1
|
Giorgio RT, Helaine S. Antibiotic-recalcitrant Salmonella during infection. Nat Rev Microbiol 2025; 23:276-287. [PMID: 39558126 DOI: 10.1038/s41579-024-01124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Antibiotic-recalcitrant infections, defined as the prolonged carriage of pathogenic bacteria even in the presence of antibiotics, are often caused by bacteria that are genetically susceptible to the drug. These recalcitrant bacteria fail to proliferate in the presence of antibiotics but remain viable such that they may recolonize their niche following antibiotic withdrawal. Significant progress has been made in our understanding of antibiotic-recalcitrant Salmonella, which are thought to be the source of infection relapse. In recent years, it has been shown that recalcitrant bacteria manipulate host immune defences and could directly contribute to the spread of antimicrobial resistance. In this Review, we provide an overview of what is currently known about the antibiotic recalcitrance of Salmonella during infection and highlight knowledge gaps requiring additional research in the future.
Collapse
Affiliation(s)
- Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sivaloganathan DM, Wan X, Leon G, Brynildsen MP. Loss of Gre factors leads to phenotypic heterogeneity and cheating in Escherichia coli populations under nitric oxide stress. mBio 2024; 15:e0222924. [PMID: 39248572 PMCID: PMC11498084 DOI: 10.1128/mbio.02229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Nitric oxide (·NO) is one of the toxic metabolites that bacteria can be exposed to within phagosomes. Gre factors, which are also known as transcript cleavage factors or transcription elongation factors, relieve back-tracked transcription elongation complexes by cleaving nascent RNAs, which allows transcription to resume after stalling. Here we discovered that loss of both Gre factors in Escherichia coli, GreA and GreB, significantly compromised ·NO detoxification due to ·NO-induced phenotypic heterogeneity in ΔgreAΔgreB populations, which did not occur in wild-type cultures. Under normal culturing conditions, both wild-type and ΔgreAΔgreB synthesized transcripts uniformly, whereas treatment with ·NO led to bimodal transcript levels in ΔgreAΔgreB that were unimodal in wild-type. Interestingly, exposure to another toxic metabolite of phagosomes, hydrogen peroxide (H2O2), produced analogous results. Furthermore, we showed that loss of Gre factors led to cheating under ·NO stress where transcriptionally deficient cells benefited from the detoxification activities of the transcriptionally proficient subpopulation. Collectively, these results show that loss of Gre factor activities produces phenotypic heterogeneity under ·NO and H2O2 stress that can yield cheating between subpopulations.IMPORTANCEToxic metabolite stress occurs in a broad range of contexts that are important to human health, microbial ecology, and biotechnology, whereas Gre factors are highly conserved throughout the bacterial kingdom. Here we discovered that loss of Gre factors in E. coli leads to phenotypic heterogeneity under ·NO and H2O2 stress, which we further show with ·NO results in cheating between subpopulations. Collectively, these data suggest that Gre factors play a role in coping with toxic metabolite stress, and that loss of Gre factors can produce cheating between neighbors.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| |
Collapse
|
3
|
Wan X, Chou WK, Brynildsen MP. Amino acids can deplete ATP and impair nitric oxide detoxification by Escherichia coli. Free Radic Biol Med 2023; 205:90-99. [PMID: 37253411 DOI: 10.1016/j.freeradbiomed.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Nitric oxide (·NO) is a prevalent antimicrobial that is known to damage iron-containing enzymes in amino acid (AA) biosynthesis pathways. With Escherichia coli, ·NO is detoxified in aerobic environments by Hmp, which is an enzyme that is synthesized de novo in response to ·NO. With this knowledgebase, it is expected that the availability of AAs in the extracellular environment would enhance ·NO detoxification, because AAs would foster translation of Hmp. However, we observed that ·NO detoxification by E. coli was far slower in populations grown and treated in the presence of AAs (AA+) in comparison to those grown and stressed in the absence of AAs (AA-). Further experiments revealed that AA+ populations had difficulty translating proteins under ·NO stress, and that ·NO activated the stringent response in AA+ populations. Additional work revealed significant ATP depletion in ·NO-stressed AA+ cultures that far exceeded that of ·NO-stressed AA- populations. Transcription, translation, and RelA were not found to be significant contributors to the ATP depletion observed, whereas AA import was implicated as a significant ATP consumption pathway. Alleviating ATP depletion while maintaining access to AAs partially restored ·NO detoxification, which suggested that ATP depletion contributed to the translational difficulties observed in ·NO-stressed AA+ populations. These data reveal an unexpected interaction within the ·NO response network of E. coli that stimulates a stringent response by RelA in conditions where AAs are plentiful.
Collapse
Affiliation(s)
- Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wen Kang Chou
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
4
|
Uppalapati SR, Vazquez-Torres A. Manganese Utilization in Salmonella Pathogenesis: Beyond the Canonical Antioxidant Response. Front Cell Dev Biol 2022; 10:924925. [PMID: 35903545 PMCID: PMC9315381 DOI: 10.3389/fcell.2022.924925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The metal ion manganese (Mn2+) is equally coveted by hosts and bacterial pathogens. The host restricts Mn2+ in the gastrointestinal tract and Salmonella-containing vacuoles, as part of a process generally known as nutritional immunity. Salmonella enterica serovar Typhimurium counteract Mn2+ limitation using a plethora of metal importers, whose expression is under elaborate transcriptional and posttranscriptional control. Mn2+ serves as cofactor for a variety of enzymes involved in antioxidant defense or central metabolism. Because of its thermodynamic stability and low reactivity, bacterial pathogens may favor Mn2+-cofactored metalloenzymes during periods of oxidative stress. This divalent metal catalyzes metabolic flow through lower glycolysis, reductive tricarboxylic acid and the pentose phosphate pathway, thereby providing energetic, redox and biosynthetic outputs associated with the resistance of Salmonella to reactive oxygen species generated in the respiratory burst of professional phagocytic cells. Combined, the oxyradical-detoxifying properties of Mn2+ together with the ability of this divalent metal cation to support central metabolism help Salmonella colonize the mammalian gut and establish systemic infections.
Collapse
Affiliation(s)
- Siva R. Uppalapati
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| |
Collapse
|
5
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
6
|
Cohen H, Adani B, Cohen E, Piscon B, Azriel S, Desai P, Bähre H, McClelland M, Rahav G, Gal-Mor O. The ancestral stringent response potentiator, DksA has been adapted throughout Salmonella evolution to orchestrate the expression of metabolic, motility, and virulence pathways. Gut Microbes 2022; 14:1997294. [PMID: 34923900 PMCID: PMC8726615 DOI: 10.1080/19490976.2021.1997294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DksA is a conserved RNA polymerase-binding protein known to play a key role in the stringent response of proteobacteria species, including many gastrointestinal pathogens. Here, we used RNA-sequencing of Escherichia coli, Salmonella bongori and Salmonella enterica serovar Typhimurium, together with phenotypic comparison to study changes in the DksA regulon, during Salmonella evolution. Comparative RNA-sequencing showed that under non-starved conditions, DksA controls the expression of 25%, 15%, and 20% of the E. coli, S. bongori, and S. enterica genes, respectively, indicating that DksA is a pleiotropic regulator, expanding its role beyond the canonical stringent response. We demonstrate that DksA is required for the growth of these three enteric bacteria species in minimal medium and controls the expression of the TCA cycle, glycolysis, pyrimidine biosynthesis, and quorum sensing. Interestingly, at multiple steps during Salmonella evolution, the type I fimbriae and various virulence genes encoded within SPIs 1, 2, 4, 5, and 11 have been transcriptionally integrated under the ancestral DksA regulon. Consequently, we show that DksA is necessary for host cells invasion by S. Typhimurium and S. bongori and for intracellular survival of S. Typhimurium in bone marrow-derived macrophages (BMDM). Moreover, we demonstrate regulatory inversion of the conserved motility-chemotaxis regulon by DksA, which acts as a negative regulator in E. coli, but activates this pathway in S. bongori and S. enterica. Overall, this study demonstrates the regulatory assimilation of multiple horizontally acquired virulence genes under the DksA regulon and provides new insights into the evolution of virulence genes regulation in Salmonella spp.
