1
|
Tuomisto L, Navarro MA, Mendonça FS, Oliver-Guimerá A, Casanova MI, Keel K, Asin J, Imai D, Stoute S, Mete A, Uzal FA. Clostridium spiroforme-associated enteric disease in domestic rabbits: a retrospective study of 32 cases in California, 1992-2019, and literature review. J Vet Diagn Invest 2024; 36:730-734. [PMID: 38842433 PMCID: PMC11457741 DOI: 10.1177/10406387241257676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Clostridium spiroforme has been associated with spontaneous and antibiotic-associated enteric disease (C. spiroforme-associated enteric disease, CSAED) in rabbits, which is clinically characterized by anorexia, diarrhea, or sudden death. Diagnosis is usually based on gross and microscopic lesions, coupled with finding the characteristic coiled bacteria in intestinal smears. Isolation of C. spiroforme is often challenging, and a PCR protocol has been developed. We reviewed 32 cases of CSAED submitted for autopsy to the Davis, Tulare, and Turlock laboratories of CAHFS between 1992 and 2019. The reported gross findings were soiling of the perineum, tail, and/or hind legs with diarrhea (16 of 32); gastric (16 of 32), small intestinal (6 of 32), cecal (15 of 32), and/or colonic (4 of 32) distention with brown-to-green, watery content; and serosal hemorrhages in the cecum (15 of 32). The most common microscopic finding was necrotizing enteritis (19 of 32), followed by cecal mucosal or submucosal edema (8 of 32), necrotizing or pleocellular typhlitis (6 of 32), necrotizing or heterophilic typhlocolitis (6 of 32), and cecal transmural hemorrhages (5 of 32). In all 32 rabbits, typical helically coiled, gram-positive bacilli were observed in fecal or intestinal smears. C. spiroforme was isolated from the intestinal content of 2 of 24 rabbits and detected by PCR assay in 8 of 8 rabbits.
Collapse
Affiliation(s)
- Laura Tuomisto
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Mauricio A. Navarro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Fábio S. Mendonça
- Laboratory of Animal Diagnosis, Federal Rural University of Pernambuco, Pernambuco, Brazil
| | - Arturo Oliver-Guimerá
- branches, and Departments of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - M. Isabel Casanova
- branches, and Departments of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Kevin Keel
- branches, and Departments of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Javier Asin
- California Animal Health and Food Safety Laboratory System–San Bernardino, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Denise Imai
- branches, and Departments of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Simone Stoute
- Turlock, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Aslı Mete
- Davis, School of Veterinary Medicine, University of California–Davis, CA, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System–San Bernardino, School of Veterinary Medicine, University of California–Davis, CA, USA
| |
Collapse
|
2
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
3
|
Answer to October 2022 Photo Quiz. J Clin Microbiol 2022; 60:e0011822. [PMID: 36259777 PMCID: PMC9580350 DOI: 10.1128/jcm.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Read the full article for the answer.
Collapse
|
4
|
Cryo-EM structures of the translocational binary toxin complex CDTa-bound CDTb-pore from Clostridioides difficile. Nat Commun 2022; 13:6119. [PMID: 36253419 PMCID: PMC9576733 DOI: 10.1038/s41467-022-33888-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Some bacteria express a binary toxin translocation system, consisting of an enzymatic subunit and translocation pore, that delivers enzymes into host cells through endocytosis. The most clinically important bacterium with such a system is Clostridioides difficile (formerly Clostridium). The CDTa and CDTb proteins from its system represent important therapeutic targets. CDTb has been proposed to be a di-heptamer, but its physiological heptameric structure has not yet been reported. Here, we report the cryo-EM structure of CDTa bound to the CDTb-pore, which reveals that CDTa binding induces partial unfolding and tilting of the first CDTa α-helix. In the CDTb-pore, an NSS-loop exists in 'in' and 'out' conformations, suggesting its involvement in substrate translocation. Finally, 3D variability analysis revealed CDTa movements from a folded to an unfolded state. These dynamic structural information provide insights into drug design against hypervirulent C. difficile strains.
