1
|
Lew SQ, Chong SY, Lau GW. Modulation of pulmonary immune functions by the Pseudomonas aeruginosa secondary metabolite pyocyanin. Front Immunol 2025; 16:1550724. [PMID: 40196115 PMCID: PMC11973339 DOI: 10.3389/fimmu.2025.1550724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic Gram-negative bacterial pathogen. One of its key virulence factors is pyocyanin, a redox-active phenazine secondary metabolite that plays a crucial role in the establishment and persistence of chronic infections. This review provides a synopsis of the mechanisms through which pyocyanin exacerbates pulmonary infections. Pyocyanin induces oxidative stress by generating reactive oxygen and nitrogen species which disrupt essential defense mechanisms in respiratory epithelium. Pyocyanin increases airway barrier permeability and facilitates bacterial invasion. Pyocyanin also impairs mucociliary clearance by damaging ciliary function, resulting in mucus accumulation and airway obstruction. Furthermore, it modulates immune responses by promoting the production of pro-inflammatory cytokines, accelerating neutrophil apoptosis, and inducing excessive neutrophil extracellular trap formation, which exacerbates lung tissue damage. Additionally, pyocyanin disrupts macrophage phagocytic function, hindering the clearance of apoptotic cells and perpetuating inflammation. It also triggers mucus hypersecretion by inactivating the transcription factor FOXA2 and enhancing the IL-4/IL-13-STAT6 and EGFR-AKT/ERK1/2 signaling pathways, leading to goblet cell metaplasia and increased mucin production. Insights into the role of pyocyanin in P. aeruginosa infections may reveal potential therapeutic strategies to alleviate the severity of infections in chronic respiratory diseases including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
| | | | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
2
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
3
|
The two faces of pyocyanin - why and how to steer its production? World J Microbiol Biotechnol 2023; 39:103. [PMID: 36864230 PMCID: PMC9981528 DOI: 10.1007/s11274-023-03548-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
The ambiguous nature of pyocyanin was noted quite early after its discovery. This substance is a recognized Pseudomonas aeruginosa virulence factor that causes problems in cystic fibrosis, wound healing, and microbiologically induced corrosion. However, it can also be a potent chemical with potential use in a wide variety of technologies and applications, e.g. green energy production in microbial fuel cells, biocontrol in agriculture, therapy in medicine, or environmental protection. In this mini-review, we shortly describe the properties of pyocyanin, its role in the physiology of Pseudomonas and show the ever-growing interest in it. We also summarize the possible ways of modulating pyocyanin production. We underline different approaches of the researchers that aim either at lowering or increasing pyocyanin production by using different culturing methods, chemical additives, physical factors (e.g. electromagnetic field), or genetic engineering techniques. The review aims to present the ambiguous character of pyocyanin, underline its potential, and signalize the possible further research directions.
Collapse
|
4
|
Gao P, Guo K, Pu Q, Wang Z, Lin P, Qin S, Khan N, Hur J, Liang H, Wu M. oprC Impairs Host Defense by Increasing the Quorum-Sensing-Mediated Virulence of Pseudomonas aeruginosa. Front Immunol 2020; 11:1696. [PMID: 32849593 PMCID: PMC7417366 DOI: 10.3389/fimmu.2020.01696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa, found widely in the wild, causes infections in the lungs and several other organs in healthy people but more often in immunocompromised individuals. P. aeruginosa infection leads to inflammasome assembly, pyroptosis, and cytokine release in the host. OprC is one of the bacterial porins abundant in the outer membrane vesicles responsible for channel-forming and copper binding. Recent research has revealed that OprC transports copper, an essential trace element involved in various physiological processes, into bacteria during copper deficiency. Here, we found that oprC deletion severely impaired bacterial motility and quorum-sensing systems, as well as lowered levels of lipopolysaccharide and pyocyanin in P. aeruginosa. In addition, oprC deficiency impeded the stimulation of TLR2 and TLR4 and inflammasome activation, resulting in decreases in proinflammatory cytokines and improved disease phenotypes, such as attenuated bacterial loads, lowered lung barrier damage, and longer mouse survival. Moreover, oprC deficiency significantly alleviated pyroptosis in macrophages. Mechanistically, oprC gene may impact quorum-sensing systems in P. aeruginosa to alter pyroptosis and inflammatory responses in cells and mice through the STAT3/NF-κB signaling pathway. Our findings characterize OprC as a critical virulence regulator, providing the groundwork for further dissection of the pathogenic mechanism of OprC as a potential therapeutic target of P. aeruginosa.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nadeem Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
5
|
Susilowati H, Artanto S, Yulianto HDK, Sosroseno W, Hutomo S. The protective effects of antigen-specific IgY on pyocyanin-treated human lymphoma Raji cells. F1000Res 2020; 8:1008. [PMID: 32025288 PMCID: PMC6971839 DOI: 10.12688/f1000research.19327.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Pyocyanin (PCN), a highly pathogenic pigment produced by
Pseudomonas aeruginosa, induces caspase 3-dependent human B cell (Raji cells) death. The aim of the present study, therefore, was to assess whether antigen-specific IgY antibodies may be protective on PCN-induced Raji cell death. Methods: Chickens were subcutaneously immunized with Freund's complete adjuvant containing PCN, and then given two boosted immunizations. Anti-PCN IgY antibodies were purified from egg yolk and detected using an agar gel precipitation test (AGPT) and ELISA. Protective effects of antigen-specific IgY on Raji cells were tested using a cell viability assay. Results: AGPT results showed the formation of strong immune complex precipitates, whilst ELISA further confirmed the presence of IgY antibodies specific to PCN at significant concentration. Further experiments showed that anti-PCN IgY antibodies significantly increased PCN-treated Raji cell viability in a dose-dependent fashion (p<0.05). Conclusions: The results of the present study suggest that anti-PCN IgY antibodies may be protective on PCN-induced Raji cell death.