Collapse
Affiliation(s)
- Helit Cohen
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Boaz Adani
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Emiliano Cohen
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Bar Piscon
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Shalhevet Azriel
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Prerak Desai
- Janssen Research & Development, LLC, Raritan, New Jersey, USA,Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Heike Bähre
- Hannover Medical School, Research Core Unit Metabolomics, Hannover, Germany
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Galia Rahav
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel,Contact Ohad Gal-Mor The Infectious Diseases Research Laboratory Sheba Medical Cente, Tel-Hashomer, Israel
| |
Collapse
|
7
|
Wan X, Brynildsen MP. Robustness of nitric oxide detoxification to nitrogen starvation in Escherichia coli requires RelA. Free Radic Biol Med 2021; 176:286-297. [PMID: 34624482 DOI: 10.1016/j.freeradbiomed.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023]
Abstract
Reactive nitrogen species and nutrient deprivation are two elements of the immune response used to eliminate pathogens within phagosomes. Concomitantly, pathogenic bacteria have evolved defense systems to cope with phagosomal stressors, which include enzymes that detoxify nitric oxide (•NO) and respond to nutrient scarcity. A deeper understanding of how those defense systems are deployed under adverse conditions that contain key elements of phagosomes will facilitate targeting of those systems for therapeutic purposes. Here we investigated how Escherichia coli detoxifies •NO in the absence of useable nitrogen, because nitrogen availability is limited in phagosomes due to the removal of nitrogenous compounds (e.g., amino acids). We hypothesized that nitrogen starvation would impair •NO detoxification by E. coli because it depresses translation rates and the main E. coli defense enzyme, Hmp, is synthesized in response to •NO. However, we found that E. coli detoxifies •NO at the same rate regardless of whether useable nitrogen was present. We confirmed that the nitrogen in •NO and its autoxidation products could not be used by E. coli under our experimental conditions, and discovered that •NO eliminated differences in carbon and oxygen consumption between nitrogen-replete and nitrogen-starved cultures. Interestingly, E. coli does not consume measurable extracellular nitrogen during •NO stress despite the need to translate defense enzymes. Further, we found that RelA, which responds to uncharged tRNA, was required to observe the robustness of •NO detoxification to nitrogen starvation. These data demonstrate that E. coli is well poised to detoxify •NO in the absence of useable nitrogen and suggest that the stringent response could be a useful target to potentiate the antibacterial activity of •NO.
Collapse
Affiliation(s)
- Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
8
|
Dkhili S, Ribeiro M, Ghariani S, Yahia HB, Hillion M, Poeta P, Slama KB, Hébraud M, Igrejas G. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:626-640. [PMID: 34559008 DOI: 10.1089/omi.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting Escherichia coli (SD1, SD2, and SD3) using a gel-based proteomics approach and the cellular response of this bacterium to phage SD1 infection at the proteome level. The combination of the results of 1-DE and 2-DE followed by mass spectrometry led to the identification of 3, 14, and 9 structure proteins for SD1, SD2, and SD3 phages, respectively. Different protein profiles with common proteins were noticed. We also analyzed phage-induced effects by comparing samples from infected cells to those of noninfected cells. We verified important changes in E. coli proteins expression during phage SD1 infection, where there was an overexpression of proteins involved in stress response. Our results indicated that viral infection caused bacterial oxidative stress and bacterial cells response to stress was orchestrated by antioxidant defense mechanisms. This article makes an empirical scientific contribution toward the concept of bacteriophages as potential antimicrobial agents. With converging ecological threats in the 21st century, novel approaches to address the innovation gaps in antimicrobial development are more essential than ever. Further research on bacteriophages is called for in this broader context of planetary health and integrative biology.
Collapse
Affiliation(s)
- Sadika Dkhili
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Salma Ghariani
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Mélanie Hillion
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Patricia Poeta
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Michel Hébraud
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
9
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
10
|
Porrini C, Ramarao N, Tran SL. Dr. NO and Mr. Toxic - the versatile role of nitric oxide. Biol Chem 2021; 401:547-572. [PMID: 31811798 DOI: 10.1515/hsz-2019-0368] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is present in various organisms from humans, to plants, fungus and bacteria. NO is a fundamental signaling molecule implicated in major cellular functions. The role of NO ranges from an essential molecule to a potent mediator of cellular damages. The ability of NO to react with a broad range of biomolecules allows on one hand its regulation and a gradient concentration and on the other hand to exert physiological as well as pathological functions. In humans, NO is implicated in cardiovascular homeostasis, neurotransmission and immunity. However, NO can also contribute to cardiovascular diseases (CVDs) or septic shock. For certain denitrifying bacteria, NO is part of their metabolism as a required intermediate of the nitrogen cycle. However, for other bacteria, NO is toxic and harmful. To survive, those bacteria have developed processes to resist this toxic effect and persist inside their host. NO also contributes to maintain the host/microbiota homeostasis. But little is known about the impact of NO produced during prolonged inflammation on microbiota integrity, and some pathogenic bacteria take advantage of the NO response to colonize the gut over the microbiota. Taken together, depending on the environmental context (prolonged production, gradient concentration, presence of partners for interaction, presence of oxygen, etc.), NO will exert its beneficial or detrimental function. In this review, we highlight the dual role of NO for humans, pathogenic bacteria and microbiota, and the mechanisms used by each organism to produce, use or resist NO.
