1
|
Howlader DR, Das S, Lu T, Mandal RS, Hu G, Varisco DJ, Dietz ZK, Ratnakaram SSK, Ernst RK, Picking WD, Picking WL. A protein subunit vaccine elicits a balanced immune response that protects against Pseudomonas pulmonary infection. NPJ Vaccines 2023; 8:37. [PMID: 36918600 PMCID: PMC10012293 DOI: 10.1038/s41541-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/02/2023] [Indexed: 03/15/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (Pa) causes severe nosocomial infections, especially in immunocompromised individuals and the elderly. Increasing drug resistance, the absence of a licensed vaccine and increased hospitalizations due to SARS-CoV-2 have made Pa a major healthcare risk. To address this, we formulated a candidate subunit vaccine against Pa (L-PaF), by fusing the type III secretion system tip and translocator proteins with LTA1 in an oil-in-water emulsion (ME). This was mixed with the TLR4 agonist (BECC438b). Lung mRNA sequencing showed that the formulation activates genes from multiple immunological pathways eliciting a protective Th1-Th17 response following IN immunization. Following infection, however, the immunized mice showed an adaptive response while the PBS-vaccinated mice experienced rapid onset of an inflammatory response. The latter displayed a hypoxic lung environment with high bacterial burden. Finally, the importance of IL-17 and immunoglobulins were demonstrated using knockout mice. These findings suggest a need for a balanced humoral and cellular response to prevent the onset of Pa infection and that our formulation could elicit such a response.
Collapse
Affiliation(s)
- Debaki R Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Sayan Das
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Rahul Shubhra Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - David J Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Zackary K Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA.
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Geddes-McAlister J, Kugadas A, Gadjeva M. Tasked with a Challenging Objective: Why Do Neutrophils Fail to Battle Pseudomonas aeruginosa Biofilms. Pathogens 2019; 8:pathogens8040283. [PMID: 31817091 PMCID: PMC6963930 DOI: 10.3390/pathogens8040283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 01/28/2023] Open
Abstract
Multidrug-resistant (MDR) bacterial infections are a leading cause of mortality, affecting approximately 250,000 people in Canada and over 2 million people in the United States, annually. The lack of efficacy of antibiotic-based treatments is often caused by inability of the drug to penetrate bacterial biofilms in sufficient concentrations, posing a major therapeutic challenge. Here, we review the most recent information about the architecture of Pseudomonas aeruginosa biofilms in vivo and describe how advances in imaging and mass spectroscopy analysis bring about novel therapeutic options and challenge existing dogmas.
Collapse
Affiliation(s)
| | - Abirami Kugadas
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Mihaela Gadjeva
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-617-525-2268; Fax: +1-617-525-2510
| |
Collapse
|
3
|
Olszak T, Shneider MM, Latka A, Maciejewska B, Browning C, Sycheva LV, Cornelissen A, Danis-Wlodarczyk K, Senchenkova SN, Shashkov AS, Gula G, Arabski M, Wasik S, Miroshnikov KA, Lavigne R, Leiman PG, Knirel YA, Drulis-Kawa Z. The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence. Sci Rep 2017; 7:16302. [PMID: 29176754 PMCID: PMC5701251 DOI: 10.1038/s41598-017-16411-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas phage LKA1 of the subfamily Autographivirinae encodes a tailspike protein (LKA1gp49) which binds and cleaves B-band LPS (O-specific antigen, OSA) of Pseudomonas aeruginosa PAO1. The crystal structure of LKA1gp49 catalytic domain consists of a beta-helix, an insertion domain and a C-terminal discoidin-like domain. The putative substrate binding and processing site is located on the face of the beta-helix whereas the C-terminal domain is likely involved in carbohydrates binding. NMR spectroscopy and mass spectrometry analyses of degraded LPS (OSA) fragments show an O5 serotype-specific polysaccharide lyase specificity. LKA1gp49 reduces virulence in an in vivo Galleria mellonella infection model and sensitizes P. aeruginosa to serum complement activity. This enzyme causes biofilm degradation and does not affect the activity of ciprofloxacin and gentamicin. This is the first comprehensive report on LPS-degrading lyase derived from a Pseudomonas phage. Biological properties reveal a potential towards its applications in antimicrobial design and as a microbiological or biotechnological tool.
