1
|
Schick J, Altunay M, Lacorcia M, Marschner N, Westermann S, Schluckebier J, Schubart C, Bodendorfer B, Christensen D, Alexander C, Wirtz S, Voehringer D, da Costa CP, Lang R. IL-4 and helminth infection downregulate MINCLE-dependent macrophage response to mycobacteria and Th17 adjuvanticity. eLife 2023; 12:72923. [PMID: 36753434 PMCID: PMC9908076 DOI: 10.7554/elife.72923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The myeloid C-type lectin receptor (CLR) MINCLE senses the mycobacterial cell wall component trehalose-6,6'-dimycolate (TDM). Recently, we found that IL-4 downregulates MINCLE expression in macrophages. IL-4 is a hallmark cytokine in helminth infections, which appear to increase the risk for mycobacterial infection and active tuberculosis. Here, we investigated functional consequences of IL-4 and helminth infection on MINCLE-driven macrophage activation and Th1/Th17 adjuvanticity. IL-4 inhibited MINCLE and cytokine induction after macrophage infection with Mycobacterium bovis bacille Calmette-Guerin (BCG). Infection of mice with BCG upregulated MINCLE on myeloid cells, which was inhibited by IL-4 plasmid injection and by infection with the nematode Nippostrongylus brasiliensis in monocytes. To determine the impact of helminth infection on MINCLE-dependent immune responses, we vaccinated mice with a recombinant protein together with the MINCLE ligand trehalose-6,6-dibehenate (TDB) as adjuvant. Concurrent infection with N. brasiliensis or with Schistosoma mansoni promoted T cell-derived IL-4 production and suppressed Th1/Th17 differentiation in the spleen. In contrast, helminth infection did not reduce Th1/Th17 induction by TDB in draining peripheral lymph nodes, where IL-4 levels were unaltered. Upon use of the TLR4-dependent adjuvant G3D6A, N. brasiliensis infection impaired selectively the induction of splenic antigen-specific Th1 but not of Th17 cells. Inhibition of MINCLE-dependent Th1/Th17 responses in mice infected with N. brasiliensis was dependent on IL-4/IL-13. Thus, helminth infection attenuated the Th17 response to MINCLE-dependent immunization in an organ- and adjuvant-specific manner via the Th2 cytokines IL-4/IL-13. Taken together, our results demonstrate downregulation of MINCLE expression on monocytes and macrophages by IL-4 as a possible mechanism of thwarted Th17 vaccination responses by underlying helminth infection.
Collapse
Affiliation(s)
- Judith Schick
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Meltem Altunay
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Matthew Lacorcia
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Nathalie Marschner
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Stefanie Westermann
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Julia Schluckebier
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Christoph Schubart
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Barbara Bodendorfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Dennis Christensen
- Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum InstitutCopenhagenDenmark
| | - Christian Alexander
- Cellular Microbiology, Forschungszentrum Borstel, Leibniz Lung Center BorstelBorstelGermany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Clarissa Prazeres da Costa
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| |
Collapse
|
2
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
3
|
Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics (Basel) 2022; 12:diagnostics12112676. [PMID: 36359526 PMCID: PMC9689268 DOI: 10.3390/diagnostics12112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Helminth infections are among the neglected tropical diseases affecting billions of people globally, predominantly in developing countries. Helminths’ effects are augmented by coincident tuberculosis disease, which infects a third of the world’s population. The role of helminth infections on the pathogenesis and pathology of active tuberculosis (T.B.) remains controversial. Parasite-induced suppression of the efficacy of Bacille Calmette-Guerin (BCG) has been widely reported in helminth-endemic areas worldwide. T.B. immune response is predominantly proinflammatory T-helper type 1 (Th1)-dependent. On the other hand, helminth infections induce an opposing anti-inflammatory Th2 and Th3 immune-regulatory response. This review summarizes the literature focusing on host immune response profiles during single-helminth, T.B. and dual infections. It also aims to necessitate investigations into the complexity of immunity in helminth/T.B. coinfected patients since the research data are limited and contradictory. Helminths overlap geographically with T.B., particularly in Sub-Saharan Africa. Each disease elicits a response which may skew the immune responses. However, these effects are helminth species-dependent, where some parasites have no impact on the immune responses to concurrent T.B. The implications for the complex immunological interactions that occur during coinfection are highlighted to inform government treatment policies and encourage the development of high-efficacy T.B. vaccines in areas where helminths are prevalent.