Collapse
Affiliation(s)
- Constance Porrini
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Nalini Ramarao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Seav-Ly Tran
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
11
|
The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress. mBio 2021; 12:mBio.03443-20. [PMID: 33975942 PMCID: PMC8262869 DOI: 10.1128/mbio.03443-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent response in Salmonella undergoing oxidative stress involves the DnaK chaperone. Oxidation of DksA cysteine residues stimulates redox-based and holdase interactions with zinc-binding and C-terminal domains of DnaJ. Genetic and biochemical evidence indicates that His33 in the HPD motif in the J domain of DnaJ facilitates interactions of unfolded DksA with DnaK. A mutation in His33 in the J domain prevents the presentation of unfolded DksA to DnaK without limiting the oxidoreductase activity mapped to DnaJ's zinc-2 site. Thr199 in the ATPase catalytic site of DnaK is required for the formation of the DksA/RNA polymerase complex. The DnaK/DnaJ/DksA complex enables the formation of an enzymatically active RNA polymerase holoenzyme that stimulates transcription of branched-chain amino acid and histidine metabolic genes in Salmonella exposed to reactive oxygen species. The DnaK/DnaJ chaperone protects Salmonella against the cytotoxicity associated with reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. The antioxidant defenses associated with DnaK/DnaJ can in part be ascribed to the elicitation of the DksA-dependent stringent response and the protection this chaperone system provides against protein carbonylation in Salmonella undergoing oxidative stress.IMPORTANCE DksA was discovered 30 years ago in a screen for suppressors that reversed the thermosensitivity of Escherichia coli mutant strains deficient in DnaK/DnaJ, raising the possibility that this chaperone system may control DksA function. Since its serendipitous discovery, DksA has emerged as a key activator of the transcriptional program called the stringent response in Gram-negative bacteria experiencing diverse adverse conditions, including nutritional starvation or oxidative stress. DksA activates the stringent response through the allosteric control this regulatory protein exerts on the kinetics of RNA polymerase promoter open complexes. Recent investigations have shown that DksA overexpression protects dnaKJ mutant bacteria against heat shock indirectly via the ancestral chaperone polyphosphate, casting doubt on a possible complexation of DnaK, DnaJ, and DksA. Nonetheless, research presented herein demonstrates that the cochaperones DnaK and DnaJ enable DksA/RNA polymerase complex formation in response to oxidative stress.
Collapse
|
12
|
The protected physiological state of intracellular Salmonella enterica persisters reduces host cell-imposed stress. Commun Biol 2021; 4:520. [PMID: 33947954 PMCID: PMC8096953 DOI: 10.1038/s42003-021-02049-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
During infectious diseases, small subpopulations of bacterial pathogens enter a non-replicating (NR) state tolerant to antibiotics. After phagocytosis, intracellular Salmonella enterica serovar Typhimurium (STM) forms persisters able to subvert immune defenses of the host. Physiological state and sensing properties of persisters are difficult to analyze, thus poorly understood. Here we deploy fluorescent protein reporters to detect intracellular NR persister cells, and to monitor their stress response on single cell level. We determined metabolic properties of NR STM during infection and demonstrate that NR STM persisters sense their environment and respond to stressors. Since persisters showed a lower stress response compared to replicating (R) STM, which was not consequence of lower metabolic capacity, the persistent state of STM serves as protective niche. Up to 95% of NR STM were metabolically active at beginning of infection, very similar to metabolic capacity of R STM. Sensing and reacting to stress with constant metabolic activity supports STM to create a more permissive environment for recurrent infections. Stress sensing and response of persister may be targeted by new antimicrobial approaches. Schulte et al. show that non-replicating Salmonella enterica serovar Typhimurium persisters, which are tolerant to antibiotics, sense their environment and respond to stressors. This study suggests that stress sensing and response of persisters may be targeted as an antimicrobial strategy.
Collapse
|
13
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
14
|
Schulte M, Olschewski K, Hensel M. Fluorescent protein-based reporters reveal stress response of intracellular Salmonella enterica at level of single bacterial cells. Cell Microbiol 2020; 23:e13293. [PMID: 33222378 DOI: 10.1111/cmi.13293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Intracellular bacteria such as Salmonella enterica are confronted with a broad array of defence mechanisms of their mammalian host cells. The ability to sense host cell-imposed damages, and to mount efficient stress responses are crucial for survival and proliferation of intracellular pathogens. The various combinations of host defence mechanisms acting on intracellular bacteria and their individual response also explain the occurrence of distinct subpopulations of intracellular S. enterica such as dormant or persisting, slowly or rapidly replicating cells. Here we describe a set of fluorescence protein (FP)-based reporter strains that were used to monitor the expression of cytoplasmic or periplasmic stress response systems of single bacterial cells. This is mediated by a fast-maturing FP as reporter for induction of stress response genes. We evaluated slower maturing FPs for a second function, that is, the analysis of the status of intracellular proliferation of pathogens. The combination of two FPs allows, at level of single bacterial cells, the interrogation of stress response and intracellular proliferation. Application of these reporters to S. enterica allowed us to detect and quantify distinct intracellular subpopulations with different levels of stress response and proliferation.
Collapse
Affiliation(s)
- Marc Schulte
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Katharina Olschewski
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
15
|
Fitzsimmons LF, Liu L, Kant S, Kim JS, Till JK, Jones-Carson J, Porwollik S, McClelland M, Vazquez-Torres A. SpoT Induces Intracellular Salmonella Virulence Programs in the Phagosome. mBio 2020; 11:e03397-19. [PMID: 32098823 PMCID: PMC7042702 DOI: 10.1128/mbio.03397-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 01/19/2023] Open
Abstract
Guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), together named (p)ppGpp, regulate diverse aspects of Salmonella pathogenesis, including synthesis of nutrients, resistance to inflammatory mediators, and expression of secretion systems. In Salmonella, these nucleotide alarmones are generated by the synthetase activities of RelA and SpoT proteins. In addition, the (p)ppGpp hydrolase activity of the bifunctional SpoT protein is essential to preserve cell viability. The contribution of SpoT to physiology and pathogenesis has proven elusive in organisms such as Salmonella, because the hydrolytic activity of this RelA and SpoT homologue (RSH) is vital to prevent inhibitory effects of (p)ppGpp produced by a functional RelA. Here, we describe the biochemical and functional characterization of a spoT-Δctd mutant Salmonella strain encoding a SpoT protein that lacks the C-terminal regulatory elements collectively referred to as "ctd." Salmonella expressing the spoT-Δctd variant hydrolyzes (p)ppGpp with similar kinetics to those of wild-type bacteria, but it is defective at synthesizing (p)ppGpp in response to acidic pH. Salmonella spoT-Δctd mutants have virtually normal adaptations to nutritional, nitrosative, and oxidative stresses, but poorly induce metal cation uptake systems and Salmonella pathogenicity island 2 (SPI-2) genes in response to the acidic pH of the phagosome. Importantly, spoT-Δctd mutant Salmonella replicates poorly intracellularly and is attenuated in a murine model of acute salmonellosis. Collectively, these investigations indicate that (p)ppGpp synthesized by SpoT serves a unique function in the adaptation of Salmonella to the intracellular environment of host phagocytes that cannot be compensated by the presence of a functional RelA.IMPORTANCE Pathogenic bacteria experience nutritional challenges during colonization and infection of mammalian hosts. Binding of the alarmone nucleotide guanosine tetraphosphate (ppGpp) to RNA polymerase coordinates metabolic adaptations and virulence gene transcription, increasing the fitness of diverse Gram-positive and Gram-negative bacteria as well as that of actinomycetes. Gammaproteobacteria such as Salmonella synthesize ppGpp by the combined activities of the closely related RelA and SpoT synthetases. Due to its profound inhibitory effects on growth, ppGpp must be removed; in Salmonella, this process is catalyzed by the vital hydrolytic activity of the bifunctional SpoT protein. Because SpoT hydrolase activity is essential in cells expressing a functional RelA, we have a very limited understanding of unique roles these two synthetases may assume during interactions of bacterial pathogens with their hosts. We describe here a SpoT truncation mutant that lacks ppGpp synthetase activity and all C-terminal regulatory domains but retains excellent hydrolase activity. Our studies of this mutant reveal that SpoT uniquely senses the acidification of phagosomes, inducing virulence programs that increase Salmonella fitness in an acute model of infection. Our investigations indicate that the coexistence of RelA/SpoT homologues in a bacterial cell is driven by the need to mount a stringent response to a myriad of physiological and host-specific signatures.