Collapse
|
5
|
Anderson DM, Sheedlo MJ, Jensen JL, Lacy DB. Structural insights into the transition of Clostridioides difficile binary toxin from prepore to pore. Nat Microbiol 2020; 5:102-107. [PMID: 31712627 PMCID: PMC6925320 DOI: 10.1038/s41564-019-0601-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
Clostridioides (formerly Clostridium) difficile is a Gram-positive, spore-forming anaerobe and a leading cause of hospital-acquired infection and gastroenteritis-associated death in US hospitals1. The disease state is usually preceded by disruption of the host microbiome in response to antibiotic treatment and is characterized by mild to severe diarrhoea. C. difficile infection is dependent on the secretion of one or more AB-type toxins: toxin A (TcdA), toxin B (TcdB) and the C. difficile transferase toxin (CDT)2. Whereas TcdA and TcdB are considered the primary virulence factors, recent studies suggest that CDT increases the severity of C. difficile infection in some of the most problematic clinical strains3. To better understand how CDT functions, we used cryo-electron microscopy to define the structure of CDTb, the cell-binding component of CDT. We obtained structures of several oligomeric forms that highlight the conformational changes that enable conversion from a prepore to a β-barrel pore. The structural analysis also reveals a glycan-binding domain and residues involved in binding the host-cell receptor, lipolysis-stimulated lipoprotein receptor. Together, these results provide a framework to understand how CDT functions at the host cell interface.
Collapse
Affiliation(s)
- David M Anderson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Michael J Sheedlo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jaime L Jensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
6
|
Stiles BG. Clostridial Binary Toxins: Basic Understandings that Include Cell Surface Binding and an Internal "Coup de Grâce". Curr Top Microbiol Immunol 2019; 406:135-162. [PMID: 27380267 DOI: 10.1007/82_2016_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium species can make a remarkable number of different protein toxins, causing many diverse diseases in humans and animals. The binary toxins of Clostridium botulinum, C. difficile, C. perfringens, and C. spiroforme are one group of enteric-acting toxins that attack the actin cytoskeleton of various cell types. These enterotoxins consist of A (enzymatic) and B (cell binding/membrane translocation) components that assemble on the targeted cell surface or in solution, forming a multimeric complex. Once translocated into the cytosol via endosomal trafficking and acidification, the A component dismantles the filamentous actin-based cytoskeleton via mono-ADP-ribosylation of globular actin. Knowledge of cell surface receptors and how these usurped, host-derived molecules facilitate intoxication can lead to novel ways of defending against these clostridial binary toxins. A molecular-based understanding of the various steps involved in toxin internalization can also unveil therapeutic intervention points that stop the intoxication process. Furthermore, using these bacterial proteins as medicinal shuttle systems into cells provides intriguing possibilities in the future. The pertinent past and state-of-the-art present, regarding clostridial binary toxins, will be evident in this chapter.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, 17201, USA.
| |
Collapse
|
7
|
Receptor-Binding and Uptake of Binary Actin-ADP-Ribosylating Toxins. Curr Top Microbiol Immunol 2019; 406:119-133. [PMID: 27817176 DOI: 10.1007/82_2016_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Binary actin-ADP-ribosylating toxins (e.g., Clostridium botulinum C2 toxin or Clostridium perfringens iota toxin ) consist of two separate proteins: An ADP-ribosyltransferase, which modifies actin thereby inhibiting actin polymerization, and a binding component that forms heptamers after proteolytic activation. While C2 toxin interacts with carbohydrate structures on host cells, the group of iota-like toxins binds to lipolysis-stimulated lipoprotein receptor (LSR). Here, we review LSR and discuss the role and function of LSR in interaction of iota-like toxins with host cells.
Collapse
|
8
|
Beer LA, Tatge H, Schneider C, Ruschig M, Hust M, Barton J, Thiemann S, Fühner V, Russo G, Gerhard R. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains. Toxins (Basel) 2018; 10:toxins10060225. [PMID: 29865182 PMCID: PMC6024811 DOI: 10.3390/toxins10060225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum, the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile. All these binary toxins have ADP-ribosyltransferases (ADPRT) as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN). Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N-terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.
