Schistosoma haematobium and 100.5 pg/mL for Schistsoma mansoni infected patients) compared to a control group (median 62 pg/mL and 58 pg/mL, respectively, p ≤ 0.05), and a significantly lower concentration in post-therapy samples (181 pg/mL for S. haematobium and 49.5 pg/mL for S. mansoni infected patients, p ≤ 0.05). The present study suggests the possible role of IL-35 as a novel serological biomarker in the evaluation of Schistosoma therapy follow-up.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Maria Teresa Loria
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Grazia Pavia
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Cinzia Peronace
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Neill James Adams
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Morena Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Francesca Divenuto
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Angelo Giuseppe Lamberti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Aida Giancotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Francesca Perandin
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog 2022; 18:e1010596. [PMID: 35666747 PMCID: PMC9203022 DOI: 10.1371/journal.ppat.1010596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/16/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S. japonicum infection dramatically induced PD-1 expression in T cells of the liver where the parasites chronically inhabit and elicit deadly inflammation. Even in mice infected by non-egg-producing unisex parasites, we still observed potent induction of PD-1 in liver T cells of C57BL/6 mice following S. japonicum infection. To determine the function of PD-1 in schistosomiasis, we generated PD-1-deficient mice by CRISPR/Cas9 and found that loss of PD-1 markedly increased T cell count in the liver and spleen of infected mice. IL-4 secreting Th2 cells were significantly decreased in the infected PD-1-deficient mice whereas IFN-γ secreting CD4+ and CD8+ T cells were markedly increased. Surprisingly, such beneficial changes of T cell response did not result in eradication of parasites or in lowering the pathogen burden. In further experiments, we found that loss of PD-1 resulted in both beneficial T cell responses and amplification of regulatory T cells that prevented PD-1-deficient T cells from unleashing anti-parasite activity. Moreover, such PD-1-deficient Tregs exert excessive immunosuppression and express larger amounts of adenosine receptors CD39 and CD73 that are crucial for Treg-mediated immunosuppression. Our experimental results have elucidated the function of PD-1 in schistosomiasis and provide novel insights into prevention and treatment of schistosomiasis on the basis of modulating host adaptive immunity. Chronic schistosome infection leads to exaggerated upregulation of PD-1 in the liver, and loss of PD-1 markedly increased T cell presence in the liver of schistosome infected mice, which was accompanied by suppressed Th2 cytokines but markedly increased IFN-γ secretion in CD4+ and CD8+ T cells. The beneficial T cell response did not result in eradication of parasites or lowering the pathogen burden. Loss of PD-1 also resulted in amplification of Tregs and excessive Treg-mediated immunosuppression may prevent T cells from unleashing anti-parasitic immunity.
Collapse
|
8
|
Nono JK, Kamdem SD, Musaigwa F, Nnaji CA, Brombacher F. Influence of schistosomiasis on host vaccine responses. Trends Parasitol 2021; 38:67-79. [PMID: 34389214 DOI: 10.1016/j.pt.2021.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022]
Abstract
Schistosomiasis is a debilitating helminthiasis which commonly establishes as a chronic infection in people from endemic areas. As a potent modulator of the host immune response, the Schistosoma parasite and its associated products can directly interfere with its host's ability to mount adequate immune responses to unrelated antigens. As a result, increased attention is gathering on studies assessing the influence of helminths, particularly the causal agent of schistosomiasis, on host responsiveness to vaccines. However, to date, no consensus has been drawn regarding the influence of schistosomiasis on host vaccine responses. Here, we review available evidence on the influence of transgenerational and direct Schistosoma parasite exposure on host immune responses to unrelated vaccines. In addition, we evaluate the potential of praziquantel (PZQ) treatment in restoring schistosomiasis-impacted vaccine responses.
