1
|
Rom JS, Hart MT, McIver KS. PRD-Containing Virulence Regulators (PCVRs) in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:772874. [PMID: 34737980 PMCID: PMC8560693 DOI: 10.3389/fcimb.2021.772874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase system (PTS) is a conserved pathway in bacteria that couples transport of sugars with phosphorylation to monitor host carbohydrate availability. A family of structurally homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been recognized in divergent bacterial pathogens, including Streptococcus pyogenes Mga and Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via the PTS, which impacts their dimerization and their activity. Recent work with predicted PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR) suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the domain structure, but also raised additional questions such as how ubiquitous are PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do specific sugars signal through PCVRs, and do PCVRs interact with DNA both as transcription factors and nucleoid-associating proteins? Here, we will review known and putative PCVRs based on key domain and functional characteristics and consider their roles as both transcription factors and possibly chromatin-structuring proteins.
Collapse
Affiliation(s)
- Joseph S Rom
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Meaghan T Hart
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Kevin S McIver
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States.,Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
2
|
Vyas HKN, Proctor EJ, McArthur J, Gorman J, Sanderson-Smith M. Current Understanding of Group A Streptococcal Biofilms. Curr Drug Targets 2020; 20:982-993. [PMID: 30947646 PMCID: PMC6700754 DOI: 10.2174/1389450120666190405095712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
Abstract
Background: It has been proposed that GAS may form biofilms. Biofilms are microbial communities that aggregate on a surface, and exist within a self-produced matrix of extracellular polymeric substances. Biofilms offer bacteria an increased survival advantage, in which bacteria persist, and resist host immunity and antimicrobial treatment. The biofilm phenotype has long been recognized as a virulence mechanism for many Gram-positive and Gram-negative bacteria, however very little is known about the role of biofilms in GAS pathogenesis. Objective: This review provides an overview of the current knowledge of biofilms in GAS pathogenesis. This review assesses the evidence of GAS biofilm formation, the role of GAS virulence factors in GAS biofilm formation, modelling GAS biofilms, and discusses the polymicrobial nature of biofilms in the oropharynx in relation to GAS. Conclusion: Further study is needed to improve the current understanding of GAS as both a mono-species biofilm, and as a member of a polymicrobial biofilm. Improved modelling of GAS biofilm formation in settings closely mimicking in vivo conditions will ensure that biofilms generated in the lab closely reflect those occurring during clinical infection.
Collapse
Affiliation(s)
- Heema K N Vyas
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Emma-Jayne Proctor
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jason McArthur
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jody Gorman
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
3
|
Frost HR, Sanderson-Smith M, Walker M, Botteaux A, Smeesters PR. Group A streptococcal M-like proteins: From pathogenesis to vaccine potential. FEMS Microbiol Rev 2018; 42:193-204. [PMID: 29228173 DOI: 10.1093/femsre/fux057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
M and M-like surface proteins from group A Streptococcus (GAS) act as virulence factors and have been used in multiple vaccine candidates. While the M protein has been extensively studied, the two genetically and functionally related M-like proteins, Mrp and Enn, although present in most streptococcal strains have been relatively less characterised. We compile the current state of knowledge for these two proteins, from discovery to recent studies on function and immunogenicity, using the M protein for comparison as a prototype of this family of proteins. We focus on the known interactions between M-like proteins and host ligand proteins, and analyse the genetic data supporting these interactions. We discuss known and possible functions of M-like proteins during GAS infections, and highlight knowledge gaps where further investigation is warranted.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, 2522, NSW, Australia
| | - Mark Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels 1020, Belgium.,Centre for International Child Health, University of Melbourne, Melbourne 3052, VIC, Australia
| |
Collapse
|
4
|
DebRoy S, Li X, Kalia A, Galloway-Pena J, Shah BJ, Fowler VG, Flores AR, Shelburne SA. Identification of a chimeric emm gene and novel emm pattern in currently circulating strains of emm4 Group A Streptococcus. Microb Genom 2018; 4. [PMID: 30412460 PMCID: PMC6321872 DOI: 10.1099/mgen.0.000235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Group A Streptococcus (GAS) is classified on the basis of the sequence of the gene encoding the M protein (emm) and the patterns into which emm types are grouped. We discovered a novel emm pattern in emm4 GAS, historically considered pattern E, arising from a fusion event between emm and the adjacent enn gene. We identified the emm–enn fusion event in 51 out of 52 emm4 GAS strains isolated by national surveillance in 2015. GAS isolates with an emm–enn fusion event completely replaced pattern E emm4 strains over a 4-year span in Houston (2013–2017). The novel emm–enn gene fusion and new emm pattern has potential vaccine implications.
Collapse
Affiliation(s)
- Sruti DebRoy
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiqi Li
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica Galloway-Pena
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brittany J. Shah
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Anthony R. Flores
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
- *Correspondence: Samuel A. Shelburne,
| |
Collapse
|
5
|
Insufficient Acidification of Autophagosomes Facilitates Group A Streptococcus Survival and Growth in Endothelial Cells. mBio 2015; 6:e01435-15. [PMID: 26419882 PMCID: PMC4611045 DOI: 10.1128/mbio.01435-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Group A streptococcus (GAS) is an important human pathogen, and its invasion via blood vessels is critically important in serious events such as bacteremia or multiorgan failure. Although GAS was identified as an extracellular bacterium, the internalization of GAS into nonphagocytic cells may provide a strategy to escape from immune surveillance and antibiotic killing. However, GAS has also been reported to induce autophagy and is efficiently killed within lysosome-fused autophagosomes in epithelial cells. In this study, we show that GAS can replicate in endothelial cells and that streptolysin O is required for GAS growth. Bacterial replication can be suppressed by altering GAS gene expression in an acidic medium before internalization into endothelial cells. The inhibitory effect on GAS replication can be reversed by treatment with bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Compared with epithelial cells in which acidification causes autophagy-mediated clearance of GAS, there was a defect in acidification of GAS-containing vesicles in endothelial cells. Consequently, endothelial cells fail to maintain low pH in GAS-containing autophagosomes, thereby permitting GAS replication inside LAMP-1- and LC3-positive vesicles. Furthermore, treatment of epithelial cells with bafilomycin A1 resulted in defective GAS clearance by autophagy, with subsequent bacterial growth intracellularly. Therefore, low pH is a key factor for autophagy-mediated suppression of GAS growth inside epithelial cells, while defective acidification of GAS-containing vesicles results in bacterial growth in endothelial cells. Previous reports showed that GAS can induce autophagy and is efficiently killed within lysosome-fused autophagosomes in epithelial cells. In endothelial cells, in contrast, induction of autophagy is not sufficient for GAS killing. In this study, we provide the first evidence that low pH is required to prevent intracellular growth of GAS in epithelial cells and that this mechanism is defective in endothelial cells. Treatment of GAS with low pH altered GAS growth rate and gene expression of virulence factors and resulted in enhanced susceptibility of GAS to intracellular lysosomal killing. Our findings reveal the existence of different mechanisms of host defense against GAS invasion between epithelial and endothelial cells.
Collapse
|
6
|
Phosphorylation events in the multiple gene regulator of group A Streptococcus significantly influence global gene expression and virulence. Infect Immun 2015; 83:2382-95. [PMID: 25824840 DOI: 10.1128/iai.03023-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/21/2015] [Indexed: 01/03/2023] Open
Abstract
Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis.
Collapse
|
7
|
Dale JB, Niedermeyer SE, Agbaosi T, Hysmith ND, Penfound TA, Hohn CM, Pullen M, Bright MI, Murrell DS, Shenep LE, Courtney HS. Protective immunogenicity of group A streptococcal M-related proteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:344-50. [PMID: 25630406 PMCID: PMC4340887 DOI: 10.1128/cvi.00795-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/17/2015] [Indexed: 01/30/2023]
Abstract
Many previous studies have focused on the surface M proteins of group A streptococci (GAS) as virulence determinants and protective antigens. However, the majority of GAS isolates express M-related protein (Mrp) in addition to M protein, and both have been shown to be required for optimal virulence. In the current study, we evaluated the protective immunogenicity of Mrp to determine its potential as a vaccine component that may broaden the coverage of M protein-based vaccines. Sequence analyses of 33 mrp genes indicated that there are three families of structurally related Mrps (MrpI, MrpII, and MrpIII). N-terminal peptides of Mrps were cloned, expressed, and purified from M type 2 (M2) (MrpI), M4 (MrpII), and M49 (MrpIII) GAS. Rabbit antisera against the Mrps reacted at high titers with the homologous Mrp, as determined by enzyme-linked immunosorbent assay, and promoted bactericidal activity against GAS emm types expressing Mrps within the same family. Mice passively immunized with rabbit antisera against MrpII were protected against challenge infections with M28 GAS. Assays for Mrp antibodies in serum samples from 281 pediatric subjects aged 2 to 16 indicated that the Mrp immune response correlated with increasing age of the subjects. Affinity-purified human Mrp antibodies promoted bactericidal activity against a number of GAS representing different emm types that expressed an Mrp within the same family but showed no activity against emm types expressing an Mrp from a different family. Our results indicate that Mrps have semiconserved N-terminal sequences that contain bactericidal epitopes which are immunogenic in humans. These findings may have direct implications for the development of GAS vaccines.
