1
|
Burch-Konda J, Kayastha BB, Achour M, Kubo A, Hull M, Braga R, Winton L, Rogers RR, Lutter EI, Patrauchan MA. EF-hand calcium sensor, EfhP, controls transcriptional regulation of iron uptake by calcium in Pseudomonas aeruginosa. mBio 2024; 15:e0244724. [PMID: 39436074 PMCID: PMC11559002 DOI: 10.1128/mbio.02447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The human pathogen Pseudomonas aeruginosa (Pa) poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca2+-binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca2+-regulated virulence in P. aeruginosa. Here, we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ), and several virulence factors, such as the production of pyocins. The Ca2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca2+ and Fe, and this regulation required a Ca2+-dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to the host.IMPORTANCEPseudomonas aeruginosa (Pa) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca2+ sensor, EfhP, is required for at least 1/3 of the Ca2+ response, including the majority of the iron uptake mechanisms and the production of pyocins. Transcription of efhP itself is regulated by Ca2+ and Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca2+ and associated regulatory mechanisms will serve in the development of future therapeutics targeting Pa's dangerous infections.
Collapse
Affiliation(s)
- Jacob Burch-Konda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Biraj B. Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Myriam Achour
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mackenzie Hull
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lorelei Winton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rendi R. Rogers
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Erika I. Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Tan C, Elumalai NK, Krishnan KN. Preliminary study of microbiologically influenced corrosion by Pseudomonas aeruginosa on high Chromium white iron. PLoS One 2024; 19:e0306164. [PMID: 39163379 PMCID: PMC11335144 DOI: 10.1371/journal.pone.0306164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/12/2024] [Indexed: 08/22/2024] Open
Abstract
Microbiologically Influenced Corrosion (MIC) poses a significant challenge to various industries, leading to substantial economic losses and potential safety hazards. Despite extensive research on the MIC resistance of various materials, there is a lack of studies focusing on High Chromium White Iron (HCWI) alloys, which are widely used in wear-resistant applications. This study addresses this knowledge gap by providing a comprehensive investigation of the MIC resistance of three HCWI alloys with varying chromium contents (22 wt%, 30.7 wt%, and 21 wt%) in the presence of Pseudomonas aeruginosa (P. Aeruginosa), a common bacterial species associated with MIC. The alloys were exposed to an artificial seawater medium inoculated with P.Aeruginosa for 14 days, and their corrosion behaviour was evaluated using electrochemical techniques, surface analysis, and microscopy. Electrochemical Impedance Spectroscopy (EIS) results revealed that the alloy with the highest chromium content (A2, 30.7 wt% Cr) exhibited superior MIC resistance compared to the other alloys (A1, 22 wt% Cr and M1, 21 wt% Cr). The enhanced performance of alloy A2 was attributed to the formation of a more stable and protective passive film, as well as the development of a more compact and less permeable biofilm. The EIS data, interpreted using equivalent circuit models, showed that alloy A2 had the highest charge transfer resistance and the lowest biofilm capacitance, indicating a more effective barrier against corrosive species. Bode plots further confirmed the superior corrosion resistance of alloy A2, with higher impedance values and phase angles at low frequencies compared to alloys A1 and M1. Scanning Electron Microscopy (SEM) and optical microscopy analyses corroborated these findings, showing that alloy A2 had the lowest pit density and size after 14 days of exposure. The insights gained from this study highlight the critical role of chromium content in the MIC resistance of HCWI alloys and have significant implications for the design and selection of materials for applications prone to microbial corrosion.
Collapse
Affiliation(s)
- Cedric Tan
- Faculty of Science and Technology, Energy and Resources Institute, Advanced Manufacturing Alliance, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Naveen Kumar Elumalai
- Faculty of Science and Technology, Energy and Resources Institute, Advanced Manufacturing Alliance, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kannoorpatti Narayanan Krishnan
- Faculty of Science and Technology, Energy and Resources Institute, Advanced Manufacturing Alliance, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
3
|
Merrick CE, Gulati NM, Wencewicz TA. Siderophore-dependent ferrichelatases. Methods Enzymol 2024; 702:281-315. [PMID: 39155116 DOI: 10.1016/bs.mie.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Iron is a crucial secondary metabolite for bacterial proliferation, but its bioavailability under infection conditions is limited by the low solubility of ferric ion and the host's ability to sequester iron by protein chelation. In these iron limiting conditions, bacteria produce and secrete low molecular weight ferric ion chelators, siderophores, to scavenge host iron. Iron bound siderophores are recognized by surface displayed receptors and internalized by active transport preceding the liberation of the iron payload by reduction or cleavage of the siderophore. The traditional paradigms surrounding the interactions between siderophores and their corresponding receptors have relied on canonical protein-ligand binding models that do not accurately reflect the conditions experienced by siderophore binding proteins (SBPs). Research by the Raymond group suggested that a ligand displacement model does not fully describe the role of SBPs in siderophore transport where the ferric ion can be shuttled between siderophore molecules during the transport process. This work inspired further research by the Wencewicz group, which demonstrated that the Staphylococcus aureus SBP FhuD2 can catalyze the transfer of iron from the biological iron source holo-transferrin to a SBP bound iron-free siderophore. The discovery of this ferrichelatase activity represents a novel mechanism of receptor mediated active transport which raises the question: is ferrichelatase activity a unique feature of FhuD2 or a previously unappreciated hallmark of SBPs? This chapter highlights a series of protocols for the general functional characterization of SBPs and methodologies to assay ferrichelatase activity with the hopes of providing the tools to answer this question.
Collapse
Affiliation(s)
- C E Merrick
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - N M Gulati
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - T A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
4
|
Burch-Konda J, Kayastha BB, Kubo A, Achour M, Hull M, Braga R, Winton L, Rogers RR, McCoy J, Lutter EI, Patrauchan MA. EF-Hand Calcium Sensor, EfhP, Controls Transcriptional Regulation of Iron Uptake by Calcium in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574892. [PMID: 38260268 PMCID: PMC10802428 DOI: 10.1101/2024.01.09.574892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The human pathogen Pseudomonas aeruginosa poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca 2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca 2+ -binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca 2+ -regulated virulence in P. aeruginosa . Here we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca 2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca 2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ) and several virulence factors, such as production of pyocins. The Ca 2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca 2+ and Fe, and this regulation required Ca 2+ -dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca 2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca 2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to host. IMPORTANCE Pseudomonas aeruginosa ( Pa ) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca 2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca 2+ sensor, EfhP, is required for at least 1/3 of the Ca 2+ response, including all the iron uptake mechanisms and production of pyocins. Transcription of efhP itself is regulated by Ca 2+ , Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca 2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca 2+ and associated regulatory mechanisms will serve the development of future therapeutics targeting Pa dangerous infections.
Collapse
|
5
|
Hoang TM, Huang W, Gans J, Weiner J, Nowak E, Barbier M, Wilks A, Kane MA, Oglesby AG. The heme-responsive PrrH sRNA regulates Pseudomonas aeruginosa pyochelin gene expression. mSphere 2023; 8:e0039223. [PMID: 37800921 PMCID: PMC10597452 DOI: 10.1128/msphere.00392-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and virulence, yet this nutrient is sequestered by the innate immune system during infection. When iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small RNAs (sRNAs), which post-transcriptionally repress expression of nonessential iron-containing proteins, thus sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are arranged in tandem on the chromosome, allowing for the transcription of a longer heme-responsive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been extensively studied, the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cultures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to the wild type, while the mRNAs for these proteins were not affected by the prrH mutation. We identified complementarity between the PrrH sRNA and the sequence upstream of the pchE mRNA, suggesting the potential for PrrH to directly regulate the expression of genes for pyochelin synthesis. We further showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not shaking conditions. Moreover, we discovered that controlling for the presence of light was critical for examining the impact of PrrH on pchE expression. As such, our study reports on the first likely target of the PrrH sRNA and highlights key environmental variables that will allow for future characterization of PrrH function. IMPORTANCE In the human host, iron is predominantly in the form of heme, which Pseudomonas aeruginosa can acquire as an iron source during infection. We previously showed that the iron-responsive PrrF small RNAs (sRNAs) are critical for mediating iron homeostasis during P. aeruginosa infection; however, the function of the heme-responsive PrrH sRNA remains unclear. In this study, we identified genes for pyochelin siderophore biosynthesis, which mediates uptake of inorganic iron, as a novel target of PrrH regulation. This study therefore highlights a novel relationship between heme availability and siderophore biosynthesis in P. aeruginosa.