Collapse
Affiliation(s)
- Justin Komguep Nono
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, 7925, South Africa; Laboratory of ImmunoBiology and Helminth Infections (IBHI), the Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, 13033, Cameroon; Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, 7925, South Africa.
| | - Severin Donald Kamdem
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, 7925, South Africa; Laboratory of ImmunoBiology and Helminth Infections (IBHI), the Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, 13033, Cameroon; Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, 7925, South Africa; Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, 7925, South Africa; Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Fungai Musaigwa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, 7925, South Africa; Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, 7925, South Africa; Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, 7925, South Africa
| | - Chukwudi A Nnaji
- School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Frank Brombacher
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, 7925, South Africa; Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, 7925, South Africa; Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
9
|
Bosurgi L, Rothlin CV. Management of cell death in parasitic infections. Semin Immunopathol 2021; 43:481-492. [PMID: 34279684 PMCID: PMC8443503 DOI: 10.1007/s00281-021-00875-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
For a long time, host cell death during parasitic infection has been considered a reflection of tissue damage, and often associated with disease pathogenesis. However, during their evolution, protozoan and helminth parasites have developed strategies to interfere with cell death so as to spread and survive in the infected host, thereby ascribing a more intriguing role to infection-associated cell death. In this review, we examine the mechanisms used by intracellular and extracellular parasites to respectively inhibit or trigger programmed cell death. We further dissect the role of the prototypical “eat-me signal” phosphatidylserine (PtdSer) which, by being exposed on the cell surface of damaged host cells as well as on some viable parasites via a process of apoptotic mimicry, leads to their recognition and up-take by the neighboring phagocytes. Although barely dissected so far, the engagement of different PtdSer receptors on macrophages, by shaping the host immune response, affects the overall infection outcome in models of both protozoan and helminth infections. In this scenario, further understanding of the molecular and cellular regulation of the PtdSer exposing cell-macrophage interaction might allow the identification of new therapeutic targets for the management of parasitic infection.
Collapse
Affiliation(s)
- Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany. .,Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359, Hamburg, Germany.
| | - Carla V Rothlin
- Department of Immunobiology and Pharmacology, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Farias LP, Vitoriano-Souza J, Cardozo LE, Gama LDR, Singh Y, Miyasato PA, Almeida GT, Rodriguez D, Barbosa MMF, Fernandes RS, Barbosa TC, Neto APDS, Nakano E, Ho PL, Verjovski-Almeida S, Nakaya HI, Wilson RA, Leite LCDC. Systems Biology Analysis of the Radiation-Attenuated Schistosome Vaccine Reveals a Role for Growth Factors in Protection and Hemostasis Inhibition in Parasite Survival. Front Immunol 2021; 12:624191. [PMID: 33777004 PMCID: PMC7996093 DOI: 10.3389/fimmu.2021.624191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.
Collapse
Affiliation(s)
- Leonardo Paiva Farias
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | | | - Youvika Singh
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Giulliana Tessarin Almeida
- Laboratorio de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Mayra Mara Ferrari Barbosa
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia—USP-Butantan-IPT, São Paulo, Brazil
| | - Rafaela Sachetto Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia—USP-Butantan-IPT, São Paulo, Brazil
| | | | - Almiro Pires da Silva Neto
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Eliana Nakano
- Laboratorio de Parasitologia, Instituto Butantan, São Paulo, Brazil
| | - Paulo Lee Ho
- Centro BioIndustrial, Instituto Butantan, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratorio de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Helder Imoto Nakaya