Collapse
Affiliation(s)
- Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Sidna Artanto
- Department of Microbiology, Faculty of Veteriner, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heribertus Dedy Kusuma Yulianto
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | | | - Suryani Hutomo
- Department of Microbiology, Faculty of Medicine, Dutawacana Christian University, Yogyakarta, 55225, Indonesia
| |
Collapse
|
6
|
Abstract
Natural products from microorganisms are important small molecules that play roles in various biological processes like cellular growth, motility, nutrient acquisition, stress response, biofilm formation, and defense. It is hypothesized that pathogens exploit these molecules to regulate virulence and persistence during infections. Here, we present selected examples of signaling natural products from human pathogenic bacteria that use these metabolites to gain a competitive advantage. Targeting these signaling systems provides novel strategies to antimicrobial treatments.
Collapse
Affiliation(s)
- Zhijuan Hu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
7
|
Gopala Krishnan GK, Sethumadhavan A, Vellaichamy P, Mani M. Pseudomonas aeruginosa infection stimulates mitogen-activated protein kinases signaling pathway in human megakaryocytes. Microbiol Immunol 2019; 63:229-237. [PMID: 31041998 DOI: 10.1111/1348-0421.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and contributes to higher mortality in hospitalized individuals. Infection by P. aeruginosa triggers host immune response through activation of pathogen recognition receptors, which are present in innate cells. Several studies have reported the mechanism of P. aeruginosa induced innate immunity in multiple cell types. But so far there is no reports on response of megakaryocytes to P. aeruginosa infection. Hence, our aim was to investigate the precise role and signaling mechanism of megakaryocytes during P. aeruginosa infection. In this study, we used Mo7e cells as representatives of human megakaryocyte and found that P. aeruginosa infection induces cytotoxicity in these cells. We further demonstrated that P. aeruginosa infection modulates p38 and extracellular signal regulated kinase pathways in Mo7e cells. Protein expression profiling in P. aeruginosa lipopolysaccharide-treated Mo7e cells revealed upregulation of importin subunit β and downregulation of metabolic enzymes. Our results suggest that P. aeruginosa infection regulates mitogen-activated protein kinases signaling pathway and importin in Mo7e cells and that this is a potential mechanism for nuclear translocation of nuclear factor binding near the κ light-chain gene in B cells and c-Jun N-terminal kinases to induce cell cytotoxicity.
Collapse
Affiliation(s)
- Gopi Krishnan Gopala Krishnan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Pavithra Vellaichamy
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
8
|
Li JL, Yang N, Huang L, Chen D, Zhao Y, Tang MM, Fan H, Bao X. Pyocyanin Inhibits Chlamydia Infection by Disabling Infectivity of the Elementary Body and Disrupting Intracellular Growth. Antimicrob Agents Chemother 2018; 62:e02260-17. [PMID: 29610203 PMCID: PMC5971585 DOI: 10.1128/aac.02260-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia is a widespread human pathogen that causes serious problems, including (but not limited to) infertility and blindness. Our search for novel antichlamydial metabolites from marine-derived microorganisms led to the isolation of pyocyanin, a small compound from Pseudomonas aeruginosa Pyocyanin is an effective antichlamydial for all three Chlamydia spp. tested. It has a 50% inhibitory concentration (IC50) of 0.019 to 0.028 μM, which is comparable to the IC50 of tetracycline. At concentrations as low as 0.0039 μM, pyocyanin disables infectivity of the chlamydial elementary body (EB). At 0.5 μM or higher concentrations, the continuous presence of pyocyanin also inhibits chlamydial growth in the inclusion during later stages of the developmental cycle. Oxidative stress, a major known antimicrobial mechanism of pyocyanin, appears to be responsible only for the inhibition of bacterial growth and not for the disinfection of EBs. Pyocyanin is well-tolerated by probiotic vaginal Lactobacillus spp. Our findings suggest that pyocyanin is of therapeutic value for chlamydial infections and can serve as a valuable chemical probe for studying chlamydial biology.