Collapse
|
4
|
Natukunda A, Zirimenya L, Nassuuna J, Nkurunungi G, Cose S, Elliott AM, Webb EL. The effect of helminth infection on vaccine responses in humans and animal models: A systematic review and meta-analysis. Parasite Immunol 2022; 44:e12939. [PMID: 35712983 PMCID: PMC9542036 DOI: 10.1111/pim.12939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 12/09/2022]
Abstract
Vaccination has potential to eliminate infectious diseases. However, parasitic infections such as helminths may hinder vaccines from providing optimal protection. We reviewed existing literature on the effects of helminth infections and their treatment on vaccine responses in humans and animals. We searched literature until 31 January 2022 in Medline, EMBASE, Global health, Scopus, and Web of science; search terms included WHO licensed vaccines and human helminth types. Standardized mean differences (SMD) in vaccine responses between helminth infected and uninfected or anthelminthic treated and untreated individuals were obtained from each study with suitable data for meta-analysis, and combined using a random effects model. Analysis was stratified by whether helminth exposure was direct or prenatal and by vaccine type. This study is registered with PROSPERO (CRD42019123074). Of the 4402 articles identified, 37 were included in the review of human studies and 24 for animal experiments. For human studies, regardless of vaccine type, overall SMD for helminth uninfected/treated, compared to infected/untreated, was 0.56 (95% CI 0.04-1.07 and I2 = 93.5%) for direct helminth exposure and 0.01 (95% CI -0.04 to 0.07 and I2 = 85.9%) for prenatal helminth exposure. Effects of anthelminthic treatment were inconsistent, with no overall benefit shown. Results differed by vaccine type, with responses to live vaccines most affected by helminth exposure. For animal studies, the most affected vaccine was BCG. This result indicates that helminth-associated impairment of vaccine responses is more severe for direct, than for prenatal, helminth exposure. Further research is needed to ascertain whether deworming of individuals before vaccination may help improve responses.
Collapse
Affiliation(s)
- Agnes Natukunda
- Immunomodulation and Vaccines ProgrammeMRC/UVRI and LSHTM Uganda Research UnitEntebbeUganda
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines ProgrammeMRC/UVRI and LSHTM Uganda Research UnitEntebbeUganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines ProgrammeMRC/UVRI and LSHTM Uganda Research UnitEntebbeUganda
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines ProgrammeMRC/UVRI and LSHTM Uganda Research UnitEntebbeUganda
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Stephen Cose
- Immunomodulation and Vaccines ProgrammeMRC/UVRI and LSHTM Uganda Research UnitEntebbeUganda
- Department of Clinical ResearchLondon School of Hygiene and Tropical MedicineLondonUK
| | - Alison M. Elliott
- Immunomodulation and Vaccines ProgrammeMRC/UVRI and LSHTM Uganda Research UnitEntebbeUganda
- Department of Clinical ResearchLondon School of Hygiene and Tropical MedicineLondonUK
| | - Emily L. Webb
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
5
|
Differential effects of asymptomatic Ascaris lumbricoides, Schistosoma mansoni or hook worm infection on the frequency and TGF-beta-producing capacity of regulatory T cells during active tuberculosis. Tuberculosis (Edinb) 2021; 131:102126. [PMID: 34601265 DOI: 10.1016/j.tube.2021.102126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Helminth induced expansion of regulatory T cells (Tregs) may take part in suppressing protective host responses during tuberculosis (TB), although Tregs functionality and link to TB disease severity remains unexplored. We investigated the species-specific effect of helminths on frequency and TGF-β producing capacity of Tregs, and possible connection to TB disease severity. 89 pulmonary TB patients (PTB) and 69 community controls (CCs) from Gondar, Ethiopia, were included. Clinical disease severity was graded by TB score, and flow cytometry used to characterize Treg frequency and functionality measured as their TGF-β-producing capacity. In helminth positive PTB patients (Helminth+PTB+) compared to helminth negative PTB or CCs, TGF-β+ Tregs were significantly increased mainly in hookworm coinfection whereas S. mansoni increased TGF-β+ Tregs in CCs. Treatment of TB and helminths decreased TGF-β+ Tregs in Helminth+PTB+ at 2 months follow-up. There were no overall differences in the frequency of Tregs in CCs or PTB unless stratification on TB disease severity was performed. At inclusion Helminth+PTB+ had increased frequency of Tregs already at low disease severity, and TGF-β+ Tregs correlated to intermediate-to-high disease severity. In conclusion, helminth specific increase of TGF-β+ Tregs in PTB patients was correlated to TB disease severity and was restored following anti-helminth treatment.