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Robert Alan Wilson
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | |
Collapse
|
11
|
Yan C, Fang F, Zhang YZ, Dong X, Wu J, Liu HL, Fan CY, Koda S, Zhang BB, Yu Q, Wang L, Wang YG, Chen JX, Zheng KY. Recombinant CsHscB of carcinogenic liver fluke Clonorchis sinensis induces IL-10 production by binding with TLR2. PLoS Negl Trop Dis 2020; 14:e0008643. [PMID: 33044969 PMCID: PMC7549790 DOI: 10.1371/journal.pntd.0008643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clonorchis sinensis, a fluke dwelling in the intrahepatic bile ducts causes clonorchiasis, which affect about 15 million people wide-distributed in eastern Asia. During C. sinensis infection, worm-host interaction results in activation of patterns recognition receptors (PRRs) such as Toll-like receptors (TLRs) and further triggers immune responses, which determines the outcome of the infection. However, the mechanisms by which pathogen-associated molecules patterns from C. sinensis interact with TLRs were poorly understood. In the present study, we assumed that the molecules from C. sinensis may regulate host immune responses via TLR2 signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we have identified a ~34 kDa CsHscB from C. sinensis which physically bound with TLR2 as demonstrated by molecular docking and pull-down assay. We also found that recombinant CsHscB (rCsHscB) potently activates macrophage to express various proteins including TLR2, CD80, MHCII, and cytokines like IL-6, TNF-α, and IL-10, but rCsHscB failed to induce IL-10 in macrophages from Tlr2-/- mice. Moreover, ERK1/2 activation was required for rCsHscB-induced IL-10 production in macrophages. In vivo study revealed that rCsHscB triggered a high production of IL-10 in the wild-type (WT) but not in Tlr2-/- mice. Consistently, the phosphorylation of ERK1/2 was also attenuated in Tlr2-/- mice compared to the WT mice, after the treatment with rCsHscB. CONCLUSIONS/SIGNIFICANCE Our data thus demonstrate that rCsHscB from C. sinensis interacts with TLR2 to be endowed with immune regulatory activities, and may have some therapeutic implications in future beyond parasitology.
Collapse
Affiliation(s)
- Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Fan Fang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yu-Zhao Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Xin Dong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | | | - Chun-Yang Fan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Liang Wang
- College of Bioinformatics, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yu-Gang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center of Malaria, Schistosomiasis, and Filariasis, Shanghai, P. R. China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, P. R. China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
- * E-mail:
| |
Collapse
|
12
|
Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol 2020; 42:e12710. [PMID: 32145079 DOI: 10.1111/pim.12710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Trichobilharzia regenti (Schistosomatidae) percutaneously infects birds and mammals and invades their central nervous system (CNS). Here, we characterized the peripheral immune response of infected mice and showed how it was influenced by the parasite-induced inflammation in the skin and the CNS. As revealed by flow cytometry, T cells expanded in the spleen and the CNS-draining lymph nodes 7-14 days post-infection. Both T-bet+ and GATA-3+ T cells were markedly elevated suggesting a mixed type 1/2 immune response. However, it dropped after 7 dpi most likely being unaffected by the neuroinflammation. Splenocytes from infected mice produced a high amount of IFN-γ and, to a lesser extent, IL-10, IL-4 and IL-17 after in vitro stimulation by cercarial homogenate. Nevertheless, it had only a limited capacity to alter the maturation status of bone marrow-derived dendritic cells (BMDCs), contrary to the recombinant T. regenti cathepsin B2, which also strongly augmented expression of Ccl5, Cxcl10, Il12a, Il33 and Il10 by BMDCs. Taken together, mice infected with T. regenti developed the mixed type 1/2 immune response, which was driven by the early skin inflammation rather than the late neuroinflammation. Parasite peptidases might play an active role in triggering the host immune response.