Collapse
Affiliation(s)
- Lara-Antonia Beer
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Carmen Schneider
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Maximilian Ruschig
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Michael Hust
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Jessica Barton
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Stefan Thiemann
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Viola Fühner
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Giulio Russo
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
9
|
Nagahama M, Takehara M, Miyamoto K, Ishidoh K, Kobayashi K. Acid Sphingomyelinase Promotes Cellular Internalization of Clostridium perfringens Iota-Toxin. Toxins (Basel) 2018; 10:toxins10050209. [PMID: 29783772 PMCID: PMC5983265 DOI: 10.3390/toxins10050209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens iota-toxin is a binary actin-ADP-ribosylating toxin composed of the enzymatic component Ia and receptor binding component Ib. Ib binds to a cell surface receptor, forms Ib oligomer in lipid rafts, and associates with Ia. The Ia-Ib complex then internalizes by endocytosis. Here, we showed that acid sphingomyelinase (ASMase) facilitates the cellular uptake of iota-toxin. Inhibitions of ASMase and lysosomal exocytosis by respective blockers depressed cell rounding induced by iota-toxin. The cytotoxicity of the toxin increased in the presence of Ca2+ in extracellular fluids. Ib entered target cells in the presence but not the absence of Ca2+. Ib induced the extracellular release of ASMase in the presence of Ca2+. ASMase siRNA prevented the cell rounding induced by iota-toxin. Furthermore, treatment of the cells with Ib resulted in the production of ceramide in cytoplasmic vesicles. These observations showed that ASMase promotes the internalization of iota-toxin into target cells.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Kazumi Ishidoh
- Division of Molecular Biology, Institute for Health Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
10
|
Czulkies BA, Mastroianni J, Lutz L, Lang S, Schwan C, Schmidt G, Lassmann S, Zeiser R, Aktories K, Papatheodorou P. Loss of LSR affects epithelial barrier integrity and tumor xenograft growth of CaCo-2 cells. Oncotarget 2018; 8:37009-37022. [PMID: 27391068 PMCID: PMC5514888 DOI: 10.18632/oncotarget.10425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022] Open
Abstract
The lipolysis-stimulated lipoprotein receptor (LSR) is a lipoprotein receptor, serves as host receptor for clostridial iota-like toxins and is involved in the formation of tricellular contacts. Of particular interest is the role of LSR in progression of various cancers. Here we aimed to study the tumor growth of LSR-deficient colon carcinoma-derived cell lines HCT116 and CaCo-2 in a mouse xenograft model. Whereas knockout of LSR had no effect on tumor growth of HCT116 cells, we observed that CaCo-2 LSR knockout tumors grew to a smaller size than their wild-type counterparts. Histological analysis revealed increased apoptotic and necrotic cell death in a tumor originating from LSR-deficient CaCo-2 cells. LSR-deficient CaCo-2 cells exhibited increased cell proliferation in vitro and an altered epithelial morphology with impaired targeting of tricellulin to tricellular contacts. In addition, loss of LSR reduced the transepithelial electrical resistance of CaCo-2 cell monolayers and increased permeability for small molecules. Moreover, LSR-deficient CaCo-2 cells formed larger cysts in 3D culture than their wild-type counterparts. Our study provides evidence that LSR affects epithelial morphology and barrier formation in CaCo-2 cells and examines for the first time the effects of LSR deficiency on the tumor growth properties of colon carcinoma-derived cell lines.
Collapse
Affiliation(s)
- Bernd A Czulkies
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Justin Mastroianni
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Lisa Lutz
- Department of Pathology, University Medical Center, ALU, Freiburg, Germany
| | - Sarah Lang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Gudula Schmidt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Silke Lassmann
- Department of Pathology, University Medical Center, ALU, Freiburg, Germany.,German Consortium for Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Present address: Institute of Pharmaceutical Biotechnology. University of Ulm, Ulm, Germany.,Present address: Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
11
|
Aktories K, Papatheodorou P, Schwan C. Binary Clostridium difficile toxin (CDT) - A virulence factor disturbing the cytoskeleton. Anaerobe 2018. [PMID: 29524654 DOI: 10.1016/j.anaerobe.2018.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection causes antibiotics-associated diarrhea and pseudomembranous colitis. Major virulence factors of C. difficile are the Rho-glucosylating toxins TcdA and TcdB. In addition, many, so-called hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT. CDT causes depolymerization of F-actin and rearrangement of the actin cytoskeleton. Thereby, many cellular functions, which depend on actin, are altered. CDT disturbs the dynamic balance between actin and microtubules in target cells. The toxin increases microtubule polymerization and induces the formation of microtubule-based protrusions at the plasma membrane of target cells. Moreover, CDT causes a redistribution of vesicles from the basolateral side to the apical side, where extracellular matrix proteins are released. These processes may increase the adherence of clostridia to target cells. Here, we review the effects of the action of CDT on the actin cytoskeleton and on the microtubule system.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Panagiotis Papatheodorou
