1
|
Govindarajan DK, Eskeziyaw BM, Kandaswamy K, Mengistu DY. Diagnosis of extraintestinal pathogenic Escherichia coli pathogenesis in urinary tract infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100296. [PMID: 39553200 PMCID: PMC11565050 DOI: 10.1016/j.crmicr.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) is a virulent pathogen found in humans that causes the majority of urinary tract infections, and other infections such as meningitis and sepsis. ExPEC can enter the urinary tract through two modes: ascending from the bladder or descending from the kidneys. Human anatomical structures generally prevent the transmission of pathogens between the extra-intestinal area, kidneys, bladder, and urinary tract. However, adhesins, a virulence protein of ExPEC, promote the initial bacterial attachment and invasion of host cells. In addition to adhesion proteins, ExPEC contains iron acquisition systems and toxins to evade the host immune system, acquire essential nutrients, and gain antibiotic resistance. The presence of antibiotic-resistant genes makes treating ExPEC in urinary tract infections (UTIs) more complicated. Therefore, screening for the presence of ExPEC among other uropathogens in UTI patients is essential, as it can potentially aid in the effective treatment and mitigation of ExPEC pathogens. Several diagnostic techniques are available for detecting ExPEC, including urine culture, polymerase chain reaction, serological testing, loop-mediated isothermal amplification, and biochemical tests. This review addresses strain-specific diagnostic techniques for screening ExPEC in UTI patients.
Collapse
Affiliation(s)
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, India
| | | |
Collapse
|
2
|
Yun CS, Moon BY, Hwang MH, Lee SK, Ku BK, Lee K. Characterization of the pathogenicity of extraintestinal pathogenic Escherichia coli isolates from pneumonia-infected lung samples of dogs and cats in South Korea. Sci Rep 2023; 13:5575. [PMID: 37019949 PMCID: PMC10076304 DOI: 10.1038/s41598-023-32287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to investigate the pathogenicity of extraintestinal pathogenic Escherichia coli (ExPEC) isolated from dog and cat lung samples in South Korea. A total of 101 E. coli isolates were analyzed for virulence factors, phylogroups, and O-serogroups, and their correlation with bacterial pneumonia-induced mortality was elucidated. P fimbriae structural subunit (papA), hemolysin D (hlyD), and cytotoxic necrotizing factor 1 (cnf1) were highly prevalent in both species, indicating correlation with bacterial pneumonia. Phylogroups B1 and B2 were the most prevalent phylogroups (36.6% and 32.7%, respectively) and associated with high bacterial pneumonia-induced mortality rates. Isolates from both species belonging to phylogroup B2 showed high frequency of papA, hlyD, and cnf1. O-serogrouping revealed 21 and 15 serogroups in dogs and cats, respectively. In dogs, O88 was the most prevalent serogroup (n = 8), and the frequency of virulence factors was high for O4 and O6. In cats, O4 was the most prevalent serogroup (n = 6), and the frequency of virulence factors was high for O4 and O6. O4 and O6 serogroups were mainly grouped under phylogroup B2 and associated with high bacterial pneumonia-induced mortality. This study characterized the pathogenicity of ExPEC and described the probability of ExPEC pneumonia-induced mortality.
Collapse
Affiliation(s)
- Chi Sun Yun
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Bo-Youn Moon
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Mi-Hye Hwang
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Soo-Kyoung Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Kichan Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea.
| |
Collapse
|
3
|
Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog 2015; 11:e1004669. [PMID: 25658707 PMCID: PMC4450072 DOI: 10.1371/journal.ppat.1004669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilum binding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection. Anaplasma phagocytophilum causes the potentially deadly bacterial disease granulocytic anaplasmosis. The pathogen replicates inside white blood cells and, like all other obligate intracellular organisms, must enter host cells to survive. Multiple A. phagocytophilum surface proteins called invasins cooperatively orchestrate the entry process. Identifying these proteins’ domains that are required for function, and determining the molecular basis of their interaction with host cell receptors would significantly advance understanding of A. phagocytophilum pathogenesis. In this study, the binding domains of two A. phagocytophilum surface proteins, OmpA and Asp14, were identified. The specific OmpA residues that interact with its host cell receptor were also defined. An antibody cocktail generated against the binding domains of OmpA, Asp14, and a third invasin, AipA, blocked the ability of A. phagocytophilum to infect host cells. The data presented within suggest that binding domains of OmpA, Asp14, and AipA could be exploited to develop a vaccine for granulocytic anaplasmosis.
Collapse
|
4
|
Hacker J, Ott M, Hof H. Effects of low, subinhibitory concentrations of antibiotics on expression of a virulence gene cluster of pathogenic Escherichia coli by using a wild-type gene fusion. Int J Antimicrob Agents 2010; 2:263-70. [PMID: 18611540 DOI: 10.1016/0924-8579(93)90060-i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/1993] [Indexed: 10/27/2022]
Abstract
S fimbrial adhesins (Sfa) represent virulence factors of E. coli wild-type strains causing urinary tract infections and meningitis of the new born. In order to determine the influence of subinhibitory concentration of antibiotics on the expression of the sfa gene cluster, a wild-type strain carrying the lacZ gene, coding for the enzyme beta-galactosidase fused to the sfa determinant was used. The expression of lacZ which was under the control of the sfa wild-type promoters, was now equivalent to the sfa gene expression of wild-type strain 536. With this strain the influence of subinhibitory concentrations of 28 antibiotics on the expression of the sfa determinant was studied. The expression was strongly suppressed by a treatment of the wild-type fusion strain by aztreonam, gentamicin, clindamycin and trimethoprim; the latter had a dramatic effect on sfa expression. It was further shown for clindamycin and trimethoprim that the reduction of sfa gene expression was dependent on the concentration of the antibiotics. In contrast imipinem, amphotericin B and rifampicin weakly stimulated sfa expression. We conclude that gene fusions between virulence-associated loci and indicator genes in wild-type pathogens are useful to study virulence modulation due to subinhibitory concentration of antibiotics on the genetic level.