Collapse
Affiliation(s)
- Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Cheng Y, Zhu X, Wang X, Zhuang Q, Huyan X, Sun X, Huang J, Zhan B, Zhu X. Trichinella spiralis Infection Mitigates Collagen-Induced Arthritis via Programmed Death 1-Mediated Immunomodulation. Front Immunol 2018; 9:1566. [PMID: 30093899 PMCID: PMC6070611 DOI: 10.3389/fimmu.2018.01566] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Helminth infection induces Th2-biased immune responses and inhibitory/regulatory pathways that minimize excessive inflammation to facilitate the chronic infection of helminth in the host and in the meantime, prevent host hypersensitivity from autoimmune or atopic diseases. However, the detailed molecular mechanisms behind modulation on inflammatory diseases are yet to be clarified. Programmed death 1 (PD-1) is one of the important inhibitory receptors involved in the balance of host immune responses during chronic infection. Here, we used the murine model to examine the role of PD-1 in CD4+ T cells in the effects of Trichinella spiralis infection on collagen-induced arthritis (CIA). Mice infected with T. spiralis demonstrated higher expression of PD-1 in the spleen CD4+ T cells than those without infection. Mice infected with T. spiralis 2 weeks prior to being immunized with type II collagen displayed lower arthritis incidence and significantly attenuated pathology of CIA compared with those of uninfected mice. The therapeutic effect of T. spiralis infection on CIA was reversed by blocking PD-1 with anti-PD-1 antibody, associated with enhanced Th1/Th17 pro-inflammatory responses and reduced Th2 responses. The role of PD-1 in regulating CD4+ T cell differentiation and proliferation during T. spiralis infection was further examined in PD-1 knockout (PD-1-/-) C57BL/6 J mice. Interestingly, T. spiralis-induced alteration of attenuated Th1 and enhanced Th2/regulatory T cell differentiation in wild-type (WT) mice was effectively diminished in PD-1-/- mice characterized by recovered Th1 cytokine levels, reduced levels of Th2 and regulatory cytokines and CD4+CD25+Foxp3+ cells. Moreover, T. spiralis-induced CD4+ T cell proliferation suppression in WT mice was partially restored in PD-1-/- mice. This study introduces the first evidence that PD-1 plays a critical role in helminth infection-attenuated CIA in a mouse model by regulating the CD4+ T cell function, which may provide the new insights into the mechanisms of helminth-induced immunomodulation of host autoimmunity.
Collapse
Affiliation(s)
- Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xing Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohuan Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qinghui Zhuang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Huyan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Sombetzki M, Koslowski N, Rabes A, Seneberg S, Winkelmann F, Fritzsche C, Loebermann M, Reisinger EC. Host Defense Versus Immunosuppression: Unisexual Infection With Male or Female Schistosoma mansoni Differentially Impacts the Immune Response Against Invading Cercariae. Front Immunol 2018; 9:861. [PMID: 29743881 PMCID: PMC5930291 DOI: 10.3389/fimmu.2018.00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Infection with the intravascular diecious trematode Schistosoma spp. remains a serious tropical disease and public health problem in the developing world, affecting over 258 million people worldwide. During chronic Schistosoma mansoni infection, complex immune responses to tissue-entrapped parasite eggs provoke granulomatous inflammation which leads to serious damage of the liver and intestine. The suppression of protective host immune mechanisms by helminths promotes parasite survival and benefits the host by reducing tissue damage. However, immune-suppressive cytokines may reduce vaccine-induced immune responses. By combining a single-sex infection system with a murine air pouch model, we were able to demonstrate that male and female schistosomes play opposing roles in modulating the host’s immune response. Female schistosomes suppress early innate immune responses to invading cercariae in the skin and upregulate anergy-associated genes. In contrast, male schistosomes trigger strong innate immune reactions which lead to a reduction in worm and egg burden in the liver. Our data suggest that the female worm is a neglected player in the dampening of the host’s immune defense system and is therefore a promising target for new immune modulatory therapies.
Collapse
Affiliation(s)
- Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Nicole Koslowski
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Anne Rabes
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Sonja Seneberg
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Franziska Winkelmann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Carlos Fritzsche
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Micha Loebermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Emil C Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
15
|
Schistosome vaccines: problems, pitfalls and prospects. Emerg Top Life Sci 2017; 1:641-650. [PMID: 33525844 DOI: 10.1042/etls20170094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
Abstract
Human schistosomiasis caused by parasitic flatworms of the genus Schistosoma remains an important public health problem in spite of concerted efforts at control. An effective vaccine would be a useful addition to control strategies that currently rely on chemotherapy, but such a product is not imminent. In this review, likely causes for the lack of progress are first considered. These include the strategies used by worms to evade the immune response, concepts that have misdirected the field, an emphasis on internal antigens, and the use of the laboratory mouse for vaccine testing. On a positive note, recent investigations on self-cure by the rhesus macaque offer the most promising context for vaccine development. The identification of proteins at the parasite-host interface, especially those of the esophageal glands involved in blood processing, has provided an entirely new category of vaccine candidates that merit evaluation.