Collapse
Affiliation(s)
- Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jonathan Gans
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jacob Weiner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Evan Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. TOXICS 2023; 11:toxics11050452. [PMID: 37235266 DOI: 10.3390/toxics11050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Jawahar Lal Nehru Medical College (JNMC), Aligarh Muslim University, Aligarh 202002, India
| | - Showkat Ahmad Lone
- Department of Microbiology, Government Medical College, Baramulla 19310, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aquib Ehtram
- La Jolla Institute for Immunology, San Diego, CA 92037, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- Centre of Research & Development, Department of Chemistry, Chandigarh University, Mohali 160055, India
| | - Mohammad Danish
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
7
|
Vaillancourt M, Galdino ACM, Limsuwannarot SP, Celedonio D, Dimitrova E, Broerman M, Bresee C, Doi Y, Lee JS, Parks WC, Jorth P. A compensatory RNase E variation increases Iron Piracy and Virulence in multidrug-resistant Pseudomonas aeruginosa during Macrophage infection. PLoS Pathog 2023; 19:e1010942. [PMID: 37027441 PMCID: PMC10115287 DOI: 10.1371/journal.ppat.1010942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/19/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P. aeruginosa virulence mechanisms. Using a macrophage infection model combined with genomic and transcriptomic analyses, we show that a compensatory mutation in the rne gene, encoding RNase E, increased pyoverdine and pyochelin siderophore gene expression, causing macrophage ferroptosis and lysis. We show that iron-bound pyochelin was sufficient to cause macrophage ferroptosis and lysis, however, apo-pyochelin, iron-bound pyoverdine, or apo-pyoverdine were insufficient to kill macrophages. Macrophage killing could be eliminated by treatment with the iron mimetic gallium. RNase E variants were abundant in clinical isolates, and CF sputum gene expression data show that clinical isolates phenocopied RNase E variant functions during macrophage infection. Together these data show how P. aeruginosa RNase E variants can cause host damage via increased siderophore production and host cell ferroptosis but may also be targets for gallium precision therapy.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anna Clara Milesi Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sam P. Limsuwannarot
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Diana Celedonio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Elizabeth Dimitrova
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew Broerman
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine Bresee
- Biostatistics Core, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William C. Parks
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Hoang TM, Huang W, Gans J, Nowak E, Barbier M, Wilks A, Kane MA, Oglesby AG. The heme-responsive PrrH sRNA regulates Pseudomonas aeruginosa pyochelin gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524833. [PMID: 36712080 PMCID: PMC9882372 DOI: 10.1101/2023.01.19.524833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and virulence, yet this nutrient is sequestered by the innate immune system during infection. When iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small regulatory RNAs (sRNAs), which post-transcriptionally repress expression of non-essential iron-containing proteins thus sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are arranged in tandem on the chromosome, allowing for the transcription of a longer heme-responsive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been studied extensively, the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cultures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to wild type, while the mRNAs for these proteins were not affected by prrH mutation. We identified complementarity between the PrrH sRNA and sequence upstream of the pchE mRNA, suggesting potential for PrrH to directly regulate expression of genes for pyochelin synthesis. We further showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not shaking conditions. Moreover, we discovered controlling for the presence of light was critical for examining the impact of PrrH on pchE expression. As such, our study reports on the first likely target of the PrrH sRNA and highlights key environmental variables that will allow for future characterization of PrrH function.
Collapse
Affiliation(s)
- Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Jonathan Gans
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Evan Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD USA
| |
Collapse
|
9
|
Aiyer A, Manos J. The Use of Artificial Sputum Media to Enhance Investigation and Subsequent Treatment of Cystic Fibrosis Bacterial Infections. Microorganisms 2022; 10:microorganisms10071269. [PMID: 35888988 PMCID: PMC9318996 DOI: 10.3390/microorganisms10071269] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
In cystic fibrosis (CF), mutations in the CF transmembrane conductance regulator protein reduce ionic exchange in the lung, resulting in thicker mucus, which impairs mucociliary function, airway inflammation and infection. The mucosal and nutritional environment of the CF lung is inadequately mimicked by commercially available growth media, as it lacks key components involved in microbial pathogenesis. Defining the nutritional composition of CF sputum has been a long-term goal of in vitro research into CF infections to better elucidate bacterial growth and infection pathways. This narrative review highlights the development of artificial sputum medium, from a viable in vitro method for understanding bacterial mechanisms utilised in CF lung, to uses in the development of antimicrobial treatment regimens and examination of interactions at the epithelial cell surface and interior by the addition of host cell layers. The authors collated publications based on a PubMed search using the key words: “artificial sputum media” and “cystic fibrosis”. The earliest iteration of artificial sputum media were developed in 1997. Formulations since then have been based either on published data or chemically derived from extracted sputum. Formulations contain combinations of mucin, extracellular DNA, iron, amino acids, and lipids. A valuable advantage of artificial sputum media is the ability to standardise media composition according to experimental requirements.
Collapse
|
10
|
King M, Kubo A, Kafer L, Braga R, McLeod D, Khanam S, Conway T, Patrauchan MA. Calcium-Regulated Protein CarP Responds to Multiple Host Signals and Mediates Regulation of Pseudomonas aeruginosa Virulence by Calcium. Appl Environ Microbiol 2021; 87:e00061-21. [PMID: 33674436 PMCID: PMC8117776 DOI: 10.1128/aem.00061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections. Previously, we showed that elevated calcium (Ca2+) levels increase the production of virulence factors in P. aeruginosa In an effort to characterize the Ca2+ regulatory network, we identified a Ca2+-regulated β-propeller protein, CarP, and showed that expression of the encoding gene is controlled by the Ca2+-regulated two-component system CarSR. Here, by using a Galleria melonella model, we showed that CarP plays a role in regulating P. aeruginosa virulence. By using transcriptome sequencing (RNA-Seq), reverse transcription (RT)-PCR, quantitative RT-PCR (RT-qPCR), and promoter fusions, we determined that carP is transcribed into at least two transcripts and regulated by several bacterial and host factors. The transcription of carP is elevated in response to Ca2+ in P. aeruginosa cystic fibrosis isolates and PAO1 laboratory strain. Elevated Fe2+ also induces carP The simultaneous addition of Ca2+ and Fe2+ increased the carP promoter activity synergistically, which requires the presence of CarR. In silico analysis of the intergenic sequence upstream of carP predicted recognition sites of RhlR/LasR, OxyR, and LexA, suggesting regulation by quorum sensing (QS) and oxidative stress. In agreement, the carP promoter was activated in response to stationary-phase PAO1 supernatant and required the presence of elevated Ca2+ and CarR but remained silent in the triple mutant lacking rhlI, lasI, and pqsA synthases. We also showed that carP transcription is regulated by oxidative stress and that CarP contributes to P. aeruginosa Ca2+-dependent H2O2 tolerance. The multifactorial regulation of carP suggests that CarP plays an important role in P. aeruginosa adaptations to host environments.IMPORTANCEP. aeruginosa is a human pathogen causing life-threatening infections. It is particularly notorious for its ability to adapt to diverse environments within the host. Understanding the signals and the signaling pathways enabling P. aeruginosa adaptation is imperative for developing effective therapies to treat infections caused by this organism. One host signal of particular importance is calcium. Previously, we identified a component of the P. aeruginosa calcium-signaling network, CarP, whose expression is induced by elevated levels of calcium. Here, we show that carP plays an important role in P. aeruginosa virulence and is upregulated in P. aeruginosa strains isolated from sputa of patients with cystic fibrosis. We also identified several bacterial and host factors that regulate the transcription of carP Such multifactorial regulation highlights the interconnectedness between regulatory circuits and, together with the pleotropic effect of CarP on virulence, suggests the importance of this protein in P. aeruginosa adaptations to the host.
Collapse
Affiliation(s)
- Michelle King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Leah Kafer
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel McLeod
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sharmily Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
11
|
Cunrath O, Graulier G, Carballido-Lopez A, Pérard J, Forster A, Geoffroy VA, Saint Auguste P, Bumann D, Mislin GLA, Michaud-Soret I, Schalk IJ, Fechter P. The pathogen Pseudomonas aeruginosa optimizes the production of the siderophore pyochelin upon environmental challenges. Metallomics 2020; 12:2108-2120. [PMID: 33355556 DOI: 10.1039/d0mt00029a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Siderophores are iron chelators produced by bacteria to access iron, an essential nutrient. The pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, the former with a high affinity for iron and the latter with a lower affinity. Furthermore, the production of both siderophores involves a positive auto-regulatory loop: the presence of the ferri-siderophore complex is essential for their large production. Since pyochelin has a lower affinity for iron it was hard to consider the role of pyochelin in drastic competitive environments where the host or the environmental microbiota produce strong iron chelators and may inhibit iron chelation by pyochelin. We showed here that the pyochelin pathway overcomes this difficulty through a more complex regulating mechanism for pyochelin production than previously described. Indeed, in the absence of pyoverdine, and thus higher difficulty to access iron, the bacteria are able to produce pyochelin independently of the presence of ferri-pyochelin. The regulation of the pyochelin pathway appeared to be more complex than expected with a more intricate tuning between repression and activation. Consequently, when the bacteria cannot produce pyoverdine they are able to produce pyochelin even in the presence of strong iron chelators. Such results support a more complex and varied role for this siderophore than previously described, and complexify the battle for iron during P. aeruginosa infection.