Collapse
Affiliation(s)
- J Hacker
- Lehrstuhl für Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
5
|
Antão EM, Wieler LH, Ewers C. Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog 2009; 1:22. [PMID: 20003270 PMCID: PMC2797515 DOI: 10.1186/1757-4749-1-22] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/10/2009] [Indexed: 12/25/2022] Open
Abstract
The ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Colonization begins with the attachment of the bacterium to receptors expressed by cells forming the lining of the mucosa. Long hair like extracellular appendages called fimbriae, produced by most Gram-negative pathogens, mediate specific attachment to the epithelial cell surface. Associated with the fimbriae is a protein called an adhesin, which directs high-affinity binding to specific cell surface components. In the last couple of years, an enormous amount of research has been undertaken that deals with understanding how bacterial pathogens adhere to host cells. E. coli in all probability is one of the best studied free-living organisms. A group of E. coli called Extraintestinal pathogenic E. coli (ExPEC) including both human and animal pathogens like Uropathogenic E. coli (UPEC), Newborn meningitic E. coli (NMEC) and Avian pathogenic E. coli (APEC), have been found to harbour many fimbriae including Type 1 fimbriae, P fimbriae, curli fibres, S fimbriae, F1C fimbriae, Dr fimbriae, afimbrial adhesins, temperature-sensitive haemagglutinin and many novel adhesin gene clusters that have not yet been characterized. Each of these adhesins is unique due to the recognition of an adhesin-specific receptor, though as a group these adhesins share common genomic organization. A newly identified putative adhesin temporarily termed ExPEC Adhesin I, encoded by gene yqi, has been recently found to play a significant role in the pathogenesis of APEC infection, thus making it an interesting candidate for future research. The aim of this review is to describe the role of ExPEC adhesins during extraintestinal infections known till date, and to suggest the idea of investigating their potential role in the colonization of the host gut which is said to be a reservoir for ExPEC.
Collapse
Affiliation(s)
- Esther-Maria Antão
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Philippstr, 13, 10115 Berlin, Germany.
| | | | | |
Collapse
|
6
|
Sjöström AE, Sondén B, Müller C, Rydström A, Dobrindt U, Wai SN, Uhlin BE. Analysis of the sfaX(II) locus in the Escherichia coli meningitis isolate IHE3034 reveals two novel regulatory genes within the promoter-distal region of the main S fimbrial operon. Microb Pathog 2008; 46:150-8. [PMID: 19103276 DOI: 10.1016/j.micpath.2008.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/30/2008] [Accepted: 12/04/2008] [Indexed: 11/19/2022]
Abstract
We describe the expression and regulation of the gene sfaX(II) located near the Sfa(II) fimbrial determinant in the newborn meningitis Escherichia coli (NMEC) isolate IHE3034. sfaX(II) belongs to a gene family, the 17-kDa genes, typically located downstream (300-3000bp) of different fimbrial operons found in E. coli isolates of uropathogenic and newborn meningitis origin. Using transcriptional sfaX(II) reporter gene fusions we found that different environmental conditions commonly affecting expression of fimbrial genes also affected sfaX(II) expression. Analysis of the sfaX(II) transcripts showed that the gene is part of the main fimbrial operon as it is transcribed together with the rest of the fimbrial genes. In addition, the sfaX(II) gene can be expressed from a more proximal promoter and is found to be subject to strong down-regulation by the nucleoid protein H-NS. Studies with an sfaX(II) mutant derivative of IHE3034 did not reveal effects on Sfa(II) fimbrial biogenesis as monitored by e.g. immunofluorescence microscopy. Nevertheless, a mutation in sfaX(II) resulted in altered expression of other surface components. Moreover, we define a new gene, sfaY(II), coding for a putative phosphodiesterase that is located in between the sfaX(II) gene and the fimbrial biogenesis genes. Our studies by ectopic expression of sfaY(II) in Vibrio cholerae showed that the gene product caused reduced biofilm formation and it is proposed that sfaY(II) can influence cyclic-di-GMP turnover in the bacteria. Our findings demonstrate that the operons typical for S-fimbriae of extraintestinal pathogenic E. coli include previously unrecognized novel regulatory genes.