- Faculty of Natural Sciences, University of Ulm, 89081 Ulm, Germany; Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
12
|
A comparative analysis of microbial profile of Guinea fowl and chicken using metagenomic approach. PLoS One 2018; 13:e0191029. [PMID: 29494648 PMCID: PMC5832216 DOI: 10.1371/journal.pone.0191029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022] Open
Abstract
Probiotics are live microbial feed supplements that promote growth and health to the host by minimizing non-essential and pathogenic microorganisms in the host’s gastrointestinal tract (GIT). The campaign to minimize excessive use of antibiotics in poultry production has necessitated development of probiotics with broad application in multiple poultry species. Design of such probiotics requires understanding of the diversity or similarity in microbial profiles among avian species of economic importance. Therefore, the objective of this research was to establish and compare the microbial profiles of the GIT of Guinea fowl and chicken and to establish the microbial diversity or similarity between the two avian species. A metagenomic approach consisting of the amplification and sequence analysis of the hypervariable regions V1-V9 of the 16S rRNA gene was used to identify the GIT microbes. Collectively, we detected more than 150 microbial families. The total number of microbial species detected in the chicken GIT was higher than that found in the Guinea Fowl GIT. Our studies also revealed phylogenetic diversity among the microbial species found in chicken and guinea fowl. The phylum Firmicutes was most abundant in both avian species whereas Phylum Actinobacteria was most abundant in chickens than Guinea fowls. The diversity of the microbial profiles found in broiler chickens and Guinea fowls suggest that the design of effective avian probiotics would require species specificity.
Collapse
|
13
|
Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:77-96. [DOI: 10.1007/978-3-319-72799-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Redondo LM, Redondo EA, Dailoff GC, Leiva CL, Díaz-Carrasco JM, Bruzzone OA, Cangelosi A, Geoghegan P, Fernandez-Miyakawa ME. Effects of Clostridium perfringens iota toxin in the small intestine of mice. Anaerobe 2017; 48:83-88. [DOI: 10.1016/j.anaerobe.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023]
|
15
|
Higashi T, Miller AL. Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol Biol Cell 2017; 28:2023-2034. [PMID: 28705832 PMCID: PMC5509417 DOI: 10.1091/mbc.e16-10-0697] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/07/2023] Open
Abstract
Tricellular contacts are the places where three cells meet. In vertebrate epithelial cells, specialized structures called tricellular tight junctions (tTJs) and tricellular adherens junctions (tAJs) have been identified. tTJs are important for the maintenance of barrier function, and disruption of tTJ proteins contributes to familial deafness. tAJs have recently been attracting the attention of mechanobiologists because these sites are hot spots of epithelial tension. Although the molecular components, regulation, and function of tTJs and tAJs, as well as of invertebrate tricellular junctions, are beginning to be characterized, many questions remain. Here we broadly cover what is known about tricellular junctions, propose a new model for tension transmission at tAJs, and discuss key open questions.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
18
|
Ravcheev DA, Thiele I. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides. Front Genet 2017; 8:111. [PMID: 28912798 PMCID: PMC5583593 DOI: 10.3389/fgene.2017.00111] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
19
|
Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology. Curr Top Microbiol Immunol 2017; 399:69-86. [PMID: 27540723 DOI: 10.1007/82_2016_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mono-ADP-ribosylation is a major post-translational modification performed by bacterial toxins, which transfer an ADP-ribose moiety to a substrate acceptor residue. Actin- and Rho-specific ADP-ribosylating toxins (ARTs) are typical ARTs known to have very similar tertiary structures but totally different targets. Actin-specific ARTs are the A components of binary toxins, ADP-ribosylate actin at Arg177, leading to the depolymerization of the actin cytoskeleton. On the other hand, C3-like exoenzymes are Rho-specific ARTs, ADP-ribosylate Rho GTPases at Asn41, exerting an indirect effect on the actin cytoskeleton. This review focuses on the differences and similarities of actin- and Rho-specific ARTs, especially with respect to their substrate recognition and cell entry mechanisms, based on structural studies.