Collapse
|
6
|
Mohan M, Bhattacharya D. Host-directed Therapy: A New Arsenal to Come. Comb Chem High Throughput Screen 2021; 24:59-70. [PMID: 32723230 DOI: 10.2174/1386207323999200728115857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
The emergence of drug-resistant strains among the variety of pathogens worsens the situation in today's scenario. In such a situation, a very heavy demand for developing the new antibiotics has arisen, but unfortunately, very limited success has been achieved in this arena till now. Infectious diseases usually make their impression in the form of severe pathology. Intracellular pathogens use the host's cell machinery for their survival. They alter the gene expression of several host's pathways and endorse to shut down the cell's innate defense pathway like apoptosis and autophagy. Intracellular pathogens are co-evolved with hosts and have a striking ability to manipulate the host's factors. They also mimic the host molecules and secrete them to prevent the host's proper immune response against them for their survival. Intracellular pathogens in chronic diseases create excessive inflammation. This excessive inflammation manifests in pathology. Host directed therapy could be alternative medicine in this situation; it targets the host factors, and abrogates the replication and persistence of pathogens inside the cell. It also provokes the anti-microbial immune response against the pathogen and reduces the exacerbation by enhancing the healing process to the site of pathology. HDT targets the host's factor involved in a certain pathway that ultimately targets the pathogen life cycle and helps in eradication of the pathogen. In such a scenario, HDT could also play a significant role in the treatment of drugsensitive as well with drug resistance strains because it targets the host's factors, which favors the pathogen survival inside the cell.
Collapse
Affiliation(s)
- Mradul Mohan
- National Institute of Malaria Research, New Delhi, India
| | - Debapriya Bhattacharya
- Center for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed University, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Bosqui LR, da Silva GB, Gonzaga HT, Gonçalves ALR, Custodio LA, Pavanelli WR, Conchon-Costa I, de Paula FM, Costa-Cruz JM, da Costa IN. Strongyloides-specific IgA, IgG and IgG immune complex profile in patients with pulmonary tuberculosis. Parasite Immunol 2020; 43:e12793. [PMID: 32969488 DOI: 10.1111/pim.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022]
Abstract
AIMS To describe an anti-Strongyloides IgA, IgG and IgG immune complex antibody response profile in patients with pulmonary tuberculosis. METHODS AND RESULTS Saliva and serum samples were collected from 100 individuals: group I, 50 apparently healthy individuals; and group II, 50 pulmonary tuberculosis patients. The IgA, IgG and IgG immune complex detection were carried out via an ELISA immunoenzymatic test. Optical density medians in saliva samples of IgA antibody (median of 7.21) and IgG-IC (median of 4.95) were significantly higher in tuberculosis group compared to control individuals (median IgA of 3.93 and IgG-IC of 2.38). CONCLUSION This study presents antibody data to the field of pulmonary tuberculosis and strongyloidiasis coinfection, including saliva samples, and especially IgG immune complex detection.
Collapse
Affiliation(s)
- Larissa Rodrigues Bosqui
- Universidade Estadual de Londrina, UEL, Rodovia Celso Garcia Cid Campus Universitário, Londrina, Brazil
| | - Gabriela Borges da Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Henrique Tomaz Gonzaga
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Ana Lúcia Ribeiro Gonçalves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Luiz Antonio Custodio
- Universidade Estadual de Londrina, UEL, Rodovia Celso Garcia Cid Campus Universitário, Londrina, Brazil
| | - Wander Rogério Pavanelli
- Universidade Estadual de Londrina, UEL, Rodovia Celso Garcia Cid Campus Universitário, Londrina, Brazil
| | - Ivete Conchon-Costa
- Universidade Estadual de Londrina, UEL, Rodovia Celso Garcia Cid Campus Universitário, Londrina, Brazil
| | - Fabiana Martins de Paula
- Hospital de Clínicas da Faculdade de Medicina da Universidade de São Paulo, HCFMUSP, São Paulo, Brazil
| | - Julia Maria Costa-Cruz
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
8
|
Taghipour A, Tabarsi P, Sohrabi MR, Riahi SM, Rostami A, Mirjalali H, Malih N, Haghighi A. Frequency, associated factors and clinical symptoms of intestinal parasites among tuberculosis and non-tuberculosis groups in Iran: a comparative cross-sectional study. Trans R Soc Trop Med Hyg 2020; 113:234-241. [PMID: 30624729 DOI: 10.1093/trstmh/try140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/14/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Co-infection of human tuberculosis (TB) and intestinal parasites infections (IPIs) is a public health problem, especially in low- and middle-income countries. There is no data on this issue in Iran. Therefore, we investigated the prevalence of IPIs among patients with TB in Iran. METHODS Stool samples were collected from 161 patients with TB and 181 healthy people (non-TB group). Standard parasitological methods including direct slide smear, formalin-ether