Collapse
Affiliation(s)
- James B Dale
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Microbiology, Immunology and Biochemistry, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Shannon E Niedermeyer
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Tina Agbaosi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Nicholas D Hysmith
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Claudia M Hohn
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Matthew Pullen
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Michael I Bright
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Daniel S Murrell
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Lori E Shenep
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Harry S Courtney
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
9
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
10
|
Liang Z, Zhang Y, Agrahari G, Chandrahas V, Glinton K, Donahue DL, Balsara RD, Ploplis VA, Castellino FJ. A natural inactivating mutation in the CovS component of the CovRS regulatory operon in a pattern D Streptococcal pyogenes strain influences virulence-associated genes. J Biol Chem 2013; 288:6561-73. [PMID: 23316057 PMCID: PMC3585089 DOI: 10.1074/jbc.m112.442657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
A skin-tropic invasive group A Streptococcus pyogenes (GAS) strain, AP53, contains a natural inactivating mutation in the covS gene (covS(M)) of the two-component responder (CovR)/sensor (CovS) gene regulatory system. The effects of this mutation on specific GAS virulence determinants have been assessed, with emphasis on expression of the extracellular protease, streptococcal pyrogenic exotoxin B (SpeB), capsular hyaluronic acid, and proteins that allow host plasmin assembly on the bacterial surface, viz. a high affinity plasminogen (Pg)/plasmin receptor, Pg-binding group A streptococcal M protein (PAM), and the human Pg activator streptokinase. To further illuminate mechanisms of the functioning of CovRS in the virulence of AP53, two AP53 isogenic strains were generated, one in which the natural covS(M) gene was mutated to WT-covS (AP53/covS(WT)) and a strain that contained an inactivated covR gene (AP53/ΔcovR). Two additional strains that do not contain PAM, viz. WT-NS931 and NS931/covS(M), were also employed. SpeB was not measurably expressed in strains containing covR(WT)/covS(M), whereas in strains with natural or engineered covR(WT)/covS(WT), SpeB expression was highly up-regulated. Alternatively, capsule synthesis via the hasABC operon was enhanced in strain AP53/covS(M), whereas streptokinase expression was only slightly affected by the covS inactivation. PAM expression was not substantially influenced by the covS mutation, suggesting that covRS had minimal effects on the mga regulon that controls PAM expression. These results demonstrate that a covS inactivation results in virulence gene alterations and also suggest that the CovR phosphorylation needed for gene up- or down-regulation can occur by alternative pathways to CovS kinase.
Collapse
Affiliation(s)
- Zhong Liang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Yueling Zhang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Garima Agrahari
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Vishwanatha Chandrahas
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kristofor Glinton
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Deborah L. Donahue
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Rashna D. Balsara
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A. Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J. Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
11
|
Egan SA, Ward PN, Watson M, Field TR, Leigh JA. Vru (Sub0144) controls expression of proven and putative virulence determinants and alters the ability of Streptococcus uberis to cause disease in dairy cattle. MICROBIOLOGY-SGM 2012; 158:1581-1592. [PMID: 22383474 PMCID: PMC3541772 DOI: 10.1099/mic.0.055863-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The regulation and control of gene expression in response to differing environmental stimuli is crucial for successful pathogen adaptation and persistence. The regulatory gene vru of Streptococcus uberis encodes a stand-alone response regulator with similarity to the Mga of group A Streptococcus. Mga controls expression of a number of important virulence determinants. Experimental intramammary challenge of dairy cattle with a mutant of S. uberis carrying an inactivating lesion in vru showed reduced ability to colonize the mammary gland and an inability to induce clinical signs of mastitis compared with the wild-type strain. Analysis of transcriptional differences of gene expression in the mutant, determined by microarray analysis, identified a number of coding sequences with altered expression in the absence of Vru. These consisted of known and putative virulence determinants, including Lbp (Sub0145), SclB (Sub1095), PauA (Sub1785) and hasA (Sub1696).
Collapse
Affiliation(s)
- Sharon A Egan
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Philip N Ward
- Nuffield Department of Clinical Laboratory Sciences, Oxford University, John Radcliffe Hospital, Headington, Oxfordshire OX3 9DU, UK
| | - Michael Watson
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.,ARK-Genomics, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Terence R Field
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - James A Leigh
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|
12
|
Patenge N, Fiedler T, Kreikemeyer B. Common regulators of virulence in streptococci. Curr Top Microbiol Immunol 2012; 368:111-53. [PMID: 23242855 DOI: 10.1007/82_2012_295] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptococcal species are a diverse group of bacteria which can be found in animals and humans. Their interactions with host organisms can vary from commensal to pathogenic. Many of the pathogenic species are causative agents of severe, invasive infections in their hosts, accounting for a high burden of morbidity and mortality, associated with high economic costs in industry and health care. Among them, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus suis are discussed here. An environmentally stimulated and tightly controlled expression of their virulence factors is of utmost importance for their pathogenic potential. Thus, the most universal and widespread regulators from the classes of stand-alone transcriptional regulators, two-component signal transduction systems (TCS), eukaryotic-like serine/threonine kinases, and small noncoding RNAs are the topic of this chapter. The regulatory levels are reviewed with respect to function, activity, and their role in pathogenesis. Understanding of and interfering with transcriptional regulation mechanisms and networks is a promising basis for the development of novel anti-infective therapies.
Collapse
Affiliation(s)
- Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
13
|
Li Y, Courtney HS. Promotion of phagocytosis of Streptococcus pyogenes in human blood by a fibrinogen-binding peptide. Microbes Infect 2011; 13:413-8. [PMID: 21241819 DOI: 10.1016/j.micinf.2010.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 11/17/2022]
Abstract
The binding of fibrinogen to M-related protein (Mrp) is known to contribute to the ability of Streptococcus pyogenes to evade phagocytosis by preventing the deposition of complement on the streptococcal surface. The objectives of this investigation were to map the common fibrinogen-binding domain of Mrp and to determine if this domain has a therapeutic potential to enhance phagocytosis of S. pyogenes in human blood. Using a series of recombinant, truncated proteins of Mrp, two fibrinogen-binding domains (FBD) were mapped. FBD1 was contained within amino acid residues 1-55 of Mrp and FBD2 within residues 81-138. FBD2 is found in all Mrp sequenced to date whereas FBD1 is not. Both FBD1 and FBD2 peptides but not a control peptide blocked the binding of fibrinogen to S. pyogenes and promoted phagocytosis of the streptococci in human blood. The data support the hypothesis that the binding of fibrinogen by S. pyogenes is centrally involved in their resistance to phagocytosis in human blood and suggest that treatments that interfere with the binding of fibrinogen to S. pyogenes may help in fighting infections by these organisms.
Collapse
Affiliation(s)
- Yi Li
- Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | | |
Collapse
|
14
|
Courtney HS, Pownall HJ. The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins. J Biomed Biotechnol 2010; 2010:956071. [PMID: 20671930 PMCID: PMC2910554 DOI: 10.1155/2010/956071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/26/2010] [Indexed: 12/04/2022] Open
Abstract
Serum opacity factor (SOF) is a virulence determinant expressed by a variety of streptococcal and staphylococcal species including both human and animal pathogens. SOF derives its name from its ability to opacify serum where it targets and disrupts the structure of high-density lipoproteins resulting in formation of large lipid vesicles that cause the serum to become cloudy. SOF is a multifunctional protein and in addition to its opacification activity, it binds to a number of host proteins that mediate adhesion of streptococci to host cells, and it plays a role in resistance to phagocytosis in human blood. This article will provide an overview of the structure and function of SOF, its role in the pathogenesis of streptococcal infections, its vaccine potential, its prevalence and distribution in bacteria, and the molecular mechanism whereby SOF opacifies serum and how an understanding of this mechanism may lead to therapies for reducing high-cholesterol concentrations in blood, a major risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Harry S Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA.
| | | |
Collapse
|
15
|
The pdh operon is expressed in a subpopulation of stationary-phase bacteria and is important for survival of sugar-starved Streptococcus mutans. J Bacteriol 2010; 192:4395-402. [PMID: 20581205 DOI: 10.1128/jb.00574-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a facultative member of the oral plaque and is associated with dental caries. It is able to survive long periods of sugar starvation. We show here that inactivation of pdhD, putatively encoding a subunit of the pyruvate dehydrogenase complex, impairs survival of both batch cultures and biofilms. We show that pdhD and the downstream genes pdhA, pdhB, and pdhC form an operon that is predominantly transcribed in stationary phase. Analysis with fluorescent reporters revealed a bimodal expression pattern for the pdh promoter, with less than 1% of stationary-phase populations expressing pdh. When it was first detected, after 1 day of sugar starvation in batch culture, expression was mostly in individual bacteria. At later times, expressing bacteria were often in chains. The lengths of the chains increased with time. We infer that the pdh-expressing subpopulation is able grow and divide and to persist for extended times in stationary phase.
