1
|
Lopez AE, Mayoral J, Zheng H, Cianciotto NP. Legionella pneumophila IrsA, a novel, iron-regulated exoprotein that facilitates growth in low-iron conditions and modulates biofilm formation. Microbiol Spectr 2025; 13:e0231324. [PMID: 39612475 PMCID: PMC11705809 DOI: 10.1128/spectrum.02313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
To discover new factors that are involved in iron acquisition by Legionella pneumophila, we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed 14915, a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. 14915 was present in all L. pneumophila strains examined and had homologs in a subset of the other Legionella species. Compatible with it containing a classic signal sequence, the 14915 protein was detected in bacterial culture supernatants in a manner dependent upon the L. pneumophila type II secretion system. Thus, we designated 14915 as IrsA for iron-regulated, secreted protein A. Based on mutant analysis, the irsA gene was not required for optimal growth of strain 130b in low-iron media. However, after discovering that the commonly used laboratory-derived strain Lp02 has a much greater requirement for iron, we uncovered a growth-enhancing role for IrsA after examining an Lp02 mutant that lacked both IrsA and the Fe2+-transporter FeoB. The irsA mutant of 130b, but not its complemented derivative, did, however, display increased biofilm formation on both plastic and agar surfaces, and compatible with this, the mutant hyper-aggregated. Thus, IrsA is a novel, iron-regulated exoprotein that modulates biofilm formation and, under some circumstances, promotes growth in low-iron conditions. For this study, we determined and deposited in the database a complete and fully assembled genome sequence for strain 130b.IMPORTANCEThe bacterium Legionella pneumophila is the principal cause of Legionnaires' disease, a potentially fatal form of pneumonia that is increasing in incidence. L. pneumophila exists in many natural and human-made water systems and can be transmitted to humans through inhalation of contaminated water droplets. L. pneumophila flourishes within its habitats by spreading planktonically, assembling into biofilms, and growing in larger host cells. Iron acquisition is a key determinant for L. pneumophila persistence in water and during infection. We previously demonstrated that L. pneumophila assimilates iron both by secreting a non-protein iron chelator (siderophore) and by importing iron through membrane transporters. In this study, we uncovered a novel, secreted protein that is highly iron-regulated, promotes L. pneumophila's growth in low-iron media, and impacts biofilm formation. We also identified uncharacterized, IrsA-related proteins in other important human and animal pathogens. Thus, our results have important implications for understanding iron assimilation, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
2
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
3
|
Cianciotto NP. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Future Microbiol 2016; 10:841-51. [PMID: 26000653 DOI: 10.2217/fmb.15.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires' disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, 'model' organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria.
Collapse
|
4
|
Zhan XY, Hu CH, Zhu QY. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients. Arch Microbiol 2016; 198:241-50. [PMID: 26757724 DOI: 10.1007/s00203-015-1186-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022]
Abstract
Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China
| | - Chao-Hui Hu
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China
| | - Qing-Yi Zhu
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China. .,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China.
| |
Collapse
|
5
|
Fonseca MV, Swanson MS. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila. Front Cell Infect Microbiol 2014; 4:12. [PMID: 24575391 PMCID: PMC3920079 DOI: 10.3389/fcimb.2014.00012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication.