Collapse
Affiliation(s)
- Liam F Fitzsimmons
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Lin Liu
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Sashi Kant
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Ju-Sim Kim
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - James K Till
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Jessica Jones-Carson
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Steffen Porwollik
- University of California Irvine, School of Medicine, Department of Microbiology and Molecular Genetics, Irvine, California, USA
| | - Michael McClelland
- University of California Irvine, School of Medicine, Department of Microbiology and Molecular Genetics, Irvine, California, USA
| | - Andres Vazquez-Torres
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
- Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
16
|
Schäfer H, Turgay K. Spx, a versatile regulator of the Bacillus subtilis stress response. Curr Genet 2019; 65:871-876. [DOI: 10.1007/s00294-019-00950-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/16/2023]
|
17
|
DksA Controls the Response of the Lyme Disease Spirochete Borrelia burgdorferi to Starvation. J Bacteriol 2019; 201:JB.00582-18. [PMID: 30478087 PMCID: PMC6351744 DOI: 10.1128/jb.00582-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
The pathogenic spirochete Borrelia burgdorferi senses and responds to changes in the environment, including changes in nutrient availability, throughout its enzootic cycle in Ixodes ticks and vertebrate hosts. This study examined the role of DnaK suppressor protein (DksA) in the transcriptional response of B. burgdorferi to starvation. Wild-type and dksA mutant B. burgdorferi strains were subjected to starvation by shifting cultures grown in rich complete medium, Barbour-Stoenner-Kelly II (BSK II) medium, to a defined mammalian tissue culture medium, RPMI 1640, for 6 h under microaerobic conditions (5% CO2, 3% O2). Microarray analyses of wild-type B. burgdorferi revealed that genes encoding flagellar components, ribosomal proteins, and DNA replication machinery were downregulated in response to starvation. DksA mediated transcriptomic responses to starvation in B. burgdorferi, as the dksA-deficient strain differentially expressed only 47 genes in response to starvation compared to the 500 genes differentially expressed in wild-type strains. Consistent with a role for DksA in the starvation response of B. burgdorferi, fewer CFU of dksA mutants were observed after prolonged starvation in RPMI 1640 medium than CFU of wild-type B. burgdorferi spirochetes. Transcriptomic analyses revealed a partial overlap between the DksA regulon and the regulon of RelBbu, the guanosine tetraphosphate and guanosine pentaphosphate [(p)ppGpp] synthetase that controls the stringent response; the DksA regulon also included many plasmid-borne genes. Additionally, the dksA mutant exhibited constitutively elevated (p)ppGpp levels compared to those of the wild-type strain, implying a regulatory relationship between DksA and (p)ppGpp. Together, these data indicate that DksA, along with (p)ppGpp, directs the stringent response to effect B. burgdorferi adaptation to its environment.IMPORTANCE The Lyme disease bacterium Borrelia burgdorferi survives diverse environmental challenges as it cycles between its tick vectors and various vertebrate hosts. B. burgdorferi must withstand prolonged periods of starvation while it resides in unfed Ixodes ticks. In this study, the regulatory protein DksA is shown to play a pivotal role controlling the transcriptional responses of B. burgdorferi to starvation. The results suggest that DksA gene regulatory activity impacts B. burgdorferi metabolism, virulence gene expression, and the ability of this bacterium to complete its natural life cycle.
Collapse
|
18
|
Chou WK, Brynildsen MP. Loss of DksA leads to multi-faceted impairment of nitric oxide detoxification by Escherichia coli. Free Radic Biol Med 2019; 130:288-296. [PMID: 30366060 DOI: 10.1016/j.freeradbiomed.2018.10.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Human immune cells use a battery of toxic chemicals to eliminate invading bacteria. One of those compounds is nitric oxide (NO) and pathogens have evolved various strategies to defend themselves against this immune effector. Enzymatic detoxification is a common approach used by many bacteria, and Escherichia coli employs several enzymes to deal with NO, such as Hmp a flavohemoprotein. In addition to nitrosative stress, nutrient deprivation has been found to play an important role in phagosomal antimicrobial activity. Interestingly, recent work in Salmonella has suggested that DksA, a transcription regulator associated with the stringent response, is a molecular node for integration of nutritional and nitrosative stress signals. Here, we found that, in E. coli, loss of DksA profoundly impairs aerobic NO detoxification, approaching the detoxification capacity of Δhmp, which exhibits little-to-no NO detoxification within aerobic conditions. Investigation of this phenotype revealed that under NO stress ΔdksA suffered from low hmp transcript levels, considerably impaired protein output from the hmp promoter, and reduced catalysis by Hmp when present. These data demonstrate that DksA is critical for NO detoxification by E. coli and that loss of this regulator leads to NO defense deficiencies that span multiple levels.
Collapse
Affiliation(s)
- Wen Kang Chou
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 United States
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 United States.
| |
Collapse
|
19
|
Zinc-dependent substrate-level phosphorylation powers Salmonella growth under nitrosative stress of the innate host response. PLoS Pathog 2018; 14:e1007388. [PMID: 30365536 PMCID: PMC6221366 DOI: 10.1371/journal.ppat.1007388] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/07/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022] Open
Abstract
The metabolic processes that enable the replication of intracellular Salmonella under nitrosative stress conditions engendered in the innate response of macrophages are poorly understood. A screen of Salmonella transposon mutants identified the ABC-type high-affinity zinc uptake system ZnuABC as a critical determinant of the adaptation of Salmonella to the nitrosative stress generated by the enzymatic activity of inducible nitric oxide (NO) synthase of mononuclear phagocytic cells. NO limits the virulence of a znuB mutant in an acute murine model of salmonellosis. The ZnuABC transporter is crucial for the glycolytic function of fructose bisphosphate aldolase, thereby fueling growth of Salmonella during nitrosative stress produced in the innate response of macrophages. Our investigations demonstrate that glycolysis mediates resistance of Salmonella to the antimicrobial activity of NO produced in an acute model of infection. The ATP synthesized by substrate-level phosphorylation at the payoff phase of glycolysis and acetate fermentation powers the replication of Salmonella experiencing high levels of nitrosative stress. In contrast, despite its high potential for ATP synthesis, oxidative phosphorylation is a major target of inhibition by NO and contributes little to the antinitrosative defenses of intracellular Salmonella. Our investigations have uncovered a previously unsuspected conjunction between zinc homeostasis, glucose metabolism and cellular energetics in the adaptation of intracellular Salmonella to the reactive nitrogen species synthesized in the innate host response. Microbial pathogens are exposed to multiple antimicrobial defenses during their associations with host cells. Nitric oxide generated in the innate response exerts widespread antimicrobial activity against a variety of pathogenic microorganisms. Nitric oxide has high affinity for metal groups of terminal cytochromes of the respiratory chain, and thus nitrosative stress exerts extreme deleterious actions against the cellular energetics that rely on oxidative phosphorylation. Intracellular Salmonella have resolved this dilemma by satisfying a significant portion of their energetic demands via substrate level phosphorylation in the payoff phase of glycolysis and acetate fermentation. A high affinity zinc uptake system promotes antinitrosative defense of intracellular Salmonella by in great part supporting the enzymatic activity of an essential enzyme in the preparatory phase of glycolysis. Our research provides novel insights into the metabolic and energetic adaptations that allow a bacterial pathogen to thrive in the midst of the innate host response of vertebrate cells.