Collapse
Affiliation(s)
- Olivier Cunrath
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Endicott N, Rivera GSM, Yang J, Wencewicz TA. Emergence of Ferrichelatase Activity in a Siderophore-Binding Protein Supports an Iron Shuttle in Bacteria. ACS CENTRAL SCIENCE 2020; 6:493-506. [PMID: 32341999 PMCID: PMC7181320 DOI: 10.1021/acscentsci.9b01257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 05/08/2023]
Abstract
Siderophores are small-molecule high-affinity multidentate chelators selective for ferric iron that are produced by pathogenic microbes to aid in nutrient sequestration and enhance virulence. In Gram-positive bacteria, the currently accepted paradigm in siderophore-mediated iron acquisition is that effluxed metal-free siderophores extract ferric iron from biological sources and the resulting ferric siderophore complex undergoes diffusion-controlled association with a surface-displayed siderophore-binding protein (SBP) followed by ABC permease-mediated translocation across the cell envelope powered by ATP hydrolysis. Here we show that a more efficient paradigm is possible in Gram-positive bacteria where extracellular metal-free siderophores associate directly with apo-SBPs on the cell surface and serve as non-covalent cofactors that enable the holo-SBPs to non-reductively extract ferric iron directly from host metalloproteins with so-called "ferrichelatase" activity. The resulting SBP-bound ferric siderophore complex is ready for import through an associated membrane permease and enzymatic turnover is achieved through cofactor replacement from the readily available pool of extracellular siderophores. This new "iron shuttle" model closes a major knowledge gap in microbial iron acquisition and defines new roles of the siderophore and SBP as cofactor and enzyme, respectively, in addition to the classically accepted roles as a transport substrate and receptor pair. We propose the formal name "siderophore-dependent ferrichelatases" for this new class of catalytic SBPs.
Collapse
|
13
|
Proteomic Analysis of the Pseudomonas aeruginosa Iron Starvation Response Reveals PrrF Small Regulatory RNA-Dependent Iron Regulation of Twitching Motility, Amino Acid Metabolism, and Zinc Homeostasis Proteins. J Bacteriol 2019; 201:JB.00754-18. [PMID: 30962354 DOI: 10.1128/jb.00754-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/31/2019] [Indexed: 12/16/2022] Open
Abstract
Iron is a critical nutrient for most microbial pathogens, and the immune system exploits this requirement by sequestering iron. The opportunistic pathogen Pseudomonas aeruginosa exhibits a high requirement for iron yet an exquisite ability to overcome iron deprivation during infection. Upon iron starvation, P. aeruginosa induces the expression of several high-affinity iron acquisition systems, as well as the PrrF small regulatory RNAs (sRNAs) that mediate an iron-sparing response. Here, we used liquid chromatography-tandem mass spectrometry to conduct proteomics of the iron starvation response of P. aeruginosa Iron starvation increased levels of multiple proteins involved in amino acid catabolism, providing the capacity for iron-independent entry of carbons into the tricarboxylic acid (TCA) cycle. Proteins involved in sulfur assimilation and cysteine biosynthesis were reduced upon iron starvation, while proteins involved in iron-sulfur cluster biogenesis were increased, highlighting the central role of iron in P. aeruginosa metabolism. Iron starvation also resulted in changes in the expression of several zinc-responsive proteins and increased levels of twitching motility proteins. Subsequent analyses provided evidence for the regulation of many of these proteins via posttranscriptional regulatory events, some of which are dependent upon the PrrF sRNAs. Moreover, we showed that iron-regulated twitching motility is partially dependent upon the prrF locus, highlighting a novel link between the PrrF sRNAs and motility. These findings add to the known impacts of iron starvation in P. aeruginosa and outline potentially novel roles for the PrrF sRNAs in iron homeostasis and pathogenesis.IMPORTANCE Iron is central for growth and metabolism of almost all microbial pathogens, and as such, this element is sequestered by the host innate immune system to restrict microbial growth. Here, we used label-free proteomics to investigate the Pseudomonas aeruginosa iron starvation response, revealing a broad landscape of metabolic and metal homeostasis changes that have not previously been described. We further provide evidence that many of these processes, including twitching motility, are regulated through the iron-responsive PrrF small regulatory RNAs. As such, this study demonstrates the power of proteomics for defining stress responses of microbial pathogens.
Collapse
|
14
|
Comparison between Pseudomonas aeruginosa siderophores and desferrioxamine for iron acquisition from ferritin. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Background: Siderophore is an iron chelator produced by microorganism. Pseudomonas aeruginosa produces two siderophores (pyoverdin and pyochelin). Desferrioxamine is a siderophore used in thalassemia patients to treat an iron overload of vital organs. Objective: Compare the ability of pyoverdin, pyochelin, and desferrioxamine for iron mobilization from ferritin. Materials and Methods: In vitro experiment, the ability of P. aeruginosa siderophores and desferrioxamine for iron mobilization from ferritin was compared by using a dialysis membrane assay at pH values of 7.4 and 6.0. Stimulation of P. aeruginosa PAO1 growth by all siderophores was studied in glucose minimum medium. Results: All three compounds were capable of iron mobilization at both pHs. At pH 6.0, the most effectiveness compound was desferrioxamine (31.6%), followed by pyoverdin (21.5%) and pyochelin (13.7%) compared on weight basis, each at 10 μg/mL. At equimolar concentration, their activities were desferrioxamine (38.5±1.2%), followed by pyoverdin (32.0±4.8%) and pyochelin (26.7±1.9%), respectively. Conclusion: The most effective compound in iron mobilization from ferritin was desferrioxamine, followed by pyoverdin and pyochelin respectively.
Collapse
|
15
|
Effects of long-term weekly iron and folic acid supplementation on lower genital tract infection - a double blind, randomised controlled trial in Burkina Faso. BMC Med 2017; 15:206. [PMID: 29166928 PMCID: PMC5700548 DOI: 10.1186/s12916-017-0967-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Provision of routine iron supplements to prevent anaemia could increase the risk for lower genital tract infections as virulence of some pathogens depends on iron availability. This trial in Burkina Faso assessed whether weekly periconceptional iron supplementation increased the risk of lower genital tract infection in young non-pregnant and pregnant women. METHODS Genital tract infections were assessed within a double blind, controlled, non-inferiority trial of malaria risk among nulliparous women, randomised to receive either iron and folic acid or folic acid alone, weekly, under direct observation for 18 months. Women conceiving during this period entered the pregnancy cohort. End assessment (FIN) for women remaining non-pregnant was at 18 months. For the pregnancy cohort, end assessment was at the first scheduled antenatal visit (ANC1). Infection markers included Nugent scores for abnormal flora and bacterial vaginosis (BV), T. vaginalis PCR, vaginal microbiota, reported signs and symptoms, and antibiotic and anti-fungal prescriptions. Iron biomarkers were assessed at baseline, FIN and ANC1. Analysis compared outcomes by intention to treat and in iron replete/deficient categories. RESULTS A total of 1954 women (mean 16.8 years) were followed and 478 (24.5%) became pregnant. Median supplement adherence was 79% (IQR 59-90%). Baseline BV prevalence was 12.3%. At FIN and ANC1 prevalence was 12.8% and 7.0%, respectively (P < 0.011). T. vaginalis prevalence was 4.9% at FIN and 12.9% at ANC1 (P < 0.001). BV and T. vaginalis prevalence and microbiota profiles did not differ at trial end-points. Iron-supplemented non-pregnant women received more antibiotic treatments for non-genital infections (P = 0.014; mainly gastrointestinal infections (P = 0.005), anti-fungal treatments for genital infections (P = 0.014) and analgesics (P = 0.008). Weekly iron did not significantly reduce iron deficiency prevalence. At baseline, iron-deficient women were more likely to have normal vaginal flora (P = 0.016). CONCLUSIONS Periconceptional weekly iron supplementation of young women did not increase the risk of lower genital tract infections but did increase general morbidity in the non-pregnant cohort. Unabsorbed gut iron due to malaria could induce enteric infections, accounting for the increased administration of antibiotics and antifungals in the iron-supplemented arm. This finding reinforces concerns about routine iron supplementation in highly malarious areas. TRIAL REGISTRATION Trial registration number NCT01210040 . Registered with Clinicaltrials.gov on 27 September 2010.
Collapse
|
16
|
Kim TS, Ham SY, Park BB, Byun Y, Park HD. Lauroyl Arginate Ethyl Blocks the Iron Signals Necessary for Pseudomonas aeruginosa Biofilm Development. Front Microbiol 2017; 8:970. [PMID: 28611763 PMCID: PMC5447684 DOI: 10.3389/fmicb.2017.00970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/15/2017] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium capable of forming a biofilm on living and non-living surfaces, which frequently leads to undesirable consequences. We found that lauroyl arginate ethyl (LAE), a synthetic non-oxidizing biocide, inhibited biofilm formation by P. aeruginosa at a sub-growth inhibitory concentration under both static and flow conditions. A global transcriptome analysis was conducted using a gene chip microarray to identify the genes targeted by LAE. In response to LAE treatment, P. aeruginosa cells up-regulated iron acquisition and signaling genes and down-regulated iron storage genes. LAE demonstrated the capacity to chelate iron in an experiment in which free LAE molecules were measured by increasing the ratio of iron to LAE. Furthermore, compared to untreated cells, P. aeruginosa cells treated with LAE exhibited enhanced twitching motility, a phenotype that is usually evident when the cells are starved for iron. Taken together, these results imply that LAE generated iron-limiting conditions, and in turn, blocked iron signals necessary for P. aeruginosa biofilm development. As destroying or blocking signals leading to biofilm development would be an efficient way to mitigate problematic biofilms, our findings suggest that LAE can aid in reducing P. aeruginosa biofilms for therapeutic and industrial purposes.