Collapse
|
16
|
Abstract
During microbial infections, both innate and adaptive immunity are activated. Viruses and bacteria usually induce an acute inflammation in the first setting of infection, which helps the eliciting an effective immune response. In contrast, macroparasites such as helminths are a highly successful group of invaders known to be capable of maintaining a chronic infestation with the minimum instigation. Undoubtedly, generating such an immunoregulatory environment requires the exploitation of various immunosuppressive mechanisms to debilitate host immunity supporting their survival and replication. Several mechanisms have been recognized whereby helminths prolong their infections including an increase of immunoregulatory cells, inhibition of Th1 or Th2 responses, targeting pattern recognition receptors (PRRs) and lowering the immune cells quantity via induction of apoptosis. Apoptosis is a programmed intracellular process involving a series of consecutive downstream signalling event evolved to cell death. It plays a pivotal role in several immunological reactions in particular deletion of autoreactive immune cells. Helminth-triggered apoptosis in immune cells exhausts host immunity, which paves the way for generating a permissive environment and chronic infection. This review provides a compilation of recent investigations discussing the apoptotic mechanisms exploited by different worms and the immunological consequences of immune cell death. Finally, the anti-cancer effects of some worm-derived molecules due to their apoptotic effects are discussed, highlighting as potentially druggable candidates to combat cancer.
Collapse
|
17
|
Prendergast CT, Sanin DE, Mountford AP. CD4 T-cell hyporesponsiveness induced by schistosome larvae is not dependent upon eosinophils but may involve connective tissue mast cells. Parasite Immunol 2016; 38:81-92. [PMID: 26679416 PMCID: PMC4744672 DOI: 10.1111/pim.12300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
In areas endemic for schistosomiasis, people can often be in contact with contaminated water resulting in repeated exposures to infective Schistosoma mansoni cercariae. Using a murine model, repeated infections result in IL‐10‐dependent CD4+ T‐cell hyporesponsiveness in the skin‐draining lymph nodes (sdLN), which could be caused by an abundance of eosinophils and connective tissue mast cells at the skin infection site. Here, we show that whilst the absence of eosinophils did not have a significant effect on cytokine production, MHC‐II+ cells were more numerous in the dermal cell exudate population. Nevertheless, the absence of dermal eosinophils did not lead to an increase in the responsiveness of CD4+ T cells in the sdLN, revealing that eosinophils in repeatedly exposed skin did not impact on the development of CD4+ T‐cell hyporesponsiveness. On the other hand, the absence of connective tissue mast cells led to a reduction in dermal IL‐10 and to an increase in the number of MHC‐II+ cells infiltrating the skin. There was also a small but significant alleviation of hyporesponsiveness in the sdLN, suggesting that mast cells may have a role in regulating immune responses after repeated exposures of the skin to S. mansoni cercariae.
Collapse
Affiliation(s)
- C T Prendergast
- Centre for Immunology and Infection, Department of Biology, University of York, York, UK
| | - D E Sanin
- Centre for Immunology and Infection, Department of Biology, University of York, York, UK
| | - A P Mountford
- Centre for Immunology and Infection, Department of Biology, University of York, York, UK
| |
Collapse
|
18
|
Zumla A, Rao M, Wallis RS, Kaufmann SHE, Rustomjee R, Mwaba P, Vilaplana C, Yeboah-Manu D, Chakaya J, Ippolito G, Azhar E, Hoelscher M, Maeurer M. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. THE LANCET. INFECTIOUS DISEASES 2016; 16:e47-63. [PMID: 27036359 PMCID: PMC7164794 DOI: 10.1016/s1473-3099(16)00078-5] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/16/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen–host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London (UCL), London, UK; National Institute for Health Research Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Martin Rao
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | - Peter Mwaba
- University of Zambia-UCL Medical School (UNZA-UCLMS) Research and Training Project, University Teaching Hospital, Lusaka, Zambia; Ministry of Health, Lusaka, Zambia
| | - Cris Vilaplana
- Unitat de Tuberculosi Experimental Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol CIBER Enfermedades Respiratorias, Can Ruti Campus, Edifici Laboratoris de Recerca, Barcelona, Spain