Collapse
|
16
|
Fiedler T, Kreikemeyer B, Sugareva V, Redanz S, Arlt R, Standar K, Podbielski A. Impact of the Streptococcus pyogenes Mga regulator on human matrix protein binding and interaction with eukaryotic cells. Int J Med Microbiol 2010; 300:248-58. [PMID: 20097132 DOI: 10.1016/j.ijmm.2009.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/15/2009] [Accepted: 07/27/2009] [Indexed: 10/19/2022] Open
|
17
|
Generation of metabolically diverse strains of Streptococcus pyogenes during survival in stationary phase. J Bacteriol 2009; 191:6242-52. [PMID: 19666718 DOI: 10.1128/jb.00440-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes, in addition to causing fulminant disease, can be carried asymptomatically and may survive in the host without causing disease. Long-term stationary-phase cultures were used to characterize the metabolism of cultures surviving after glucose depletion. Survival of stationary-phase cultures in glucose-depleted rich medium was truncated by switching the cells to phosphate-buffered saline or by the addition of antibiotics, suggesting that survival depended on the presence of nutrients and metabolic activity. The metabolites of the pyruvate-to-acetate (PA) pathway (acetate and formate) and amino acid catabolic pathways (ammonia) accumulated throughout long-term stationary phase (12 weeks). Acid and ammonia production was balanced so that the culture pH was maintained above pH 5.6. Strains isolated from long-term stationary-phase cultures accumulated mutations that resulted in unique exponential-phase metabolisms, with some strains expressing the PA pathway, some strains producing ammonia, and some strains expressing both in the presence of glucose. Strains expressing high levels of PA pathway activity during exponential growth were unable to survive when regrown in pure culture due to the production of excess acid. These data suggest that S. pyogenes diversifies during survival in stationary phase into distinct strains with different metabolisms and that complementary metabolism is required to control the pH in stationary-phase cultures. One of three survivor strains isolated from tonsillar discard material from patients expressed high levels of the PA pathway during exponential growth. Sequencing of multiple group A streptococcus regulators revealed two different mutations in two different strains, suggesting that random mutation occurs during survival.
Collapse
|
18
|
Relationship between expression of the family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation in Streptococcus pyogenes. PLoS One 2009; 4:e4166. [PMID: 19132104 PMCID: PMC2613554 DOI: 10.1371/journal.pone.0004166] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 12/06/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hydrophobicity is an important attribute of bacteria that contributes to adhesion and biofilm formation. Hydrophobicity of Streptococcus pyogenes is primarily due to lipoteichoic acid (LTA) on the streptococcal surface but the mechanism(s) whereby LTA is retained on the surface is poorly understood. In this study, we sought to determine whether members of the M protein family consisting of Emm (M protein), Mrp (M-related protein), Enn (an M-like protein), and the streptococcal protective antigen (Spa) are involved in anchoring LTA in a manner that contributes to hydrophobicity of the streptococci and its ability to form biofilms. METHODOLOGY/PRINCIPAL FINDINGS Isogenic mutants defective in expression of emm, mrp, enn, and/or spa genes of eight different serotypes and their parental strains were tested for differences in LTA bound to surface proteins, LTA released into the culture media, and membrane-bound LTA. The effect of these mutations on the ability of streptococci to form a hydrophobic surface and to generate biofilms was also investigated. A recombinant strain overexpressing Emm1 was also engineered and similarly tested. The serotypes tested ranged from those that express only a single M protein gene to those that express two or three members of the M protein family. Overexpression of Emm1 led to enhanced hydrophobicity and biofilm formation. Inactivation of emm in those serotypes expressing only a single emm gene reduced biofilm formation, and protein-bound LTA on the surface, but did not alter the levels of membrane-bound LTA. The results were more varied in those serotypes that express two to three members of the M protein family. CONCLUSIONS/SIGNIFICANCE Our findings suggest that the formation of complexes with members of the M protein family is a common mechanism for anchoring LTA on the surface in a manner that contributes to hydrophobicity and to biofilm formation in S. pyogenes, but these activities in some serotypes are dependent on a trypsin-sensitive protein(s) that remains to be identified. The need for interactions between LTA and M proteins may impose functional constraints that limit variations in the sequence of the M proteins, major virulence factors of S. pyogenes.
Collapse
|
19
|
Mode of expression and functional characterization of FCT-3 pilus region-encoded proteins in Streptococcus pyogenes serotype M49. Infect Immun 2008; 77:32-44. [PMID: 18852238 DOI: 10.1128/iai.00772-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Streptococcus pyogenes (group A streptococcus [GAS]) pilus components, suggested to play a role in pathogenesis, are encoded in the variable FCT (fibronectin- and collagen-binding T-antigen) region. We investigated the functions of sortase A (SrtA), sortase C2 (SrtC2), and the FctA protein of the most prevalent type 3 FCT region from a serotype M49 strain. Although it is considered a housekeeping sortase, SrtA's activity is involved in pilus formation in addition to its essentiality for GAS extracellular matrix protein binding, host cell adherence/internalization, survival in human blood, and biofilm formation. SrtC2 activity is crucial for pilus formation but dispensable for the other phenotypes tested in vitro. FctA is the major pilus backbone protein, simultaneously acting as the M49 T antigen, and requires SrtC2 and LepA, a signal peptidase I homologue, for monomeric surface expression and polymerization, respectively. Collagen-binding protein Cpa expression supports pilus formation at the pilus base. Immunofluorescence microscopy and fluorescence-activated cell sorting analysis revealed several unexpected expression patterns, as follows: (i) the monomeric pilus protein FctA was found exclusively at the old poles of GAS cells, (ii) FctA protein expression increased with lower temperatures, and (iii) FctA protein expression was restricted to 20 to 50% of a given GAS M49 population, suggesting regulation by a bistability mode. Notably, disruption of pilus assembly by sortase deletion rendered GAS serotype M49 significantly more aggressive in a dermonecrotic mouse infection model, indicating that sortase activity and, consequently, pilus expression allow a subpopulation of this GAS serotype to be less aggressive. Thus, pilus expression may not be a virulence attribute of GAS per se.
Collapse
|
20
|
Klitgaard JK, Skov MN, Kallipolitis BH, Kolmos HJ. Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother 2008; 62:1215-21. [PMID: 18836185 DOI: 10.1093/jac/dkn417] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Thioridazine has been shown to reverse oxacillin resistance in methicillin-resistant Staphylococcus aureus (MRSA) in vitro. The aim of this study was to investigate whether thioridazine alone or in combination with oxacillin affects the transcription of the methicillin resistance gene mecA and the protein level of the encoded protein PBP2a. METHODS Viability of MRSA was determined in liquid media in the presence of oxacillin or thioridazine alone or in combination. Transcription of mecA was analysed by primer extension, and the protein level of PBP2a was analysed by western blotting in the presence of thioridazine and oxacillin. RESULTS We observed an increased susceptibility of MRSA towards oxacillin in the presence of thioridazine compared with bacteria grown with oxacillin or thioridazine alone. Transcription of mecA was reduced with increasing concentrations of thioridazine in the presence of a fixed amount of oxacillin. Furthermore, the protein level of PBP2a was reduced when bacteria were treated with the combination of oxacillin and thioridazine. The two drugs also affected the mRNA level of the beta-lactamase gene, blaZ. CONCLUSIONS The present study indicates that reversal of methicillin resistance by thioridazine in MRSA may be explained by a reduced transcription of mecA and blaZ, resulting in a reduced protein level of PBP2a.
Collapse
Affiliation(s)
- Janne K Klitgaard
- Department of Clinical Microbiology, Institute of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark.
| | | | | | | |
Collapse
|
21
|
|
22
|
Kreikemeyer B, Nakata M, Köller T, Hildisch H, Kourakos V, Standar K, Kawabata S, Glocker MO, Podbielski A. The Streptococcus pyogenes serotype M49 Nra-Ralp3 transcriptional regulatory network and its control of virulence factor expression from the novel eno ralp3 epf sagA pathogenicity region. Infect Immun 2007; 75:5698-710. [PMID: 17893125 PMCID: PMC2168351 DOI: 10.1128/iai.00175-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network.