Collapse
Affiliation(s)
- Maris V Fonseca
- Science and Mathematics Division, Monroe County Community College Monroe, MI, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
6
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|
7
|
Structural and thermodynamic insight into phenylalanine hydroxylase from the human pathogen Legionella pneumophila. FEBS Open Bio 2013; 3:370-8. [PMID: 24251098 PMCID: PMC3821034 DOI: 10.1016/j.fob.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022] Open
Abstract
Phenylalanine hydroxylase from Legionella pneumophila (lpPAH) has a major functional role in the synthesis of the pigment pyomelanin, which is a potential virulence factor. We present here the crystal structure of lpPAH, which is a dimeric enzyme that shows high thermostability, with a midpoint denaturation temperature of 79 °C, and low substrate affinity. The structure revealed a dimerization motif that includes ionic interactions and a hydrophobic core, composed of both β-structure and a C-terminal region, with the specific residues (P255, P256, Y257 and F258) interacting with the same residues from the adjacent subunit within the dimer. This unique dimerization interface, together with a number of aromatic clusters, appears to contribute to the high thermal stability of lpPAH. The crystal structure also explains the increased aggregation of the enzyme in the presence of salt. Moreover, the low affinity for substrate l-Phe could be explained from three consecutive glycine residues (G181, 182, 183) located at the substrate-binding site. This is the first structure of a dimeric bacterial PAH and provides a framework for interpreting the molecular and kinetic properties of lpPAH and for further investigating the regulation of the enzyme. The structure Legionella pneumophila PAH (lpPAH) has been resolved The Tm of lpPAH at 79 °C is explained by structure The unique dimer interface of lpPAH comprises aromatic and ionic interactions Tyr257 seems important for dimerization This is the first structure of a dimeric bacterial PAH
Collapse
|
8
|
Newton-Foot M, Gey van Pittius NC. The complex architecture of mycobacterial promoters. Tuberculosis (Edinb) 2012; 93:60-74. [PMID: 23017770 DOI: 10.1016/j.tube.2012.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023]
Abstract
The genus Mycobacterium includes a variety of species with differing phenotypic properties, including growth rate, pathogenicity and environment- and host-specificity. Although many mycobacterial species have been extensively studied and their genomes sequenced, the reasons for phenotypic variation between closely related species remain unclear. Variation in gene expression may contribute to these characteristics and enable the bacteria to respond to changing environmental conditions. Gene expression is controlled primarily at the level of transcription, where the main element of regulation is the promoter. Transcriptional regulation and associated promoter sequences have been studied extensively in E. coli. This review describes the complex structure and characteristics of mycobacterial promoters, in comparison to the classical E. coli prokaryotic promoter structure. Some components of mycobacterial promoters are similar to those of E. coli. These include the predominant guanine residue at the transcriptional start point, conserved -10 hexamer, similar interhexameric distances, the use of ATG as a start codon, the guanine- and adenine-rich ribosome binding site and the presence of extended -10 (TGn) motifs in strong promoters. However, these components are much more variable in sequence in mycobacterial promoters and no conserved -35 hexamer sequence (clearly defined in E. coli) can be identified. This may be a result of the high G+C content of mycobacterial genomes, as well as the large number of sigma factors present in mycobacteria, which may recognise different promoter sequences. Mycobacteria possess a complex transcriptional regulatory network. Numerous regulatory motifs have been identified in mycobacterial promoters, predominantly in the interhexameric region. These are bound by specific transcriptional regulators in response to environmental changes. The combination of specific promoter sequences, transcriptional regulators and a variety of sigma factors enables rapid and specific responses to diverse conditions and different stages of infection. This review aims to provide an overview of the complex architecture of mycobacterial transcriptional regulation.
Collapse
Affiliation(s)
- Mae Newton-Foot
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | |
Collapse
|
9
|
Invasion of eukaryotic cells by Legionella pneumophila: A common strategy for all hosts? Can J Infect Dis 2012; 8:139-46. [PMID: 22514486 DOI: 10.1155/1997/571250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila is an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires' disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability of L pneumophila to infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the 'mature form'. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence of L pneumophila is considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus, L pneumophila may be a good model system for dissecting events associated with the host-parasite interactions.
Collapse
|
10
|
Chatfield CH, Mulhern BJ, Viswanathan VK, Cianciotto NP. The major facilitator superfamily-type protein LbtC promotes the utilization of the legiobactin siderophore by Legionella pneumophila. MICROBIOLOGY-SGM 2011; 158:721-735. [PMID: 22160401 DOI: 10.1099/mic.0.055533-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila elaborates the siderophore legiobactin. We previously showed that cytoplasmic LbtA helps mediate legiobactin synthesis, inner-membrane LbtB promotes export of legiobactin, and outer-membrane LbtU acts as the ferrisiderophore receptor. RT-PCR analyses now identified lbtC as an iron-repressed gene that is the final gene in an operon containing lbtA and lbtB. In silico analysis predicted that LbtC is an inner-membrane protein that belongs to the major facilitator superfamily (MFS). Although capable of normal growth in standard media, lbtC mutants were defective for growth on iron-depleted agar media. While producing normal levels of legiobactin, lbtC mutants were unable to utilize supplied legiobactin to stimulate growth on iron-depleted media and displayed an impaired ability to take up radiolabelled iron. All lbtC mutant phenotypes were complemented by reintroduction of an intact copy of lbtC. When a cloned copy of both lbtC and lbtU was introduced into a heterologous bacterium (Legionella longbeachae), the organism acquired the ability to utilize legiobactin to grow better on low-iron media. Together, these data indicate that LbtC is involved in the uptake of legiobactin, and based upon its predicted location is most likely the mediator of ferrilegiobactin transport across the inner membrane. The data are also a unique documentation of how an MFS protein can promote bacterial iron-siderophore import, standing in contrast to the vast majority of studies which have defined ABC-type permeases as the mediators of siderophore import across the Gram-negative inner membrane or the Gram-positive cytoplasmic membrane.