Collapse
Affiliation(s)
- Tomasz Olszak
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | - Mikhail M Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, TX, 77555-0647, USA
| | - Agnieszka Latka
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | - Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | | | - Lada V Sycheva
- Affinivax Inc., Cambridge, 02139-3543, Massachusetts, USA
| | | | - Katarzyna Danis-Wlodarczyk
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
- Laboratory of Gene Technology, KU Leuven, Leuven, 3001, Belgium
| | - Sofya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Grzegorz Gula
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland
| | - Michal Arabski
- Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski University in Kielce, Kielce, 25-406, Poland
| | - Slawomir Wasik
- Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in Kielce, Kielce, 25-406, Poland
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, 3001, Belgium
| | - Petr G Leiman
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, TX, 77555-0647, USA
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, 51-148, Poland.
| |
Collapse
|
4
|
Sass LA, Hair PS, Perkins AM, Shah TA, Krishna NK, Cunnion KM. Complement Effectors of Inflammation in Cystic Fibrosis Lung Fluid Correlate with Clinical Measures of Disease. PLoS One 2015; 10:e0144723. [PMID: 26642048 PMCID: PMC4671727 DOI: 10.1371/journal.pone.0144723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 01/28/2023] Open
Abstract
In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.
Collapse
Affiliation(s)
- Laura A. Sass
- Department of Pediatrics, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
- Children's Specialty Group, 811 Redgate Avenue, Norfolk, Virginia, United States of America
- Children’s Hospital of The King’s Daughters, 601 Children’s Lane, Norfolk, Virginia, United States of America
| | - Pamela S. Hair
- Department of Pediatrics, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
| | - Amy M. Perkins
- Department of Pediatrics, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
- Children’s Hospital of The King’s Daughters, 601 Children’s Lane, Norfolk, Virginia, United States of America
| | - Tushar A. Shah
- Department of Pediatrics, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
- Children's Specialty Group, 811 Redgate Avenue, Norfolk, Virginia, United States of America
- Children’s Hospital of The King’s Daughters, 601 Children’s Lane, Norfolk, Virginia, United States of America
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
| | - Neel K. Krishna
- Department of Pediatrics, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
- Children's Specialty Group, 811 Redgate Avenue, Norfolk, Virginia, United States of America
| | - Kenji M. Cunnion
- Department of Pediatrics, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
- Children's Specialty Group, 811 Redgate Avenue, Norfolk, Virginia, United States of America
- Children’s Hospital of The King’s Daughters, 601 Children’s Lane, Norfolk, Virginia, United States of America
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, Virginia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Mucosal vaccination with a multivalent, live-attenuated vaccine induces multifactorial immunity against Pseudomonas aeruginosa acute lung infection. Infect Immun 2010; 79:1289-99. [PMID: 21149583 DOI: 10.1128/iai.01139-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many animal studies investigating adaptive immune effectors important for protection against Pseudomonas aeruginosa have implicated opsonic antibody to the antigenically variable lipopolysaccharide (LPS) O antigens as a primary effector. However, active and passive vaccination of humans against these antigens has not shown clinical efficacy. We hypothesized that optimal immunity would require inducing multiple immune effectors targeting multiple bacterial antigens. Therefore, we evaluated a multivalent live-attenuated mucosal vaccination strategy in a murine model of acute P. aeruginosa pneumonia to assess the contributions to protective efficacy of various bacterial antigens and host immune effectors. Vaccines combining 3 or 4 attenuated strains having different LPS serogroups were associated with the highest protective efficacy compared to vaccines with fewer components. Levels of opsonophagocytic antibodies, which were directed not only to the LPS O antigens but also to the LPS core and surface proteins, correlated with protective immunity. The multivalent live-attenuated vaccines overcame prior problems involving immunologic interference in the development of O-antigen-specific antibody responses when closely related O antigens were combined in multivalent vaccines. Antibodies to the LPS core were associated with in vitro killing and in vivo protection against strains with O antigens not expressed by the vaccine strains, whereas antibodies to the LPS core and surface proteins augmented the contribution of O-antigen-specific antibodies elicited by vaccine strains containing a homologous O antigen. Local CD4 T cells in the lung also contributed to vaccine-based protection when opsonophagocytic antibodies to the challenge strain were absent. Thus, multivalent live-attenuated vaccines elicit multifactorial protective immunity to P. aeruginosa lung infections.