Collapse
Affiliation(s)
- Bernd Kreikemeyer
- Department of Medical Microbiology and Hospital Hygiene, University Hospital, Schillingallee 70, D-18057 Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fischer RJ, Oehmcke S, Meyer U, Mix M, Schwarz K, Fiedler T, Bahl H. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J Bacteriol 2006; 188:5469-78. [PMID: 16855236 PMCID: PMC1540024 DOI: 10.1128/jb.00491-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 05/22/2006] [Indexed: 11/20/2022] Open
Abstract
The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in P(i)-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to P(i) pulses. Specific mRNA transcripts were found only when external P(i) concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5.
Collapse
Affiliation(s)
- Ralf-Jörg Fischer
- Division of Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, D-18051 Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Søgaard-Andersen L, Kallipolitis BH. Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA (NEW YORK, N.Y.) 2006; 12:1383-96. [PMID: 16682563 PMCID: PMC1484441 DOI: 10.1261/rna.49706] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The RNA-binding protein Hfq plays important roles in bacterial physiology and is required for the activity of many small regulatory RNAs in prokaryotes. We have previously shown that Hfq contributes to stress tolerance and virulence in the Gram-positive human pathogen Listeria monocytogenes. In the present study, we performed coimmunoprecipitations followed by enzymatic RNA sequencing to identify Hfq-binding RNA molecules in L. monocytogenes. The approach resulted in the discovery of three small RNAs (sRNAs). The sRNAs are conserved between Listeria species, but were not identified in other bacterial species. The initial characterization revealed a number of unique features displayed by each individual sRNA. The first sRNA is encoded from within an annotated gene in the L. monocytogenes EGD-e genome. Analogous to most regulatory sRNAs in Escherichia coli, the stability of this sRNA is highly dependent on the presence of Hfq. The second sRNA appears to be produced by a transcription attenuation mechanism, and the third sRNA is present in five copies at two different locations within the L. monocytogenes EGD-e genome. The cellular levels of the sRNAs are growth phase dependent and vary in response to growth medium. All three sRNAs are expressed when L. monocytogenes multiplies within mammalian cells. This study represents the first attempt to identify sRNAs in L. monocytogenes.
Collapse
Affiliation(s)
- Janne K Christiansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | |
Collapse
|
25
|
Vahling CM, McIver KS. Domains required for transcriptional activation show conservation in the mga family of virulence gene regulators. J Bacteriol 2006; 188:863-73. [PMID: 16428389 PMCID: PMC1347361 DOI: 10.1128/jb.188.3.863-873.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mga, or the multigene regulator of the group A streptococcus (GAS) (Streptococcus pyogenes), is a transcriptional regulator of virulence genes important for colonization and immune evasion. All serotypes of the GAS possess one of two divergent mga alleles (mga-1 or mga-2), and orthologues of Mga have also been identified in other pathogenic streptococci. To date, the only functional motifs established within Mga are two amino-terminal DNA-binding domains (HTH-3 and HTH-4). To uncover novel domains, a random mutagenesis screen using an M6 Mga (mga-1) was undertaken to find mutations leading to a defect in transcriptional activation of the Mga-regulated emm gene. In addition to mutations in the established DNA-binding domains, the screen also revealed mutations in a region conserved among several Mga orthologues. Alanine scanning helped resolve the boundaries of this conserved Mga domain (CMD-1) spanning from residues 10 to 15 of the protein, with the two flanking amino acid residues likely involved in protein stability. Transcriptional reporter analyses demonstrated the importance of CMD-1 for activation of Pemm and autoactivation of Pmga in the serotype M6 Mga. Mutational analyses showed that both CMD-1 and HTH-4 are also necessary for activation of the promoter target Pmrp in a divergent serotype M4 Mga (mga-2), suggesting a conserved functionality. However, in contrast to M6, the M4 Mga mutants did not show a defect in autoregulation. Mutation of similar conserved residues in the Mga-like regulator DmgB from S. dysgalactiae subsp. dysgalactiae showed that CMD-1 and HTH-4 are critical for transcriptional activation in this orthologue, implying that a common mechanism of virulence gene activation may exist for members of the Mga family of regulators.
Collapse
Affiliation(s)
- Cheryl M Vahling
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | |
Collapse
|
26
|
Terao Y, Yamaguchi M, Hamada S, Kawabata S. Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 2006; 281:14215-23. [PMID: 16565520 DOI: 10.1074/jbc.m513408200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pyogenes is an important pathogen that causes pharyngitis, sepsis, and rheumatic fever. Cell-associated streptococcal C5a peptidase (ScpA) protects S. pyogenes from phagocytosis and has been suggested to interrupt host defenses by enzymatically cleaving complement C5a, a major factor in the accumulation of neutrophils at sites of infection. How S. pyogenes recognizes and binds to C5a, however, is unclear. We detected a C5a-binding protein in 8 M urea extracts of S. pyogenes by ligand blotting using biotinylated C5a. Searching of genome databases showed that the C5a-binding protein is identical to the streptococcal plasmin receptor (Plr), also known as streptococcal surface dehydrogenase (SDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In the present study we identified a novel function of this multifunctional protein. Western blotting and immunofluorescence microscopy with anti-Plr/SDH/GAPDH showed that Plr/SDH/GAPDH is located on the bacterial surface and released into the culture supernatant. Next, we examined whether the streptococcal Plr/SDH/GAPDH inhibits the biological effects of C5a on human neutrophils. We found that soluble Plr/SDH/GAPDH inhibits C5a-activated chemotaxis and H2O2 production. Furthermore, our results suggested that soluble Plr/SDH/GAPDH captures C5a, inhibiting its chemotactic function. Also, cell-associated Plr/SDH/GAPDH and ScpA were both necessary for the cleavage of C5a on the bacterial surface. Together, these results indicate that the multifunctional protein Plr/SDH/GAPDH has additional functions that help S. pyogenes escape detection by the host immune system.
Collapse
Affiliation(s)
- Yutaka Terao
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
27
|
Hess JL, Boyle MDP. Fibrinogen fragment D is necessary and sufficient to anchor a surface plasminogen-activating complex in Streptococcus pyogenes. Proteomics 2006; 6:375-8. [PMID: 16287173 DOI: 10.1002/pmic.200500189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, the importance of different domains of the fibrinogen molecule in the binding and assembly of a surface plasminogen (plgn) activator has been analyzed. This was achieved using SELDI technology that enabled dissociation of bound fragments from intact bacteria and accurate distinction between fibrinogen fragments based on their molecular mass. These studies indicate that Streptococcus pyogenes binds directly to human fibrinogen fragment D but not fragment E. The predominant surface proteins binding to fragment D were associated with the mrp gene product. Surface-associated fibrinogen fragment D was capable of anchoring a functional surface plgn activator complex. Taken together, these data indicated that fragment D of fibrinogen is necessary and sufficient to anchor a plgn activator complex on the surface of Streptococcus pyogenes.
Collapse
Affiliation(s)
- Jennifer L Hess
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | | |
Collapse
|
28
|
Johansson BP, Levander F, von Pawel-Rammingen U, Berggård T, Björck L, James P. The Protein Expression of Streptococcus pyogenes Is Significantly Influenced by Human Plasma. J Proteome Res 2005; 4:2302-11. [PMID: 16335979 DOI: 10.1021/pr050217y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the course of infection, the common human pathogen Streptococcus pyogenes encounters plasma. We show that plasma causes S. pyogenes to rapidly remodel its cellular metabolism and virulence pathways. We also identified a variant of the major virulence factor, M1 protein, lacking 13 amino acids at the NH(2)-terminus in bacteria grown with plasma. The pronounced effect of plasma on protein expression, suggests this is an important adaptive mechanism with implications for S. pyogenes pathogenicity.