Collapse
Affiliation(s)
- Taek-Seung Kim
- School of Civil, Environmental and Architectural Engineering, Korea UniversitySeoul, South Korea
| | - So-Young Ham
- School of Civil, Environmental and Architectural Engineering, Korea UniversitySeoul, South Korea
| | - Bernie B Park
- College of Pharmacy, Korea UniversitySejong, South Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea UniversitySejong, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea UniversitySeoul, South Korea
| |
Collapse
|
17
|
Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection. Infect Immun 2016; 84:2324-2335. [PMID: 27271740 DOI: 10.1128/iai.00098-16] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe(2+) acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe(3+) transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities.
Collapse
|
18
|
Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci U S A 2016; 113:1642-7. [PMID: 26729873 DOI: 10.1073/pnas.1516979113] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients' acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.
Collapse
|
19
|
Ghosh S, Sar P. Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). WATER RESEARCH 2013; 47:6992-7005. [PMID: 24210546 DOI: 10.1016/j.watres.2013.08.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/20/2013] [Accepted: 08/17/2013] [Indexed: 05/25/2023]
Abstract
Diversity of culturable bacterial populations within the Arsenic (As) contaminated groundwater of North Eastern state (Assam) of India is studied. From nine As contaminated samples 89 bacterial strains are isolated. 16S rRNA gene sequence analysis reveals predominance of Brevundimonas (35%) and Acidovorax (23%) along with Acinetobacter (10%), Pseudomonas (9%) and relatively less abundant (<5%) Undibacterium, Herbaspirillum, Rhodococcus, Staphylococcus, Bosea, Bacillus, Ralstonia, Caulobacter and Rhizobiales members. High As(III) resistance (MTC 10-50 mM) is observed for the isolates obtained from As(III) enrichment, particularly for 3 isolates of genus Brevundimonas (MTC 50 mM). In contrast, high resistance to As(V) (MTC as high as 550 mM) is present as a ubiquitous property, irrespective of isolates' enrichment condition. Bacterial genera affiliated to other groups showed relatively lower degree of As resistance [MTCs of 15-20 mM As(III) and 250-350 mM As(V)]. As(V) reductase activity is detected in strains with high As(V) as well as As(III) resistance. A strong correlation could be established among isolates capable of reductase activity and siderophore production as well as As(III) tolerance. A large number of isolates (nearly 50%) is capable of anaerobic respiration using alternate inorganic electron acceptors [As(V), Se(VI), Fe(III), [NO(3)(2), SO(4)(2), S(2)O(3)(2). Ability to utilize different carbon sources ranging from C2-C6 compounds along with some complex sugars is also observed. Particularly, a number of strains is found to possess ability to grow chemolithotrophically using As(III) as the electron donor. The study reports for the first time the identity and metabolic abilities of bacteria in As contaminated ground water of North East India, useful to elucidate the microbial role in influencing mobilization of As in the region.
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | | |
Collapse
|
20
|
Sarkar A, Kazy SK, Sar P. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:363-376. [PMID: 23238642 DOI: 10.1007/s10646-012-1031-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
Sixty-four arsenic (As) resistant bacteria isolated from an arsenic rich groundwater sample of West Bengal were characterized to investigate their potential role in subsurface arsenic mobilization. Among the isolated strains predominance of genera Agrobacterium/Rhizobium, Ochrobactrum and Achromobacter which could grow chemolitrophically and utilize arsenic as electron donor were detected. Higher tolerance to As(3+) [maximum tolerable concentration (MTC): ≥10 mM], As(5+) (MTC: ≥100 mM) and other heavy metals like Cu(2+), Cr(2+), Ni(2+) etc. (MTC: ≥10 mM), presence of arsenate reductase and siderophore was frequently observed among the isolates. Ability to produce arsenite oxidase and phosphatase enzyme was detected in 50 and 34 % of the isolates, respectively. Although no direct correlation among taxonomic identity of bacterial strains and their metabolic abilities as mentioned above was apparent, several isolates affiliated to genera Ochrobactrum, Achromobacter and unclassified Rhizobiaceae members were found to be highly resistant to As(3+) and As(5+) and positive for all the test properties. Arsenate reductase activity was found to be conferred by arsC gene, which in many strains was coupled with arsenite efflux gene arsB as well. Phylogenetic incongruence between the 16S rRNA and ars genes lineages indicated possible incidence of horizontal gene transfer for ars genes. Based on the results we propose that under the prevailing low nutrient condition inhabitant bacteria capable of using inorganic electron donors play a synergistic role wherein siderophores and phosphatase activities facilitate the release of sediment bound As(5+), which is subsequently reduced by arsenate reductase resulting into the mobilization of As(3+) in groundwater.
Collapse
Affiliation(s)
- Angana Sarkar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | | | | |
Collapse
|
21
|
Victoria FDC, Bervald CMP, da Maia LC, de Sousa RO, Panaud O, de Oliveira AC. Phylogenetic relationships and selective pressure on gene families related to iron homeostasis in land plants. Genome 2012; 55:883-900. [PMID: 23231606 DOI: 10.1139/gen-2012-0064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron is involved in many metabolic processes, such as respiration and photosynthesis, and therefore an essential element for plant development. Comparative analysis of gene copies between crops and lower plant groups can shed light on the evolution of genes important to iron homeostasis. A phylogenetic analysis of five metal homeostasis gene families (NAS, NRAMP, YSL, FRO, and IRT) selected in monocots, dicots, gymnosperms, and bryophytes was performed. The homologous genes were found using known iron homeostasis gene sequences of Oryza sativa, Arabidopsis thaliana, and Physcomitrella patens as queries. The phylogeny was constructed using bioinfomatics tools. A total of 243 gene sequences for 30 plant species were found. The evolutionary fingerprint analysis suggested a purifying selective pressure of iron homeostasis genes for most of the plant gene homologues. The NAS and YSL genes appear to accumulate more negative selection sites, suggesting a strong selective pressure on these two gene families. The divergence time analysis indicates IRT as the most ancient gene family and FRO as the most recent. NRAMP and YSL genes appear to share a close relationship in the evolution of iron homeostasis gene families.
Collapse
|
22
|
Hare NJ, Soe CZ, Rose B, Harbour C, Codd R, Manos J, Cordwell SJ. Proteomics of Pseudomonas aeruginosa Australian Epidemic Strain 1 (AES-1) Cultured under Conditions Mimicking the Cystic Fibrosis Lung Reveals Increased Iron Acquisition via the Siderophore Pyochelin. J Proteome Res 2011; 11:776-95. [DOI: 10.1021/pr200659h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nathan J. Hare
- School of Molecular Bioscience, The University of Sydney, 2006 Australia
| | | | | | | | | | | | - Stuart J. Cordwell
- School of Molecular Bioscience, The University of Sydney, 2006 Australia
| |
Collapse
|
23
|
Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, Loria R. The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. MICROBIOLOGY-SGM 2011; 157:2681-2693. [PMID: 21757492 DOI: 10.1099/mic.0.047977-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Siderophores are high-affinity iron-chelating compounds produced by bacteria for iron uptake that can act as important virulence determinants for both plant and animal pathogens. Genome sequencing of the plant pathogen Streptomyces scabies 87-22 revealed the presence of a putative pyochelin biosynthetic gene cluster (PBGC). Liquid chromatography (LC)-MS analyses of culture supernatants of S. scabies mutants, in which expression of the cluster is upregulated and which lack a key biosynthetic gene from the cluster, indicated that pyochelin is a product of the PBGC. LC-MS comparisons with authentic standards on a homochiral stationary phase confirmed that pyochelin and not enantio-pyochelin (ent-pyochelin) is produced by S. scabies. Transcription of the S. scabies PBGC occurs via ~19 kb and ~3 kb operons and transcription of the ~19 kb operon is regulated by TetR- and AfsR-family proteins encoded by the cluster. This is the first report, to our knowledge, of pyochelin production by a Gram-positive bacterium; interestingly regulation of pyochelin production is distinct from characterized PBGCs in Gram-negative bacteria. Though pyochelin-mediated iron acquisition by Pseudomonas aeruginosa is important for virulence, in planta bioassays failed to demonstrate that pyochelin production by S. scabies is required for development of disease symptoms on excised potato tuber tissue or radish seedlings.
Collapse
Affiliation(s)
- Ryan F Seipke
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Joanna Bicz
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Paris Laskaris
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alice M Yaxley
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | - Rosemary Loria
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Martin LW, Reid DW, Sharples KJ, Lamont IL. Pseudomonas siderophores in the sputum of patients with cystic fibrosis. Biometals 2011; 24:1059-67. [PMID: 21643731 DOI: 10.1007/s10534-011-9464-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/12/2011] [Indexed: 01/02/2023]
Abstract
The lungs of patients with cystic fibrosis become chronically infected with the bacterium Pseudomonas aeruginosa, which heralds progressive lung damage and a decline in health. Iron is a crucial micronutrient for bacteria and its acquisition is a key factor in infection. P. aeruginosa can acquire this element by secreting pyoverdine and pyochelin, iron-chelating compounds (siderophores) that scavenge iron and deliver it to the bacteria. Siderophore-mediated iron uptake is generally considered a key factor in the ability of P. aeruginosa to cause infection. We have investigated the amounts of pyoverdine in 148 sputum samples from 36 cystic fibrosis patients (30 infected with P. aeruginosa and 6 as negative controls). Pyoverdine was present in 93 samples in concentrations between 0.30 and 51 μM (median 4.6 μM) and there was a strong association between the amount of pyoverdine and the number of P. aeruginosa present. However, pyoverdine was not present, or below the limits of detection (~0.3 μM), in 21 sputum samples that contained P. aeruginosa. Pyochelin was also absent, or below the limits of detection (~1 μM), in samples from P. aeruginosa-infected patients with little or no detectable pyoverdine. Our data show that pyoverdine is an important iron-scavenging molecule for P. aeruginosa in many cystic fibrosis patients, but other P. aeruginosa iron-uptake systems must be active in some patients to satisfy the bacterial need for iron.