concentration, trichrome, modified Ziehl-Neelsen and chromotrope 2R staining techniques were used for detection of intestinal protozoa and helminths. Nested-PCR and sequence analysis were used to identify the genotypes of Cryptosporidium and human-infecting species of microsporidia. Data analysis was performed using SPSS version 16. RESULTS The frequency of IPIs in the non-TB group (16.5%) was slightly lower than in patients with TB (21.1%), although statistical significance was not observed (OR, 0.74; 95% CI, 0.43-1.27; P= 0.28). Blastocystis (11.8%) was the most common parasite detected in patients with TB. Infection with multiple parasites in the non-TB group (2.2%) was significantly lower than in patients with TB (7.5%) (OR, 0.28; 95% CI, 0.08-0.88; P=0.02). The ova of Taenia spp., Ascaris lumbricoides and Hyamenolepis nana were identified in three patients with TB (1.9%), while only one person (0.5%) in the non-TB group was infected with Enterobius vermicularis. The results of genotyping revealed two C. parvum subtype families (IIa and IId) and three E. bieneusi genotypes (Ebcar4, IH and jLD-1). CONCLUSION Our results showed a higher prevalence of IPIs in patients with TB in comparison with non-TB subjects. Moreover, our findings suggest a proper health education program for good personal hygiene habits, and also preventative measures to avoid the acquisition of IPIs in patients with TB.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Payam Tabarsi
- Department of Infectious Diseases, Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sohrabi
- Department of Community Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Riahi
- Social Determinants of Health Research Center, Department of Epidemiology and Biostatistics, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Malih
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Haghighi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Cadmus SI, Akinseye VO, Taiwo BO, Pinelli EO, van Soolingen D, Rhodes SG. Interactions between helminths and tuberculosis infections: Implications for tuberculosis diagnosis and vaccination in Africa. PLoS Negl Trop Dis 2020; 14:e0008069. [PMID: 32498074 PMCID: PMC7272205 DOI: 10.1371/journal.pntd.0008069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Africa is the second most populous continent and has perennial health challenges. Of the estimated 181 million school aged children in sub-Saharan Africa (SSA), nearly half suffer from ascariasis, trichuriasis, or a combination of these infections. Coupled with these is the problem of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection, which is a leading cause of death in the region. Compared to the effect of the human immunodeficiency virus on the development of TB, the effect of chronic helminth infections is a neglected area of research, yet helminth infections are as ubiquitous as they are varied and may potentially have profound effects upon host immunity, particularly as it relates to TB infection, diagnosis, and vaccination. Protection against active TB is known to require a clearly delineated T-helper type 1 (Th1) response, while helminths induce a strong opposing Th2 and immune-regulatory host response. This Review highlights the potential challenges of helminth-TB co-infection in Africa and the need for further research.
Collapse
Affiliation(s)
- Simeon I. Cadmus
- Depeartment of Veterinary Public Health & Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Nigeria
| | - Victor O. Akinseye
- Depeartment of Veterinary Public Health & Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babafemi O. Taiwo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elena O. Pinelli
- Center for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dick van Soolingen
- Center for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Medical Microbiology, Radboud University Medical Center Nijmegen, the Netherlands
| | - Shelley G. Rhodes
- TB Research Group, Animal and Plant Health Agency, Surrey, United Kingdom
| |
Collapse
|
10
|
Classon C, Feng X, Eidsmo L, Nylén S. Intestinal nematode infection exacerbates experimental visceral leishmaniasis. Parasite Immunol 2019; 41:e12618. [PMID: 30742324 DOI: 10.1111/pim.12618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 01/12/2023]
Abstract
Leishmania donovani exposure often results in subclinical infection in immunocompetent individuals, and the factors dictating development of visceral leishmaniasis (VL) are not known. Infection with intestinal worms skew immunity towards type 2 and regulatory responses, thereby theoretically increases susceptibility to intracellular infections controlled by type 1 responses. Here we have tested how chronic infection with the intestinal nematode Heligmosomoides polygyrus affected immunity to a secondary infection with L donovani. We found that mice infected with H polygyrus displayed higher Leishmania burden in liver and spleen compared to worm-free animals. This increased infectious load was accompanied by reduced leucocyte infiltration and nos2 transcription in livers and increased il4 and il10 transcription in spleens. Collectively, these data show that chronic infection with intestinal nematodes skew immune responses in a way that may favour development of VL.