Collapse
|
6
|
King JD, Kocíncová D, Westman EL, Lam JS. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 2009; 15:261-312. [PMID: 19710102 DOI: 10.1177/1753425909106436] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa causes serious nosocomial infections, and an important virulence factor produced by this organism is lipopolysaccharide (LPS). This review summarizes knowledge about biosynthesis of all three structural domains of LPS - lipid A, core oligosaccharide, and O polysaccharides. In addition, based on similarities with other bacterial species, this review proposes new hypothetical pathways for unstudied steps in the biosynthesis of P. aeruginosa LPS. Lipid A biosynthesis is discussed in relation to Escherichia coli and Salmonella, and the biosyntheses of core sugar precursors and core oligosaccharide are summarised. Pseudomonas aeruginosa attaches a Common Polysaccharide Antigen and O-Specific Antigen polysaccharides to lipid A-core. Both forms of O polysaccharide are discussed with respect to their independent synthesis mechanisms. Recent advances in understanding O-polysaccharide biosynthesis since the last major review on this subject, published nearly a decade ago, are highlighted. Since P. aeruginosa O polysaccharides contain unusual sugars, sugar-nucleotide biosynthesis pathways are reviewed in detail. Knowledge derived from detailed studies in the O5, O6 and O11 serotypes is applied to predict biosynthesis pathways of sugars in poorly-studied serotypes, especially O1, O4, and O13/O14. Although further work is required, a full understanding of LPS biosynthesis in P. aeruginosa is almost within reach.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
Bebbington C, Yarranton G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 2008; 19:613-9. [DOI: 10.1016/j.copbio.2008.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 01/10/2023]
|
8
|
Kukavica-Ibrulj I, Levesque RC. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 2008; 42:389-412. [PMID: 18782827 DOI: 10.1258/la.2007.06014e] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cystic fibrosis (CF) is caused by a defect in the transmembrane conductance regulator (CFTR) protein that functions as a chloride channel. Dysfunction of the CFTR protein results in salty sweat, pancreatic insufficiency, intestinal obstruction, male infertility and severe pulmonary disease. In most patients with CF life expectancy is limited due to a progressive loss of functional lung tissue. Early in life a persistent neutrophylic inflammation can be demonstrated in the airways. The cause of this inflammation, the role of CFTR and the cause of lung morbidity by different CF-specific bacteria, mostly Pseudomonas aeruginosa, are not well understood. The lack of an appropriate animal model with multi-organ pathology having the characteristics of the human form of CF has hampered our understanding of the pathobiology and chronic lung infections of the disease for many years. This review summarizes the main characteristics of CF and focuses on several available animal models that have been frequently used in CF research. A better understanding of the chronic lung infection caused particularly by P. aeruginosa, the pathophysiology of lung inflammation and the pathogenesis of lung disease necessitates animal models to understand CF, and to develop and improve treatment.