Collapse
Affiliation(s)
- Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
25
|
Ammons MCB, Ward LS, Dowd S, James GA. Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation. Int J Antimicrob Agents 2011; 37:316-23. [PMID: 21377840 DOI: 10.1016/j.ijantimicag.2010.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 12/16/2010] [Accepted: 12/22/2010] [Indexed: 01/07/2023]
Abstract
With an ageing and ever more obese population, chronic wounds such as diabetic ulcers, pressure ulcers and venous leg ulcers are an increasingly relevant medical concern. Identification of bacterial biofilm contamination as a major contributor to non-healing wounds demands biofilm-targeted strategies to manage chronic wounds. Pseudomonas aeruginosa has been identified as a principal biofilm-forming opportunistic pathogen in chronic wounds. The innate immune molecule lactoferrin and the rare sugar alcohol xylitol have been demonstrated to be co-operatively efficacious against P. aeruginosa biofilms in vitro. Data presented here propose a model for the molecular mechanism behind this co-operative antimicrobial effect. Lactoferrin iron chelation was identified as the primary means by which lactoferrin destabilises the bacterial membrane. By microarray analysis, 183 differentially expressed genes of ≥ 1.5-fold difference were detected. Interestingly, differentially expressed transcripts included the operon encoding components of the pyochelin biosynthesis pathway. Furthermore, siderophore detection verified that xylitol is the component of this novel synergistic treatment that inhibits the ability of the bacteria to produce siderophores under conditions of iron restriction. The findings presented here demonstrate that whilst lactoferrin treatment of P. aeruginosa biofilms results in destabilisation of the bacterial cell membrane though iron chelation, combined treatment with lactoferrin and xylitol inhibits the ability of P. aeruginosa biofilms to respond to environmental iron restriction.
Collapse
Affiliation(s)
- Mary Cloud B Ammons
- Center for Biofilm Engineering, 366 EPS Building, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
26
|
Reid DW, Anderson GJ, Lamont IL. Role of lung iron in determining the bacterial and host struggle in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 297:L795-802. [DOI: 10.1152/ajplung.00132.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is the most common lethal genetic disorder in Caucasian populations. It is a multiorgan system disease that affects the lungs, gastrointestinal tract, liver, and pancreas. The majority of morbidity and mortality in CF relates to chronic airway infection with a variety of bacterial species, commencing in very early infancy, which results in lung destruction and ultimately organ failure ( 41 , 43 ). This review focuses on iron homeostasis in the CF lung and its role in determining the success and chronicity of Pseudomonas aeruginosa infection. There have been previous excellent reviews regarding iron metabolism in the lower respiratory tract and mechanisms of P. aeruginosa iron acquisition, and we direct readers to these articles for further background reading ( 31 , 53 , 58 , 77 , 96 ). In this review, we have brought the “two sides of the coin” together to provide a holistic overview of the relationship between host and bacterial iron homeostasis and put this information into the context of current understanding on infection in the CF lung.
Collapse
Affiliation(s)
- D. W. Reid
- Menzies Research Institute, Hobart, Tasmania
| | - G. J. Anderson
- Iron Metabolism Unit, Queensland Institute of Medical Research, Brisbane, Australia; and
| | - I. L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2009; 2:101-11. [PMID: 20701869 DOI: 10.1016/j.jiph.2009.08.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are a serious health problem affecting millions of people each year. Infections of the urinary tract are the second most common type of infection in the body. Catheterization of the urinary tract is the most common factor, which predisposes the host to these infections. Catheter-associated UTI (CAUTI) is responsible for 40% of nosocomial infections, making it the most common cause of nosocomial infection. CAUTI accounts for more than 1 million cases in hospitals and nursing homes annually and often involve uropathogens other than Escherichia coli. While the epidemiology and pathogenic mechanisms of uropathogenic Escherichia coli have been extensively studied, little is known about the pathogenesis of UTIs caused by other organisms like Pseudomonas aeruginosa. Scanty available information regarding pathogenesis of UTIs caused by P. aeruginosa is an important bottleneck in developing effective preventive approaches. The aim of this review is to summarize some of the advances made in the field of P. aeruginosa induced UTIs and draws attention of the workers that more basic research at the level of pathogenesis is needed so that novel strategies can be designed.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | | | |
Collapse
|
28
|
Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. Biometals 2009; 22:53-60. [PMID: 19130260 DOI: 10.1007/s10534-008-9197-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/07/2008] [Indexed: 12/30/2022]
Abstract
The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients.
Collapse
|
29
|
Miller CE, Rock JD, Ridley KA, Williams PH, Ketley JM. Utilization of lactoferrin-bound and transferrin-bound iron by Campylobacter jejuni. J Bacteriol 2008; 190:1900-11. [PMID: 18203832 PMCID: PMC2258864 DOI: 10.1128/jb.01761-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/03/2008] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni NCTC 11168 was capable of growth to levels comparable with FeSO4 in defined iron-limited medium (minimal essential medium alpha [MEMalpha]) containing ferrilactoferrin, ferritransferrin, or ferri-ovotransferrin. Iron was internalized in a contact-dependent manner, with 94% of cell-associated radioactivity from either 55Fe-loaded transferrin or lactoferrin associated with the soluble cell fraction. Partitioning the iron source away from bacteria significantly decreased cellular growth. Excess cold transferrin or lactoferrin in cultures containing 55Fe-loaded transferrin or lactoferrin resulted in reduced levels of 55Fe uptake. Growth of C. jejuni in the presence of ferri- and an excess of apoprotein reduced overall levels of growth. Following incubation of cells in the presence of ferrilactoferrin, lactoferrin became associated with the cell surface; binding levels were higher after growth under iron limitation. A strain carrying a mutation in the cj0178 gene from the iron uptake system Cj0173c-Cj0178 demonstrated significantly reduced growth promotion in the presence of ferrilactoferrin in MEMalpha compared to wild type but was not affected in the presence of heme. Moreover, this mutant acquired less 55Fe than wild type when incubated with 55Fe-loaded protein and bound less lactoferrin. Complementation restored the wild-type phenotype when cells were grown with ferrilactoferrin. A mutant in the ABC transporter system permease gene (cj0174c) showed a small but significant growth reduction. The cj0176c-cj0177 intergenic region contains two separate Fur-regulated iron-repressible promoters. This is the first demonstration that C. jejuni is capable of acquiring iron from members of the transferrin protein family, and our data indicate a role for Cj0178 in this process.
Collapse
Affiliation(s)
- Claire E Miller
- Department of Genetics, Adrian Building, University Road, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Thomas MS. Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 2007; 20:431-52. [PMID: 17295049 DOI: 10.1007/s10534-006-9065-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 11/28/2006] [Indexed: 01/21/2023]
Abstract
The Burkholderia cepacia complex (Bcc) is comprised of at least 10 closely related species of Gram-negative proteobacteria that are associated with infections in certain groups of immunocompromised individuals, particularly those with cystic fibrosis. Infections in humans tend to occur in the lungs, which present an iron-restricted environment to a prospective pathogen, and accordingly members of the Bcc appear to possess efficient mechanisms for iron capture. These bacteria specify up to four different types of siderophore (ornibactin, pyochelin, cepabactin and cepaciachelin) that employ the full repertoire of iron-binding groups present in most naturally occurring siderophores. Members of the Bcc are also capable of utilising some exogenous siderophores that they are not able to synthesise. In addition to siderophore-mediated mechanisms of iron uptake, the Bcc possess mechanisms for acquiring iron from haem and from ferritin. The Bcc therefore appear to be well-equipped for life in an iron-poor environment.
Collapse
Affiliation(s)
- Mark S Thomas
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
31
|
Marr AK, Overhage J, Bains M, Hancock REW. The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility. Microbiology (Reading) 2007; 153:474-482. [PMID: 17259618 DOI: 10.1099/mic.0.2006/002519-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an important nosocomial opportunistic human pathogen and a major cause of chronic lung infections in individuals with cystic fibrosis. Serious infections by this organism are often treated with a combination of aminoglycosides and semi-synthetic penicillins. Subinhibitory concentrations of antibiotics are now being recognized for their role in microbial persistence and the development of antimicrobial resistance, two very important clinical phenomena. An extensive screen of a P. aeruginosa PAO1 luciferase gene fusion library was performed to identify genes that were differentially regulated during exposure to subinhibitory gentamicin. It was demonstrated that subinhibitory concentrations of gentamicin and tobramycin induced a set of genes that are likely to affect the interaction of P. aeruginosa with host cells, including the gene encoding Lon protease, which is known to play a major role in protein quality control. Studies with a lon mutant compared to its parent and a complemented strain indicated that this protein was essential for biofilm formation and motility in P. aeruginosa.