Collapse
|
20
|
Crystal structure and structure-based mutagenesis of actin-specific ADP-ribosylating toxin CPILE-a as novel enterotoxin. PLoS One 2017; 12:e0171278. [PMID: 28199340 PMCID: PMC5310789 DOI: 10.1371/journal.pone.0171278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023] Open
Abstract
Unusual outbreaks of food poisoning in Japan were reported in which Clostridium perfringens was strongly suspected to be the cause based on epidemiological information and fingerprinting of isolates. The isolated strains lack the typical C. perfringens enterotoxin (CPE) but secrete a new enterotoxin consisting of two components: C. perfringens iota-like enterotoxin-a (CPILE-a), which acts as an enzymatic ADP-ribosyltransferase, and CPILE-b, a membrane binding component. Here we present the crystal structures of apo-CPILE-a, NAD+-CPILE-a and NADH-CPILE-a. Though CPILE-a structure has high similarity with known iota toxin-a (Ia) with NAD+, it possesses two extra-long protruding loops from G262-S269 and E402-K408 that are distinct from Ia. Based on the Ia-actin complex structure, we focused on actin-binding interface regions (I-V) including two protruding loops (PT) and examined how mutations in these regions affect the ADP-ribosylation activity of CPILE-a. Though some site-directed mutagenesis studies have already been conducted on the actin binding site of Ia, in the present study, mutagenesis studies were conducted against both α- and β/γ-actin in CPILE-a and Ia. Interestingly, CPILE-a ADP-ribosylates both α- and β/γ-actin, but its sensitivity towards β/γ-actin is 36% compared with α-actin. Our results contrast to that only C2-I ADP-ribosylates β/γ-actin. We also showed that PT-I and two convex-concave interactions in CPILE-a are important for actin binding. The current study is the first detailed analysis of site-directed mutagenesis in the actin binding region of Ia and CPILE-a against both α- and β/γ-actin.
Collapse
|
21
|
EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin. Toxins (Basel) 2016; 8:101. [PMID: 27043629 PMCID: PMC4848627 DOI: 10.3390/toxins8040101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.
Collapse
|
22
|
Schwan C, Aktories K. Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins. Curr Top Microbiol Immunol 2016; 399:35-51. [PMID: 27726005 DOI: 10.1007/82_2016_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large group of bacterial protein toxins, including binary ADP-ribosylating toxins, modify actin at arginine-177, thereby actin polymerization is blocked and the actin cytoskeleton is redistributed. Modulation of actin functions largely affects other components of the cytoskeleton, especially microtubules and septins. Here, recent findings about the functional interconnections of the actin cytoskeleton with microtubules and septins, affected by bacterial toxins, are reviewed.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
23
|
Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks. PLoS One 2015; 10:e0138183. [PMID: 26584048 PMCID: PMC4652906 DOI: 10.1371/journal.pone.0138183] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins’ gene(s) among the Genus Clostridium.
Collapse
|
24
|
Pore-forming activity of clostridial binary toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:512-25. [PMID: 26278641 DOI: 10.1016/j.bbamem.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
25
|
Abstract
Viruses have evolved intricate mechanisms to gain entry into the host cell. Identification of host proteins that serve as viral receptors has enabled insights into virus particle internalization, host and tissue tropism, and viral pathogenesis. In this review we discuss the most commonly employed methods for virus receptor discovery, specifically highlighting the use of forward genetic screens in human haploid cells. The ability to generate true knockout alleles at high saturation provides a sensitive means to study virus-host interactions. To illustrate the power of such haploid genetic screens, we highlight the discovery of the lysosomal proteins NPC1 and LAMP1 as intracellular receptors for Ebola virus and Lassa virus, respectively. From these studies emerges the notion that receptor usage by these viruses is highly dynamic, involving a programmed switch from cell surface receptor to intracellular receptor. Broad application of genetic knockout approaches will chart functional landscapes of receptors and endocytic pathways hijacked by viruses.
Collapse
Affiliation(s)
- Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| |
Collapse
|
26
|
Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). J Biol Chem 2015; 290:14031-44. [PMID: 25882847 DOI: 10.1074/jbc.m115.650523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 12/17/2022] Open
Abstract
CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757-866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin.