Collapse
Affiliation(s)
- I Kukavica-Ibrulj
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Pavillon Charles-Eugène Marchand, Biologie Médicale, Faculté de Médecine, Université Laval, Québec G1K 7P4, Canada
| | | |
Collapse
|
9
|
Kintz E, Goldberg JB. Regulation of lipopolysaccharide O antigen expression in Pseudomonas aeruginosa. Future Microbiol 2008; 3:191-203. [DOI: 10.2217/17460913.3.2.191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitously found in the environment. It is an important opportunistic pathogen in immunocompromised patients and causes life-threatening lung infections in individuals with cystic fibrosis. A prominent virulence factor for many Gram-negative bacteria, including P. aeruginosa, is lipopolysaccharide (LPS), which is an immunodominant antigen located in the outer portion of the outer membrane. P. aeruginosa produces two O antigens that are attached to lipid A + core: a B-band O antigen and an A-band O polysaccharide. The B-band O antigen-repeating unit of LPS is responsible for serotype specificity; strains lacking O antigen have been shown to be less virulent in animal models of infection. What is less well understood is how the O antigen chain length is regulated and why P. aeruginosa and some other bacteria show two preferred O antigen lengths. P. aeruginosa encodes two genes encoding O antigen chain length regulators. These genes, wzz1 and wzz2, influence the expression of the long and very long chain lengths, respectively. The long chain length appears more important for resistance to the action of sera and virulence in a mouse model of infection, while the very long chain length appears to be more sensitive to environmental stress conditions. Studies in other bacteria point to regulation at the level of transcription and complex formation as being involved in determining the O antigen chain length and may provide clues to the regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Erica Kintz
- Department of Microbiology, University of Virginia Health System, 1300 Jefferson Park Avenue, 7230 Jordan Hall, Charlottesville, VA 22908-0734, USA
| | - Joanna B Goldberg
- Department of Microbiology, University of Virginia Health System, 1300 Jefferson Park Avenue, 7230 Jordan Hall, Charlottesville, VA 22908-0734, USA
| |
Collapse
|
10
|
Lipopolysaccharide O-antigen chain length regulation in Pseudomonas aeruginosa serogroup O11 strain PA103. J Bacteriol 2007; 190:2709-16. [PMID: 18065548 DOI: 10.1128/jb.01646-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wzz proteins are important for determining the length of the O-antigen side chain attached to lipopolysaccharide (LPS). Several bacteria, including Pseudomonas aeruginosa strain PAO1 (serogroup O5), produce two such proteins responsible for the preference of two different chain lengths on the surface. Our group has previously identified one wzz gene (wzz1) within the O-antigen locus of P. aeruginosa strain PA103 (serogroup O11). In this study we have identified the second wzz gene (wzz2), located in the same region of the genome and with 92% similarity to PAO1's wzz2 gene. Mutations were generated in both wzz genes by interruption with antibiotic resistance cassettes, and the effects of these mutations were characterized. Wild-type PA103 prefers two O-antigen chain lengths, referred to as long and very long. The expression of the long O-antigen chain length was reduced in the wzz1 mutant, indicating the Wzz1 protein is important for this chain length preference. The wzz2 mutant, on the other hand, was missing O-antigens of the very long chain length, indicating the Wzz2 protein is responsible for the production of very long O-antigen. The effects of the wzz mutations on virulence were also investigated. In both serum sensitivity assays and a mouse pneumonia model of infection, the wzz1 mutants exhibited greater defects in virulence compared to either wild-type PA103 or the wzz2 mutant, indicating the long chain length plays a greater role during these infectious processes.
Collapse
|
11
|
Abu-Lail LI, Liu Y, Atabek A, Camesano TA. Quantifying the adhesion and interaction forces between Pseudomonas aeruginosa and natural organic matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:8031-8037. [PMID: 18186333 DOI: 10.1021/es071047o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Atomic force microscopy (AFM) was used to characterize interactions between natural organic matter (NOM), and glass or bacteria. Poly(methacrylic acid) (PMA), soil humic Acid (SHA), and Suwannee River humic Acid (SRHA), were adsorbed to silica AFM probes. Adhesion forces (Fadh) for the interaction of organic-probes and glass slides correlated with organic molecular weight (MW), but not with radius of the organic aggregate (R), charge density (Q), or zeta potential (zeta). Two Pseudomonas aeruginosa strains with different lipopolysaccharides (LPS) were chosen: PAO1 (A+B+), whose LPS have common antigen (A-band) + O-antigen (B-band); and mutant AK1401 (A+B-). Fadh between bacteria and organics correlated with organic MW, R, and Q, but not zeta. PAO1 had lower Fadh with silica than NOM, which was attributed to negative charges from the B-band polymers causing electrostatic repulsion. AK1401 adhered stronger to silica than to the organics, perhaps because the absence of the B-band exposed underlying positively charged proteins. DLVO calculations could not explain the differences in the two bacteria or predict qualitative or quantitative trends in interaction forces in these systems. Molecular-level information from AFM studies can bring us closer to understanding the complex nature of bacterial-NOM interactions.