Collapse
Affiliation(s)
- Christa H Chatfield
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Brendan J Mulhern
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - V K Viswanathan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Honsa ES, Maresso AW. Mechanisms of iron import in anthrax. Biometals 2011; 24:533-45. [PMID: 21258843 DOI: 10.1007/s10534-011-9413-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
During an infection, bacterial pathogens must acquire iron from the host to survive. However, free iron is sequestered in host proteins, which presents a barrier to iron-dependent bacterial replication. In response, pathogens have developed mechanisms to acquire iron from the host during infection. Interestingly, a significant portion of the iron pool is sequestered within heme, which is further bound to host proteins such as hemoglobin. The copious amount of heme-iron makes hemoglobin an ideal molecule for targeted iron uptake during infection. While the study of heme acquisition is well represented in Gram-negative bacteria, the systems and mechanism of heme uptake in Gram-positive bacteria has only recently been investigated. Bacillus anthracis, the causative agent of anthrax disease, represents an excellent model organism to study iron acquisition processes owing to a multifaceted lifecycle consisting of intra- and extracellular phases and a tremendous replicative potential upon infection. This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.
Collapse
Affiliation(s)
- Erin Sarah Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
12
|
Yip ES, Burnside DM, Cianciotto NP. Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection. MICROBIOLOGY-SGM 2010; 157:868-878. [PMID: 21178169 PMCID: PMC3081086 DOI: 10.1099/mic.0.046490-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A panel of cytochrome c maturation (ccm) mutants of Legionella pneumophila displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a Legionella-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by L. pneumophila. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c1 and cycB mutants lacking cytochrome c5 had normal siderophore expression, cyc4 mutants defective for cytochrome c4 completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c4 in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c5 in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events.
Collapse
Affiliation(s)
- Emily S Yip
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Denise M Burnside
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Peracino B, Balest A, Bozzaro S. Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 2010; 123:4039-51. [DOI: 10.1242/jcs.072124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane phosphatidylinositides recruit cytosolic proteins to regulate phagocytosis, macropinocytosis and endolysosomal vesicle maturation. Here, we describe effects of inactivation of PI3K, PTEN or PLC on Escherichia coli and Legionella pneumophila uptake by the professional phagocyte Dictyostelium discoideum. We show that L. pneumophila is engulfed by macropinocytosis, a process that is partially sensitive to PI3K inactivation, unlike phagocytosis of E. coli. Both processes are blocked by PLC inhibition. Whereas E. coli is rapidly digested, Legionella proliferates intracellularly. Proliferation is blocked by constitutively expressing Nramp1, an endolysosomal iron transporter that confers resistance against invasive bacteria. Inactivation of PI3K, but not PTEN or PLC, enhances Legionella infection and suppresses the protective effect of Nramp1 overexpression. PI3K activity is restricted to early infection and is not mediated by effects on the actin cytoskeleton; rather L. pneumophila, in contrast to E. coli, subverts phosphoinositide-sensitive fusion of Legionella-containing macropinosomes with acidic vesicles, without affecting Nramp1 recruitment. A model is presented to explain how Legionella escapes fusion with acidic vesicles and Nramp1-induced resistance to pathogens.