Collapse
Affiliation(s)
- Sarah Hemmasi
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie
| | - Bernd A Czulkies
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Hermann Staudinger Graduate School
| | - Björn Schorch
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie, the Spemann Graduate School of Biology and Medicine, and
| | - Antonia Veit
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie
| | - Klaus Aktories
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
27
|
Redondo LM, Carrasco JMD, Redondo EA, Delgado F, Miyakawa MEF. Clostridium perfringens type E virulence traits involved in gut colonization. PLoS One 2015; 10:e0121305. [PMID: 25799452 PMCID: PMC4370460 DOI: 10.1371/journal.pone.0121305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/30/2015] [Indexed: 02/04/2023] Open
Abstract
Clostridium perfringens type E disease in ruminants has been characterized by hemorrhagic enteritis or sudden death. Although type E isolates are defined by the production of alpha and iota toxin, little is known about the pathogenesis of C. perfringens type E infections. Thus far, the role of iota toxin as a virulence factor is unknown. In this report, iota toxin showed positive effects on adherence and colonization of C. perfringens type E while having negative effect on the adherence of type A cells. In-vitro and in-vivo models suggest that toxinotype E would be particularly adapted to exploit the changes induced by iota toxin in the surface of epithelial cells. In addition, type E strains produce metabolites that affected the growth of potential intra-specific competitors. These results suggest that the alteration of the enterocyte morphology induced by iota toxin concomitantly with the specific increase of type E cell adhesion and the strong intra-specific growth inhibition of other strains could be competitive traits inherent to type E isolates that improve its fitness within the bovine gut environment.
Collapse
Affiliation(s)
- Leandro M. Redondo
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan M. Díaz Carrasco
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Enzo A. Redondo
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Delgado
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
| | - Mariano E. Fernández Miyakawa
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
28
|
Schmidt G, Papatheodorou P, Aktories K. Novel receptors for bacterial protein toxins. Curr Opin Microbiol 2015; 23:55-61. [DOI: 10.1016/j.mib.2014.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 01/05/2023]
|
29
|
Nowland MH, Brammer DW, Garcia A, Rush HG. Biology and Diseases of Rabbits. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150064 DOI: 10.1016/b978-0-12-409527-4.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beginning in 1931, an inbred rabbit colony was developed at the Phipps Institute for the Study, Treatment and Prevention of Tuberculosis at the University of Pennsylvania. This colony was used to study natural resistance to infection with tuberculosis (Robertson et al., 1966). Other inbred colonies or well-defined breeding colonies were also developed at the University of Illinois College of Medicine Center for Genetics, the Laboratories of the International Health Division of The Rockefeller Foundation, the University of Utrecht in the Netherlands, and Jackson Laboratories. These colonies were moved or closed in the years to follow. Since 1973, the U.S. Department of Agriculture has reported the total number of certain species of animals used by registered research facilities (1997). In 1973, 447,570 rabbits were used in research. There has been an overall decrease in numbers of rabbits used. This decreasing trend started in the mid-1990s. In 2010, 210,172 rabbits were used in research. Despite the overall drop in the number used in research, the rabbit is still a valuable model and tool for many disciplines.
Collapse
|
30
|
Abstract
Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.
Collapse
|
31
|
Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR. Residues involved in the pore-forming activity of theClostridium perfringensiota toxin. Cell Microbiol 2014; 17:288-302. [DOI: 10.1111/cmi.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Knapp
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| | - Elke Maier
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine; University of Würzburg; Versbacher Str. 9 D-97078 Würzburg Germany
| | - Eva Waltenberger
- School of Engineering and Science; Jacobs University Bremen; Campusring 1 D-28759 Bremen Germany
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine; University of Würzburg; Versbacher Str. 9 D-97078 Würzburg Germany
- School of Engineering and Science; Jacobs University Bremen; Campusring 1 D-28759 Bremen Germany
| | - Michel R. Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| |
Collapse
|
32
|
Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 2014; 6:2626-56. [PMID: 25198129 PMCID: PMC4179152 DOI: 10.3390/toxins6092626] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022] Open
Abstract
Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Kisha Pradhan
- Environmental Science Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Jodie M Fleming
- Department of Biology, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | - Ramar Perumal Samy
- Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge 117597, Singapore.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Michel R Popoff
- Bacteries Anaerobies et Toxines, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75724, France.