Collapse
Affiliation(s)
- Laila I Abu-Lail
- Department of Civil and Environmental Engineering, Life Sciences and Bioengineering Institute at Gateway Park, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | |
Collapse
|
12
|
Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007; 297:277-95. [PMID: 17466590 PMCID: PMC1994162 DOI: 10.1016/j.ijmm.2007.03.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most important bacterial pathogens encountered by immunocompromised hosts and patients with cystic fibrosis (CF), and the lipopolysaccharide (LPS) elaborated by this organism is a key factor in virulence as well as both innate and acquired host responses to infection. The molecule has a fair degree of heterogeneity in its lipid A and O-antigen structure, and elaborates two different outer-core glycoforms, of which only one is ligated to the O-antigen. A close relatedness between the chemical structures and genes encoding biosynthetic enzymes has been established, with 11 major O-antigen groups identified. The lipid A can be variably penta-, hexa- or hepta-acylated, and these isoforms have differing potencies when activating host innate immunity via binding to Toll-like receptor 4 (TLR4). The O-antigen is a major target for protective immunity as evidenced by numerous animal studies, but attempts, to date, to produce a human vaccine targeting these epitopes have not been successful. Newer strategies employing live attenuated P. aeruginosa, or heterologous attenuated bacteria expressing P. aeruginosa O-antigens are potential means to solve some of the existing problems related to making a P. aeruginosa LPS-specific vaccine. Overall, there is now a large amount of information available about the genes and enzymes needed to produce the P. aeruginosa LPS, detailed chemical structures have been determined for the major O-antigens, and significant biologic and immunologic studies have been conducted to define the role of this molecule in virulence and immunity to P. aeruginosa infection.
Collapse
Affiliation(s)
- Gerald B Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Abstract
Antibodies directed to the Pseudomonas aeruginosa lipopolysaccharide (LPS) O-antigens have clearly shown to mediate the most effective immunity to infection caused by LPS-smooth strains. Such strains are major causes of disease in immunocompromised hosts such as burn or cancer patients, individuals in intensive care units, and those who utilize extended-wear contact lenses. Yet producing an effective vaccine composed of non-toxic, immunogenic polysaccharides has been challenging. The chemical diversity among the different O-antigens representative of the 20 major serotypes, plus additional diversity among some O-antigens representing variant subtype antigens, translates into a large degree of serologic variability that increases the complexity of O-antigen specific vaccines. Further complications come from the poor immunogenicity of the major protective epitope expressed by some O-antigens, and a large degree of diversity in animal responses that preclude predicting the optimal vaccine formulation from such studies. Nonetheless human trials over the years of vaccines eliciting O-antigen immunity have been encouraging, though no vaccine has yet been fully evaluated and found to be clinically efficacious. Newer vaccine approaches such as using polysaccharide-protein conjugates and passive therapy with monoclonal or polyclonal immune sera offer some additional means to try and produce an effective immunotherapeutic reagent for this problematic pathogen.
Collapse
Affiliation(s)
- Gerald B Pier
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Rocchetta HL, Burrows LL, Lam JS. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 1999; 63:523-53. [PMID: 10477307 PMCID: PMC103745 DOI: 10.1128/mmbr.63.3.523-553.1999] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of D-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants.