Collapse
Affiliation(s)
- Cajsa Classon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Xiaogang Feng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Liv Eidsmo
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
11
|
Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol 2019; 12:258-264. [PMID: 30361537 PMCID: PMC6301144 DOI: 10.1038/s41385-018-0100-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 02/04/2023]
Abstract
Epidemiological data and animal studies suggest that helminth infection exerts potent immunomodulatory effects that dampen host immunity against unrelated pathogens. Despite this notion, we unexpectedly discovered that prior helminth infection resulted in enhanced protection against subsequent systemic and enteric bacterial infection. A population of virtual memory CD8 T (CD8 TVM) cells underwent marked expansion upon infection with the helminth Heligmosomoides polygurus by an IL-4-regulated, antigen-independent mechanism. CD8 TVM cells disseminated to secondary lymphoid organs and established a major population of the systemic CD8 T cell pool. IL-4 production elicited by protein immunization or selective activation of natural killer T cells also results in the expansion of CD8 TVM cells. Notably, CD8 TVM cells expanded by helminth infection are sufficient to transfer innate non-cognate protection against bacteria to naïve animals. This innate non-cognate "collateral protection" mediated by CD8 TVM might provide parasitized animals an advantage against subsequent unrelated infections, and represents a potential novel strategy for vaccination.
Collapse
|
12
|
Yap GS, Gause WC. Helminth Infections Induce Tissue Tolerance Mitigating Immunopathology but Enhancing Microbial Pathogen Susceptibility. Front Immunol 2018; 9:2135. [PMID: 30386324 PMCID: PMC6198046 DOI: 10.3389/fimmu.2018.02135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023] Open
Abstract
Helminths are ubiquitous and have chronically infected vertebrates throughout their evolution. As such helminths have likely exerted considerable selection pressure on our immune systems. The large size of multicellular helminths and their limited replicative capacity in the host necessarily elicits different host protective mechanisms than the immune response evoked by microbial pathogens such as bacteria, viruses and intracellular parasites. The cellular damage resulting from helminth migration through tissues is a major trigger of the type 2 and regulatory immune responses, which activates wound repair mechanisms that increases tissue tolerance to injury and resistance mechanisms that enhance resistance to further colonization with larval stages. While these wound healing and anti-inflammatory responses may be beneficial to the helminth infected host, they may also compromise the host's ability to mount protective immune responses to microbial pathogens. In this review we will first describe helminth-induced tolerance mechanisms that develop in specific organs including the lung and the intestine, and how adaptive immunity may contribute to these responses through differential activation of T cells in the secondary lymphoid organs. We will then integrate studies that have examined how the immune response is modulated in these specific tissues during coinfection of helminths with viruses, protozoa, and bacteria.
Collapse
Affiliation(s)
- George S Yap
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
13
|
Machelart A, Potemberg G, Van Maele L, Demars A, Lagneaux M, De Trez C, Sabatel C, Bureau F, De Prins S, Percier P, Denis O, Jurion F, Romano M, Vanderwinden JM, Letesson JJ, Muraille E. Allergic Asthma Favors Brucella Growth in the Lungs of Infected Mice. Front Immunol 2018; 9:1856. [PMID: 30147700 PMCID: PMC6095999 DOI: 10.3389/fimmu.2018.01856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a chronic Th2 inflammatory disease of the lower airways affecting a growing number of people worldwide. The impact of infections and microbiota composition on allergic asthma has been investigated frequently. Until now, however, there have been few attempts to investigate the impact of asthma on the control of infectious microorganisms and the underlying mechanisms. In this work, we characterize the consequences of allergic asthma on intranasal (i.n.) infection by Brucella bacteria in mice. We observed that i.n. sensitization with extracts of the house dust mite Dermatophagoides farinae or the mold Alternaria alternata (Alt) significantly increased the number of Brucella melitensis, Brucella suis, and Brucella abortus in the lungs of infected mice. Microscopic analysis showed dense aggregates of infected cells composed mainly of alveolar macrophages (CD11c+ F4/80+ MHCII+) surrounded by neutrophils (Ly-6G+). Asthma-induced Brucella susceptibility appears to be dependent on CD4+ T cells, the IL-4/STAT6 signaling pathway and IL-10, and is maintained in IL-12- and IFN-γR-deficient mice. The effects of the Alt sensitization protocol were also tested on Streptococcus pneumoniae and Mycobacterium tuberculosis pulmonary infections. Surprisingly, we observed that Alt sensitization strongly increases the survival of S. pneumoniae infected mice by a T cell and STAT6 independent signaling pathway. In contrast, the course of M. tuberculosis infection is not affected in the lungs of sensitized mice. Our work demonstrates that the impact of the same allergic sensitization protocol can be neutral, negative, or positive with regard to the resistance of mice to bacterial infection, depending on the bacterial species.