Collapse
|
29
|
Nakata M, Podbielski A, Kreikemeyer B. MsmR, a specific positive regulator of the Streptococcus pyogenes FCT pathogenicity region and cytolysin-mediated translocation system genes. Mol Microbiol 2005; 57:786-803. [PMID: 16045622 DOI: 10.1111/j.1365-2958.2005.04730.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a prerequisite for colonization or causing local infections, Streptococcus pyogenes (group A streptococci, GAS) need to specifically adhere to eukaryotic cell surfaces. Predominantly responsible adhesin genes are contained in a genotype-specific pattern within the FCT region of the GAS genome. In this study, MsmR, belonging to AraC/XylS type transcriptional regulators, was identified in the FCT region as a positive regulator of the major fibronectin-binding adhesin protein F2 in a serotype M49 strain. Compared with the wild-type strain, the msmR mutant showed reduced binding to immobilized fibronectin and decreased adherence to and internalization into human pharyngeal epithelial cells. These results suggested that altered levels of fibronectin-binding proteins in the mutant affect eukaryotic cell attachment and internalization. Complete transcriptome and reporter fusion assay data revealed that MsmR positively regulates FCT region genes including Nra and cytolysin-mediated translocation system genes. Consistent with the genetic data, the mutant showed attenuated streptolysin O activity and eukaryotic cell cytotoxity. Direct binding of recombinant MsmR to nga, nra/cpa and prtF2 promoter regions was confirmed by EMSA assays. As prior analysis demonstrated the Nra regulator negatively affects gene expression from the FCT region, MsmR and Nra appear to adversely control crucial virulence factor expression in GAS and thus contribute to a fine-tuned balance between local destructive process and metastatic spreading of the bacteria.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Medical Microbiology and Hospital Hygiene, Hospital of the Rostock University, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
30
|
Wood DN, Chaussee MA, Chaussee MS, Buttaro BA. Persistence of Streptococcus pyogenes in stationary-phase cultures. J Bacteriol 2005; 187:3319-28. [PMID: 15866916 PMCID: PMC1111994 DOI: 10.1128/jb.187.10.3319-3328.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In addition to causing fulminant disease, Streptococcus pyogenes may be asymptomatically carried between recurrent episodes of pharyngitis. To better understand streptococcal carriage, we characterized in vitro long-term stationary-phase survival (>4 weeks) of S. pyogenes. When grown in sugar-limited Todd-Hewitt broth, S. pyogenes cells remained culturable for more than 1 year. Both Todd-Hewitt supplemented with excess glucose and chemically defined medium allowed survival for less than 1 week. After 4 weeks of survival in sugar-limited Todd-Hewitt broth, at least 10(3) CFU per ml remained. When stained with fluorescent live-dead viability stain, there were a number of cells with intact membranes that were nonculturable. Under conditions that did not support persistence, these cells disappeared 2 weeks after loss of culturability. In persistent cultures, these may be cells that are dying during cell turnover. After more than 4 weeks in stationary phase, the culturable cells formed two alternative colony phenotypes: atypical large colonies and microcolonies. Protein expression in two independently isolated microcolony strains, from 14-week cultures, was examined by use of two-dimensional electrophoresis. The proteomes of these two strains exhibited extensive changes compared to the parental strain. While some of these changes were common to the two strains, many of the changes were unique to a single strain. Some of the common changes were in metabolic pathways, suggesting a possible alternate metabolism for the persisters. Overall, these data suggest that under certain in vitro conditions, S. pyogenes cells can persist for greater than 1 year as a dynamic population.
Collapse
Affiliation(s)
- Daniel N Wood
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
31
|
Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18:102-27. [PMID: 15653821 PMCID: PMC544178 DOI: 10.1128/cmr.18.1.102-127.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Gunnar Lindahl
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
32
|
Mangold M, Siller M, Roppenser B, Vlaminckx BJM, Penfound TA, Klein R, Novak R, Novick RP, Charpentier E. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 2005; 53:1515-27. [PMID: 15387826 DOI: 10.1111/j.1365-2958.2004.04222.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The capacity of pathogens to cause disease depends strictly on the regulated expression of their virulence factors. In this study, we demonstrate that the untranslated mRNA of the recently described streptococcal pleiotropic effect locus (pel), which incidentally contains sagA, the structural gene for streptolysin S, is an effector of virulence factor expression in group A beta-haemolytic streptococci (GAS). Our data suggest that the regulation by pel RNA occurs at both transcriptional (e.g. emm, sic, nga) and post-transcriptional (e.g. SpeB) levels. We could exclude the possibility that the pel phenotype was linked to a polar effect on downstream genes (sagB-I). Remarkably, the RNA effector is regulated in a growth phase-dependent fashion and we provide evidence that pel RNA expression is induced by conditioned media.
Collapse
Affiliation(s)
- Monika Mangold
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Microbiology and Genetics, University of Vienna, Dr Bohrgasse 9/4, Vienna A-1030, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lafontaine ER, Wall D, Vanlerberg SL, Donabedian H, Sledjeski DD. Moraxella catarrhalis coaggregates with Streptococcus pyogenes and modulates interactions of S. pyogenes with human epithelial cells. Infect Immun 2004; 72:6689-93. [PMID: 15501804 PMCID: PMC523028 DOI: 10.1128/iai.72.11.6689-6693.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogens Streptococcus pyogenes and Moraxella catarrhalis colonize overlapping regions of the human nasopharynx. We have found that M. catarrhalis can dramatically increase S. pyogenes adherence to human epithelial cells and that species-specific coaggregation of these bacteria correlates with this enhanced adherence.
Collapse
Affiliation(s)
- Eric R Lafontaine
- Department of Medical Microbiology and Immunology, Medical College of Ohio, Toledo 43614-5806, USA
| | | | | | | | | |
Collapse
|
34
|
Ribardo DA, McIver KS. amrA encodes a putative membrane protein necessary for maximal exponential phase expression of the Mga virulence regulon in Streptococcus pyogenes. Mol Microbiol 2004; 50:673-85. [PMID: 14617188 DOI: 10.1046/j.1365-2958.2003.03726.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional regulator Mga activates a regulon of virulence genes important for colonization and immune evasion in GAS. Using transposon mutagenesis of a serotype M6 group A streptococcus (GAS) reporter strain KSM148, we have identified an open reading frame (ORF) designated amrA that is required for maximal activation of the Mga regulon during exponential phase. A deletion in amrA, but not in the downstream transcriptionally linked ORF Spy0798, was able to reproduce the phenotype seen in the transposon mutants. Northern analysis for mga and emm transcripts, as well as Western analysis of Mga, confirmed a reduction in mga expression leading to a decrease in transcription of the Mga-regulated emm in the amrA deletion and transposon mutants. Furthermore, both the amrA deletion mutant and an original transposon mutant could be complemented using amrA expressed from a nisin-inducible expression system. As amrA is strongly conserved across the sequenced streptococcal M types, and inactivation of amrA in an M3 serotype also resulted in reduction of emm transcripts, the role of amrA does not appear to be serotype specific. Although the specific function of AmrA is unknown, its putative membrane localization and homology to transporters involved in cell wall synthesis suggest a link between growth and virulence gene expression in GAS.
Collapse
Affiliation(s)
- Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
35
|
Kallipolitis BH, Ingmer H, Gahan CG, Hill C, Søgaard-Andersen L. CesRK, a two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects beta-lactam resistance. Antimicrob Agents Chemother 2004; 47:3421-9. [PMID: 14576097 PMCID: PMC253798 DOI: 10.1128/aac.47.11.3421-3429.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is a food-borne pathogen that can cause a variety of illnesses ranging from gastroenteritis to life-threatening septicemia. The beta-lactam antibiotic ampicillin remains the drug of choice for the treatment of listeriosis. We have previously identified a response regulator of a putative two-component signal transduction system that plays a role in the virulence and ethanol tolerance of L. monocytogenes. Here we present evidence that the response regulator, CesR, and a histidine protein kinase, CesK, which is encoded by the gene downstream from cesR, are involved in the ability of L. monocytogenes to tolerate ethanol and cell wall-acting antibiotics of the beta-lactam family. Furthermore, CesRK controls the expression of a putative extracellular peptide encoded by the orf2420 gene, located immediately downstream from cesRK. Inactivation of orf2420 revealed that it contributes to ethanol tolerance and pathogenesis in mice. Interestingly, we found that transcription of orf2420 was strongly induced by subinhibitory concentrations of various cell wall-acting antibiotics, ethanol, and lysozyme. The induction of orf2420 expression was abolished in the absence of CesRK. Our data suggest that CesRK is involved in regulating aspects of the cell envelope architecture and that changes in cell wall integrity provide a potent stimulus for CesRK-mediated regulation. These results further our understanding of how L. monocytogenes senses and responds to antibiotics that are used therapeutically in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Christiansen JK, Larsen MH, Ingmer H, Søgaard-Andersen L, Kallipolitis BH. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 2004; 186:3355-62. [PMID: 15150220 PMCID: PMC415768 DOI: 10.1128/jb.186.11.3355-3362.2004] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, the RNA-binding protein Hfq has emerged as an important regulatory factor in a variety of physiological processes, including stress resistance and virulence. In Escherichia coli, Hfq modulates the stability or the translation of mRNAs and interacts with numerous small regulatory RNAs. Here, we studied the role of Hfq in the stress tolerance and virulence of the gram-positive food-borne human pathogen Listeria monocytogenes. We present evidence that Hfq is involved in the ability of L. monocytogenes to tolerate osmotic and ethanol stress and contributes to long-term survival under amino acid-limiting conditions. However, Hfq is not required for resistance to acid and oxidative stress. Transcription of hfq is induced under various stress conditions, including osmotic and ethanol stress and at the entry into the stationary growth phase, thus supporting the view that Hfq is important for the growth and survival of L. monocytogenes in harsh environments. The stress-inducible transcription of hfq depends on the alternative sigma factor sigmaB, which controls the expression of numerous stress- and virulence-associated genes in L. monocytogenes. Infection studies showed that Hfq contributes to pathogenesis in mice, yet plays no role in the infection of cultured cell lines. This study provides, for the first time, information on the role of Hfq in the stress tolerance and virulence of a gram-positive pathogen.