Collapse
Affiliation(s)
- Annika E Sjöström
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, S-90187 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Sinclair HR, Smejkal CW, Glister C, Kemp F, van den Heuvel E, de Slegte J, Gibson GR, Rastall RA. Sialyloligosaccharides inhibit cholera toxin binding to the GM1 receptor. Carbohydr Res 2008; 343:2589-94. [PMID: 18703180 DOI: 10.1016/j.carres.2008.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/10/2008] [Accepted: 07/12/2008] [Indexed: 10/21/2022]
Abstract
It is recognised that cholera toxin (Ctx) is a significant cause of gastrointestinal disease globally, particularly in developing countries where access to uncontaminated drinking water is at a premium. Ctx vaccines are prohibitively expensive and only give short-term protection. Consequently, there is scope for the development of alternative control strategies or prophylactics. This may include the use of oligosaccharides as functional mimics for the cell-surface toxin receptor (GM1). Furthermore, the sialic acid component of epithelial receptors has already been shown to contribute significantly to the adhesion and pathogenesis of Ctx. Here, we demonstrate the total inhibition of Ctx using GM1-competitive ELISA with 25mgmL(-1) of a commercial preparation of sialyloligosaccharides (SOS). The IC(50) value was calculated as 5.21mgmL(-1). One-hundred percent inhibition was also observed at all concentrations of Ctx-HRP tested with 500ngmL(-1) GM1-OS. Whilst SOS has much lower affinity for Ctx than GM1-OS, the commercial preparation is impure containing only 33.6% carbohydrate; however, the biantennary nature of SOS appears to give a significant increase in potency over constituent monosaccahride residues. It is proposed that SOS could be used as a conventional food additive, such as in emulsifiers, stabilisers or sweeteners, and are classified as nondigestible oligosaccharides that pass into the small intestine, which is the site of Ctx pathogenesis.
Collapse
Affiliation(s)
- Haydn R Sinclair
- Department of Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Simon PM. Section Review: Biologicals & Immunologicals: Complex carbohydrates in development as human pharmaceuticals. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.3.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Toyosaki T, Koketsu M. Oxidative stability of silky fowl eggs. Comparison with hen eggs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:1328-1330. [PMID: 14995141 DOI: 10.1021/jf035044g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oxidative stability of original silky fowl's eggs was investigated. The silky fowl's whole eggs indicated significant oxidative stability compared to hen's eggs in storage for 14 days. The hen eggs showed an increased amount of hydroperoxides on 6 days of storage at room temperature. In contrast, the silky fowl eggs showed restricted generation of hydroperoxides until 8 days and then a gradual increase. Though pigment extracted with chloroform/methanol (2:1) solvent from hen's whole egg turned brown for 14 days, the pigment extracted from silky fowl's whole egg slowly turned brown. Unsaturated fatty acids in silky fowl eggs were 62.5% among total fatty acids, while the unsaturated fatty acids of hen's eggs were 53.9%. It is speculated that the silky fowl eggs show oxidative stability owing to the higher ratio of unsaturated fatty acids in the silky fowl eggs compared with that of hen eggs.
Collapse
Affiliation(s)
- Toshiyuki Toyosaki
- Department of Food and Nutrition, Koran Women's Junior College, Fukuoka, 811-1311, Japan
| | | |
Collapse
|
10
|
Smeds A, Pertovaara M, Timonen T, Pohjanvirta T, Pelkonen S, Palva A. Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun 2003; 71:2163-72. [PMID: 12654838 PMCID: PMC152074 DOI: 10.1128/iai.71.4.2163-2182.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Revised: 11/12/2002] [Accepted: 12/23/2002] [Indexed: 11/20/2022] Open
Abstract
F18 fimbrial Esherichia coli strains are associated with porcine postweaning diarrhea and pig edema disease. Recently, the FedF subunit was identified as the adhesin of the F18 fimbriae. In this study, adhesion domains of FedF were further studied by constructing deletions within the fedF gene and expressing FedF proteins with deletions either together with the other F18 fimbrial subunits or as fusion proteins tagged with maltose binding protein. The region essential for adhesion to porcine intestinal epithelial cells was mapped between amino acid residues 60 and 109 of FedF. To map the binding domain even more closely, all eight charged amino acid residues within this region were independently replaced by alanine. Three of these single point mutants expressing F18 fimbriae exhibited significantly diminished capabilities to adhere to porcine epithelial cells in vitro. In addition, a triple point mutation and a double point mutation completely abolished receptor adhesiveness. The result further confirmed that the region between amino acid residues 60 and 109 is essential for the binding of F18 fimbriae to their receptor. In addition, the adhesion capability of the binding domain was eliminated after treatment with iodoacetamide, suggesting the formation of a disulfide bridge between Cys-63 and Cys-83, whereas Cys-111 and Cys-116 could be deleted without affecting the binding ability of FedF.
Collapse
Affiliation(s)
- A Smeds
- Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences, Section of Microbiology, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
11
|
Smeds A, Pertovaara M, Timonen T, Pohjanvirta T, Pelkonen S, Palva A. Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun 2003; 71:2163-2172. [PMID: 12654838 PMCID: PMC152074 DOI: 10.1128/iai.71.4.2163-2172.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Revised: 11/12/2002] [Accepted: 12/23/2002] [Indexed: 05/29/2023] Open
Abstract
F18 fimbrial Esherichia coli strains are associated with porcine postweaning diarrhea and pig edema disease. Recently, the FedF subunit was identified as the adhesin of the F18 fimbriae. In this study, adhesion domains of FedF were further studied by constructing deletions within the fedF gene and expressing FedF proteins with deletions either together with the other F18 fimbrial subunits or as fusion proteins tagged with maltose binding protein. The region essential for adhesion to porcine intestinal epithelial cells was mapped between amino acid residues 60 and 109 of FedF. To map the binding domain even more closely, all eight charged amino acid residues within this region were independently replaced by alanine. Three of these single point mutants expressing F18 fimbriae exhibited significantly diminished capabilities to adhere to porcine epithelial cells in vitro. In addition, a triple point mutation and a double point mutation completely abolished receptor adhesiveness. The result further confirmed that the region between amino acid residues 60 and 109 is essential for the binding of F18 fimbriae to their receptor. In addition, the adhesion capability of the binding domain was eliminated after treatment with iodoacetamide, suggesting the formation of a disulfide bridge between Cys-63 and Cys-83, whereas Cys-111 and Cys-116 could be deleted without affecting the binding ability of FedF.