Collapse
Affiliation(s)
- Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Laurye Van Maele
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Maxime Lagneaux
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Carl De Trez
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Sofie De Prins
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Pauline Percier
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Olivier Denis
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Fabienne Jurion
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Marta Romano
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | | | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Logan E, Luabeya AKK, Mulenga H, Mrdjen D, Ontong C, Cunningham AF, Tameris M, McShane H, Scriba TJ, Horsnell WGC, Hatherill M. Elevated IgG Responses in Infants Are Associated With Reduced Prevalence of Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:1529. [PMID: 30013573 PMCID: PMC6036805 DOI: 10.3389/fimmu.2018.01529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
Background It is unclear whether antibodies can prevent Mycobacterium tuberculosis (Mtb) infection. In this study, we examined the relationship between total plasma IgG levels, IgG elicited by childhood vaccines and soil-transmitted helminths, and Mtb infection prevalence, defined by positive QuantiFERON (QFT) test. Methods We studied 100 Mtb uninfected infants, aged 4–6 months. Ten infants (10%) converted to positive QFT test (QFT+) within 2 years of follow-up for Mtb infection. Antibody responses in plasma samples acquired at baseline and tuberculosis investigation were analyzed by enzyme-linked immunosorbent assay and ImmunoCAP® assay. Results QFT− infants displayed a significant increase in total IgG titers when re-tested, compared to IgG titers at baseline, which was not observed in QFT+ infants. Bacille Calmette-Guérin (BCG) vaccine-specific IgG2 and live-attenuated measles vaccine-specific IgG were raised in QFT− infants, and infants who acquired an Mtb infection did not appear to launch a BCG-specific IgG2 response. IgG titers against the endemic helminth Ascaris lumbricoides increased from baseline to QFT re-testing in all infants. Conclusion These data show raised IgG associates with a QFT-status. Importantly, this effect was also associated with a trend showing raised IgG titers to BCG and measles vaccine. Our data suggest a possible protective association between raised antibody titers and acquisition of Mtb infection, potentially mediated by exposure to antigens both related and unrelated to Mtb.
Collapse
Affiliation(s)
- Erin Logan
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Angelique Kany Kany Luabeya
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,South African Tuberculosis Vaccine Initiative (SATVI), Department of Pathology, Institute of Infectious Disease, Molecular Medicine and University of Cape Town, Cape Town, South Africa
| | - Humphrey Mulenga
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,South African Tuberculosis Vaccine Initiative (SATVI), Department of Pathology, Institute of Infectious Disease, Molecular Medicine and University of Cape Town, Cape Town, South Africa
| | - Dunja Mrdjen
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Cynthia Ontong
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,South African Tuberculosis Vaccine Initiative (SATVI), Department of Pathology, Institute of Infectious Disease, Molecular Medicine and University of Cape Town, Cape Town, South Africa
| | - Adam F Cunningham
- Institutes of Immunology and Immunotherapy and Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Michele Tameris
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,South African Tuberculosis Vaccine Initiative (SATVI), Department of Pathology, Institute of Infectious Disease, Molecular Medicine and University of Cape Town, Cape Town, South Africa
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thomas J Scriba
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,South African Tuberculosis Vaccine Initiative (SATVI), Department of Pathology, Institute of Infectious Disease, Molecular Medicine and University of Cape Town, Cape Town, South Africa
| | - William G C Horsnell
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Institutes of Immunology and Immunotherapy and Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, Le Studium Institute for Advanced Studies, CNRS-University of Orléans, Orléans, France
| | - Mark Hatherill
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,South African Tuberculosis Vaccine Initiative (SATVI), Department of Pathology, Institute of Infectious Disease, Molecular Medicine and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Sanya RE, Nkurunungi G, Andia Biraro I, Mpairwe H, Elliott AM. A life without worms. Trans R Soc Trop Med Hyg 2018; 111:3-11. [PMID: 28340138 PMCID: PMC5412073 DOI: 10.1093/trstmh/trx010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
Worms have co-evolved with humans over millions of years. To survive, they manipulate host systems by modulating immune responses so that they cause (in the majority of hosts) relatively subtle harm. Anthelminthic treatment has been promoted as a measure for averting worm specific pathology and to mitigate subtle morbidities which may include effects on anaemia, growth, cognitive function and economic activity. With our changing environment marked by rapid population growth, urbanisation, better hygiene practices and anthelminthic treatment, there has been a decline in worm infections and other infectious diseases and a rise in non-communicable diseases such as allergy, diabetes and cardiovascular disease. This review reflects upon our age-old interaction with worms, and the broader ramifications of life without worms for vaccine responses and susceptibility to other infections, and for allergy-related and metabolic disease. We touch upon the controversy around the benefits of mass drug administration for the more-subtle morbidities that have been associated with worm infections and then focus our attention on broader, additional aspects of life without worms, which may be either beneficial or detrimental.