Collapse
Affiliation(s)
- Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Alessandra Balest
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| |
Collapse
|
14
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
15
|
Purification of Legiobactin and importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 2009; 77:2887-95. [PMID: 19398549 DOI: 10.1128/iai.00087-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila. In the process, we detected the ferrated form of legiobactin as well as other CAS-reactive substances. Purified legiobactin had a yellow-gold color and absorbed primarily from 220 nm and below. In accordance, nuclear magnetic resonance spectroscopy revealed that legiobactin lacks aromatic carbons, and among the 13 aliphatics present, there were 3 carbonyls. When examined by HPLC, supernatants from L. pneumophila mutants inactivated for lbtA and lbtB completely lacked legiobactin, indicating that the LbtA and LbtB proteins are absolutely required for siderophore activity. Independently derived lbtA mutants, but not a complemented derivative, displayed a reduced ability to infect the lungs of A/J mice after intratracheal inoculation, indicating that legiobactin is required for optimal intrapulmonary survival by L. pneumophila. This defect, however, was not evident when the lbtA mutant and its parental strain were coinoculated into the lung, indicating that legiobactin secreted by the wild type can promote growth of the mutant in trans. Legiobactin mutants grew normally in murine lung macrophages and alveolar epithelial cells, suggesting that legiobactin promotes something other than intracellular infection of resident lung cells. Overall, these data represent the first documentation of a role for siderophore expression in the virulence of L. pneumophila.
Collapse
|
16
|
Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. MICROBIOLOGY-SGM 2007; 153:2689-2699. [PMID: 17660433 DOI: 10.1099/mic.0.2007/006585-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-negative proteobacterium Burkholderia pseudomallei can survive and multiply within a variety of eukaryotic cells, including macrophages. This property is believed to be important for its ability to cause the disease melioidosis in a wide range of animal species, including humans. To identify determinants that are important for the ability of B. pseudomallei to survive within macrophages, in vivo expression technology (IVET) was employed. Several putative macrophage-inducible genes were identified that are likely to contribute to the virulence of B. pseudomallei, including three genes (tssH-5, tssI-5 and tssM-5) located within the same type VI secretion system cluster (tss-5), mntH, encoding a natural resistance-associated macrophage protein (NRAMP)-like manganese ion transporter, and a haem acquisition gene, bhuT. The macrophage-inducibility of the tss-5 gene cluster was confirmed by reporter gene analysis. Construction of tssH-5 and bhuT null mutants indicated that expression of the tss-5 unit and the bhu operon were not required for intramacrophage survival. A further five tss units were identified within the B. pseudomallei genome that, together with tss-5, account for approximately 2.3 % of the total genome size. The presence of six type VI secretion systems in this organism is likely to be an important factor in making this bacterium such a versatile pathogen.
Collapse
Affiliation(s)
- Gil Shalom
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jonathan G Shaw
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S Thomas
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
17
|
Chatfield CH, Cianciotto NP. The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 2007; 75:4062-70. [PMID: 17548481 PMCID: PMC1951983 DOI: 10.1128/iai.00489-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of Legionella pneumophila is dependent upon its capacity to acquire iron. To identify genes involved in expression of its siderophore, we screened a mutagenized population of L. pneumophila for strains that were no longer able to rescue the growth of a ferrous transport mutant. However, an unusual mutant was obtained that displayed a strong inhibitory effect on the feoB mutant. Due to an insertion in hmgA that encodes homogentisate 1,2-dioxygenase, the mutant secreted increased levels of pyomelanin, the L. pneumophila pigment that is derived from secreted homogentisic acid (HGA). Thus, we hypothesized that L. pneumophila-secreted HGA-melanin has intrinsic ferric reductase activity, converting Fe(3+) to Fe(2+), but that hyperpigmentation results in excessive reduction of iron that can, in the case of the feoB mutant, be inhibitory to growth. In support of this hypothesis, we demonstrated, for the first time, that wild-type L. pneumophila secretes ferric reductase activity. Moreover, whereas the hyperpigmented mutant had increased secreted activity, an lly mutant specifically impaired for pigment production lacked the activity. Compatible with the nature of HGA-melanins, the secreted ferric reductase activity was positively influenced by the amount of tyrosine in the growth medium, resistant to protease, acid precipitable, and heterogeneous in size. Together, these data represent the first demonstration of pyomelanin-mediated ferric reduction by a pathogenic bacterium.