Collapse
Affiliation(s)
- A Smeds
- Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences, Section of Microbiology, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
To effectively colonize a host animal and cause disease, many bacterial pathogens have evolved the mechanisms needed to invade and persist within host cells and tissues. Recently it was discovered that uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, can invade and replicate within uroepithelial cells. This can provide E. coli with a survival advantage, allowing the microbes to better resist detection and clearance by both innate and adaptive immune defence mechanisms. Adhesive organelles, including type 1, P, and S pili along with Dr adhesins, promote both bacterial attachment to and invasion of host tissues within the urinary tract. Interactions mediated by these adhesins can also stimulate a number of host responses that can directly influence the outcome of a urinary tract infection.
Collapse
Affiliation(s)
- Matthew A Mulvey
- Pathology Department, 5B412 SOM, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132-2501, USA.
| |
Collapse
|
13
|
Tanskanen J, Saarela S, Tankka S, Kalkkinen N, Rhen M, Korhonen TK, Westerlund-Wikström B. The gaf fimbrial gene cluster of Escherichia coli expresses a full-size and a truncated soluble adhesin protein. J Bacteriol 2001; 183:512-9. [PMID: 11133944 PMCID: PMC94906 DOI: 10.1128/jb.183.2.512-519.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GafD lectin of the G (F17) fimbriae of diarrhea-associated Escherichia coli was overexpressed and purified from the periplasm of E. coli by affinity chromatography on GlcNAc-agarose. The predicted mature GafD peptide comprises 321 amino acids, but the predominant form of GafD recovered from the periplasm was 19,092 Da in size and corresponded to the 178 N-terminal amino acid residues, as judged by mass spectrometry and amino acid sequencing, and was named DeltaGafD. Expression of gafD from the cloned gaf gene cluster in DegP-, Lon-, and OmpT-deficient recombinant strains did not significantly decrease the formation of DeltaGafD. The peptide was also detected in the periplasm of the wild-type E. coli strain from which the gaf gene cluster originally was cloned. We expressed gafD fragments encoding C-terminally truncated peptides. Peptides GafD1-252, GafD1-224, GafD1-189, and the GafD1-178, isolated from the periplasm by affinity chromatography, had apparent sizes closely similar to that of DeltaGafD. Only trace amounts of truncated forms with expected molecular sizes were detected in spheroplasts. In contrast, the shorter GafD1-157 peptide was detected in spheroplasts but not in the periplasm, indicating that it was poorly translocated or was degraded by periplasmic proteases. Pulse-chase assays using gafD indicated that DeltaGafD was processed from GafD and is not a primary translation product. The DeltaGafD peptide was soluble by biochemical criteria and exhibited specific binding to GlcNAc-agarose. Inhibition assays with mono- and oligosaccharides gave a similar inhibition pattern in the hemagglutination by the G-fimbria-expressing recombinant E. coli strain and in the binding of [(14)C]DeltaGafD to GlcNAc-agarose. DeltaGafD bound specifically to laminin, a previously described tissue target for the G fimbria. Our results show that a soluble, protease-resistant subdomain of GafD exhibits receptor-binding specificity similar to that for intact G fimbriae and that it is formed when gafD is expressed alone or from the gaf gene cluster.
Collapse
Affiliation(s)
- J Tanskanen
- Division of General Microbiology, Department of Biosciences, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
14
|
Choi BK, Schifferli DM. Lysine residue 117 of the FasG adhesin of enterotoxigenic Escherichia coli is essential for binding of 987P fimbriae to sulfatide. Infect Immun 1999; 67:5755-61. [PMID: 10531225 PMCID: PMC96951 DOI: 10.1128/iai.67.11.5755-5761.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FasG subunit of the 987P fimbriae of enterotoxigenic strains of Escherichia coli was previously shown to mediate fimbrial binding to a glycoprotein and a sulfatide receptor on intestinal brush borders of piglets. Moreover, the 987P adhesin FasG is required for fimbrial expression, since fasG null mutants are nonfimbriated. In this study, fasG was modified by site-directed mutagenesis to study its sulfatide binding properties. Twenty single mutants were generated by replacing positively charged lysine (K) or arginine (R) residues with small, nonpolar alanine (A) residues. Reduced levels of binding to sulfatide-containing liposomes correlated with reduced fimbriation and FasG surface display in four fasG mutants (R27A, R286A, R226A, and R368). Among the 16 remaining normally fimbriated mutants with wild-type levels of surface-exposed FasG, only one mutant (K117A) did not interact at all with sulfatide-containing liposomes. Four mutants (K117A, R116A, K118A, and R200A) demonstrated reduced binding to such liposomes. Since complete phenotypic dissociation between the structure and specific function of 987P was observed only with mutant K117A, this residue is proposed to play an essential role in the FasG-sulfatide interaction, possibly communicating with the sulfate group of sulfatide by hydrogen bonding and/or salt bridge formation. Residues K17, R116, K118, and R200 may stabilize this interaction.