Collapse
Affiliation(s)
- Richard E Sanya
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gyaviira Nkurunungi
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | - Harriet Mpairwe
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda
| | - Alison M Elliott
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
16
|
Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Dunay IR, Steinfelder S, Hartmann S. Toxoplasma Co-infection Prevents Th2 Differentiation and Leads to a Helminth-Specific Th1 Response. Front Cell Infect Microbiol 2017; 7:341. [PMID: 28791259 PMCID: PMC5524676 DOI: 10.3389/fcimb.2017.00341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Nematode infections, in particular gastrointestinal nematodes, are widespread and co-infections with other parasites and pathogens are frequently encountered in humans and animals. To decipher the immunological effects of a widespread protozoan infection on the anti-helminth immune response we studied a co-infection with the enteric nematode Heligmosomoides polygyrus in mice previously infected with Toxoplasma gondii. Protective immune responses against nematodes are dependent on parasite-specific Th2 responses associated with IL-4, IL-5, IL-13, IgE, and IgG1 antibodies. In contrast, Toxoplasma gondii infection elicits a strong and protective Th1 immune response characterized by IFN-γ, IL-12, and IgG2a antibodies. Co-infected animals displayed significantly higher worm fecundity although worm burden remained unchanged. In line with this, the Th2 response to H. polygyrus in co-infected animals showed a profound reduction of IL-4, IL-5, IL-13, and GATA-3 expressing T cells. Co-infection also resulted in the lack of eosinophilia and reduced expression of the Th2 effector molecule RELM-β in intestinal tissue. In contrast, the Th1 response to the protozoan parasite was not diminished and parasitemia of T. gondii was unaffected by concurrent helminth infection. Importantly, H. polygyrus specific restimulation of splenocytes revealed H. polygyrus-reactive CD4+ T cells that produce a significant amount of IFN-γ in co-infected animals. This was not observed in animals infected with the nematode alone. Increased levels of H. polygyrus-specific IgG2a antibodies in co-infected mice mirrored this finding. This study suggests that polarization rather than priming of naive CD4+ T cells is disturbed in mice previously infected with T. gondii. In conclusion, a previous T. gondii infection limits a helminth-specific Th2 immune response while promoting a shift toward a Th1-type immune response.
Collapse
Affiliation(s)
- Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Anja Kühl
- Division of Gastroenterology, Medical Department, Infection and Rheumatology, Research Center ImmunoSciencesBerlin, Germany
| | - Katrin Hemminger
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Svenja Steinfelder
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
17
|
Cardona PJ. What We Have Learned and What We Have Missed in Tuberculosis Pathophysiology for a New Vaccine Design: Searching for the "Pink Swan". Front Immunol 2017; 8:556. [PMID: 28555137 PMCID: PMC5430026 DOI: 10.3389/fimmu.2017.00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
This is a call to encourage the search for a new vaccine to stop the progression of Mycobacterium tuberculosis infection to tuberculosis (TB) disease. TB is a highly discreet and stigmatized disease, with a massive impact on human health. It has killed 1.2 billion people in the last 200 years and still kills 1.5 million people per year. Over the last 20 years, the TB vaccine field has experienced spectacular developments, and we have learned about (1) the importance of the Th1 response in controlling infection, mainly against RD1 and Ag85 antigens; (2) the stability of the antigenic repertoire; (3) the dynamics of M. tuberculosis granulomas; or (4) the link between typical and atypical pulmonary TB and the immune status of the host. However, we still do not (1) know how to avoid M. tuberculosis infection and reinfection; (2) understand the major role of the increase in lesion size in progression from infection to disease; (3) the role of interlobular septa in encapsulating pulmonary lesions; or (4) the role of neutrophilic infiltration and an exaggerated inflammatory response in the development of TB disease. These are strong reasons to pursue new, imaginative proposals involving both the antibody response and a balanced, tolerant immune response that averts progression toward TB. So far, the scientific mindset has been quite monolithic and has mainly focused on the stimulation of conventional T cells. But this approach has failed. For that reason, we are seeking unconventional perspectives to find a “pink swan,” a more efficacious and safer vaccine candidate.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Institut Germans Trias i Pujol, Crta de Can Ruti s/n, Badalona, Catalonia, Spain
| |
Collapse
|
18
|
Aira N, Andersson AM, Singh SK, McKay DM, Blomgran R. Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: Direct effect on the innate anti-mycobacterial response. PLoS Negl Trop Dis 2017; 11:e0005390. [PMID: 28192437 PMCID: PMC5325601 DOI: 10.1371/journal.pntd.0005390] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/24/2017] [Accepted: 02/06/2017] [Indexed: 02/05/2023] Open
Abstract