Collapse
|
20
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
21
|
Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48:118-133. [PMID: 29773170 DOI: 10.1016/j.jtemb.2018.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
The acute-phase response is triggered by the presence of infectious agents and danger signals which indicate hazards for the integrity of the mammalian body. One central feature of this response is the sequestration of iron into storage compartments including macrophages. This limits the availability of this essential nutrient for circulating pathogens, a host defence strategy known as 'nutritional immunity'. Iron metabolism and the immune response are intimately linked. In infections, the availability of iron affects both the efficacy of antimicrobial immune pathways and pathogen proliferation. However, host strategies to withhold iron from microbes vary according to the localization of pathogens: Infections with extracellular bacteria such as Staphylococcus aureus, Streptococcus, Klebsiella or Yersinia stimulate the expression of the iron-regulatory hormone hepcidin which targets the cellular iron-exporter ferroportin-1 causing its internalization and blockade of iron egress from absorptive enterocytes in the duodenum and iron-recycling macrophages. This mechanism disrupts both routes of iron delivery to the circulation, contributes to iron sequestration in the mononuclear phagocyte system and mediates the hypoferraemia of the acute phase response subsequently resulting in the development of anaemia of inflammation. When intracellular microbes are present, other strategies of microbial iron withdrawal are needed. For instance, in macrophages harbouring intracellular pathogens such as Chlamydia, Mycobacterium tuberculosis, Listeria monocytogenes or Salmonella Typhimurium, ferroportin-1-mediated iron export is turned on for the removal of iron from infected cells. This also leads to reduced iron availability for intra-macrophage pathogens which inhibits their growth and in parallel strengthens anti-microbial effector pathways of macrophages including the formation of inducible nitric oxide synthase and tumour necrosis factor. Iron plays a key role in infectious diseases both as modulator of the innate immune response and as nutrient for microbes. We need to gain a more comprehensive understanding of how the body can differentially respond to infection by extra- or intracellular pathogens. This knowledge may allow us to modulate mammalian iron homeostasis pharmaceutically and to target iron-acquisition systems of pathogens, thus enabling us to treat infections with novel strategies that act independent of established antimicrobials.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria.
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
22
|
Tapscott T, Kim JS, Crawford MA, Fitzsimmons L, Liu L, Jones-Carson J, Vázquez-Torres A. Guanosine tetraphosphate relieves the negative regulation of Salmonella pathogenicity island-2 gene transcription exerted by the AT-rich ssrA discriminator region. Sci Rep 2018; 8:9465. [PMID: 29930310 PMCID: PMC6013443 DOI: 10.1038/s41598-018-27780-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
The repressive activity of ancestral histone-like proteins helps integrate transcription of foreign genes with discrepant AT content into existing regulatory networks. Our investigations indicate that the AT-rich discriminator region located between the −10 promoter element and the transcription start site of the regulatory gene ssrA plays a distinct role in the balanced expression of the Salmonella pathogenicity island-2 (SPI2) type III secretion system. The RNA polymerase-binding protein DksA activates the ssrAB regulon post-transcriptionally, whereas the alarmone guanosine tetraphosphate (ppGpp) relieves the negative regulation imposed by the AT-rich ssrA discriminator region. An increase in the GC-content of the ssrA discriminator region enhances ssrAB transcription and SsrB translation, thus activating the expression of downstream SPI2 genes. A Salmonella strain expressing a GC-rich ssrA discriminator region is attenuated in mice and grows poorly intracellularly. The combined actions of ppGpp and DksA on SPI2 expression enable Salmonella to grow intracellularly, and cause disease in a murine model of infection. Collectively, these findings indicate that (p)ppGpp relieves the negative regulation associated with the AT-rich discriminator region in the promoter of the horizontally-acquired ssrA gene, whereas DksA activates ssrB gene expression post-transcriptionally. The combined effects of (p)ppGpp and DksA on the ssrAB locus facilitate a balanced SPI2 virulence gene transcription that is essential for Salmonella pathogenesis.
Collapse
Affiliation(s)
- Timothy Tapscott
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew A Crawford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Liam Fitzsimmons
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.,Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrés Vázquez-Torres
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA. .,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA.
| |
Collapse
|
23
|
The E. coli Global Regulator DksA Reduces Transcription during T4 Infection. Viruses 2018; 10:v10060308. [PMID: 29882792 PMCID: PMC6024815 DOI: 10.3390/v10060308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/16/2023] Open
Abstract
Bacteriophage T4 relies on host RNA polymerase to transcribe three promoter classes: early (Pe, requires no viral factors), middle (Pm, requires early proteins MotA and AsiA), and late (Pl, requires middle proteins gp55, gp33, and gp45). Using primer extension, RNA-seq, RT-qPCR, single bursts, and a semi-automated method to document plaque size, we investigated how deletion of DksA or ppGpp, two E. coli global transcription regulators, affects T4 infection. Both ppGpp⁰ and ΔdksA increase T4 wild type (wt) plaque size. However, ppGpp⁰ does not significantly alter burst size or latent period, and only modestly affects T4 transcript abundance, while ΔdksA increases burst size (2-fold) without affecting latent period and increases the levels of several Pe transcripts at 5 min post-infection. In a T4motAam infection, ΔdksA increases plaque size and shortens latent period, and the levels of specific middle RNAs increase due to more transcription from Pe’s that extend into these middle genes. We conclude that DksA lowers T4 early gene expression. Consequently, ΔdksA results in a more productive wt infection and ameliorates the poor expression of middle genes in a T4motAam infection. As DksA does not inhibit Pe transcription in vitro, regulation may be indirect or perhaps requires additional factors.
Collapse
|
24
|
Abstract
The adaptations that protect pathogenic microorganisms against the cytotoxicity of nitric oxide (NO) engendered in the immune response are incompletely understood. We show here that salmonellae experiencing nitrosative stress suffer dramatic losses of the nucleoside triphosphates ATP, GTP, CTP, and UTP while simultaneously generating a massive burst of the alarmone nucleotide guanosine tetraphosphate. RelA proteins associated with ribosomes overwhelmingly synthesize guanosine tetraphosphate in response to NO as a feedback mechanism to transient branched-chain amino acid auxotrophies. Guanosine tetraphosphate activates the transcription of valine biosynthetic genes, thereby reestablishing branched-chain amino acid biosynthesis that enables the translation of the NO-consuming flavohemoglobin Hmp. Guanosine tetraphosphate synthesized by RelA protects salmonellae from the metabolic stress inflicted by reactive nitrogen species generated in the mammalian host response. This research illustrates the importance of nucleotide metabolism in the adaptation of salmonellae to the nutritional stress imposed by NO released in the innate host response. Nitric oxide triggers dramatic drops in nucleoside triphosphates, the building blocks that power DNA replication; RNA transcription; translation; cell division; and the biosynthesis of fatty acids, lipopolysaccharide, and peptidoglycan. Concomitantly, this diatomic gas stimulates a burst of guanosine tetraphosphate. Global changes in nucleotide metabolism may contribute to the potent bacteriostatic activity of nitric oxide. In addition to inhibiting numerous growth-dependent processes, guanosine tetraphosphate positively regulates the transcription of branched-chain amino acid biosynthesis genes, thereby facilitating the translation of antinitrosative defenses that mediate recovery from nitrosative stress.