Collapse
Affiliation(s)
- B K Choi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
15
|
Affiliation(s)
- T J Mitchell
- Division of Infection and Immunity, IBLS, University of Glasgow
| |
Collapse
|
16
|
Arden B. Conserved motifs in T-cell receptor CDR1 and CDR2: implications for ligand and CD8 co-receptor binding. Curr Opin Immunol 1998; 10:74-81. [PMID: 9523115 DOI: 10.1016/s0952-7915(98)80035-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent X-ray crystallographic structures of the T-cell receptor (TCR) alpha and beta chains, as well as their trimolecular complexes with peptide-MHC ligand, have established their structural similarity with the immunoglobulin molecules. The complementarity-determining region (CDR1) and CDR2 encoded within the TCR germline variable (V) sequence genes are well conserved across different TCR V alpha and V beta subfamilies. Multiple sequence alignments have been made based on structural information; they indicate that there will be only a limited number of canonical conformations for the first and second CDR loops. The limited diversity shown by CDRs 1 and 2 contrasts with the extreme junctional CDR3 diversity. Furthermore, CDR2 alignments have revealed conservation of a positive net charge in V alpha subfamilies. A model has been proposed for a direct interaction of the lateral part of CDR2 alpha with the negatively charged membrane-proximal 'stalk' region of the CD8 molecule.
Collapse
Affiliation(s)
- B Arden
- Immunbiologie, Augenklinik, Klinikum Innenstadt, München, Germany.
| |
Collapse
|
17
|
Tarkkanen AM, Virkola R, Clegg S, Korhonen TK. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 1997; 65:1546-9. [PMID: 9119502 PMCID: PMC175168 DOI: 10.1128/iai.65.4.1546-1549.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Binding of the two identified type 3 fimbrial variants of Klebsiella pneumoniae to human endothelial EA-hy926 and bladder T24 cells was assessed. The recombinant Escherichia coli strain LE392(pFK12), expressing plasmid-encoded type 3 fimbriae of K. pneumoniae, adhered to both cell lines, and the fimbriae purified from the strain bound to both cell lines in a dose-dependent manner. Adhesiveness to both cell lines of chromosomally encoded type 3 fimbriae from K. pneumoniae IApc35 was lower. No binding was detected with type 1 fimbriae of K. pneumoniae. Both type 3 fimbrial variants exhibited a significantly lower affinity for the cell lines than did S fimbriae of meningitis-associated E. coli.
Collapse
Affiliation(s)
- A M Tarkkanen
- Department of Biosciences, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
18
|
Abstract
Sialic acids (Sias) are terminal components of many glycoproteins and glycolipids especially of higher animals. In this exposed position they contribute significantly to the structural properties of these molecules, both in solution and on cell surfaces. Therefore, it is not surprising that Sias are important regulators of cellular and molecular interactions, in which they play a dual role. They can either mask recognition sites or serve as recognition determinants. Whereas the role of Sias in masking and in binding of pathogens to host cells has been documented over many years, their role in nonpathological cellular interaction has only been shown recently. The aim of this chapter is to summarize our knowledge about Sias in masking, for example, galactose residues, and to review the progress made during the past few years with respect to Sias as recognition determinants in the adhesion of pathogenic viruses, bacteria, and protozoa, and particularly as binding sites for endogenous cellular interaction molecules. Finally, perspectives for future research on these topics are discussed.
Collapse
Affiliation(s)
- S Kelm
- Biochemisches Institut, University of Kiel, Germany
| | | |
Collapse
|
19
|
Interactions between the Enteric Pathogen and the Host. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997. [DOI: 10.1007/978-1-4899-1828-4_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
|
21
|
Mol O, Oudega B. Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol Rev 1996; 19:25-52. [PMID: 8916554 DOI: 10.1111/j.1574-6976.1996.tb00252.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fimbriae are long filamentous polymeric protein structures located at the surface of bacterial cells. They enable the bacteria to bind to specific receptor structures and thereby to colonise specific surfaces. Fimbriae consist of so-called major and minor subunits, which form, in a specific order, the fimbrial structure. In this review emphasis is put on the genetic organisation, regulation and especially on the biosynthesis of fimbriae of enterotoxigenic Escherichia coli strains, and more in particular on K88 and related fimbriae, with ample reference to well-studied P and type 1 fimbriae. The biosynthesis of these fimbriae requires two specific and unique proteins, a periplasmic chaperone and an outer membrane located molecular usher ('doorkeeper'). Molecular and structural aspects of the secretion of fimbrial subunits across the cytoplasmic membrane, the interaction of these subunits with periplasmic molecular chaperone, their translocation to the inner site of the outer membrane and their interaction with the usher protein, as well as the (ordered) translocation of the subunits across the outer membrane and their assembly into a growing fimbrial structure will be described. A model for K88 fimbriae is presented.