| |
Collapse
|
33
|
Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR, Schwan C, Aktories K, Kahlert V, Malesevic M, Schiene-Fischer C, Barth H. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. J Mol Biol 2014; 427:1224-38. [PMID: 25058685 DOI: 10.1016/j.jmb.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/03/2014] [Accepted: 07/13/2014] [Indexed: 11/16/2022]
Abstract
Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin and Clostridium difficile CDT belong to the family of binary actin ADP-ribosylating toxins and are composed of a binding/translocation component and a separate enzyme component. The enzyme components ADP-ribosylate G-actin in the cytosol of target cells resulting in depolymerization of F-actin, cell rounding and cell death. The binding/translocation components bind to their cell receptors and form complexes with the respective enzyme components. After receptor-mediated endocytosis, the binding/translocation components form pores in membranes of acidified endosomes and the enzyme components translocate through these pores into the cytosol. This step is facilitated by the host cell chaperone heat shock protein 90 and peptidyl-prolyl cis/trans isomerases including cyclophilin A. Here, we demonstrate that a large isoform of cyclophilin A, the multi-domain enzyme cyclophilin 40 (Cyp40), binds to the enzyme components C2I, Ia and CDTa in vitro. Isothermal titration calorimetry revealed a direct binding to C2I with a calculated affinity of 101 nM and to Ia with an affinity of 1.01 μM. Closer investigation for the prototypic C2I revealed that binding to Cyp40 did not depend on its ADP-ribosyltransferase activity but was stronger for unfolded C2I. The interaction of C2I with Cyp40 was also demonstrated in lysates from C2-treated cells by pull-down. Treatment of cells with a non-immunosuppressive cyclosporine A derivative, which still binds to and inhibits the peptidyl-prolyl cis/trans isomerase activity of cyclophilins, protected cells from intoxication with C2, iota and CDT toxins, offering an attractive approach for development of novel therapeutic strategies against binary actin ADP-ribosylating toxins.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Simon Langer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Eva Kaiser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, University of Ulm, 89081 Ulm, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, 75724 Paris, France
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Viktoria Kahlert
- Max Planck Research Unit for Enzymology of Protein Folding Halle, 06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
34
|
Roeder M, Nestorovich EM, Karginov VA, Schwan C, Aktories K, Barth H. Tailored cyclodextrin pore blocker protects mammalian cells from clostridium difficile binary toxin CDT. Toxins (Basel) 2014; 6:2097-114. [PMID: 25029374 PMCID: PMC4113744 DOI: 10.3390/toxins6072097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 12/11/2022] Open
Abstract
Some Clostridium difficile strains produce, in addition to toxins A and B, the binary toxin Clostridium difficile transferase (CDT), which ADP-ribosylates actin and may contribute to the hypervirulence of these strains. The separate binding and translocation component CDTb mediates transport of the enzyme component CDTa into mammalian target cells. CDTb binds to its receptor on the cell surface, CDTa assembles and CDTb/CDTa complexes are internalised. In acidic endosomes, CDTb mediates the delivery of CDTa into the cytosol, most likely by forming a translocation pore in endosomal membranes. We demonstrate that a seven-fold symmetrical positively charged β-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-β-cyclodextrin, which was developed earlier as a potent inhibitor of the translocation pores of related binary toxins of Bacillus anthracis, Clostridium botulinum and Clostridium perfringens, protects cells from intoxication with CDT. The pore blocker did not interfere with the CDTa-catalyzed ADP-ribosylation of actin or toxin binding to Vero cells but inhibited the pH-dependent membrane translocation of CDTa into the cytosol. In conclusion, the cationic β-cyclodextrin could serve as the lead compound in a development of novel pharmacological strategies against the CDT-producing strains of C. difficile.
Collapse
Affiliation(s)
- Maurice Roeder
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | | - Vladimir A Karginov
- Innovative Biologics, Inc., 13455 Sunrise Valley Dr., Suite 200, Herndon, VA 20171, USA.
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany.
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
35
|
Abstract
In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract.
Collapse
|
36
|
Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 2014; 5:15-27. [PMID: 24253566 PMCID: PMC4049931 DOI: 10.4161/gmic.26854] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylation induces depolymerization of the actin cytoskeleton. Toxin-induced actin depolymerization also produces microtubule-based membrane protrusions which form a network on epithelial cells and increase bacterial adherence. Multiple clinical studies indicate an association between binary toxin genes in C. difficile and increased 30-d CDI mortality independent of PCR ribotype. Further studies including measures of binary toxin in stool, analyses of CDI mortality caused by CDT-producing strains, and examination of the relationship of CDT expression to TcdA and TcdB toxin variants and PCR ribotypes are needed.