Collapse
Affiliation(s)
- Alexandra K Marr
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Joerg Overhage
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
32
|
Zaitseva J, Lu J, Olechoski KL, Lamb AL. Two crystal structures of the isochorismate pyruvate lyase from Pseudomonas aeruginosa. J Biol Chem 2006; 281:33441-9. [PMID: 16914555 DOI: 10.1074/jbc.m605470200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
33
|
Cobessi D, Celia H, Pattus F. Crystal Structure at High Resolution of Ferric-pyochelin and its Membrane Receptor FptA from Pseudomonas aeruginosa. J Mol Biol 2005; 352:893-904. [PMID: 16139844 DOI: 10.1016/j.jmb.2005.08.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/03/2005] [Accepted: 08/07/2005] [Indexed: 01/30/2023]
Abstract
Pyochelin is a siderophore and virulence factor common to Burkholderia cepacia and several Pseudomonas strains. We describe at 2.0 A resolution the crystal structure of the pyochelin outer membrane receptor FptA bound to the iron-pyochelin isolated from Pseudomonas aeruginosa. One pyochelin molecule bound to iron is found in the protein structure, providing the first three-dimensional structure at the atomic level of this siderophore. The pyochelin molecule provides a tetra-dentate coordination of iron, while the remaining bi-dentate coordination is ensured by another molecule not specifically recognized by the protein. The overall structure of the pyochelin receptor is typical of the TonB-dependent transporter superfamily, which uses the proton motive force from the cytoplasmic membrane through the TonB-ExbB-ExbD energy transducing complex to transport ferric ions across the bacterial outer membrane: a transmembrane 22 beta-stranded barrel occluded by a N-terminal domain that contains a mixed four-stranded beta-sheet. The N-terminal TonB box is disordered in two crystal forms, and loop L8 is found to point towards the iron-pyochelin complex, suggesting that the receptor is in a transport-competent conformation.
Collapse
Affiliation(s)
- David Cobessi
- Département Récepteurs et Protéines Membranaires, UMR7100 CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67412 Illkirch, France.
| | | | | |
Collapse
|
34
|
Harjai K, Khandwahaa RK, Mittal R, Yadav V, Gupta V, Sharma S. Effect of pH on production of virulence factors by biofilm cells ofPseudomonas aeruginosa. Folia Microbiol (Praha) 2005; 50:99-102. [PMID: 16110911 DOI: 10.1007/bf02931455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effect of pH on production of extracellular virulence factors of Pseudomonas aeruginosa grown on catheter in biofilm was determined. Alginate and proteinase production was higher at pH 8; in contrast, siderophores (pyochelin and pyoverdin) were synthesized more intensively at pH 5.
Collapse
Affiliation(s)
- K Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| | | | | | | | | | | |
Collapse
|
35
|
Shen J, Meldrum A, Poole K. FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 2002; 184:3268-75. [PMID: 12029043 PMCID: PMC135083 DOI: 10.1128/jb.184.12.3268-3275.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2002] [Accepted: 03/12/2002] [Indexed: 11/20/2022] Open
Abstract
Alignment of the Pseudomonas aeruginosa ferric pyoverdine receptor, FpvA, with similar ferric-siderophore receptors revealed that the mature protein carries an extension of ca. 70 amino acids at its N terminus, an extension shared by the ferric pseudobactin receptors of P. putida. Deletion of fpvA from the chromosome of P. aeruginosa reduced pyoverdine production in this organism, as a result of a decline in expression of genes (e.g., pvdD) associated with the biosynthesis of the pyoverdine peptide moiety. Wild-type fpvA restored pvd expression in the mutant, thereby complementing its pyoverdine deficiency, although a deletion derivative of fpvA encoding a receptor lacking the N terminus of the mature protein did not. The truncated receptor was, however, functional in pyoverdine-mediated iron uptake, as evidenced by its ability to promote pyoverdine-dependent growth in an iron-restricted medium. These data are consistent with the idea that the N-terminal extension plays a role in FpvA-mediated pyoverdine biosynthesis in P. aeruginosa.
Collapse
Affiliation(s)
- Jiangsheng Shen
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
36
|
DeWitte JJ, Cox CD, Rasmussen GT, Britigan BE. Assessment of structural features of the pseudomonas siderophore pyochelin required for its ability to promote oxidant-mediated endothelial cell injury. Arch Biochem Biophys 2001; 393:236-44. [PMID: 11556810 DOI: 10.1006/abbi.2001.2517] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that iron chelated to the Pseudomonas aeruginosa siderophore pyochelin enhances oxidant-mediated injury to pulmonary artery endothelial cells by catalyzing hydroxyl radical (HO(*)) formation. Therefore, we examined pyochelin structural/chemical features that may be important in this process. Five pyochelin analogues were examined for (i) capacity to accentuate oxidant-mediated endothelial cell injury, (ii) HO(*) catalytic ability, (iii) iron transfer to endothelial cells, and (iv) hydrophobicity. All compounds catalyzed similar HO(*) production, but only the hydrophobic ones containing a thiazolidine ring enhanced cell injury. Transfer of iron to endothelial cells did not correlate with cytotoxicity. Finally, binding of Fe(3+) by pyochelin led to Fe(2+) formation, perhaps explaining how Fe(3+)-pyochelin augments H(2)O(2)-mediated cell injury via HO(*) formation. The ability to bind iron in a catalytic form and the molecule's thiazolidine ring, which increases its hydrophobicity, are key to pyochelin's cytotoxicity. Reduction of Fe(3+) to Fe(2+) may also be important.
Collapse
Affiliation(s)
- J J DeWitte
- Department of Internal Medicine and Research Service, VA Medical Center-Iowa City, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
37
|
Schalk IJ, Hennard C, Dugave C, Poole K, Abdallah MA, Pattus F. Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. Mol Microbiol 2001; 39:351-60. [PMID: 11136456 DOI: 10.1046/j.1365-2958.2001.02207.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Under iron limitation, Pseudomonas aeruginosa secretes a fluorescent siderophore called pyoverdin, which, after complexing iron, is transported back into the cell via its outer membrane receptor FpvA. Previous studies demonstrated co-purification of FpvA with iron-free PaA and reported similar binding affinities of iron-free pyoverdin and ferric-pyoverdin to purified FpvA. The fluorescence resonance energy transfer between iron-free PaA and the FpvA receptor here reveals the existence of an FpvA-pyoverdin complex in P. aeruginosa in vivo, suggesting that the pyoverdin-loaded FpvA is the normal state of the receptor in the absence of iron. Using tritiated ferric-pyoverdin, it is shown that iron-free PaA binds to the outer membrane but is not taken up into the cell, and that in vitro and, presumably, in vivo ferric-pyoverdin displaces the bound iron-free pyoverdin on FpvA-PaA to form FpvA-PaA-Fe complexes. In vivo, the kinetics of formation of this FpvA-PaA-Fe complex are more than two orders of magnitude faster than in vitro and depend on the presence of TonB. In P. aeruginosa, two tonB genes have been identified (tonB1 and tonB2). TonB1 is directly involved in ferric-pyoverdin uptake, and TonB2 seems to be able partially to replace TonB1 in its role in iron acquisition. However, no effect of TonB1 or TonB2 on the apparent affinity of free pyoverdin to FpvA was observed, and a 17-fold difference was measured between the affinities of the two forms of pyoverdin (PaA and PaA-Fe) to FpvA in the absence of TonB1 or TonB2. The mechanism of iron uptake in P. aeruginosa via the pyoverdin pathway is discussed in view of these new findings.
Collapse
Affiliation(s)
- I J Schalk
- Département des Récepteurs et Protéines Membranaires, UPR 9050 CNRS, ESBS, Bld Sébastien Brant, F-67400 Illkirch, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
38
|
Takase H, Nitanai H, Hoshino K, Otani T. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 2000; 68:1834-9. [PMID: 10722571 PMCID: PMC97355 DOI: 10.1128/iai.68.4.1834-1839.2000] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa produces siderophores, pyoverdin and pyochelin, for high-affinity iron uptake. To investigate their contribution to P. aeruginosa infections, we constructed allelic exchange mutants from strain PAO1 which were deficient in producing one or both of the siderophores. When inoculated into the calf muscles of immunosuppressed mice, pyochelin-deficient and pyoverdin-deficient mutants grew and killed the animals as efficiently as PAO1. In contrast, the pyochelin- and pyoverdin-deficient (double) mutant did not show lethal virulence, although it did infect the muscles. On the other hand, when inoculated intranasally, all mutants grew in the lungs and killed immunosuppressed mice. Compared with PAO1, however, the pyoverdin-deficient mutant and the double mutant grew poorly in the lungs, and the latter was significantly attenuated for virulence. Irrespective of the inoculation route, the pyoverdin-deficient and doubly deficient mutants detected in the blood were significantly less numerous than PAO1. Additionally, in vitro examination demonstrated that the growth of the double mutant was extremely reduced under a free-iron-restricted condition with apotransferrin but that the growth reduction was completely canceled by supplementation with hemoglobin as a heme source. These results suggest that both pyoverdin and pyochelin are required for efficient bacterial growth and full expression of virulence in P. aeruginosa infection, although pyoverdin may be comparatively more important for bacterial growth and dissemination. However, the siderophores were not always required for infection. It is possible that non-siderophore-mediated iron acquisition, such as via heme uptake, might also play an important role in P. aeruginosa infections.