Collapse
Affiliation(s)
- O Mol
- Department of Molecular Microbiology, IMBW, BioCentrum Amsterdam, Faculty of Biology, The Netherlands
| | | |
Collapse
|
22
|
Abstract
1. After a long barren period, the study of bacterial pathogenicity is now one of the most popular subjects in microbiology. This is because bacterial diseases remain a major problem in public health despite the advent of antibiotics, and the subject is a fertile field for the application of genetics and molecular biology. 2. Pathogenicity is a multifactorial property. The biological requirements are abilities to: infect mucous surfaces; enter the host through those surfaces; multiply in the environment of the host; interfere with host defences; and damage the host. Each requirement has many facets all of which can be accomplished by a variety of processes. 3. The molecular determinants of the five requirements for pathogenicity can be identified and the relation between their structure and function obtained by a seven step procedure. Genetic manipulation and observations on organisms grown in vivo play major roles in this procedure. Other vital aspects are the availability of good animal models and the design of biological tests for virulence determinants in vitro that are pertinent to the situation in vivo. 4. A survey of the state of studies on bacterial pathogenicity has highlighted some areas of immense erudition and exposed others that need more attention in the future. Research is often at the highest level of molecular biology for: adherence to and entry of epithelial cells; interference with humoral and phagocytic defences; toxins; and direct induction of cytokines and inflammation. The major gaps are: the determinants of competition with commensals on mucous surfaces; spread into deeper tissues; the host supplied nutrients and metabolism underlying growth rate in vivo; the determinants of interference with the immune response in important chronic diseases and carrier states; the determinants of immunopathological reactions that cause damage in chronic disease; and the determinants of change from carrier to invasive state. Areas that are receiving some attention but are worthy of more are: moving through mucus to gain access to mucous surfaces; opportunistic infections; the determinants of mixed infections; and the determinants of host and tissue susceptibility to infection. 5. Current interest in the regulation of production of virulence determinants and the influence on it of environmental factors has raised speculation on the role these factors play in vivo. However, it has not yet provided much information on the host factors specifically involved in particular bacterial infections. The individualistic concept of community, as a relative latecomer to discussions of animal community, is sometimes misconstrued as holding that communities are random assemblages of organisms without biotic interactions among species. Nevertheless, it has increasingly been accepted as supported by studies of diverse taxa and habitats. However, many other ecologists continue to argue for integrated, biotically controlled and evolved communities.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H Smith
- Medical School, University of Birmingham, UK
| |
Collapse
|
23
|
Affiliation(s)
- V Vetter
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | |
Collapse
|
24
|
Stins MF, Prasadarao NV, Ibric L, Wass CA, Luckett P, Kim KS. Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 1994; 145:1228-36. [PMID: 7977653 PMCID: PMC1887421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To assess the role of S fimbriae in the pathogenesis of Escherichia coli meningitis, transformants of E. coli strains with or without S fimbriae plasmid were compared for their binding to microvessel endothelial cells isolated from bovine brain cortices (BMEC). The BMEC's displayed a cobblestone appearance, were positive for factor VIII, carbonic anhydrase IV, took up fluorescent-labeled acetylated low density lipoprotein, and exhibited gamma glutamyl transpeptidase activity. Binding of S fimbriated E. coli to BMEC was approximately threefold greater than nonfimbriated E. coli Similarly S fimbriated E. coli bound to human brain endothelial cells approximately threefold greater than nonfimbriated E. coli. Binding was reduced approximately 60% by isolated S fimbriae and about 80% by anti-S adhesin antibody. Mutating the S adhesin gene resulted in a complete loss of the binding, whereas mutagenesis of the major S fimbriae subunit gene sfaA did not significantly affect binding. Pretreatment of BMEC with neuraminidase or prior incubation of S fimbriated E. coli with NeuAc alpha 2,3-sialyl lactose completely abolished binding. These findings indicate that S fimbriated E. coli bind to NeuAc alpha 2,3-galactose containing glycoproteins on brain endothelial cells via a lectin-like activity of SfaS adhesin. This might be an important early step in the penetration of bacteria across the blood-brain barrier in the development of E. coli meningitis.
Collapse
Affiliation(s)
- M F Stins
- Division of Infectious Diseases, Childrens Hospital of Los Angeles, CA 90027
| | | | | | | | | | | |
Collapse
|
25
|
KOKETSU MAMORU, JUNEJA LEKHRAJ, KIM MUJO, OHTA MASAYA, MATSUURA FUMITO, YAMAMOTO TAKEHIKO. Sialyloligosaccharides of Delipidated Egg Yolk Fraction. J Food Sci 1993. [DOI: 10.1111/j.1365-2621.1993.tb09349.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Morschhäuser J, Uhlin BE, Hacker J. Transcriptional analysis and regulation of the sfa determinant coding for S fimbriae of pathogenic Escherichia coli strains. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:97-105. [PMID: 8097559 DOI: 10.1007/bf00279536] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sfa determinant codes for S fimbrial adhesins which constitute adherence factors of pathogenic Escherichia coli strains. We have recently shown that the sfa determinant is transcribed from three promoters, pA, pB, and pC. In comparison with the promoters pB and pC, promoter pA, which is located in front of the structural gene sfaA, showed very weak activity. Here we have determined the exact positions of the mRNA start points by primer extension studies. We have also shown that mRNAs of 500, 700 and 1400 bases can be detected using oligonucleotide probes specific for the genes sfaB, sfaC and sfaA. SfaB and SfaC are positive regulators influencing fimbriation and the production of the S-specific adhesin which is encoded by the gene sfaS located in the distal half of the determinant. In addition, it is demonstrated that SfaB and SfaC interfere with the regulatory effect of the histone-like protein H-NS, encoded by a locus termed drdX or osmZ. In a drdX+ strain the regulators are necessary for transcription of the sfa determinant. In contrast, sfa expression is activator-independent in a drdX- strain. In this latter genetic background, a substantial fraction of the sfa transcripts is initiated from promoter pA. On the basis of these data we discuss a model for the regulation of this adhesin-specific determinant.