Collapse
Affiliation(s)
- Jian Lin Li
- School of Pharmacy, Nantong University, Nantong, China
| | - Ningjing Yang
- School of Pharmacy, Nantong University, Nantong, China
| | - Lei Huang
- School of Pharmacy, Nantong University, Nantong, China
- Department of Pharmacy, The First People's Hospital of Yanchen, Yanchen, China
| | - Dandan Chen
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - M Matt Tang
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Huizhou Fan
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
9
|
Sundaram S, Barrett T, Butt N, Porat R, King A, Pereira B. Cytokine Production by Human Peripheral Blood Mononuclear Cells Stimulated by a Pseudomonas Aeruginosa Culture Filtrate: Role of Plasma and Polymyxin B. Int J Artif Organs 2018. [DOI: 10.1177/039139889601900504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The lack of consensus regarding the significance of transmembrane passage of bacterial products across hemodialysis membranes can be related to several methodological differences in the various studies, including the choice of circulating fluid in the blood compartment of the model, nature and concentration of the bacterial products employed to challenge the dialysate compartment and whether cytokine production by PMBC or the limulus amebocyte lysate (LAL) assay was used as the index of transfer and the cytokine used as the read-out. In this study, we examined the production of interleukin-1 alpha (IL-1α), interieukin-1 receptor antagonist (IL-1Ra) and interleukin-8 (IL-8) by peripheral blood mononuclear cells (PBMC) incubated with a Pseudomonas aeruginosa culture filtrate. Further, the effects of 10% autologous human plasma and Polymyxin B sulfate (PmB) on cytokine production by PBMC were also characterized. The results of our study indicate that the Ps. aeruginosa culture filtrate had both PmB suppressible and PmB non-suppressible components and that the addition of 10% human plasma significantly enhanced cytokine production by both PmB suppressible and PmB non-suppressible components. The enhancing effect of plasma was most evident at low concentrations of the filtrate. The inhibitory effect of PmB was most evident in samples cultured in the presence of 10% plasma. There was a direct correlation between the production of IL-1α and IL-1Ra suggesting that both pro-inflammatory cytokines and cytokine-specific inhibitory proteins are concurrently produced. There results have direct relevance to selection of study conditions for in vitro models used to study the transmembrane passage of bacterial products across hemodialysis membranes
Collapse
Affiliation(s)
- S. Sundaram
- Divisions of Nephrology and Geographical Medicine, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts - USA
| | - T.W. Barrett
- Divisions of Nephrology and Geographical Medicine, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts - USA
| | - N.K. Butt
- Divisions of Nephrology and Geographical Medicine, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts - USA
| | - R. Porat
- Infectious Diseases and Geographical Medicine, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts - USA
| | - A.J. King
- Divisions of Nephrology and Geographical Medicine, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts - USA
| | - B.J.G. Pereira
- Divisions of Nephrology and Geographical Medicine, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts - USA
| |
Collapse
|
10
|
Kujawa M, Lirski M, Ziecina M, Drabinska J, Modzelan M, Kraszewska E. Nudix-type RNA pyrophosphohydrolase provides homeostasis of virulence factor pyocyanin and functions as a global regulator in Pseudomonas aeruginosa. Mol Microbiol 2017; 106:381-394. [PMID: 28833678 DOI: 10.1111/mmi.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 12/26/2022]
Abstract
The PA0336 protein from Pseudomonas aeruginosa belongs to the family of widely distributed Nudix pyrophosphohydrolases, which catalyze the hydrolysis of pyrophosphate bonds in a variety of nucleoside diphosphate derivatives. The amino acid sequence of the PA0336 protein is highly similar to that of the RppH Nudix RNA pyrophosphohydrolase from Escherichia coli, which removes pyrophosphate from 5'-end of triphosphorylated RNA transcripts. Trans-complementation experiments showed that the P. aeruginosa enzyme can functionally substitute for RppH in E. coli cells indicating that, similar to RppH, the Pseudomonas hydrolase mediates RNA turnover in vivo. In order to elucidate the biological significance of the PA0336 protein in Pseudomonas cells, a PA0336 mutant strain was constructed. The mutated strain considerably increased level of the virulence factor pyocyanin compared to wild type, suggesting that PA0336 could be involved in downregulation of P. aeruginosa pathogenicity. This phenotype was reversed by complementation with the wild type but not catalytically inactive PA0336, indicating that the catalytic activity was indispensable for its biological function. Pathogenesis tests in Caenorhabditis elegans showed that the PA0336 mutant of P. aeruginosa was significantly more virulent than the parental strain, confirming further that the P. aeruginosa RNA pyrophosphohydrolase PA0336 modulates bacterial pathogenesis by down-regulating production of virulence-associated factors. To study the role of PA0336 further, transcriptomes of the PA0336 mutant and the wild-type strain were compared using RNA sequencing. The level of 537 transcripts coding for proteins involved in a variety of cellular processes such as replication, transcription, translation, central metabolism and pathogenesis, was affected by the lack of PA0336. These results indicate that the PA0336 RNA pyrophosphohydrolase functions as a global regulator that influences many of transcripts including those involved in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martyna Kujawa
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Mateusz Ziecina
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Joanna Drabinska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Marta Modzelan
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Elzbieta Kraszewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins (Basel) 2016; 8:toxins8080236. [PMID: 27517959 PMCID: PMC4999852 DOI: 10.3390/toxins8080236] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems.