Collapse
Affiliation(s)
- Janne K Christiansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
37
|
Opdyke JA, Scott JR, Moran CP. Expression of the secondary sigma factor sigmaX in Streptococcus pyogenes is restricted at two levels. J Bacteriol 2003; 185:4291-7. [PMID: 12867436 PMCID: PMC165779 DOI: 10.1128/jb.185.15.4291-4297.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secondary RNA polymerase sigma factors in many bacteria are responsible for regulating a vast range of processes including virulence. A protein (sigma(X)) in the gram-positive human pathogen Streptococcus pyogenes (the group A Streptococcus or GAS) was recently shown to function in vitro as a secondary sigma factor. We report here the isolation of a mutant in which both sigX genes are inactivated, show that sigma(X) functions in GAS cells, and show that the amount of sigma(X) is controlled at two levels. Primer extension analysis indicates that sigX transcription is low in GAS cells grown in Todd-Hewitt yeast broth, and immunoblot assays with a sigma(X)-specific polyclonal antibody demonstrate that the protein does not accumulate in these cells. To increase the level of sigX transcription in GAS, we constructed a strain that constitutively expresses the sigX gene from a heterologous promoter. Expression of sigX from this promoter led to transcription of the sigma(X)-dependent cinA promoter in GAS cells. We found that expression of the sigX gene in a clpP mutant strain resulted in greater accumulation of sigma(X) protein, which resulted in higher levels of transcription from the sigma(X)-dependent promoters cinA, smf, and cglA. In addition, a clpP mutant containing sigX only at its wild-type loci on the chromosome generated more transcription from the sigma(X)-dependent cinA promoter than did the wild-type parental strain. Therefore, sigma(X) activity in GAS is limited by low-level transcription of the sigX structural genes and by clpP, which appears to negatively regulate sigma(X) accumulation.
Collapse
Affiliation(s)
- Jason A Opdyke
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
38
|
Brøndsted L, Kallipolitis BH, Ingmer H, Knöchel S. kdpE and a putative RsbQ homologue contribute to growth of Listeria monocytogenes at high osmolarity and low temperature. FEMS Microbiol Lett 2003; 219:233-9. [PMID: 12620626 DOI: 10.1016/s0378-1097(03)00052-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The kdp locus of Listeria monocytogenes encodes products with homology to structural proteins of a high-affinity potassium uptake system and to a two-component signal transduction system commonly involved in controlling gene expression. We have investigated the role of kdpE, encoding the transcriptional response regulator, as well as of the downstream gene, orfX, in adaptation of L. monocytogenes EGD to NaCl and low temperature. When grown in chemically defined medium the addition of NaCl to 2% decreased the growth rate of a mutant with an insertional inactivated kdpE, while mutants carrying in-frame deletions of either kdpE or orfX were unaffected by high osmolarity. Transcriptional analysis of kdpE and orfX revealed that their products are encoded by the same transcript. Thus, our data indicate that the absence of both KdpE and OrfX influences growth under osmotic pressure. Interestingly, OrfX contains a conserved domain of alpha/beta-hydrolases and resembles RsbQ that in Bacillus subtilis participates in the activation cascade of the general stress sigma factor SigB. When shifted to low temperature the deletion mutant lacking orfX resumed growth slightly faster than the wild-type. This phenotype was shared by a mutant carrying an in-frame deletion of sigB supporting the notion that OrfX could be a RsbQ homologue.
Collapse
Affiliation(s)
- Lone Brøndsted
- Department of Dairy and Food Science, Centre of Advanced Food Studies, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
39
|
Svensson MD, Sjöbring U, Luo F, Bessen DE. Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3933-3945. [PMID: 12480897 DOI: 10.1099/00221287-148-12-3933] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Primary infection by group A streptococci (GAS) takes place at either the throat or skin of the human host, often leading to pharyngitis or impetigo, respectively. Many GAS strains differ in their preference for throat and skin tissue sites. Previous epidemiological findings show that many of the strains displaying strong tropism for the skin have a high-affinity binding site for plasminogen, located within M protein (PAM), a prominent surface fibril. Plasminogen bound by PAM interacts with streptokinase, a plasminogen activator secreted by GAS, to yield bacterial-bound plasmin activity. In this study, PAM and streptokinase were tested for their roles in infection using an experimental model that closely mimics human impetigo. Inactivation of genes encoding either PAM or streptokinase led to a partial, but significant, loss of virulence in vivo, as measured by net growth of the bacteria and pathological alterations. The relative loss in virulence in vivo was greater for the streptokinase mutant than for the PAM mutant. However, the PAM mutant, but not the streptokinase mutant, displayed a partial loss in resistance to phagocytosis in vitro. The combined experimental and epidemiological data provide evidence that PAM and streptokinase play a key role in mediating skin-specific infection by GAS. In addition, secreted cysteine proteinase activity due to SpeB leads to degradation of streptokinase in stationary phase broth cultures. Since SpeB is also a determinant of tissue-specific GAS infection at the skin, direct interactions between these two proteolytic pathways may constitute an important pathogenic mechanism. An integrated model for superficial infection at the skin is presented.
Collapse
Affiliation(s)
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Lund University, Lund, Sweden1
| | - Feng Luo
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, USA2
| | - Debra E Bessen
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, USA2
| |
Collapse
|
40
|
Kreikemeyer B, Beckert S, Braun-Kiewnick A, Podbielski A. Group A streptococcal RofA-type global regulators exhibit a strain-specific genomic presence and regulation pattern. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1501-1511. [PMID: 11988525 DOI: 10.1099/00221287-148-5-1501] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RofA-like protein (RALP) type regulators have been shown to exist in different forms in group A streptococci (GAS) and to regulate the expression of important bacterial adhesins. This study shows that the vast majority of strains from different GAS M serotypes carried a rofA virulence regulator gene in their genome and that this gene could be detected in combination with other RALP genes and RALP-dependent adhesin genes in a strain-specific manner. The gene encoding the Nra regulator was predominantly found in opacity factor (OF)-negative serotypes. When analysing a rofA mutant in a serotype M2 strain, the strain specificity was also found in the positive and negative regulatory functions of RALP genes as well as in the type and number of virulence genes and functions controlled by the RALP genes. Of 17 virulence-associated genes tested, only one, the putative streptolysin S gene, was observed to be derepressed in RALP mutants of three different GAS serotype strains. This strain-specific variability of RALP regulon sizes is associated with different patterns of host cell attachment and internalization. In addition, RofA2 was shown to control expression of the ribosomal protein gene rpsL. As a consequence, it was demonstrated for the first time in streptococci that aminoglycoside resistance mediated by rpsL expression is apparently controlled by a virulence gene regulator.
Collapse
Affiliation(s)
- Bernd Kreikemeyer
- Department of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Schillingallee 70, D-18055 Rostock, Germany1
| | - Susanne Beckert
- Department of Medical Microbiology and Hygiene, University Hospital Ulm, Robert-Koch-Str. 8, D-89091 Ulm, Germany2
| | - Andrea Braun-Kiewnick
- Department of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Schillingallee 70, D-18055 Rostock, Germany1
| | - Andreas Podbielski
- Department of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Schillingallee 70, D-18055 Rostock, Germany1
| |
Collapse
|
41
|
McIver KS, Myles RL. Two DNA-binding domains of Mga are required for virulence gene activation in the group A streptococcus. Mol Microbiol 2002; 43:1591-601. [PMID: 11952907 DOI: 10.1046/j.1365-2958.2002.02849.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mga is a DNA-binding protein that activates expression of several important virulence genes in the group A streptococcus (GAS), including those encoding M protein (emm), C5a peptidase (scpA) and Mga (mga). To determine the functionality of four potential helix-turn-helix DNA-binding motifs (HTH1-HTH4) identified within the amino-terminus of Mga, alanine substitutions were introduced within each domain in a MBP-Mga fusion allele and purified proteins were assayed for binding to Mga-specific promoter fragments (Pmga, PscpA and Pemm) in vitro. Although HTH-1 and HTH-2 mutations showed wild type DNA-binding activity, an altered HTH-3 domain resulted in reduced binding to the three promoters and an HTH-4 mutant was devoid of detectable binding activity. Plasmid-encoded expression of the HTH-3 and HTH-4 alleles from a constitutive promoter (Pspac) in the mga-deleted GAS strain JRS519 demonstrated that Mga-regulated emm expression correlated directly to the DNA-binding activity observed for each mutant protein in vitro. Single-copy expression of HTH-3 and HTH-4 from their native Pmga resulted in a dramatic reduction in autoregulated mga expression in both mutant strains. Thus, Mga appears to contain two DNA-binding domains (HTH-3 and HTH-4) that are required for direct activation of the Mga virulence regulon in vivo.