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; DZIF German Centre for Infection Research, Munich, Germany
| | - Markus Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
19
|
Prendergast CT, Sanin DE, Mountford AP. Alternatively Activated Mononuclear Phagocytes from the Skin Site of Infection and the Impact of IL-4Rα Signalling on CD4+T Cell Survival in Draining Lymph Nodes after Repeated Exposure to Schistosoma mansoni Cercariae. PLoS Negl Trop Dis 2016; 10:e0004911. [PMID: 27505056 PMCID: PMC4978413 DOI: 10.1371/journal.pntd.0004911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/18/2016] [Indexed: 12/29/2022] Open
Abstract
In a murine model of repeated exposure of the skin to infective Schistosoma mansoni cercariae, events leading to the priming of CD4 cells in the skin draining lymph nodes were examined. The dermal exudate cell (DEC) population recovered from repeatedly (4x) exposed skin contained an influx of mononuclear phagocytes comprising three distinct populations according to their differential expression of F4/80 and MHC-II. As determined by gene expression analysis, all three DEC populations (F4/80-MHC-IIhigh, F4/80+MHC-IIhigh, F4/80+MHC-IIint) exhibited major up-regulation of genes associated with alternative activation. The gene encoding RELMα (hallmark of alternatively activated cells) was highly up-regulated in all three DEC populations. However, in 4x infected mice deficient in RELMα, there was no change in the extent of inflammation at the skin infection site compared to 4x infected wild-type cohorts, nor was there a difference in the abundance of different mononuclear phagocyte DEC populations. The absence of RELMα resulted in greater numbers of CD4+ cells in the skin draining lymph nodes (sdLN) of 4x infected mice, although they remained hypo-responsive. Using mice deficient for IL-4Rα, in which alternative activation is compromised, we show that after repeated schistosome infection, levels of regulatory IL-10 in the skin were reduced, accompanied by increased numbers of MHC-IIhigh cells and CD4+ T cells in the skin. There were also increased numbers of CD4+ T cells in the sdLN in the absence of IL-4Rα compared to cells from singly infected mice. Although their ability to proliferate was still compromised, increased cellularity of sdLN from 4x IL-4RαKO mice correlated with reduced expression of Fas/FasL, resulting in decreased apoptosis and cell death but increased numbers of viable CD4+ T cells. This study highlights a mechanism through which IL-4Rα may regulate the immune system through the induction of IL-10 and regulation of Fas/FasL mediated cell death.
Collapse
Affiliation(s)
- Catriona T. Prendergast
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - David E. Sanin
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Adrian P. Mountford
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Abdel Aziz N, Tallima H, Hafez EA, El Ridi R. Papain-Based Vaccination Modulates Schistosoma mansoni Infection-Induced Cytokine Signals. Scand J Immunol 2016; 83:128-38. [PMID: 26603950 DOI: 10.1111/sji.12399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023]
Abstract
We have previously shown that immunization of outbred rodents with cysteine peptidases-based vaccine elicited type 2-biased immune responses associated with consistent and reproducible protection against challenge Schistosoma mansoni. We herein start to elucidate the molecular basis of C57BL/6 mouse resistance to S. mansoni following treatment with the cysteine peptidase, papain. We evaluated the early cytokine signals delivered by epidermal, dermal, and draining lymph node cells of naïve, and S. mansoni -infected mice treated 1 day earlier with 0 or 50 μg papain, or immunized twice with papain only (10 μg/mouse), papain-free recombinant S. mansoni glyceraldehyde 3-phosphate dehydrogenase and 2-Cys peroxiredoxin peptide (10 and 15 μg/mouse, respectively = antigen Mix), or papain-adjuvanted antigen Mix. Schistosoma mansoni infection induced epidermal and lymph node cells to release type 1, type 2 and type 17 cytokines, known to counteract each other. Expectedly, humoral immune responses were negligible until patency. Papain pretreatment or papain-based vaccination diminished or shut off S. mansoni infection early induction of type 1, type 17 and type 2 cytokines except for thymic stromal lymphopoietin and programmed the immune system towards a polarized type 2 immune milieu, associated with highly significant (P < 0.005 - <0.0001) resistance to S. mansoni infection.