Collapse
MESH Headings
- Adhesins, Escherichia coli
- Bacterial Outer Membrane Proteins/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Recombinant/metabolism
- Escherichia coli/genetics
- Escherichia coli/pathogenicity
- Escherichia coli/physiology
- Fimbriae, Bacterial/physiology
- Frameshift Mutation
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Fungal
- Genes, Regulator
- Introns
- Models, Genetic
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Plasmids
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- J Morschhäuser
- Lehrstuhl für Mikrobiologie im Theodor-Boveri-Institut, Würzburg, FRG
| | | | | |
Collapse
|
27
|
Morschhäuser J, Vetter V, Korhonen T, Uhlin BE, Hacker J. Regulation and binding properties of S fimbriae cloned from E. coli strains causing urinary tract infection and meningitis. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1993; 278:165-76. [PMID: 8102267 DOI: 10.1016/s0934-8840(11)80834-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
S fimbriae are able to recognize receptor molecules containing sialic acid and are produced by pathogenic E. coli strains causing urinary tract infection and menigitis. In order to characterize the corresponding genetic determinant, termed S fimbrial adhesin (sfa) gene cluster, we have cloned the S-specific genes from a urinary pathogen and from a meningitis isolate. Nine genes are involved in the production of S fimbriae, two of these, sfaB and sfaC code for regulatory proteins being necessary for the expression of S fimbriae. Two promoters, PB and PC, are located in front of these genes. Transcription of the sfa determinant is influenced by activation of the promoters via SfaB and SfaC, the action of the H-NS protein and an RNaseE-specific mRNA processing. In addition, a third promoter, PA, located in front of the major subunit gene sfaA, can be activated under special circumstances. Four genes of the sfa determinant code for the subunit-specific proteins, SfaA (16 kda), SfaG (17 kda), SfaS (14 kda) and SfaH (29 kda). It was demonstrated that the protein SfaA is the major subunit protein while SfaS is identical to the sialic-acid-specific adhesin of S fimbriae. The introduction of specific mutations into sfaS revealed that a region of six amino acids of the adhesin which includes two lysine and one arginine residues is involved in the receptor specific interaction of S fimbriae. Additionally, it has been shown that SfaS is necessary for the induction of fimbriation while SfaH plays a role in the stringency of binding of S fimbriae to erythrocytes.
Collapse
Affiliation(s)
- J Morschhäuser
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Univ. Würzburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Evans DG, Karjalainen TK, Evans DJ, Graham DY, Lee CH. Cloning, nucleotide sequence, and expression of a gene encoding an adhesin subunit protein of Helicobacter pylori. J Bacteriol 1993; 175:674-83. [PMID: 7678592 PMCID: PMC196205 DOI: 10.1128/jb.175.3.674-683.1993] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gene hpaA, which codes for the receptor-binding subunit of the N-acetylneuraminyllactose-binding fibrillar hemagglutinin (NLBH) of Helicobacter pylori, was cloned and sequenced. The protein expressed by hpaA, designated HpaA, was identified as the adhesin subunit on the basis of its fetuin-binding activity and its reactivity with a polyclonal, monospecific rabbit serum prepared against NLBH purified from H. pylori. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and Western blots (immunoblots) showed that the cloned adhesin has the same molecular weight (20,000) as that found on H. pylori. Also, HpaA contains a short sequence of amino acids (KRTIQK) which are all either identical or functionally similar to those which compose the sialic acid-binding motif of Escherichia coli SfaS, K99, and CFA/I. Affinity-purified antibody specific for a 12-residue synthetic peptide that included this sequence blocked the hemagglutinating activity of H. pylori and was shown by immuno-gold electron microscopy to react with almost transparent material on unstained H. pylori cells, which is consistent with previous observations concerning the location and morphology of the NLBH.
Collapse
Affiliation(s)
- D G Evans
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
29
|
Hacker J, Kestler H, Hoschützky H, Jann K, Lottspeich F, Korhonen TK. Cloning and characterization of the S fimbrial adhesin II complex of an Escherichia coli O18:K1 meningitis isolate. Infect Immun 1993; 61:544-50. [PMID: 8093693 PMCID: PMC302762 DOI: 10.1128/iai.61.2.544-550.1993] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
S fimbrial adhesins (Sfa), which are able to recognize sialic acid-containing receptors on eukaryotic cells, are produced by Escherichia coli strains causing urinary tract infections or newborn meningitis. We recently described the cloning and molecular characterization of a determinant, termed sfaI, from the chromosome of an E. coli urinary tract infection strain. Here we present data concerning a S fimbria-specific gene cluster, designated sfaII, of an E. coli newborn meningitis strain. Like the SfaI complex, SfaII consists of the major subunit protein SfaA (16 kDa) and the minor subunit proteins SfaG (17 kDa), SfaS (15 kDa), and SfaH (29 kDa). The genes encoding the subunit proteins of SfaII were identified and sequenced. Their protein sequences were calculated from the DNA sequences and compared with those of the SfaI complex subunits. Although the sequences of the two major SfaA subunits differed markedly, the sequences of the minor subunits showed only a few amino acid exchanges (SfaG, SfaH) or were completely identical (SfaS). The introduction of a site-specific mutation into the gene sfaSII and subsequent analysis of an SfaS-negative clone indicated that sfaSII codes for the sialic acid-specific adhesin of the meninigitis isolate. These data were confirmed by the isolation and characterization of the SfaSII protein and the determination of its N-terminal amino acid sequence. The identity between the sialic acid-specific adhesins of SfaI and SfaII revealed that differences between the two Sfa complexes with respect to their capacities to agglutinate erythrocytes must result from sequence alterations of subunit proteins other than SfaS.