Collapse
Affiliation(s)
- Kevin S McIver
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA.
| | | |
Collapse
|
42
|
Chaussee MS, Sylva GL, Sturdevant DE, Smoot LM, Graham MR, Watson RO, Musser JM. Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect Immun 2002; 70:762-70. [PMID: 11796609 PMCID: PMC127716 DOI: 10.1128/iai.70.2.762-770.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Streptococcus pyogenes secretes many proteins to the cell wall and extracellular environment that contribute to virulence. Rgg regulates the expression of several exoproteins including a cysteine protease (SPE B), a nuclease (MF-1), a putative nuclease (MF-3), and autolysin. The functional heterogeneity of Rgg-regulated exoproteins and the lack of a conserved regulatory motif in the promoter regions of the genes suggested that Rgg interacts with additional regulatory networks to influence gene expression. DNA microarrays were used to test this hypothesis by comparing genomewide transcript profiles of S. pyogenes NZ131 and isogenic derivative NZ131 rgg during the exponential phase of growth. Transcripts of known and putative virulence-associated genes were more abundant in the rgg mutant, including emm, scpA, orfX, scl1, hasAB, slo, sagA, ska, speH, grab, mac, mf-1, and mf-3. Increased transcription of emm, scpA, and orfX in the rgg mutant was associated with increased production of the corresponding proteins. Differences in the expression of virulence-associated genes were associated with changes in the expression of several regulatory genes, including mga, sagA, csrRS, and fasBCA. The results show that Rgg influences the expression of multiple regulatory networks to coregulate virulence factor expression in S. pyogenes.
Collapse
Affiliation(s)
- Michael S Chaussee
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 2002; 43:1-14. [PMID: 11849532 DOI: 10.1046/j.1365-2958.2002.02723.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dlt operon of Gram-positive bacteria comprises four genes (dltA, dltB, dltC and dltD) that catalyse the incorporation of D-alanine residues into the cell wall-associated lipoteichoic acids (LTAs). In this work, we characterized the dlt operon of Listeria monocytogenes and constructed a D-Ala-deficient LTA mutant by inactivating the first gene (dltA) of this operon. The DltA- mutant did not show any morphological alterations and its growth rate was similar to that of the wild-type strain. However, it exhibited an increased susceptibility to the cationic peptides colistin, nisin and polymyxin B. The virulence of the DltA- mutant was severely impaired in a mouse infection model (4 log increase in the LD50) and, in vitro, the adherence of the mutant to various cell lines (murine bone marrow-derived macrophages and hepatocytes and a human epithelial cell line) was strongly restricted, although the amounts of surface proteins implicated in virulence (ActA, InlA and InlB) remains unaffected. We suggest that the decreased adherence of the DltA- mutant to non-phagocytic and phagocytic cells might be as a result of the increased electronegativity of its charge surface and/or the presence at the bacterial surface of adhesins possessing altered binding activities. These results show that the D-alanylation of the LTAs contributes to the virulence of the intracellular pathogen L. monocytogenes.
Collapse
Affiliation(s)
- Eric Abachin
- Laboratoire de Microbiologie, INSERM U-411, Paris, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Eberhard TH, Sledjeski DD, Boyle MDP. Mouse skin passage of a Streptococcus pyogenes Tn917 mutant of sagA/pel restores virulence, beta-hemolysis and sagA/pel expression without altering the position or sequence of the transposon. BMC Microbiol 2001; 1:33. [PMID: 11801184 PMCID: PMC64569 DOI: 10.1186/1471-2180-1-33] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Accepted: 12/17/2001] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Streptolysin S (SLS), the oxygen-stable hemolysin of Streptococcus pyogenes, has recently been shown to be encoded by the sagA/pel gene. Mutants lacking expression of this gene were less virulent in a dermonecrotic mouse infection model. Inactivation of the sagA/pel gene affect the expression of a variety of virulence factors in addition to the hemolysin. Insertion of a Tn917 transposon into the promoter region of the sagA/pel gene of S. pyogenes isolate CS101 eliminated expression of SLS, as well as decreased expression of the streptococcal pyrogenic exotoxin B, streptokinase and M protein. RESULTS In this study a mouse skin air sac model was utilized to analyze the effect of biological pressures on expression of SLS and other sagA/pel regulated gene products. The insertion delayed the lethal effect of S. pyogenes in a mouse skin infection model. Despite this, bacteria could be cultured from the kidneys 72 hours post infection. These kidney-recovered isolates were beta-hemolytic despite the transposon being present in its original location and had equivalent virulence to the wild type isolate when re-injected into naive mice. Northern blot analysis of the kidney-recovered isolates confirmed that transcription of sagA/pel was restored; however the expression of all sagA/pel regulated genes was not restored to wild type levels. CONCLUSIONS These results show that biological pressure present in the mouse can select for variants with altered expression of key virulence factor genes in S. pyogenes.
Collapse
Affiliation(s)
- Thomas H Eberhard
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, 43614, USA
| | - Darren D Sledjeski
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, 43614, USA
| | - Michael DP Boyle
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, 43614, USA
| |
Collapse
|
45
|
Biswas I, Germon P, McDade K, Scott JR. Generation and surface localization of intact M protein in Streptococcus pyogenes are dependent on sagA. Infect Immun 2001; 69:7029-38. [PMID: 11598078 PMCID: PMC100083 DOI: 10.1128/iai.69.11.7029-7038.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M protein is an important surface-located virulence factor of Streptococcus pyogenes, the group A streptococcus (GAS). Expression of M protein is primarily controlled by Mga, a transcriptional activator protein. A recent report suggested that the sag locus, which includes nine genes necessary and sufficient for production of streptolysin S, another GAS virulence factor, is also needed for transcription of emm, encoding the M protein (Z. Li, D. D. Sledjeski, B. Kreikemeyer, A. Podbielski, and M. D. Boyle, J. Bacteriol. 181:6019-6027, 1999). To investigate this in more detail, we constructed an insertion-deletion mutation in sagA, the first gene in the sag locus, in the M6 strain JRS4. The resulting strain, JRS470, produced no detectable streptolysin S and showed a drastic reduction in cell surface-associated M protein, as measured by cell aggregation and Western blot analysis. However, transcription of the emm gene was unaffected by the sagA mutation. Detailed analysis with monoclonal antibodies and an antipeptide antibody showed that the M protein in the sagA mutant strain was truncated so that it lacks the C-repeat region and the C-terminal domain required for anchoring it to the cell surface. This truncated M protein was largely found, as expected, in the culture supernatant. Lack of surface-located M protein made the sagA mutant strain susceptible to phagocytosis. Thus, although sagA does not affect transcription of the M6 protein gene, it is needed for the surface localization of this important virulence factor.
Collapse
Affiliation(s)
- I Biswas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
46
|
Poyart C, Lamy MC, Boumaila C, Fiedler F, Trieu-Cuot P. Regulation of D-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol 2001; 183:6324-34. [PMID: 11591677 PMCID: PMC100127 DOI: 10.1128/jb.183.21.6324-6334.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dlt operon of gram-positive bacteria comprises four genes (dltA, dltB, dltC, and dltD) that catalyze the incorporation of D-alanine residues into the lipoteichoic acids (LTAs). In this work, we characterized the dlt operon of Streptococcus agalactiae, which, in addition to the dltA to dltD genes, included two regulatory genes, designated dltR and dltS, located upstream of dltA. The dltR gene encodes a 224-amino-acid putative response regulator belonging to the OmpR family of regulatory proteins. The dltS gene codes for a 395-amino-acid putative histidine kinase thought to be involved in the sensing of environmental signals. The dlt operon of S. agalactiae is mainly transcribed from the P(dltR) promoter, which directs synthesis of a 6.5-kb transcript encompassing dltR, dltS, dltA, dltB, dltC, and dltD, and from a weaker promoter, P(dltA), which is located in the 3' extremity of dltS. We demonstrate that P(dltR), but not P(dlA), is activated by DltR in the presence of DltS in D-Ala-deficient LTA mutants resulting from insertional inactivation of the dltA gene, which encodes the cytoplasmic D-alanine-D-alanyl carrier ligase DltA. Expression of the dlt operon does not require DltR and DltS, since the basal activity of P(dltR) is high, being 20-fold that of the constitutive promoter P(aphA-3) which directs synthesis of the kanamycin resistance gene aphA-3 in various gram-positive bacteria. We hypothesize that the role of DltR and DltS in the control of expression of the dlt operon is to maintain the level of D-Ala esters in LTAs at a constant and appropriate value whatever the environmental conditions. The DltA(-) mutant displayed the ability to form clumps in standing culture and exhibited an increased susceptibility to the cationic antimicrobial polypeptide colistin.