Collapse
Affiliation(s)
- N Abdel Aziz
- Chemistry Department, Cairo University, Cairo, Egypt
| | - H Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - E A Hafez
- Chemistry Department, Cairo University, Cairo, Egypt
| | - R El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Sanin DE, Prendergast CT, Mountford AP. IL-10 Production in Macrophages Is Regulated by a TLR-Driven CREB-Mediated Mechanism That Is Linked to Genes Involved in Cell Metabolism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1218-32. [PMID: 26116503 PMCID: PMC4505959 DOI: 10.4049/jimmunol.1500146] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/27/2015] [Indexed: 12/14/2022]
Abstract
IL-10 is produced by macrophages in diverse immune settings and is critical in limiting immune-mediated pathology. In helminth infections, macrophages are an important source of IL-10; however, the molecular mechanism underpinning production of IL-10 by these cells is poorly characterized. In this study, bone marrow-derived macrophages exposed to excretory/secretory products released by Schistosoma mansoni cercariae rapidly produce IL-10 as a result of MyD88-mediated activation of MEK/ERK/RSK and p38. The phosphorylation of these kinases was triggered by TLR2 and TLR4 and converged on activation of the transcription factor CREB. Following phosphorylation, CREB is recruited to a novel regulatory element in the Il10 promoter and is also responsible for regulating a network of genes involved in metabolic processes, such as glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Moreover, skin-resident tissue macrophages, which encounter S. mansoni excretory/secretory products during infection, are the first monocytes to produce IL-10 in vivo early postinfection with S. mansoni cercariae. The early and rapid release of IL-10 by these cells has the potential to condition the dermal microenvironment encountered by immune cells recruited to this infection site, and we propose a mechanism by which CREB regulates the production of IL-10 by macrophages in the skin, but also has a major effect on their metabolic state.
Collapse
Affiliation(s)
- David E Sanin
- Department of Biology, Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| | - Catriona T Prendergast
- Department of Biology, Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| | - Adrian P Mountford
- Department of Biology, Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
22
|
Sanin DE, Prendergast CT, Bourke CD, Mountford AP. Helminth Infection and Commensal Microbiota Drive Early IL-10 Production in the Skin by CD4+ T Cells That Are Functionally Suppressive. PLoS Pathog 2015; 11:e1004841. [PMID: 25974019 PMCID: PMC4431738 DOI: 10.1371/journal.ppat.1004841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/30/2015] [Indexed: 12/12/2022] Open
Abstract
The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg) cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b). Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1) response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens. The skin is a major barrier protecting the host from pathogen infection, but is also a site for immune regulation. Using a murine model of repeated percutaneous exposure to infectious Schistosoma mansoni cercariae, we show that, in the skin, CD4+ T cells that do not express markers of conventional regulatory T cells are the main early source of immunoregulatory IL-10 and are functionally suppressive of adaptive immune responses. We demonstrate that the production of regulatory IL-10 in the skin is greatly enhanced after repeated schistosome infection compared to levels present after a single infection and that it limits both neutrophil recruitment and local CD4+ T cell proliferation, thereby preventing excessive inflammation and tissue damage. Initially (day 1), IL-10 producing CD4+ T cells are reactive towards skin commensal bacteria, although over succeeding days they progressively become specific for schistosome antigens. Consequently, our findings highlight a role for early IL-10 produced by dermal CD4+ T cells to mediate immune regulation in advance of later stage chronic infection conventionally associated with the presence of IL-10. Our work provides a mechanistic insight into the triggers of early IL-10 production at barrier sites like the skin, and suggests how tolerance and pathogen clearance might be co-regulated early after exposure to infectious agents.
Collapse
Affiliation(s)
- David E. Sanin
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Catriona T. Prendergast
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Claire D. Bourke
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Adrian P. Mountford
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|