Collapse
|
25
|
Bourret TJ, Liu L, Shaw JA, Husain M, Vázquez-Torres A. Magnesium homeostasis protects Salmonella against nitrooxidative stress. Sci Rep 2017; 7:15083. [PMID: 29118452 PMCID: PMC5678156 DOI: 10.1038/s41598-017-15445-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
The PhoPQ two-component regulatory system coordinates the response of Salmonella enterica serovar Typhimurium to diverse environmental challenges encountered during infection of hosts, including changes in Mg2+ concentrations, pH, and antimicrobial peptides. Moreover, PhoPQ-dependent regulation of gene expression promotes intracellular survival of Salmonella in macrophages, and contributes to the resistance of this pathogen to reactive nitrogen species (RNS) generated from the nitric oxide produced by the inducible nitric oxide (NO) synthase of macrophages. We report here that Salmonella strains with mutations of phoPQ are hypersensitive to killing by RNS generated in vitro. The increased susceptibility of ∆phoQ Salmonella to RNS requires molecular O2 and coincides with the nitrotyrosine formation, the oxidation of [4Fe-4S] clusters of dehydratases, and DNA damage. Mutations of respiratory NADH dehydrogenases prevent nitrotyrosine formation and abrogate the cytotoxicity of RNS against ∆phoQ Salmonella, presumably by limiting the formation of peroxynitrite (ONOO-) arising from the diffusion-limited reaction of exogenous NO and endogenous superoxide (O2•-) produced in the electron transport chain. The mechanism underlying PhoPQ-mediated resistance to RNS is linked to the coordination of Mg2+ homeostasis through the PhoPQ-regulated MgtA transporter. Collectively, our investigations are consistent with a model in which PhoPQ-dependent Mg2+ homeostasis protects Salmonella against nitrooxidative stress.
Collapse
Affiliation(s)
- Travis J Bourret
- Department of Medical Microbiology and Immunology, 2500 California Plaza, Creighton University, Criss I, Rm 521, Omaha, NE 68178, USA.
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jeff A Shaw
- Department of Medical Microbiology and Immunology, 2500 California Plaza, Creighton University, Criss I, Rm 521, Omaha, NE 68178, USA
| | - Maroof Husain
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama, 35294, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Veterans Affairs Eastern Colorado Health Care System, 1055 Clermont Street, Denver, DO 80220, USA
| |
Collapse
|
26
|
Abstract
In the course of an infection, Salmonella enterica occupies diverse anatomical sites with various concentrations of oxygen (O2) and nitric oxide (NO). These diatomic gases compete for binding to catalytic metal groups of quinol oxidases. Enterobacteriaceae express two evolutionarily distinct classes of quinol oxidases that differ in affinity for O2 and NO as well as stoichiometry of H+ translocated across the cytoplasmic membrane. The investigations presented here show that the dual function of bacterial cytochrome bd in bioenergetics and antinitrosative defense enhances Salmonella virulence. The high affinity of cytochrome bd for O2 optimizes respiratory rates in hypoxic cultures, and thus, this quinol oxidase maximizes bacterial growth under O2-limiting conditions. Our investigations also indicate that cytochrome bd, rather than cytochrome bo, is an intrinsic component of the adaptive antinitrosative toolbox of Salmonella Accordingly, induction of cytochrome bd helps Salmonella grow and respire in the presence of inhibitory NO. The combined antinitrosative defenses of cytochrome bd and the flavohemoglobin Hmp account for a great part of the adaptations that help Salmonella recover from the antimicrobial activity of NO. Moreover, the antinitrosative defenses of cytochrome bd and flavohemoglobin Hmp synergize to promote Salmonella growth in systemic tissues. Collectively, our investigations indicate that cytochrome bd is a critical means by which Salmonella resists the nitrosative stress that is engendered in the innate response of mammalian hosts while it concomitantly allows for proper O2 utilization in tissue hypoxia. IMPORTANCE It is becoming quite apparent that metabolism is critically important to the virulence potential of pathogenic microorganisms. Bacterial cells use a variety of terminal electron acceptors to power electron transport chains and metabolic processes. Of all the electron acceptors available to bacteria, utilization of O2 yields the most energy while diversifying the type of substrates that a pathogen can use. Recent investigations have demonstrated important roles for bd-type quinol oxidases with high affinity for O2 in bacterial pathogenesis. The investigations presented here have revealed that cytochrome bd potentiates virulence of a clinically relevant bacterial pathogen by fueling bioenergetics of prokaryotic cells while protecting the respiratory chain against NO toxicity. The adaptive antinitrosative defenses afforded by cytochrome bd synergize with other NO-detoxifying systems to preserve cellular bioenergetics, thereby promoting bacterial virulence in tissue hypoxia.
Collapse
|
27
|
Krishnamurthy M, Moore RT, Rajamani S, Panchal RG. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol 2016; 16:258. [PMID: 27814687 PMCID: PMC5097395 DOI: 10.1186/s12866-016-0876-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. RESEARCH The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. CONCLUSIONS The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Richard T. Moore
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Sathish Rajamani
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Rekha G. Panchal
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| |
Collapse
|
28
|
Abstract
Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA.
| | - Elaine R Frawley
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
30
|
Redox-Active Sensing by Bacterial DksA Transcription Factors Is Determined by Cysteine and Zinc Content. mBio 2016; 7:e02161-15. [PMID: 27094335 PMCID: PMC4850274 DOI: 10.1128/mbio.02161-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The four-cysteine zinc finger motif of the bacterial RNA polymerase regulator DksA is essential for protein structure, canonical control of the stringent response to nutritional limitation, and thiol-based sensing of oxidative and nitrosative stress. This interdependent relationship has limited our understanding of DksA-mediated functions in bacterial pathogenesis. Here, we have addressed this challenge by complementing ΔdksA Salmonella with Pseudomonas aeruginosa dksA paralogues that encode proteins differing in cysteine and zinc content. We find that four-cysteine, zinc-bound (C4) and two-cysteine, zinc-free (C2) DksA proteins are able to mediate appropriate stringent control in Salmonella and that thiol-based sensing of reactive species is conserved among C2 and C4 orthologues. However, variations in cysteine and zinc content determine the threshold at which individual DksA proteins sense and respond to reactive species. In particular, zinc acts as an antioxidant, dampening cysteine reactivity and raising the threshold of posttranslational thiol modification with reactive species. Consequently, C2 DksA triggers transcriptional responses in Salmonella at levels of oxidative or nitrosative stress normally tolerated by Salmonella expressing C4 orthologues. Inappropriate transcriptional regulation by C2 DksA increases the susceptibility of Salmonella to the antimicrobial effects of hydrogen peroxide and nitric oxide, and attenuates virulence in macrophages and mice. Our findings suggest that the redox-active sensory function of DksA proteins is finely tuned to optimize bacterial fitness according to the levels of oxidative and nitrosative stress encountered by bacterial species in their natural and host environments. In order to cause disease, pathogenic bacteria must rapidly sense and respond to antimicrobial pressures encountered within the host. Prominent among these stresses, and of particular relevance to intracellular pathogens such as Salmonella, are nutritional restriction and the enzymatic generation of reactive oxygen and nitrogen species. The conserved transcriptional regulator DksA controls adaptive responses to nutritional limitation, as well as to oxidative and nitrosative stress. Here, we demonstrate that each of these functions contributes to bacterial pathogenesis. Our observations highlight the importance of metabolic adaptation in bacterial pathogenesis and show the mechanism by which DksA orthologues are optimized to sense the levels of oxidative and nitrosative stress encountered in their natural habitats. An improved understanding of the conserved processes used by bacteria to sense, respond to, and limit host defense will inform the development of novel strategies to treat infections caused by pathogenic, potentially multidrug-resistant bacteria.