Collapse
Affiliation(s)
- C Poyart
- Laboratoire de Microbiologie, INSERM U-411, Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
47
|
Terao Y, Kawabata S, Kunitomo E, Murakami J, Nakagawa I, Hamada S. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol 2001; 42:75-86. [PMID: 11679068 DOI: 10.1046/j.1365-2958.2001.02579.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In infection by Streptococcus pyogenes, fibronectin (Fn)-binding proteins play important roles as adhesins and invasins. Here, we present a novel Fn-binding protein of S. pyogenes that exhibits a low similarity to other Fn-binding proteins reported. After searching the Oklahoma Streptococcal Genome Sequencing Database for open reading frames (ORFs) with an LPXTG motif, nine ORFs were found among those recognized as putative surface proteins, and one of them was designated as Fba. The fba gene was found in M types 1, 2, 4, 22, 28 and 49 of S. pyogenes, but not in other serotypes or groups of streptococci. Fba, a 37.8 kDa protein, possesses three or four proline-rich repeat domains and exhibits a high homology to FnBPA, the Fn-binding protein of Staphylococcus aureus. Recombinant Fba exhibited a strong binding ability to Fn. In addition, Fba-deficient mutants showed diminished invasive capabilities to HEp-2 cells and low mortality in mice following skin infection. The fba gene was located downstream of the mga regulon and analysis using an mga-inactivated mutant revealed that it was transcribed under the control of the Mga regulator. These results indicate that Fba is a novel protein and one of the important virulence factors of S. pyogenes.
Collapse
Affiliation(s)
- Y Terao
- Department of Oral Microbiology, Osaka University Faculty of Dentistry, Suita-Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Kazmi SU, Kansal R, Aziz RK, Hooshdaran M, Norrby-Teglund A, Low DE, Halim AB, Kotb M. Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group a streptococcal isolates in vivo. Infect Immun 2001; 69:4988-95. [PMID: 11447177 PMCID: PMC98591 DOI: 10.1128/iai.69.8.4988-4995.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptococcal pyrogenic exotoxins (Spes) play a central role in the pathogenesis of invasive group A streptococcal (GAS) infections. The majority of recent invasive GAS infections have been caused by an M1T1 strain that harbors the genes for several streptococcal superantigens, including speA, speB, speF, speG, and smeZ. However, considerable variation in the expression of Spe proteins among clonal M1 isolates has been found, and many of the speA-positive M1 strains do not produce detectable amounts of SpeA in vitro. This study was designed to test the hypothesis that speA gene expression can be induced in vivo. A mouse infection chamber model that allows sequential sampling of GAS isolates at various time points postinfection was developed and used to monitor the kinetics of Spe production in vivo. Micropore Teflon diffusion chambers were implanted subcutaneously in BALB/c mice, and after 3 weeks the pores became sealed with connective tissue and sterile fluid containing a white blood cell infiltrate accumulated inside the infection chambers. Representative clonal M1T1 isolates expressing no detectable SpeA were inoculated into the implanted chambers, and the expression of SpeA in the aspirated aliquots of the chamber fluid was analyzed on successive days postinfection. Expression of SpeA was detected in the chamber fluid as early as days 3 to 5 postinfection in most animals, with a significant increase in expression by day 7 in all infected mice. Isolates recovered from the chamber and grown in vitro continued to produce SpeA even after 21 passages in vitro, suggesting stable switch on of the speA gene. A temporal relation between the upregulation of SpeA expression and the downregulation of SpeB expression was observed in vivo. These data suggest that in vivo host and/or environmental signals induced speA gene expression and suppressed speB gene expression. This underscores the role of the host-pathogen interaction in regulating the expression of streptococcal virulence factors in vivo. The model described here should facilitate such studies.
Collapse
Affiliation(s)
- S U Kazmi
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rasmussen M, Björck L. Unique regulation of SclB - a novel collagen-like surface protein of Streptococcus pyogenes. Mol Microbiol 2001; 40:1427-38. [PMID: 11442840 DOI: 10.1046/j.1365-2958.2001.02493.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slipped-strand mispairing at sites containing so-called coding repeats (CRs) can lead to phase variation of surface proteins in Gram-negative bacteria. This mechanism, believed to contribute to virulence, has so far not been identified in a Gram-positive bacterium. In the genome of the Gram-positive human pathogen Streptococcus pyogenes, we identified pentanucleotide CRs within a putative signal sequence of an open reading frame (ORF) encoding a novel collagen-like surface protein, denoted SclB. In 12 S. pyogenes strains, the number of CRs in the sclB gene varied from three to 19, rendering the start codon in frame with the downstream ORF in four strains and out of frame in eight strains. A protein reacting with anti-SclB antibodies could only be solubilized from three strains, all containing an intact sclB gene. Variations in the number of CRs were observed within strains of the same M serotype and occurred during growth of S. pyogenes in fresh human blood, but not in medium. The SclB protein has a hypervariable N-terminal part, a collagen-like central part and a typical cell wall sorting sequence containing the LPXTGX motif. SclB is related to the collagen-like SclA and is, like SclA, involved in the adhesion of S. pyogenes bacteria to human cells. However, the Mga protein, known to upregulate sclA and several additional genes encoding virulence factors of S. pyogenes, downregulates sclB transcription. This observation and the potential of SclB to phase vary by slipped-strand mispairing emphasize the unique regulation of this novel S. pyogenes surface protein.
Collapse
Affiliation(s)
- M Rasmussen
- Section for Molecular Pathogenesis, Department of Cell and Molecular Biology, Lund University, BMC, B14, Tornavägen 10, S-221 84 Lund, Sweden.
| | | |
Collapse
|
50
|
Schmidt KH, Gerlach D, Gubbe K, Geyer A, Birch-Hirschfeld E, Straube E, Podbielski A. Virulence of group A streptococci in fertile hens eggs is mainly effected by M protein and streptolysin O. Int J Med Microbiol 2001; 291:45-56. [PMID: 11403411 DOI: 10.1078/1438-4221-00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we have investigated whether streptolysin O contributes to the virulence of group A streptococci. For this purpose we generated M-negative and SLO-negative mutants by insertion mutagenesis into the chromosome of an M type 1 strain. The inactivation of M1 protein expression was achieved by the construction of the integrative plasmid pSFABS, which contains the internal fragment abs of the emm1 gene. Integration of pSFABS by homologous recombination into the chromosome of strain 38 541 resulted in the generation of mutant EMM1. Inactivation of slo with plasmid pFWSLOD resulted in two different mutant forms. The homologous recombination with plasmid pFWSLOD carrying the two slo fragments slo1 (899 base pairs in the 5' region) and slo2 (709 base pairs in the downstream part) resulted in mutants SLO3, SLO4 and SLO17. In SLO17 a double crossover event took place with insertion of the spectinomycin resistance gene aad9 between the slo fragments 1 and 2. In mutants SLO3 and SLO4 the homologous recombination with the same plasmid led to the integration of the whole plasmid construct into the chromosome of strain 38 541. Both forms of mutation failed to express SLO. In mutant SLO4 additionally M1 protein expression was significantly decreased. The mutants EMM1 (M-, SLO+) and SLO4 (M decreased, SLO-) showed a reduced binding to collagen-coated surfaces. In contrast the mutants SLO3 and SLO17 (both M+, SLO-) and the wild-type strain 38 541 (M+, SLO+) showed an affinity to collagen similar to purified M1 protein. All mutants were less virulent for chicken embryos compared to the wild-type strain after infection by intravenous injection as well as by application onto the chorioallantoic membrane. The results show that besides M protein SLO can also influence virulence of group A streptococci. Moreover, it became obvious that streptococci need more than one tool to fully develop their infectious potential.
Collapse
Affiliation(s)
- K H Schmidt
- Institute of Medical Microbiology, Hospital of the Friedrich-Schiller-University Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|