Collapse
Affiliation(s)
- H Takase
- New Product Research Laboratories I, Daiichi Pharmaceutical Co., Ltd., Tokyo 134-8630, Japan.
| | | | | | | |
Collapse
|
39
|
Vartivarian SE, Cowart RE. Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch Biochem Biophys 1999; 364:75-82. [PMID: 10087167 DOI: 10.1006/abbi.1999.1109] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study identifies extracellular iron reductases in culture supernatant fluids of the siderophore-producing microorganisms Escherichia coli and Pseudomonas aeruginosa. These enzymes were constitutively produced and reduced and released iron from a variety of ferric chelators. Dialyzable cofactors, necessary for the transfer of electrons in the enzymatic reduction of iron, were identified. The reductases were sensitive to treatment with proteinase K and guanidine-HCl, were not associated with siderophore activity, and were apparently released from the cell as extracellular enzymes. The acquisition of 59Fe2+ by cell suspensions of E. coli and P. aeruginosa was saturable, suggesting that the ferrous iron generated by these reductases can be bound and transported. Salmonella typhimurium mutants feoB, tonB, entB, and entBfeoB, deficient in numerous known iron uptake pathways, were found to exhibit substantial extracellular iron-reducing activities over that of the parent. A hypothesis is proposed in which the extracellular iron reductases excreted by siderophore-producing microorganisms may be responsible for the mobilization of iron during conditions of iron repletion when siderophores are repressed and may also function in concert with siderophores during periods of iron starvation.
Collapse
Affiliation(s)
- S E Vartivarian
- Department of Medical Specialties, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | |
Collapse
|
40
|
Kilburn L, Poole K, Meyer JM, Neshat S. Insertion mutagenesis of the ferric pyoverdine receptor FpvA of Pseudomonas aeruginosa: identification of permissive sites and a region important for ligand binding. J Bacteriol 1998; 180:6753-6. [PMID: 9852025 PMCID: PMC107784 DOI: 10.1128/jb.180.24.6753-6756.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion of an 18-amino-acid-encoding sequence within the fpvA gene identified permissive sites at residues Y350, A402, R451, R521, and R558, consistent with these residues occurring in extramembranous loop regions of the protein. Insertions at R451, R521, and R558 did not adversely affect receptor function, although insertions at Y350 and A402 compromised ferric pyoverdine binding and uptake. The latter region likely contributes to or interacts with the ligand-binding site.
Collapse
Affiliation(s)
- L Kilburn
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
41
|
Crosa JH. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 1997; 61:319-36. [PMID: 9293185 PMCID: PMC232614 DOI: 10.1128/mmbr.61.3.319-336.1997] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and enterobactin systems in Pseudomonas species; the irgB system in Vibrio cholerae; and the plasmid-mediated anguibactin system in Vibrio anguillarum. I hope that by using these diverse paradigms, I will be able to convey a unifying picture of these mechanism and their importance in the maintenance and prosperity of bacteria within their ecological niches.
Collapse
Affiliation(s)
- J H Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|
42
|
Jeong BC, Hawes C, Bonthrone KM, Macaskie LE. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2497-2507. [PMID: 9245831 DOI: 10.1099/00221287-143-7-2509] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growth of Pseudomonas aeruginosa ATCC 15692 was promoted when the strain was cultured in an iron-depleted succinate medium, supplemented with transferrin at 30%, 60% and 100% and lactoferrin at 60% and 100% iron-saturation. No significant differences between cell growth and pyoverdin production were observed when transferrin iron saturation was increased from 30% to 100%; however, cell growth and pyoverdin production were strongly dependent on lactoferrin iron saturation. Lower lactoferrin iron saturation (< 30%) resulted in more pyoverdin production and reduced cell growth. Incubation of pyoverdin (1.0 microM) with 10.0 microM transferrin (30%, 60% and 100% iron-saturated) or lactoferrin (60% and 100% iron-saturated) led to quenching of pyoverdin fluorescence. Also, 24 h incubation of pyoverdin (20.0 microM) with these two proteins (20.0 microM, 30%, 60% and 100% iron-saturated transferrin and 60% and 100% iron-saturated lactoferrin) at 25 degrees C resulted in increased absorbance at 460 nm. Both the fluorescence quenching and absorbance increases were iron-saturation-dependent. Taken together, these results support the conclusion that at physiological pH, P. aeruginosa pyoverdin can acquire from partially iron-saturated transferrin or lactoferrin.
Collapse
Affiliation(s)
- Byeong C Jeong
- School of Biological Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chris Hawes
- School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 OBP, UK
| | - Karen M Bonthrone
- School of Biological Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lynne E Macaskie
- School of Biological Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
43
|
Fouz B, Biosca E, Amaro C. High affinity iron-uptake systems in Vibrio damsela: role in the acquisition of iron from transferrin. J Appl Microbiol 1997. [DOI: 10.1111/j.1365-2672.1997.tb02846.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H. Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 1):35-43. [PMID: 9025276 DOI: 10.1099/00221287-143-1-35] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Eighty-eight Pseudomonas aeruginosa isolates, most of them from the Collection of Bacterial Strains of the Institut Pasteur, Paris, were analysed for their pyoverdine-mediated iron incorporation system by different methods, including pyoverdine isoelectrofocusing analysis, pyoverdine-mediated growth stimulation, immunoblot detection of (ferri)pyoverdine outer-membrane receptor and pyoverdine-facilitated iron uptake. The same grouping of the strains was reached by each of these methods, resulting in the classification of the P. aeruginosa isolates, even those which were devoid of pyoverdine production, into three different siderophore types. Forty-two percent of the strains were identified with the type-strain P. aeruginosa ATCC 15,692 (group I), 42% were identical with the second type-strain P. aeruginosa ATCC 27,853 (group II) and 16% reacted identically with the clinical isolate P. aeruginosa Pa6, whose pyoverdine was recognized in this study to be identical in structure to the pyoverdine produced by a natural isolate, P. aeruginosa strain R. No new pyoverdine species was detected among these strains.
Collapse
Affiliation(s)
- Jean-Marie Meyer
- Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, Unité de Recherche Associée au Centre National de la Recherche Scientifique No. 1481, 28 rue Goethe, F-67000 Strasbourg, France
| | - Alain Stintzi
- Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, Unité de Recherche Associée au Centre National de la Recherche Scientifique No. 1481, 28 rue Goethe, F-67000 Strasbourg, France
| | - Daniel De Vos
- Vlaams Interuniversitair Instituut Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 St-Genesius-Rode, Belgium
| | - Pierre Cornelis
- Vlaams Interuniversitair Instituut Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 St-Genesius-Rode, Belgium
| | - Robert Tappe
- Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, D-50939 Köln, Germany
| | - Kambiz Taraz
- Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, D-50939 Köln, Germany
| | - Herbert Budzikiewicz
- Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, D-50939 Köln, Germany
| |
Collapse
|
45
|
Heinrichs DE, Poole K. PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. J Bacteriol 1996; 178:2586-92. [PMID: 8626326 PMCID: PMC177983 DOI: 10.1128/jb.178.9.2586-2592.1996] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The product of the pchR gene, an AraC-like regulatory protein, is required for production of the FptA ferric pyochelin receptor in response to iron limitation and pyochelin (D. E. Heinrichs and K. Poole, J. Bacteriol. 175:5882-5889, 1993). The influence of iron, pyochelin, PchR, and FptA on fptA and pchR gene expression was assessed with fptA-lacZ and pchR-lacZ transcriptional fusions. As was expected, the expression of fptA decreased dramatically following the inactivation of pchR by the insertion of an OmegaHg cartridge, although the effect (> 10-fold) was not as dramatic as that of pyochelin deficiency, which obviated fptA gene expression. Insertional inactivation of pchR in a pyochelin-deficient (Pch-) background restored fptA expression to levels observed in the pyochelin-producing (Pch+) PchR- strain, suggesting that PchR represses fptA expression in the absence of pyochelin. Consistent with this, the cloned gene caused a five-fold decrease in the expression of the fptA-lacZ fusion in Escherichia coli. pchR gene expression was inducible by iron limitation, a result in agreement with the previous identification of a Fur box upstream of the gene, although the magnitude of the induction was less than that observed for fptA in response to iron limitation. Expression of pchR was effectively absent in a pyochelin-deficient strain, and insertional inactivation of pchR in a Pch+ or Pch- background caused an increase in pchR gene expression. PchR, thus, negatively regulates its own expression. Two related heptameric sequences, CGAGGAA and CGTGGAT, were identified upstream of the putative -35 region of both fptA and pchR and may function as a binding site for PchR. Insertional inactivation of fptA caused a marked decrease in fptA expression in a Pch+ background and obviated the apparent repression of fptA expression in a Pch- background, reminiscent of the effect of a pchR mutation. The fptA mutant did not, however, exhibit a defect in pchR expression. Interestingly, fptA mutants were unable to grow in the presence of pyochelin, suggesting that FptA is the sole outer membrane receptor for ferric pyochelin. These data indicate that PchR functions as both an activator and a repressor in controlling the expression of fptA and pchR. The involvement of FptA in this control is unclear, although it may be important in mediating the pyochelin effect on fptA expression, possibly by modulating PchR activity.