Collapse
Affiliation(s)
- H L Rocchetta
- Canadian Bacterial Diseases Network, Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
15
|
Abstract
The surfactant-associated proteins SP-A and SP-D are members of a family of collagenous host defense lectins, designated collectins. There is increasing evidence that these pulmonary epithelial-derived proteins are important components of the innate immune response to microbial challenge, and that they participate in other aspects of immune and inflammatory regulation within the lung. The collectins bind to glycoconjugates and/or lipid moieties expressed by a wide variety of microorganisms and certain other organic particles in vitro. Although binding may facilitate microbial clearance through aggregation or other direct effects on the organism, SP-A and SP-D also have the capacity to modulate leukocyte function and, in some circumstances, to enhance their killing of microorganisms. The biologic activity of cell wall components, such as gram-negative bacterial polysaccharides, may be altered by interactions with collectins. Complementary or cooperative interactions between SP-A and SP-D could contribute to the efficiency of this defense system. Collectins may play particularly important roles in settings of inadequate or impaired specific immunity. Acquired or genetic alterations in the levels of active proteins within the airspaces and distal airways may increase susceptibility to infection.
Collapse
Affiliation(s)
- E C Crouch
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
16
|
Yu H, Hanes M, Chrisp CE, Boucher JC, Deretic V. Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect Immun 1998; 66:280-8. [PMID: 9423869 PMCID: PMC107888 DOI: 10.1128/iai.66.1.280-288.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic endobronchiolitis compounded by recurring Pseudomonas aeruginosa infections is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). In this study, a mouse model of repeated respiratory exposure to P. aeruginosa was established to facilitate investigations of factors contributing to P. aeruginosa persistence and associated inflammatory processes in the lung. While a single exposure to P. aeruginosa aerosols resulted in only mild histopathological changes, repeated exposure caused significant lung pathology in C57BL/6J mice. The peak of histopathological changes and inflammation in C57BL/6J mice was characterized by subacute lymphohistiocytic bronchopneumonia and persistent elevation of tumor necrosis factor alpha and macrophage inflammatory protein 2 in the lung but not in the serum. When isogenic nonmucoid (mucA+) and mucoid (mucA22) P. aeruginosa strains were compared, the mucoid cells were cleared several-fold less efficiently than the parental nonmucoid strain during the initial stages of the aerosol exposure regimen. However, the microscopic pathology findings and proinflammatory cytokine levels were similar in mice exposed to nonmucoid and mucoid P. aeruginosa throughout the infection. We also tested lung histopathology and proinflammatory cytokines in interleukin 10 (IL-10)-deficient transgenic (IL-10T) mice. Significant mortality was seen in IL-10T mice on initial challenge with P. aeruginosa, although no histopathological differences could be observed in the lungs of C57BL/6J and surviving IL-10T mice after a single exposure. However, increased pathology was detected in IL-10T mice relative to C57BL/6J after repeated challenge with P. aeruginosa. This observation supports the proposals that anti-inflammatory cytokines may play a role in suppressing P. aeruginosa-induced tissue damage during chronic infection.
Collapse
Affiliation(s)
- H Yu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
17
|
Yu H, Boucher J, Deretic V. 7.5 Molecular Analysis of Pseudomonas Aeruginosa Virulence. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70299-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-74. [PMID: 8840786 PMCID: PMC239456 DOI: 10.1128/mr.60.3.539-574.1996] [Citation(s) in RCA: 854] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
Collapse
Affiliation(s)
- J R Govan
- Department of Medical Microbiology, University of Edinburgh Medical School, Scotland
| | | |
Collapse
|
19
|
Yu H, Boucher JC, Hibler NS, Deretic V. Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (sigmaE). Infect Immun 1996; 64:2774-81. [PMID: 8698507 PMCID: PMC174138 DOI: 10.1128/iai.64.7.2774-2781.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A discerning feature of Pseudomonas aeruginosa strains causing chronic endobronchial infections in cystic fibrosis is their conversion into the mucoid, exopolysaccharide alginate-overproducing phenotype. This morphologically prominent change is caused by mutations which upregulate AlgU (sigma(E)), a novel extreme-stress sigma factor with functional equivalents in gram-negative organisms. In this work, we investigated the role of algU in P. aeruginosa sensitivity to reactive oxygen intermediates, killing by phagocytic cells, and systemic virulence of this bacterium. Inactivation of algU in P. aeruginosa PA01 increased its susceptibility to killing by chemically or enzymatically generated halogenated reactive oxygen intermediates and reduced its survival in bactericidal assays with J774 murine macrophages and human neutrophils. Surprisingly, inactivation of algU caused increased systemic virulence of P. aeruginosa in mouse models of acute infection. The increased lethality of the algU-deficient strain was also observed in the endotoxin-resistant C3H/HeJ mice. Only minor differences between algU+ and algU mutant cells in their sensitivity to human serum were observed, and no differences in their lipopolysaccharide profiles were detected. Intriguingly, while inactivation of algU downregulated five polypeptides it also upregulated the expression of seven polypeptides as determined by two-dimensional gel analyses, suggesting that algU plays both a positive and a negative role in gene expression in P. aeruginosa. While the observation that algU inactivation increases systemic virulence in P. aeruginosa requires further explanation, this phenomenon contrasts with the apparent selection for strains with upregulated AlgU during colonization of the cystic fibrosis lung and suggests opposing roles for this system in chronic and acute infections.