Collapse
Affiliation(s)
- J Hacker
- Lehrstuhl für Mikrobiologie im Theodor-Boveri-Institut, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Hoepelman AI, Tuomanen EI. Consequences of microbial attachment: directing host cell functions with adhesins. Infect Immun 1992; 60:1729-33. [PMID: 1563758 PMCID: PMC257065 DOI: 10.1128/iai.60.5.1729-1733.1992] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We take the view that adherence is not just a static process of holding hands but rather elicits a response in the targeted cell. From this point of view, adherence is an active process with an outcome. This outcome or fate is predictable only when several parameters of the host cell-adhesin interaction are known: is the adhesin acting alone or in series with other products, is the receptor up- or down-regulated at the time of ligation, which domain of the receptor is bound, and finally, which intracellular response circuits are connected to the receptor in the cell type targeted? Variations in these parameters are the basis for the ability of the adhesins of pathogens to orchestrate outcomes as disparate as simple address recognition versus actin nucleation, cytokine induction, activation of plasmin, derangement of leukocyte migration, or deposition of antibody on host cell membranes. The recognition of the relatedness of some eukaryotic and prokaryotic adhesive domains and the shared use of existing eukaryotic cell-cell interaction systems between host and pathogen suggest that the cellular interactions of interest in eukaryotic cell biology can be revealed by taking clues from the pathogens, which have studied and adapted to them the longest.
Collapse
Affiliation(s)
- A I Hoepelman
- Laboratory of Molecular Infectious Diseases, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
31
|
|
32
|
van Die I, Kramer C, Hacker J, Bergmans H, Jongen W, Hoekstra W. Nucleotide sequence of the genes coding for minor fimbrial subunits of the F1C fimbriae of Escherichia coli. Res Microbiol 1991; 142:653-8. [PMID: 1683712 DOI: 10.1016/0923-2508(91)90078-o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
F1C fimbriae allow uropathogenic Escherichia coli to adhere to specific epithelial surfaces. This adhesive property is probably due to the presence of minor fimbrial components in F1C fimbriae. The foc gene cluster encoding F1C fimbriae has been cloned, as described previously. Here we present the nucleotide sequence (2081 bp) coding for the F1C minor fimbrial subunits. The structural genes code for polypeptides of 175 (FocF), 166 (FocG), and 300 (FocH) amino acids. The deduced amino acids of the F1C minor subunits were compared with the reported sequences of the minor subunits of other types of fimbriae. The data show that the Foc minor subunits are highly homologous to the corresponding Sfa proteins, whereas homology to the minor subunits of type 1 and P fimbriae is much lower.
Collapse
Affiliation(s)
- I van Die
- Dept. of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Most of the information available concerning virulence factors of uropathogens is based on studies of Escherichia coli, the commonest cause of urinary tract infections. Earlier studies revealed several phenotypic Escherichia coli virulence factors that influenced both the anatomic level and severity of urinary tract infection. Virulence factors included O antigen serotype, presence and quantity of K capsular polysaccharide, adherence to uroepithelial cells, resistance to serum bactericidal activity, hemolysin, and aerobactin production. The introduction of DNA hybridization methodology has provided a valuable tool for reevaluation of the epidemiology of Escherichia coli infection as well as an alternative to the conventional phenotypic approach for studying the genotypic basis for virulence.
Collapse
Affiliation(s)
- J D Sobel
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
34
|
Chapter 25. Bacterial Adhesins. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1991. [DOI: 10.1016/s0065-7743(08)61212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
35
|
Schmoll T, Morschhäuser J, Ott M, Ludwig B, van Die I, Hacker J. Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesion determinant: nucleotide sequence of the genes sfa B, C, D, E, F. Microb Pathog 1990; 9:331-43. [PMID: 1983079 DOI: 10.1016/0882-4010(90)90067-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The S fimbrial adhesin (sfa) determinant of E. coli comprises nine genes situated on a stretch of 7.9 kilobases (kb) DNA. Here the nucleotide sequence of the genes sfa B and sfa C situated proximal to the main structural gene sfaA is described. Sfa-LacZ fusions show that the two genes are transcribed in opposite directions. The isolation of mutants in the proximal region of the sfa gene cluster, the construction of sfa-phoA gene fusions and subsequent transcomplementation studies indicated that the genes sfa B and sfa C play a role in regulation of the sfa determinant. In addition the nucleotide sequence of the genes sfa D, sfa E and sfa F situated between the genes sfa A and sfa G responsible for S subunit proteins, were determined. It is suggested that these genes are involved in transport and assembly of fimbrial subunits. Thus the entire genetic organization of the sfa determinant is presented and compared with the gene clusters coding for P fimbriae (pap), F1C fimbriae (foc) and type I fimbriae (fim). The evolutionary relationship of fimbrial adhesion determinants is discussed.
Collapse
Affiliation(s)
- T Schmoll
- Institut für Genetik und Mikrobiologie, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Genetically engineered S and F1C fimbriae differ in their contribution to adherence of Escherichia coli to cultured renal tubular cells. Infect Immun 1990; 58:3434-7. [PMID: 1976115 PMCID: PMC313672 DOI: 10.1128/iai.58.10.3434-3437.1990] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli K-12 strains producing S-fimbrial adhesins, F1C fimbriae, and mutagenized fimbriae were tested in a binding assay with a renal tubular cell line. S-fimbrial adhesins and F1C fimbriae mediated binding to tubular cells. The SfaA, SfaG, and SfaS subunits of S fimbriae contributed to attachment. Site-specific mutations in the sfaS gene reduced binding. The inhibition profile of F1C fimbriae resembled that of S fimbriae.
Collapse
|