Collapse
Affiliation(s)
- Christa H Chatfield
- Department of Microbiology-Immunology, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611-3010, USA
| | | |
Collapse
|
18
|
Cianciotto NP. Iron acquisition by Legionella pneumophila. Biometals 2006; 20:323-31. [PMID: 17180462 DOI: 10.1007/s10534-006-9057-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 11/28/2006] [Indexed: 11/29/2022]
Abstract
For nearly 20 years, it was believed that Legionella pneumophila does not produce siderophores. Yet, we have now determined that L. pneumophila secretes a siderophore (legiobactin) that is detectable by the CAS assay. We have optimized conditions for legiobactin expression, shown its biological activity, and found genes (lbtAB) involved in its production and secretion. LbtA is homologous with siderophore synthetases from E. coli (aerobactin), Sinorhizobium (rhizobactin), and Bordetella (alcaligin), while LbtB is a member of the major facilitator superfamily of multidrug efflux pumps. Mutants lacking lbtAB produce 40-70% less CAS reactivity. The lbtA mutant is also defective for growth in deferrated media containing citrate, indicating that legiobactin is required in conditions of severe iron limitation. lbtAB mutants grow normally in macrophages and amoebae host cells as well as within the lungs of mice. L. pneumophila does express lbtA in macrophages, suggesting that legiobactin has a dispensable role in infection. Legiobactin is iron repressed and does not react in the Csáky and Arnow assays. Anion-exchange HPLC has been used to purify legiobactin, and thus far, structural analysis suggests that the molecule is similar but not identical to rhizobactin, rhizoferrin, and alcaligin. The residual CAS reactivity present in supernatants of the lbtAB mutants suggests that L. pneumophila might produce a second siderophore. Besides siderophores, we have determined that ferrous iron transport, encoded by feoB, is critical for L. pneumophila growth in low-iron conditions, in host cells, and in the mammalian lung. Some of our other studies have discovered a critical, yet undefined, role for the L. pneumophila cytochrome c maturation locus in low-iron growth, intracellular infection, and virulence.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology-Immunology, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611-3010, USA.
| |
Collapse
|
19
|
Richard-Fogal CL, Frawley ER, Feissner RE, Kranz RG. Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol 2006; 189:455-63. [PMID: 17085564 PMCID: PMC1797374 DOI: 10.1128/jb.01388-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies have indicated that specific heme delivery to apocytochrome c is a critical feature of the cytochrome c biogenesis pathways called system I and II. To determine directly the heme requirements of each system, including whether other metal porphyrins can be incorporated into cytochromes c, we engineered Escherichia coli so that the natural system I (ccmABCDEFGH) was deleted and exogenous porphyrins were the sole source of porphyrins (Delta hemA). The engineered E. coli strains that produced recombinant system I (from E. coli) or system II (from Helicobacter) facilitated studies of the heme concentration dependence of each system. Using this exogenous porphyrin approach, it was shown that in system I the levels of heme used are at least fivefold lower than the levels used in system II, providing an important advantage for system I. Neither system could assemble holocytochromes c with other metal porphyrins, suggesting that the attachment mechanism is specific for Fe protoporphyrin. Surprisingly, Zn and Sn protoporphyrins are potent inhibitors of the pathways, and exogenous heme competes with this inhibition. We propose that the targets are the heme binding proteins in the pathways (CcmC, CcmE, and CcmF for system I and CcsA for system II).
Collapse
|
20
|
Rolerson E, Swick A, Newlon L, Palmer C, Pan Y, Keeshan B, Spatafora G. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol 2006; 188:5033-44. [PMID: 16816176 PMCID: PMC1539950 DOI: 10.1128/jb.00155-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease.
Collapse
Affiliation(s)
- Elizabeth Rolerson
- Department of Biology, Middlebury College, 276 Bicentennial Way, MBH354, Middlebury, Vermont 05753, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Feissner RE, Richard-Fogal CL, Frawley ER, Kranz RG. ABC transporter-mediated release of a haem chaperone allows cytochromecbiogenesis. Mol Microbiol 2006; 61:219-31. [PMID: 16824107 DOI: 10.1111/j.1365-2958.2006.05221.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP-binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead-end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP-dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.