Collapse
|
12
|
Salgaonkar BB, Kabilan M, Braganca JM. Sensitivity of Haloarchaea to eubacterial pigments produced by Pseudomonas aeruginosa SB1. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0519-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Abstract
Understanding mechanisms of bacterial pathogenesis is critical for infectious disease control and treatment. Infection is a sophisticated process that requires the participation of global regulators to coordinate expression of not only genes coding for virulence factors but also those involved in other physiological processes, such as stress response and metabolic flux, to adapt to host environments. RpoS is a key response regulator to stress conditions in Escherichia coli and many other proteobacteria. In contrast to its conserved well-understood role in stress response, effects of RpoS on pathogenesis are highly variable and dependent on species. RpoS contributes to virulence through either enhancing survival against host defense systems or directly regulating expression of virulence factors in some pathogens, while RpoS is dispensable, or even inhibitory, to virulence in others. In this review, we focus on the distinct and niche-dependent role of RpoS in virulence by surveying recent findings in many pathogens.
Collapse
|
14
|
Abstract
The importance of reactive oxygen species-dependent microbial killing by the phagocytic cell NADPH oxidase has been appreciated for some time, although only recently has an appreciation developed for the partnership of lactoperoxidase with related dual oxidases (Duox) within secretions of the airway surface layer. This system produces mild oxidants designed for extracellular killing that are effective against several airway pathogens, including Staphylococcus aureus, Burkholderia cepacia, and Pseudomonas aeruginosa. Establishment of chronic pseudomonas infections involves adaptations to resist oxidant-dependent killing by expression of a redox-active virulence factor, pyocyanin, that competitively inhibits epithelial Duox activity by consuming intracellular NADPH and producing superoxide, thereby inflicting oxidative stress on the host.
Collapse
Affiliation(s)
- Balázs Rada
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Host Defenses, 12441 Parklawn Drive, 20852 Rockville MD, U.S.A
| | - Thomas L. Leto
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Host Defenses, 12441 Parklawn Drive, 20852 Rockville MD, U.S.A
| |
Collapse
|
15
|
Erickson DL, Lines JL, Pesci EC, Venturi V, Storey DG. Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect Immun 2004; 72:5638-45. [PMID: 15385461 PMCID: PMC517598 DOI: 10.1128/iai.72.10.5638-5645.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response is a mechanism by which bacteria adapt to nutritional deficiencies through the production of the guanine nucleotides ppGpp and pppGpp, produced by the RelA enzyme. We investigated the role of the relA gene in the ability of an extracellular pathogen, Pseudomonas aeruginosa, to cause infection. Strains lacking the relA gene were created from the prototypical laboratory strain PAO1 as well as the mucoid cystic fibrosis isolate 6106, which lacks functional quorum-sensing systems. The absence of relA abolished the production of ppGpp and pppGpp under conditions of amino acid starvation. We found that strains lacking relA exhibited reduced virulence in a D. melanogaster feeding assay. In conditions of low magnesium, the relA gene enhanced production of the cell-cell signal N-[3-oxododecanoyl]-l-homoserine lactone, whereas relA reduced the production of the 2-heptyl-3-hydroxy-4-quinolone signal during serine hydroxamate induction of the stringent response. In the relA mutant, alterations in the Pseudomonas quinolone system pathways seemed to increase the production of pyocyanin and decrease the production of elastase. Deletion of relA also resulted in reduced levels of the RpoS sigma factor. These results suggest that adjustment of cellular ppGpp and pppGpp levels could be an important regulatory mechanism in P. aeruginosa adaptation in pathogenic relationships.
Collapse
Affiliation(s)
- David L Erickson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
16
|
O'Malley YQ, Reszka KJ, Rasmussen GT, Abdalla MY, Denning GM, Britigan BE. The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1077-86. [PMID: 12871859 DOI: 10.1152/ajplung.00198.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyocyanin, produced by Pseudomonas aeruginosa, has many deleterious effects on human cells that relate to its ability to generate reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Human cells possess several mechanisms to protect themselves from ROS, including manganese superoxide dismutase (MnSOD), copper zinc superoxide dismutase (CuZnSOD), and catalase. Given the link between pyocyanin-mediated epithelial cell injury and oxidative stress, we assessed pyocyanin's effect on MnSOD, CuZnSOD, and catalase levels in the A549 human alveolar epithelial cell line and in normal human bronchial epithelial cells. In both cell types, CuZnSOD and MnSOD were unaltered, but over 24 h pyocyanin significantly decreased cellular catalase activity and protein content. Pyocyanin also decreased catalase mRNA. Overexpression of MnSOD in A549 cells prevented pyocyanin-mediated loss of catalase protein, but catalase activity still declined. Furthermore, pyocyanin decreased catalase activity, but not protein, in A549 cells overexpressing human catalase. These data suggest a direct effect of pyocyanin on catalase activity. Addition of pyocyanin to catalase in a cell-free system also decreased catalase activity. Mammalian catalase binds four NADPH molecules, helping maintain enzyme activity. Spin-trapping data suggest that pyocyanin directly oxidizes this NADPH, producing superoxide. We conclude that pyocyanin may decrease cellular catalase activity via both transcriptional regulation and direct inactivation of the enzyme. Decreased cellular catalase activity and failure to augment MnSOD could contribute to pyocyanin-dependent cytotoxicity.