Collapse
|
31
|
Crawford MA, Henard CA, Tapscott T, Porwollik S, McClelland M, Vázquez-Torres A. DksA-Dependent Transcriptional Regulation in Salmonella Experiencing Nitrosative Stress. Front Microbiol 2016; 7:444. [PMID: 27065993 PMCID: PMC4815678 DOI: 10.3389/fmicb.2016.00444] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023] Open
Abstract
Redox-based signaling is fundamental to the capacity of bacteria to sense, and respond to, nitrosative and oxidative stress encountered in natural and host environments. The conserved RNA polymerase regulatory protein DksA is a thiol-based sensor of reactive nitrogen and oxygen species. DksA-dependent transcriptional control promotes antinitrosative and antioxidative defenses that contribute to Salmonella pathogenesis. The specific adaptive changes mediated by DksA in response to reactive species, however, have not been elucidated. Herein, we characterize DksA-dependent changes in gene expression in Salmonella enterica experiencing nitrosative stress. Genome-wide expression analysis of wild-type and ΔdksA Salmonella exposed to the nitric oxide (•NO) donor DETA NONOate demonstrated •NO- and DksA-dependent regulatory control of 427 target genes. Transcriptional changes centered primarily on genes encoding aspects of cellular metabolism. Several antioxidants and oxidoreductases important in redox buffering, •NO detoxification, and damage repair were also observed to be up-regulated in an •NO- and DksA-dependent manner. Compared to wild-type bacteria, •NO-treated ΔdksA Salmonella exhibited a de-repression of genes encoding components of iron homeostasis and failed to activate sulfur assimilation and cysteine biosynthetic operons. As cysteine is integral to efficient antinitrosative and antioxidative defense and repair programs, we further examined the redox-responsive transcriptional control of cysteine biosynthesis by DksA. These investigations revealed that the activation of genes comprising cysteine biosynthesis also occurs in response to hydrogen peroxide, is dependent upon the redox-sensing zinc finger motif of DksA, and requires the transcriptional regulator CysB. Our observations demonstrate that DksA mediates global adaptation to nitrosative stress in Salmonella and provide unique insight into a novel regulatory mechanism by which cysteine biosynthesis is controlled in response to reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Matthew A Crawford
- Department of Immunology and Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Calvin A Henard
- Department of Immunology and Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Timothy Tapscott
- Molecular Biology Program, University of Colorado School of Medicine Aurora, CO, USA
| | - Steffen Porwollik
- Department of Pathology and Laboratory Medicine, University of California, Irvine Irvine, CA, USA
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, University of California, Irvine Irvine, CA, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of MedicineAurora, CO, USA; Veterans Affairs Eastern Colorado Health Care SystemDenver, CO, USA
| |
Collapse
|
32
|
The Stringent Response Regulator DksA Is Required for Salmonella enterica Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation, and Intestinal Colonization. Infect Immun 2015; 84:375-84. [PMID: 26553464 DOI: 10.1128/iai.01135-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/03/2015] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular human and animal bacterial pathogen posing a major threat to public health worldwide. Salmonella pathogenicity requires complex coordination of multiple physiological and virulence pathways. DksA is a conserved Gram-negative regulator that belongs to a distinct group of transcription factors that bind directly to the RNA polymerase secondary channel, potentiating the effect of the signaling molecule ppGpp during a stringent response. Here, we established that in S. Typhimurium, dksA is induced during the logarithmic phase and DksA is essential for growth in minimal defined medium and plays an important role in motility and biofilm formation. Furthermore, we determined that DksA positively regulates the Salmonella pathogenicity island 1 and motility-chemotaxis genes and is necessary for S. Typhimurium invasion of human epithelial cells and uptake by macrophages. In contrast, DksA was found to be dispensable for S. Typhimurium host cell adhesion. Finally, using the colitis mouse model, we found that dksA is spatially induced at the midcecum during the early stage of the infection and required for gastrointestinal colonization and systemic infection in vivo. Taken together, these data indicate that the ancestral stringent response regulator DksA coordinates various physiological and virulence S. Typhimurium programs and therefore is a key virulence regulator of Salmonella.
Collapse
|
33
|
Rice CJ, Ramachandran VK, Shearer N, Thompson A. Transcriptional and Post-Transcriptional Modulation of SPI1 and SPI2 Expression by ppGpp, RpoS and DksA in Salmonella enterica sv Typhimurium. PLoS One 2015; 10:e0127523. [PMID: 26039089 PMCID: PMC4454661 DOI: 10.1371/journal.pone.0127523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/02/2022] Open
Abstract
The expression of genes within Salmonella Pathogenicity Islands 1 and 2 (SPI1, SPI2) is required to facilitate invasion and intracellular replication respectively of S. Typhimurium in host cell lines. Control of their expression is complex and occurs via a variety of factors operating at transcriptional and post-transcriptional levels in response to the environmental stimuli found within the host. Several of the factors that modulate SPI1 and SPI2 expression are involved in the redistribution or modification of RNA polymerase (RNAP) specificity. These factors include the bacterial alarmone, ppGpp, the alternative sigma factor, RpoS, and the RNAP accessory protein, DksA. In this report we show not only how these three factors modulate SPI1 and SPI2 expression but also how they contribute to the 'phased' expression of SPI1 and SPI2 during progress through late-log and stationary phase in aerobic rich broth culture conditions. In addition, we demonstrate that the expression of at least one SPI1-encoded protein, SipC is subject to DksA-dependent post-transcriptional control.