Collapse
Affiliation(s)
- Robert E Feissner
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
22
|
Allard KA, Viswanathan VK, Cianciotto NP. lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 2006; 188:1351-63. [PMID: 16452417 PMCID: PMC1367248 DOI: 10.1128/jb.188.4.1351-1363.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Under iron stress, Legionella pneumophila secretes legiobactin, a nonclassical siderophore that is reactive in the chrome azurol S (CAS) assay. Here, we have optimized conditions for legiobactin expression, shown its biological activity, and identified two genes, lbtA and lbtB, which are involved in legiobactin production. lbtA appears to be iron repressed and encodes a protein that has significant homology with siderophore synthetases, and FrgA, a previously described iron-regulated protein of L. pneumophila. lbtB encodes a protein homologous with members of the major facilitator superfamily of multidrug efflux pumps. Mutants lacking lbtA or lbtB were defective for legiobactin, producing 40 to 70% less CAS reactivity in deferrated chemically defined medium (CDM). In bioassays, mutant CDM culture supernatants, unlike those of the wild type, did not support growth of iron-limited wild-type bacteria in 2',2'-dipyridyl-containing buffered charcoal yeast extract (BCYE) agar and a ferrous iron transport mutant on BCYE agar without added iron. The lbtA mutant was modestly defective for growth in deferrated CDM containing the iron chelator citrate, indicating that legiobactin is required in conditions of severe iron limitation. Complementation of the lbt mutants restored both siderophore expression, as measured by the CAS assay and bioassays, and bacterial growth in deferrated, citrate-containing media. The lbtA mutant replicated as the wild type did in macrophages, amoebae, and the lungs of mice. However, L. pneumophila expresses lbtA in the macrophage, suggesting that legiobactin, though not required, may play a dispensable role in intracellular growth. The discovery of lbtAB represents the first identification of genes required for L. pneumophila siderophore expression.
Collapse
Affiliation(s)
- Kimberly A Allard
- Department of Microbiology-Immunology, Northwestern University Medical School, 320 East Superior St., Chicago, Illinois 60611-3010, USA
| | | | | |
Collapse
|
23
|
Cianciotto NP, Cornelis P, Baysse C. Impact of the bacterial type I cytochromecmaturation system on different biological processes. Mol Microbiol 2005; 56:1408-15. [PMID: 15916594 DOI: 10.1111/j.1365-2958.2005.04650.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the alpha-, beta- and gamma-Proteobacteria, the so-called cytochrome c maturation (Ccm) system is known to promote the covalent attachment of the haem to periplasmic apocytochrome c. However, in species of Pseudomonas, Rhizobium, Paracoccus and Legionella, mutations in ccm genes result in phenotypes that cannot be readily explained by the simple loss of a c-type cytochrome. These phenotypes include loss of siderophore production and utilization, reduced abilities to grow in low-iron conditions and in mammalian and protozoan host cells, and alterations in copper sensitivity and manganese oxidation. These various data suggest that Ccm proteins may perform one or more functions in addition to Ccm, which are critical for bacterial physiology and growth. Novel hypotheses that should be explored include the utilization of Ccm-associated haem for processes besides attachment to apocytochrome c, the export of a non-haem compound through the Ccm system, and the negative effects of protoporphyrin IX accumulation.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
24
|
Naylor J, Cianciotto NP. Cytochrome c maturation proteins are critical for in vivo growth of Legionella pneumophila. FEMS Microbiol Lett 2005; 241:249-56. [PMID: 15598540 DOI: 10.1016/j.femsle.2004.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 09/28/2004] [Accepted: 10/15/2004] [Indexed: 11/24/2022] Open
Abstract
Legionella pneumophila, an intracellular parasite of macrophages and protozoa, requires iron for extra- and intracellular growth. In a new screen of a mutant library of L. pneumophila for strains defective for growth on agar media lacking supplemental iron, seven mutants were obtained. All of the mutants had a disruption in the cytochrome c maturation (ccm) locus; two had insertions in ccmB, two in ccmC, and three in ccmF. The ccm mutants were unable to multiply within macrophage-like cells (i.e., U937 and THP-1 cells) and Hartmannella vermiformis amoebae. A competition assay in A/J mice revealed that ccm mutants are severely defective for growth within the lung. Taken together, these data confirm that ccm and cytochrome c maturation proteins are required for L. pneumophila growth in low iron, intracellular infection, and virulence.