Collapse
Affiliation(s)
- Yunxia Q O'Malley
- Research Service, Veterans Affairs Medical Center-Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, Jäger KE, Bläsi U. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 2003; 35:217-28. [PMID: 14521880 DOI: 10.1016/s0882-4010(03)00149-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Sm-like protein Hfq has been implicated in the regulation of sigmaS-dependent and sigmaS-independent genes in E. coli and in the regulation of virulence factors in both, Yersinia enterocolitica and Brucella abortus. Here, we have studied the effect of Hfq on virulence and stress response of Pseudomonas aeruginosa (PAO1). We have constructed a PAO1hfq- mutant and a PAO1hfq-rpoS- double mutant to permit distinction between direct and indirect effects of Hfq. When compared to the wild-type and the rpoS- strains, the hfq knock out strain showed a reduced growth rate and was unable to utilize glucose as a sole carbon source. Elastase activity was 80% reduced in the hfq- mutant when compared to the wild-type or the rpoS- strain, whereas alginate production seemed to be solely affected by sigmaS. The production of catalase and pyocyanin was shown to be affected in an additive manner by both, Hfq and sigmaS. Moreover, twitching and swarming mediated by typeIV pili was shown to be impaired in the hfq- mutant. When compared to PAO1 wild-type and the rpoS- mutant, the hfq- mutant decreased virulence in Galleria mellonella by a factor of 1 x 10(4) and 5 x 10(3), respectively. Likewise, when compared to wild-type, the PAO1hfq- mutant was significantly attenuated in virulence when administered intraperitoneally in mice. These results strongly suggest that Hfq is a global regulator of PAO1 virulence and stress response which is not exclusively due to its role in stimulating the synthesis of sigmaS.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology and Genetics, University Departments at the Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
18
|
Lagoumintzis G, Christofidou M, Dimitracopoulos G, Paliogianni F. Pseudomonas aeruginosa slime glycolipoprotein is a potent stimulant of tumor necrosis factor alpha gene expression and activation of transcription activators nuclear factor kappa B and activator protein 1 in human monocytes. Infect Immun 2003; 71:4614-22. [PMID: 12874341 PMCID: PMC165984 DOI: 10.1128/iai.71.8.4614-4622.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, causes infections associated with a high incidence of morbidity and mortality in immunocompromised hosts. Production of tumor necrosis factor alpha (TNF-alpha), primarily by cells of monocytic lineage, is a crucial event in the course of these infections. During in vivo infections with P. aeruginosa, both lipopolysaccharide (LPS) and extracellular slime glycolipoprotein (GLP) produced by mucoid and nonmucoid strains are released. In the present study, we sought to explore the relative contributions of these two bacterial products to TNF-alpha production by human monocytes. To this end, fresh human monocytes and THP-1 human monocytic cells were stimulated with P. aeruginosa LPS or GLP. GLP was found to be a more potent stimulus for TNF-alpha production (threefold higher) by human monocytes than LPS. Moreover, its effect was comparable to that of viable bacteria. Quantitative mRNA analysis revealed predominantly transcriptional regulation. Electrophoretic mobility shift assays and transfection assays demonstrated activation of NF-kappa B and activator protein 1 (AP-1). NF-kappa B activation by GLP was rapid and followed the same time course as that by viable bacteria, suggesting that bacteria could directly activate NF-kappa B through GLP. Moreover P. aeruginosa GLP induced the formation of AP-1 complex with delayed kinetics compared with NF-kappa B but much more efficiently than the homologous LPS. These results identify GLP as the most important stimulant for TNF-alpha production by human monocytes. Activation of NF-kappa B and AP-1 by P. aeruginosa GLP may be involved not only in TNF-alpha induction but also in many of the inflammatory responses triggered in the course of infection with P. aeruginosa.