Collapse
Affiliation(s)
- D E Heinrichs
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
46
|
Leoni L, Ciervo A, Orsi N, Visca P. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity. J Bacteriol 1996; 178:2299-313. [PMID: 8636031 PMCID: PMC177938 DOI: 10.1128/jb.178.8.2299-2313.1996] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pvdA gene, encoding the enzyme L-ornithine N5-oxygenase, catalyzes a key step of the pyoverdin biosynthetic pathway in Pseudomonas aeruginosa. Expression studies with a promoter probe vector made it possible to identify three tightly iron-regulated promoter regions in the 5.9-kb DNA fragment upstream of pvdA. The promoter governing pvdA expression was located within the 154-bp sequence upstream of the pvdA translation start site. RNA analysis showed that expression of PvdA is iron regulated at the transcriptional level. Primer extension and S1 mapping experiments revealed two 5'termini of the pvdA transcript, 68 bp (T1) and 43 bp (T2) 5' of the PvdA initiation. The pvdA transcripts were monocystronic, with T1 accounting for 90% of the pvdA mRNA. Fur box-like sequences were apparently absent in the regions 5' of pvdA transcription start sites. A sequence motif resembling the -10 hexamer of AlgU-dependent promoters and the iron starvation box of pyoverdin genes controlled by the sigmaE -like factor PvdS were identified 5' of the T1 start site. The minimum DNA region required for iron-regulated promoter activity was mapped from bp -41 to -154 relative to the ATG translation start site of pvdA. We used pvdA'::lacZ transcriptional fusions and Northern (RNA) analyses to study the involvement of Fur and PvdS in the iron-regulated expression of pvdA. Two fur mutants of P. aeruginosa were much less responsive than wild-type PAO1 to the iron-dependent regulation of pvdA expression. Transcription from the pvdA promoter did not occur in a heterologous host unless in the presence of the pvdS gene in trans and was abrogated in a pvdS mutant of P. aeruginosa. Interaction of the Fur repressor with a 150-bp fragment encompassing the pvdS promoter was demonstrated in vivo by the Fur titration assay and confirmed in vitro by gel retardation experiments with a partially purified Fur preparation. Conversely, the promoter region of pvdA did not interact with Fur. Our results support the hypothesis that the P. aeruginosa Fur repressor indirectly controls pvdA transcription through the intermediary sigma factor PvdS; in the presence of sufficient iron, Fur blocks the pvdS promoter, thus preventing PvdS expression and consequently transcription of pvdA and other pyoverdin biosynthesis genes.
Collapse
Affiliation(s)
- L Leoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | | |
Collapse
|
47
|
Meyer JM, Neely A, Stintzi A, Georges C, Holder IA. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 1996; 64:518-23. [PMID: 8550201 PMCID: PMC173795 DOI: 10.1128/iai.64.2.518-523.1996] [Citation(s) in RCA: 364] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The role of pyoverdin, the main siderophore in iron-gathering capacity produced by Pseudomonas aeruginosa, in bacterial growth in vivo is controversial, although iron is important for virulence. To determine the ability of pyoverdin to compete for iron with the human iron-binding protein transferrin, wild-type P. aeruginosa ATCC 15692 (PAO1 strain) and PAO pyoverdin-deficient mutants were grown at 37 degrees C in bicarbonate-containing succinate medium to which apotransferrin had been added. Growth of the pyoverdin-deficient mutants was fully inhibited compared with that of the wild type but was restored when pyoverdin was added to the medium. Moreover, when growth took place at a temperature at which no pyoverdin production occurred (43 degrees C), the wild-type PAO1 strain behaved the same as the pyoverdin-deficient mutants, with growth inhibited by apotransferrin in the presence of bicarbonate and restored by pyoverdin supplementation. Growth inhibition was never observed in bicarbonate-free succinate medium, whatever the strain and the temperature for growth. In vivo, in contrast to results obtained with the wild-type strain, pyoverdin-deficient mutants demonstrated no virulence when injected at 10(2) CFU into burned mice. However, virulence was restored when purified pyoverdin originating from the wild-type strain was supplemented during the infection. These results strongly suggest that pyoverdin competes directly with transferrin for iron and that it is an essential element for in vivo iron gathering and virulence expression in P. aeruginosa. Rapid removal of iron from [59Fe]ferritransferrin by pyoverdin in vitro supports this view.
Collapse
Affiliation(s)
- J M Meyer
- Laboratoire de Microbiologie et de Génétique, Université Louis-Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
48
|
Merriman TR, Merriman ME, Lamont IL. Nucleotide sequence of pvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases. J Bacteriol 1995; 177:252-8. [PMID: 7798141 PMCID: PMC176582 DOI: 10.1128/jb.177.1.252-258.1995] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa secretes a fluorescent siderophore, pyoverdine, when grown under iron-deficient conditions. Pyoverdine consists of a chromophoric group bound to a partly cyclic octapeptide. As a step toward understanding the molecular events involved in pyoverdine synthesis, we have sequenced a gene, pvdD, required for this process. The gene encodes a 2,448-residue protein, PvdD, which has a predicted molecular mass of 273,061 Da and contains two highly similar domains of about 1,000 amino acids each. The protein is similar to peptide synthetases from a range of bacterial and fungal species, indicating that synthesis of the peptide moiety of pyoverdine proceeds by a nonribosomal mechanism. The pvdD gene is adjacent to a gene, fpvA, which encodes an outer membrane receptor protein required for uptake of ferripyoverdine.
Collapse
Affiliation(s)
- T R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
49
|
Wolz C, Hohloch K, Ocaktan A, Poole K, Evans RW, Rochel N, Albrecht-Gary AM, Abdallah MA, Döring G. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect Immun 1994; 62:4021-7. [PMID: 8063422 PMCID: PMC303062 DOI: 10.1128/iai.62.9.4021-4027.1994] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa produces the siderophores pyoverdin and pyochelin as well as receptors for siderophores in response to iron deprivation. Previously, it has been shown in vitro that at neutral pH purified pyoverdin acquires iron from transferrin only in the presence of P. aeruginosa elastase (LasB), which proteolytically degrades transferrin. We constructed a LasB-negative mutant, PAO1E, by insertional mutagenesis to investigate whether this mutant differs in growth from the parental strain PAO1 in an iron-depleted medium supplemented with transferrin or human serum. PAO1 and PAO1E did not differ in growth with 1.25 microM Fe2-transferrin as the only iron source. Urea gel electrophoresis indicated iron release from intact transferrin during the logarithmic growth phase of PAO1 and PAO1E. A total of 333 microM LasB was synthesized from PAO1 after onset of stationary-phase growth. Quantification of pyoverdin by spectroscopy revealed that up to 900 microM pyroverdin was produced during growth of the strains in medium supplemented with Fe2-transferrin or 10% human serum. Incubation of Fe2-transferrin and purified pyoverdin in concentrations similar to those found in the culture supernatant resulted in release iron from transferrin after 10 h at 37 degrees C. However, LasB significantly enhanced the rate constant for iron acquisition of pyoverdin from transferrin. We conclude that P. aeruginosa can use transferrin as an iron source without further need of LasB or pH changes. This is further supported by experiments with P. aeruginosa K437, which has a defective iron uptake system, and its LasB-negative mutant, K437E. Though K437 and K437E did not differ in growth with Fe2-transferrin as the only iron source, their growth was significantly reduced relative to that of PAO1 and PAO1E.
Collapse
Affiliation(s)
- C Wolz
- Department of General and Environmental Hygiene, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Magariños B, Romalde JL, Lemos ML, Barja JL, Toranzo AE. Iron uptake by Pasteurella piscicida and its role in pathogenicity for fish. Appl Environ Microbiol 1994; 60:2990-8. [PMID: 8085835 PMCID: PMC201754 DOI: 10.1128/aem.60.8.2990-2998.1994] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We evaluated the iron uptake mechanisms in Pasteurella piscicida strains as well as the effect of iron overload on the virulence of these strains for fish. With this aim, the capacity of the strains to obtain iron from transferrin and heme compounds as well as their ability to overcome the inhibitory activity of fish serum was analyzed. All the P. piscicida strains grew in the presence of the iron chelator ethylene-diamine-di (O-hydroxyphenyl acetic acid) or of human transferrin, which was used by a siderophore-mediated mechanism. The chemical tests and cross-feeding assays showed that P. piscicida produced a siderophore which was neither a phenolate nor a hydroxamate. Cross-feeding assays as well as preliminary chromatographic analysis suggest that this siderophore may be chemically related to multocidin. All the P. piscicida isolates utilized hemin and hemoglobin as an iron source, since the virulence of the strains increased when the fish were preinoculated with these compounds. This effect was stronger in the avirulent strains (50% lethal dose was reduced by 4 logs when fish were pretreated with hemin or hemoglobin). Only the pathogenic P. piscicida isolates were resistant to the bactericidal action of the fresh fish serum. The nonpathogenic strains grew in fish serum only when it was heat-inactivated or when it was supplemented with ferric ammonium citrate, hemin, or hemoglobin. In all the strains, at least three iron-regulated outer membrane proteins (IROMPs) (105, 118, and 145 kDa) were increased when the strains were cultured in iron-restricted medium.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología, Universidad de Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|