Collapse
Affiliation(s)
- Dale N Gerding
- Loyola University Chicago Stritch School of Medicine; Hines Veterans Affairs Hospital; Hines, IL USA,Correspondence to: Dale N Gerding,
| | - Stuart Johnson
- Loyola University Chicago Stritch School of Medicine; Hines Veterans Affairs Hospital; Hines, IL USA
| | - Maja Rupnik
- Institute of Public Health Maribor; University of Maribor, Medical Faculty, and Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins; Ljubljana, Slovenia
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs-University Freiburg; Freiburg, Germany
| |
Collapse
|
37
|
|
38
|
Watanabe K, Watson E, Cremona ML, Millings EJ, Lefkowitch JH, Fischer SG, LeDuc CA, Leibel RL. ILDR2: an endoplasmic reticulum resident molecule mediating hepatic lipid homeostasis. PLoS One 2013; 8:e67234. [PMID: 23826244 PMCID: PMC3691114 DOI: 10.1371/journal.pone.0067234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting “relief” of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time-course over which these studies were conducted, we cannot assign causal primacy to either the effects on hepatic lipid homeostasis or ER stress responses.
Collapse
Affiliation(s)
- Kazuhisa Watanabe
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Elizabeth Watson
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Maria Laura Cremona
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Elizabeth J. Millings
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Jay H. Lefkowitch
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Stuart G. Fischer
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Charles A. LeDuc
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. mBio 2013; 4:e00244-13. [PMID: 23631918 PMCID: PMC3648903 DOI: 10.1128/mbio.00244-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is the leading cause of antibiotics-associated diarrhea and pseudomembranous colitis. Hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT (C. difficile transferase), in addition to the Rho-glucosylating toxins A and B. We recently identified the lipolysis-stimulated lipoprotein receptor (LSR) as the host receptor that mediates uptake of CDT into target cells. Here we investigated in H1-HeLa cells, which ectopically express LSR, the influence of CDT on the plasma membrane distribution of the receptor. We found by fluorescence microscopy that the binding component of CDT (CDTb) induces clustering of LSR into subcompartments of the plasma membrane. Detergent extraction of cells treated with CDTb, followed by sucrose gradient fractionation, uncovered accumulation of LSR in detergent-resistant membranes (DRMs) that contained typical marker proteins of lipid rafts. Membrane cholesterol depletion with methyl-β-cyclodextrin inhibited the association of LSR with DRMs upon addition of CDTb. The receptor-binding domain of CDTb also triggered LSR clustering into DRMs. CDTb-triggered clustering of LSR into DRMs could be confirmed in Caco-2 cells. Our data suggest that CDT forces its receptor to cluster into lipid rafts and that oligomerization of the B component might enhance but is not essential for this process. C. difficile binary toxin CDT is a member of the iota-like, actin ADP-ribosylating toxin family. The mechanism that mediates endocytic uptake of these toxins still remains elusive. Previous studies highlighted the importance of lipid rafts for oligomerization of the binding component of these toxins and for cell entry. Recently, the host cell receptor for this toxin family, namely, the lipolysis-stimulated lipoprotein receptor (LSR), has been identified. Our study now demonstrates that the binding component of CDT (CDTb) induces clustering of LSR into lipid rafts. Importantly, LSR clustering is efficiently induced also by the receptor-binding domain of CDTb, suggesting that oligomerization of the B component of CDT is not the main trigger of this process. The current work extends our knowledge on the cooperative play between iota-like toxins and their receptor.
Collapse
|
40
|
Affiliation(s)
- Julie DeCubellis
- Department of Zoological Companion Animal Medicine, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | | |
Collapse
|
41
|
Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Van Nhieu GT, Pauillac S, Gibert M, Sauvonnet N, Stiles BG, Popoff MR, Barth H. CD44 Promotes intoxication by the clostridial iota-family toxins. PLoS One 2012; 7:e51356. [PMID: 23236484 PMCID: PMC3517468 DOI: 10.1371/journal.pone.0051356] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.
Collapse
Affiliation(s)
- Darran J. Wigelsworth
- Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gordon Ruthel
- Core Imaging Facility, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonie Schnell
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Guy Tran Van Nhieu
- Department of Intracellular Communications and Infectious Microorganisms, College of France, Paris, France
| | - Serge Pauillac
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Maryse Gibert
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Nathalie Sauvonnet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | - Bradley G. Stiles
- Biology Department, Wilson College, Chambersburg, Pennsylvania, United States of America
- * E-mail: (BGS); (HB); (MRP)
| | - Michel R. Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (BGS); (HB); (MRP)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (BGS); (HB); (MRP)
| |
Collapse
|