Collapse
Affiliation(s)
| | | | - Neil Shearer
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| | - Arthur Thompson
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| |
Collapse
|
34
|
Behnsen J, Perez-Lopez A, Nuccio SP, Raffatellu M. Exploiting host immunity: the Salmonella paradigm. Trends Immunol 2015; 36:112-20. [PMID: 25582038 DOI: 10.1016/j.it.2014.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Abstract
Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Araceli Perez-Lopez
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Sean-Paul Nuccio
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA.
| |
Collapse
|
35
|
Mühlig A, Kabisch J, Pichner R, Scherer S, Müller-Herbst S. Contribution of the NO-detoxifying enzymes HmpA, NorV and NrfA to nitrosative stress protection of Salmonella Typhimurium in raw sausages. Food Microbiol 2014; 42:26-33. [PMID: 24929713 DOI: 10.1016/j.fm.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/27/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
The antimicrobial action of the curing agent sodium nitrite (NaNO2) in raw sausage fermentation is thought to mainly depend on the release of cytotoxic nitric oxide (NO) at acidic pH. Salmonella Typhimurium is capable of detoxifying NO via the flavohemoglobin HmpA, the flavorubredoxin NorV and the periplasmic cytochrome C nitrite reductase NrfA. In this study, the contribution of these systems to nitrosative stress tolerance in raw sausages was investigated. In vitro growth assays of the S. Typhimurium 14028 deletion mutants ΔhmpA, ΔnorV and ΔnrfA revealed a growth defect of ΔhmpA in the presence of acidified NaNO2. Transcriptional analysis of the genes hmpA, norV and nrfA in the wild-type showed a 41-fold increase in hmpA transcript levels in the presence of 150 mg/l acidified NaNO2, whereas transcription of norV and nrfA was not enhanced. However, challenge assays performed with short-ripened spreadable sausages produced with 0 or 150 mg/kg NaNO2 failed to reveal a phenotype for any of the mutants compared to the wild-type. Hence, none of the NO detoxification systems HmpA, NorV and NrfA is solely responsible for nitrosative stress tolerance of S. Typhimurium in raw sausages. Whether these systems act cooperatively, or if there are other yet undescribed mechanisms involved is currently unknown.
Collapse
Affiliation(s)
- Anna Mühlig
- Abteilung Mikrobiologie (ZIEL), Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | - Jan Kabisch
- Institut für Mikrobiologie und Biotechnologie, MRI, Bundesforschungsinstitut für Ernährung und Lebensmittel, E.-C.-Baumann-Str. 20, D-95326 Kulmbach, Germany
| | - Rohtraud Pichner
- Institut für Mikrobiologie und Biotechnologie, MRI, Bundesforschungsinstitut für Ernährung und Lebensmittel, E.-C.-Baumann-Str. 20, D-95326 Kulmbach, Germany
| | - Siegfried Scherer
- Abteilung Mikrobiologie (ZIEL), Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany; Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | - Stefanie Müller-Herbst
- Abteilung Mikrobiologie (ZIEL), Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany; Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|
36
|
Henard CA, Tapscott T, Crawford MA, Husain M, Doulias PT, Porwollik S, Liu L, McClelland M, Ischiropoulos H, Vázquez-Torres A. The 4-cysteine zinc-finger motif of the RNA polymerase regulator DksA serves as a thiol switch for sensing oxidative and nitrosative stress. Mol Microbiol 2014; 91:790-804. [PMID: 24354846 DOI: 10.1111/mmi.12498] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 02/03/2023]
Abstract
We show that thiols in the 4-cysteine zinc-finger motif of DksA, an RNA polymerase accessory protein known to regulate the stringent response, sense oxidative and nitrosative stress. Hydrogen peroxide- or nitric oxide (NO)-mediated modifications of thiols in the DksA 4-cysteine zinc-finger motif release the metal cofactor and drive reversible changes in the α-helicity of the protein. Wild-type and relA spoT mutant Salmonella, but not isogenic dksA-deficient bacteria, experience the downregulation of r-protein and amino acid transport expression after NO treatment, suggesting that DksA can regulate gene expression in response to NO congeners independently of the ppGpp alarmone. Oxidative stress enhances the DksA-dependent repression of rpsM, while preventing the activation of livJ and hisG gene transcription that is supported by reduced, zinc-bound DksA. The inhibitory effects of oxidized DksA on transcription are reversible with dithiothreitol. Our investigations indicate that sensing of reactive species by DksA redox active thiols fine-tunes the expression of translational machinery and amino acid assimilation and biosynthesis in accord with the metabolic stress imposed by oxidative and nitrosative stress. Given the conservation of Cys(114) , and neighbouring hydrophobic and charged amino acids in DksA orthologues, phylogenetically diverse microorganisms may use the DksA thiol switch to regulate transcriptional responses to oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Calvin A Henard
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ferric uptake regulator-dependent antinitrosative defenses in Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 2013; 82:333-40. [PMID: 24166960 DOI: 10.1128/iai.01201-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Herein we report an important role for the ferric uptake regulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive nitrogen species produced by inducible nitric oxide (NO) synthase in an NRAMP1(r) murine model of acute systemic infection. The expression of fur protected Salmonella grown under normoxic and hypoxic conditions against the bacteriostatic activity of NO. The hypersusceptibility of fur-deficient Salmonella to the cytotoxic actions of NO coincides with a marked repression of respiratory activity and the reduced ability of the bacteria to detoxify NO. A fur mutant Salmonella strain contained reduced levels of the terminal quinol oxidases of the electron transport chain. Addition of the heme precursor δ-aminolevulinic acid restored the cytochrome content, respiratory activity, NO consumption, and wild-type growth in bacteria undergoing nitrosative stress. The innate antinitrosative defenses regulated by Fur added to the adaptive response associated with the NO-detoxifying activity of the flavohemoprotein Hmp. Our investigations indicate that, in addition to playing a critical role in iron homeostasis, Fur is an important antinitrosative determinant of Salmonella pathogenesis.
Collapse
|
38
|
Song M, Husain M, Jones-Carson J, Liu L, Henard CA, Vázquez-Torres A. Low-molecular-weight thiol-dependent antioxidant and antinitrosative defences in Salmonella pathogenesis. Mol Microbiol 2012; 87:609-22. [PMID: 23217033 DOI: 10.1111/mmi.12119] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2012] [Indexed: 12/22/2022]
Abstract
We found herein that the intracytoplasmic pool of the low-molecular-weight (LMW) thiol glutathione (GSH) is readily oxidized in Salmonella exposed to nitric oxide (NO). The hypersusceptibility of gshA and gshB mutants lacking γ-glutamylcysteine and glutathione synthetases to NO and S-nitrosoglutathione indicates that GSH antagonizes the bacteriostatic activity of reactive nitrogen species. Metabolites of the GSH biosynthetic pathway do not affect the enzymatic activity of classical NO targets such as quinol oxidases. In contrast, LMW thiols diminish the nitrosative stress experienced by enzymes, such as glutamine oxoglutarate amidotransferase, that contain redox active cysteines. LMW thiols also preserve the transcription of Salmonella pathogenicity island 2 gene targets from the inhibitory activity of nitrogen oxides. These findings are consistent with the idea that GSH scavenges reactive nitrogen species (RNS) other than NO. Compared with the adaptive response afforded by inducible systems such as the hmp-encoded flavohaemoprotein, gshA, encoding the first step of GSH biosynthesis, is constitutively expressed in Salmonella. An acute model of salmonellosis has revealed that the antioxidant and antinitrosative properties associated with the GSH biosynthetic pathway represent a first line of Salmonella resistance against reactive oxygen and nitrogen species engendered in the context of a functional NRAMP1(R) divalent metal transporter.
Collapse
Affiliation(s)
- Miryoung Song
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|