Collapse
Affiliation(s)
- George Lagoumintzis
- University of Patras Medical School, Department of Microbiology, Patras 26500, Greece
| | | | | | | |
Collapse
|
19
|
Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 2001; 98:14613-8. [PMID: 11724939 PMCID: PMC64730 DOI: 10.1073/pnas.251465298] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2001] [Accepted: 09/04/2001] [Indexed: 01/31/2023] Open
Abstract
The human opportunistic pathogen Pseudomonas aeruginosa strain PA14 infects both plants and animals. Previously, using plants to screen directly for P. aeruginosa virulence-attenuated mutants, we identified a locus, pho34B12, relevant in mammalian pathogenesis. Here, nonsense point mutations in the two opposing ORFs identified in the pho34B12 locus revealed that one of them, mvfR (multiple virulence factor Regulator), is able to control all of the phenotypes that mutant phoA34B12 displays. Both genetic and biochemical evidence demonstrate that the mvfR gene encodes a LysR-like transcriptional factor that positively regulates the production of elastase, phospholipase, and of the autoinducers, 3oxo-dodecanoyl homoserine lactone (PAI I) and 2-heptyl-3-hydroxy-4-quinolone (PQS), as well as the expression of the phnAB operon, involved in phenazine biosynthesis. We demonstrate that the MvfR protein is membrane-associated and acts as a transcriptional activator until cells reach stationary phase, when a unique negative feedback mechanism is activated to signal the down-regulation of the MvfR protein. This work reveals an unprecedented virulence mechanism of P. aeruginosa and identifies a unique indispensable player in the P. aeruginosa quorum-sensing cascade.
Collapse
Affiliation(s)
- H Cao
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital and Boston Shriners Institute, 50 Blossom Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
20
|
. HAF. Post Irradiation Effect on Adherent Growth,Slime Formation and Antibiotic
Resistance of Pseudomonas aeruginosa Causing Human Infection. JOURNAL OF MEDICAL SCIENCES 2001. [DOI: 10.3923/jms.2001.244.250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Kondratieva TK, Kobets NV, Khaidukov SV, Yeremeev VV, Lyadova IV, Apt AS, Tam MF, Stevenson MM. Characterization of T cell clones derived from lymph nodes and lungs of Pseudomonas aeruginosa-susceptible and resistant mice following immunization with heat-killed bacteria. Clin Exp Immunol 2000; 121:275-82. [PMID: 10931142 PMCID: PMC1905701 DOI: 10.1046/j.1365-2249.2000.01222.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa-resistant BALB/c and susceptible C57Bl/6 (B6) mice were immunized with heat-killed Pseudomonas either in the foot pad or via the trachea, and panels of Pseudomonas-specific T cell clones were developed from lymph nodes and lungs. All clones from either strain, whether of lymph node or lung origin, were CD3+CD4+CD8-TCRalphabeta+. The efficacy of cloning from lymph node cells was comparable between BALB/c and B6 mice. All lymph node BALB/c clones proliferated in response to Pseudomonas antigen in a dose-dependent manner, and this response was MHC class II-restricted. Vigorous proliferation by a considerable proportion of B6 T cell clones occurred in the absence of specific antigen. Lymph node clones from either strain could be categorized as either Th1 or Th0 on the basis of interferon-gamma (IFN-gamma)/IL-4 production. In either mouse strain the efficacy of cloning from lung tissue was substantially lower than from lymph nodes, but the efficacy of cloning from BALB/c compared with B6 lungs was higher. Four lung T cell clones from BALB/c and two from B6 mice were expanded for further analyses, and an interstrain difference was observed in cytokine production. Both B6 lung T cell clones were Th1-like and produced IFN-gamma but not IL-4 and IL-10, whereas four BALB/c lung T cell clones were Th2-like and produced IL-4 and IL-10 but not IFN-gamma. These observations suggest that differences in the CD4+ Th response in the lung may contribute to differences among inbred mouse strains in the level of resistance to bronchopulmonary Pseudomonas infection.
Collapse
Affiliation(s)
- T K Kondratieva
- Experimental Immunogenetics Laboratory, Central Institute for Tuberculous and Laboratory for Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SE, Ohman DE. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 1999; 181:3890-7. [PMID: 10383954 PMCID: PMC93876 DOI: 10.1128/jb.181.13.3890-3897.1999] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma factor RpoS (sigmaS) has been described as a general stress response regulator that controls the expression of genes which confer increased resistance to various stresses in some gram-negative bacteria. To elucidate the role of RpoS in Pseudomonas aeruginosa physiology and pathogenesis, we constructed rpoS mutants in several strains of P. aeruginosa, including PAO1. The PAO1 rpoS mutant was subjected to various environmental stresses, and we compared the resistance phenotype of the mutant to that of the parent. The PAO1 rpoS mutant was slightly more sensitive to carbon starvation than the wild-type strain, but this phenotype was obvious only when the cells were grown in a medium supplemented with glucose as the sole carbon source. In addition, the PAO1 rpoS mutant was hypersensitive to heat shock at 50 degrees C, increased osmolarity, and prolonged exposure to high concentrations of H2O2. In accordance with the hypersensitivity to H2O2, catalase production was 60% lower in the rpoS mutant than in the parent strain. We also assessed the role of RpoS in the production of several exoproducts known to be important for virulence of P. aeruginosa. The rpoS mutant produced 50% less exotoxin A, but it produced only slightly smaller amounts of elastase and LasA protease than the parent strain. The levels of phospholipase C and casein-degrading proteases were unaffected by a mutation in rpoS in PAO1. The rpoS mutation resulted in the increased production of the phenazine antibiotic pyocyanin and the siderophore pyoverdine. This increased pyocyanin production may be responsible for the enhanced virulence of the PAO1 rpoS mutant that was observed in a rat chronic-lung-infection model. In addition, the rpoS mutant displayed an altered twitching-motility phenotype, suggesting that the colonization factors, type IV fimbriae, were affected. Finally, in an alginate-overproducing cystic fibrosis (CF) isolate, FRD1, the rpoS101::aacCI mutation almost completely abolished the production of alginate when the bacterium was grown in a liquid medium. On a solid medium, the FRD1 rpoS mutant produced approximately 70% less alginate than did the wild-type strain. Thus, our data indicate that although some of the functions of RpoS in P. aeruginosa physiology are similar to RpoS functions in other gram-negative bacteria, it also has some functions unique to this bacterium.