Collapse
Affiliation(s)
- H Yu
- Department of Microbiology, University of Texas Health Science Center at San Antonio, Texas 78284-7758, USA
| | | | | | | |
Collapse
|
20
|
Boucher JC, Martinez-Salazar J, Schurr MJ, Mudd MH, Yu H, Deretic V. Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol 1996; 178:511-23. [PMID: 8550474 PMCID: PMC177686 DOI: 10.1128/jb.178.2.511-523.1996] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conversion to a mucoid, exopolysaccharide alginate-overproducing phenotype in Pseudomonas aeruginosa is associated with chronic respiratory infections in cystic fibrosis. Mucoidy is caused by muc mutations that derepress the alternative sigma factor AlgU, which in turn activates alginate biosynthetic and ancillary regulatory genes. Here we report the molecular characterization of two newly identified genes, algW and mucD, that affect expression of mucoidy. The algW gene, mapping at 69 min, was isolated on the basis of its ability to suppress mucoidy and reduce transcription of the alginate biosynthetic gene algD. The predicted primary structure of AlgW displayed similarity to HtrA (DegP), a serine protease involved in proteolysis of abnormal proteins and required for resistance to oxidative and heat stress in enteric bacteria. Inactivation of algW on the chromosome of the wild-type nonmucoid strain PAO1 caused increased sensitivity to heat, H2O2, and paraquat, a redox cycling compound inducing intracellular levels of superoxide. This mutation also permitted significant induction of alginate production in the presence of subinhibitory concentrations of paraquat. Two new genes, mucC and mucD, were identified immediately downstream of the previously characterized portion (algU mucA mucB) of the gene cluster at 67.5 min encoding the alternative sigma factor AlgU and its regulators. Interestingly, the predicted gene product of mucD also showed similarities to HtrA. Inactivation of mucD on the PAO1 chromosome resulted in conversion to the mucoid phenotype. The mutation in mucD also caused increased sensitivity to H2O2 and heat killing. However, in contrast to algW mutants, no increase in susceptibility to paraquat was observed in mucD mutants. These findings indicate that algW and mucD play partially overlapping but distinct roles in P. aeruginosa resistance to reactive oxygen intermediates and heat. In addition, since mutations in mucD and algW cause conversion to mucoidy or lower the threshold for its induction by reactive oxygen intermediates, these factors may repress alginate synthesis either directly by acting on AlgU or its regulators or indirectly by removing physiological signals that may activate this stress response system.
Collapse
Affiliation(s)
- J C Boucher
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | | | | | | | |
Collapse
|
21
|
Deretic V, Schurr MJ, Yu H. Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 1995; 3:351-6. [PMID: 8520888 DOI: 10.1016/s0966-842x(00)88974-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During chronic infections in cystic fibrosis, persistence of Pseudomonas aeruginosa is associated with conversion into forms that are associated with conversion into forms that are characterized by a mucoid colony morphology, rough lipopolysaccharide and, paradoxically, decreased systemic virulence. The mutations underlying these changes occur in global regulators, such as alternative sigma factors and their accessory elements.
Collapse
Affiliation(s)
- V Deretic
- Dept of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | |
Collapse
|