Background In countries with a high prevalence of tuberculosis there is high coincident of helminth infections that might worsen disease outcome. While Mycobacterium tuberculosis (Mtb) gives rise to a pro-inflammatory Th1 response, a Th2 response is typical of helminth infections. A strong Th2 response has been associated with decreased protection against tuberculosis. Principal findings We investigated the direct effect of helminth-derived antigens on human macrophages, hypothesizing that helminths would render macrophages less capable of controlling Mtb. Measuring cytokine output, macrophage surface markers with flow cytometry, and assessing bacterial replication and phagosomal maturation revealed that antigens from different species of helminth directly affect macrophage responses to Mtb. Antigens from the tapeworm Hymenolepis diminuta and the nematode Trichuris muris caused an anti-inflammatory response with M2-type polarization, reduced macrophage phagosome maturation and ability to activate T cells, along with increased Mtb burden, especially in T. muris exposed cells which also induced the highest IL-10 production upon co-infection. However, antigens from the trematode Schistosoma mansoni had the opposite effect causing a decrease in IL-10 production, M1-type polarization and increased control of Mtb. Conclusion We conclude that, independent of any adaptive immune response, infection with helminth parasites, in a species-specific manner can influence the outcome of tuberculosis by either enhancing or diminishing the bactericidal function of macrophages. The innate immune system is the first response against invading pathogens like the bacterium Mycobacterium tuberculosis (Mtb) or parasitic worms (helminths). The adaptive immune response takes over after being primed by the innate immune response. Infection with Mycobacterium tuberculosis typically gives rise to a pro-inflammatory T-helper(Th)-1 response while helminths promote a Th2 response which is needed to combat the infection. Co-infection with both of these pathogens could lead to reduced immunity contributing to worsening of tuberculosis due to an increased Th2 response caused by helminths. We found that antigens from different helminth species (a nematode, a cestode and a trematode) caused different responses towards Mtb in macrophages. Depending on the helminth species, the macrophages can be more or less capable of combating Mtb infection and priming the adaptive immune response, which in turn would influence the outcome of tuberculosis. Thus, exposure to helminth antigens, in a species-dependent manner, could lead to a better control of Mtb infection or worsening of tuberculosis.
Collapse
Affiliation(s)
- Naomi Aira
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Anna-Maria Andersson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Susmita K. Singh
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Derek M. McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Blomgran
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
19
|
Abstract
Macrophage polarization refers to how macrophages have been activated at a given point in space and time. Polarization is not fixed, as macrophages are sufficiently plastic to integrate multiple signals, such as those from microbes, damaged tissues, and the normal tissue environment. Three broad pathways control polarization: epigenetic and cell survival pathways that prolong or shorten macrophage development and viability, the tissue microenvironment, and extrinsic factors, such as microbial products and cytokines released in inflammation. A plethora of advances have provided a framework for rationally purifying, describing, and manipulating macrophage polarization. Here, I assess the current state of knowledge about macrophage polarization and enumerate the major questions about how activated macrophages regulate the physiology of normal and damaged tissues.
Collapse
Affiliation(s)
- Peter J Murray
- Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| |
Collapse
|
20
|
Helminth-Tuberculosis Co-infection: An Immunologic Perspective. Trends Immunol 2016; 37:597-607. [PMID: 27501916 DOI: 10.1016/j.it.2016.07.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/15/2023]
Abstract
Over 2 billion people worldwide are infected with helminths (worms). Similarly, infection with Mycobacterium tuberculosis (Mtb) occurs in over a third of the world's population, often with a great degree of geographical overlap with helminth infection. Interestingly, the responses induced by the extracellular helminths and those induced by the intracellular Mtb are often mutually antagonistic and, as a consequence, can result in impaired (or cross-regulated) host responses to either of the infecting pathogens. In this review, we outline the nature of the immune responses induced by infections with helminths and tuberculosis (TB) and then provide data from both experimental models and human studies that illustrate how the immune response engendered by helminth parasites modulates Mtb-specific responses in helminth-TB coinfection.
Collapse
|
21
|
Monin L, Griffiths KL, Lam WY, Gopal R, Kang DD, Ahmed M, Rajamanickam A, Cruz-Lagunas A, Zúñiga J, Babu S, Kolls JK, Mitreva M, Rosa BA, Ramos-Payan R, Morrison TE, Murray PJ, Rangel-Moreno J, Pearce EJ, Khader SA. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. J Clin Invest 2015; 125:4699-713. [PMID: 26571397 DOI: 10.1172/jci77378] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1-expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1-expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB.
Collapse
|