Collapse
Affiliation(s)
- S J Suh
- Department of Microbiology and Immunology, University of Tennessee, and Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Reactive oxidant species (superoxide, hydrogen peroxide, hydroxyl radical, hypohalous acid, and nitric oxide) are involved in many of the complex interactions between the invading microorganism and its host. Regardless of the source of these compounds or whether they are produced under normal conditions or those of oxidative stress, these oxidants exhibit a broad range of toxic effects to biomolecules that are essential for cell survival. Production of these oxidants by microorganisms enables them to have a survival advantage in their environment. Host oxidant production, especially by phagocytes, is a counteractive mechanism aimed at microbial killing. However, this mechanism may be contribute to a deleterious consequence of oxidant exposure, i.e., inflammatory tissue injury. Both the host and the microorganism have evolved complex adaptive mechanisms to deflect oxidant-mediated damage, including enzymatic and nonenzymatic oxidant-scavenging systems. This review discusses the formation of reactive oxidant species in vivo and how they mediate many of the processes involved in the complex interplay between microbial invasion and host defense.
Collapse
Affiliation(s)
- R A Miller
- Department of Internal Medicine, Veterans Administration Medical Center, Iowa City, Iowa, USA
| | | |
Collapse
|
24
|
Mody CH, Buser DE, Syme RM, Woods DE. Pseudomonas aeruginosa exoenzyme S induces proliferation of human T lymphocytes. Infect Immun 1995; 63:1800-5. [PMID: 7537248 PMCID: PMC173227 DOI: 10.1128/iai.63.5.1800-1805.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium that is responsible for devastating acute and chronic infections, which include bronchiectasis in cystic fibrosis, nosocomial pneumonia, and infection of burn wounds. Previous studies have demonstrated that these patients have impaired host responses, including cell-mediated immune responses, which are important in anti-Pseudomonas host defense. The P. aeruginosa exoproduct, exoenzyme S, has a number of characteristics which suggest that it might be important in cell-mediated immunity. To determine whether exoenzyme S activates lymphocytes to proliferate, peripheral blood mononuclear cells (PBMC) from normal volunteers were stimulated with purified exoenzyme S, and the lymphocyte response was assessed by measuring [3H]thymidine uptake and by counting the number of cells after various times in culture. Ninety-five percent of healthy adult donors had a lymphocyte response to exoenzyme S. The optimal lymphocyte response occurred on day 7, with 4 x 10(5) PBMC per microtiter well when cells were stimulated with 10 micrograms exoenzyme S per ml. [3H]thymidine uptake correlated with an increase in the number of mononuclear cells, indicating that proliferation occurred. In unseparated PBMC, T cells, and to a lesser extent B cells, proliferated. Purified T cells proliferated, while purified B cells proliferated only after the addition of irradiated T cells. Thus, T lymphocytes are necessary and sufficient for the proliferative response to exoenzyme S. We speculate that exoenzyme S from P. aeruginosa is important in T-lymphocyte-mediated host defense to P. aeruginosa. In strategies to enhance impaired cell-mediated immunity, exoenzyme S should be considered as a potential stimulant.
Collapse
Affiliation(s)
- C H Mody
- Department of Internal Medicine, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
25
|
Higgins DA, Cromie RL, Srivastava G, Herzbeck H, Schlüter C, Gerdes J, Diamantstein T, Flad HD. An examination of the immune system of the duck (Anas platyrhynchos) for factors resembling some defined mammalian cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1993; 17:341-355. [PMID: 7690719 DOI: 10.1016/0145-305x(93)90006-c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Duck lymphoblasts generated by phytohaemagglutinin (PHA) did not respond to recombinant or Jurkat cell line human interleukin (IL)-2 or possess surface antigens resembling mammalian IL-2 receptors or IL-1 beta. Supernatant fluids from normal and PHA-stimulated duck lymphocyte cultures, and normal and lipopolysaccharide (LPS)-stimulated monocytes, gave negative results in a range of assays for biological activity and immunochemical presence of factors resembling mammalian IL-1 and IL-2. However, supernatant fluids from LPS-stimulated duck monocytes contained IL-6-like activity (up to 35 units/mL) assessed on the 7TD-1 murine cell line. We were unable to demonstrate mRNA that would hybridize to cDNA probes for human IL-1 beta, IL-6, and tumour necrosis factor (TNF) in extracts of blood and lymphoid organs from normal and antigen-stimulated ducks. Because homologous serum or plasma is essential for duck lymphocytes and macrophages to respond to mitogens in vitro, we asked whether this growth-factor-like activity might be caused by substances resembling mammalian cytokines. Serum and plasma were examined for activity consistent with IL-1 and IL-6 on mammalian target cells. None was detected. Instead, both serum and plasma contained inhibitors of human IL-1 beta and IL-6, detected at dilutions up to 1:100. Inhibition by serum was heat (56 degrees C, 30 min) labile but inhibition by plasma was heat stable. The identities and biological functions of these inhibitors remain to be defined.
Collapse
Affiliation(s)
- D A Higgins
- Department of Pathology, University of Hong Kong, Queen Mary Hospital
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pierangeli SS, Polk HC, Parmely MJ, Sonnenfeld G. Murine interferon-gamma enhances resistance to infection with strains of Pseudomonas aeruginosa in mice. Cytokine 1993; 5:230-4. [PMID: 8218935 DOI: 10.1016/1043-4666(93)90009-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study focused on the role of recombinant murine interferon-gamma (rMuIFN-gamma) in modulating resistance to infections produced by Pseudomonas aeruginosa in mice. CBA/C mice were treated with rMuIFN-gamma, exposed to thermal injury, and challenged with P. aeruginosa organisms. Survival of infected, burned mice was determined over a period of 14 days and compared with control animals not receiving rMuIFN-gamma. Two clinical isolates of P. aeruginosa that differed originally in the ability to produce metalloproteases, were used to infect the mice. When the mice were pretreated with rMuIFN-gamma before the infection, no statistically significant differences in survival were observed with either of the two strains of bacteria compared to controls. However, when mice were pretreated and injected therapeutically with rMuIFN-gamma (continued receipt of rMuIFN-gamma after infection), there was a significant protective effect in animals infected with one of the strains of P. aeruginosa. We conclude that rMuIFN-gamma may be useful in treating infections with certain strains of P. aeruginosa in mice.
Collapse
Affiliation(s)
- S S Pierangeli
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY 40292
| | | | | | | |
Collapse
|
27
|
Phenazine Pigments in Pseudomonas aeruginosa Infection. PSEUDOMONAS AERUGINOSA AS AN OPPORTUNISTIC PATHOGEN 1993. [DOI: 10.1007/978-1-4615-3036-7_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Britigan BE, Roeder TL, Rasmussen GT, Shasby DM, McCormick ML, Cox CD. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J Clin Invest 1992; 90:2187-96. [PMID: 1469082 PMCID: PMC443369 DOI: 10.1172/jci116104] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pyocyanin, a secretory product of Pseudomonas aeruginosa, has the capacity to undergo redox cycling under aerobic conditions with resulting generation of superoxide and hydrogen peroxide. By using spin trapping techniques in conjunction with electron paramagnetic resonance spectrometry (EPR), superoxide was detected during the aerobic reduction of pyocyanin by NADH or porcine endothelial cells. No evidence of hydroxyl radical formation was detected. Chromium oxalate eliminated the EPR spectrum of the superoxide-derived spin adduct resulting from endothelial cell exposure to pyocyanin, suggesting superoxide formation close to the endothelial cell plasma membrane. We have previously reported that iron bound to the P. aeruginosa siderophore pyochelin (ferripyochelin) catalyzes the formation of hydroxyl free radical from superoxide and hydrogen peroxide via the Haber-Weiss reaction. In the present study, spin trap evidence of hydroxyl radical formation was detected when NADH and pyocyanin were allowed to react in the presence of ferripyochelin. Similarly, endothelial cell exposure to pyocyanin and ferripyochelin also resulted in hydroxyl radical production which appeared to occur in close proximity to the cell surface. As assessed by 51Cr release, endothelial cells which were treated with pyocyanin or ferripyochelin alone demonstrated minimal injury. However, endothelial cell exposure to the combination of pyochelin and pyocyanin resulted in 55% specific 51Cr release. Injury was not observed with the substitution of iron-free pyochelin and was diminished by the presence of catalase or dimethyl thiourea. These data suggest the possibility that the P. aeruginosa secretory products pyocyanin and pyochelin may act synergistically via the generation of hydroxyl radical to damage local tissues at sites of pseudomonas infection.
Collapse
Affiliation(s)
- B E Britigan
- Research Service, VA Medical Center, Iowa City, Iowa 52246
| | | | | | | | | | | |
Collapse
|