Collapse
Affiliation(s)
- Jennifer Naylor
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St., Chicago, IL 60611, USA
| | | |
Collapse
|
25
|
Borella P, Guerrieri E, Marchesi I, Bondi M, Messi P. Water ecology of Legionella and protozoan: environmental and public health perspectives. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:355-80. [PMID: 16216783 DOI: 10.1016/s1387-2656(05)11011-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ecological studies on Legionella spp. are essential to better understand their sources in the natural environments, the mechanism of their entry into man-made water systems and the factors enabling their survival and growth in aquatic habitats. Legionella spp. exhibits peculiar and multiple strategies to adapt to stressful environment conditions which normally impair other germ survival. These strategies include the ability to enter in a viable but non-cultivable (VBNC) state, to multiply intracellularly within a variety of protozoa, such as amoebae, to survive as free organisms within biofilms and to be enhanced/inhibited by the presence of other aquatic bacteria. The host-parasite interaction has been shown to be central in the pathogenesis and ecology of L. pneumophila. The bacterial-protozoan interaction contributes to the amplification of Legionella population in water systems, represents a shelter against unfavourable environmental conditions, acts as a reservoir of infection and contributes to virulence by priming the pathogen to infect human cells. Legionella is able to survive as free organism for long periods within biofilms which are widespread in man-made water systems. Biofilm provides shelter and nutrients, exhibits a remarkable resistance to biocide compounds and chlorination, thus representing ecological niches for legionella persistence in such environments. Further knowledge on biofilm-associated legionellae may lead to effective control measures to prevent legionellosis. Lastly, new perspectives in controlling legionella contamination can arise from investigations on aquatic bacteria able to inhibit legionella growth in natural and artificial water systems.
Collapse
Affiliation(s)
- Paola Borella
- Department of Hygiene and Microbiology, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| | | | | | | | | |
Collapse
|
26
|
Danese I, Haine V, Delrue RM, Tibor A, Lestrate P, Stevaux O, Mertens P, Paquet JY, Godfroid J, De Bolle X, Letesson JJ. The Ton system, an ABC transporter, and a universally conserved GTPase are involved in iron utilization by Brucella melitensis 16M. Infect Immun 2004; 72:5783-90. [PMID: 15385478 PMCID: PMC517599 DOI: 10.1128/iai.72.10.5783-5790.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella spp. are gram-negative intracellular facultative pathogens that are known to produce 2,3-dihydroxybenzoic acid (DHBA), a catechol siderophore that is essential for full virulence in the natural host. The mechanism of DHBA entry into Brucella and other gram-negative bacteria is poorly understood. Using mini-Tn5Kmcat mutagenesis, we created a transposon library of Brucella melitensis 16M and isolated 32 mutants with a defect in iron acquisition or assimilation. Three of these transposon mutants are deficient in utilization of DHBA. Analysis of these three mutants indicated that the ExbB, DstC, and DugA proteins are required for optimal assimilation of DHBA and/or citrate. ExbB is part of the Ton complex, and DstC is a permease homologue of an iron(III) ABC transporter; in gram-negative bacteria these two complexes are involved in the uptake of iron through the outer and inner membranes, respectively. DugA is a new partner in iron utilization that exhibits homology with the bacterial conserved GTPase YchF. Based on this homology, DugA could have a putative regulatory function in iron assimilation in Brucella. None of the three mutants was attenuated in cellular models or in the mouse model of infection, which is consistent with the previous suggestion that DHBA utilization is not required in these models.
Collapse
Affiliation(s)
- Isabelle Danese
- Unité de Recherche en Biologie Moléculaire, University of Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
This review provides a discussion on the current information about the response of Mycobacterium tuberculosis to the environment encountered in the macrophage. We focus on the types of genes shown to be upregulated when the pathogen grows in macrophages and discuss the possible roles of these genes in adaptation to the conditions in the eukaryotic cell, in the context of enhancing the survival of the pathogen during infection.
Collapse
Affiliation(s)
- Eugenie Dubnau
- TB Center, Public Health Research Institute of the International Center of Public Health, 225 Warren Street, Newark, NJ 07103, USA
| | | |
Collapse
|
28
|
Flieger A, Neumeister B, Cianciotto NP. Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect Immun 2002; 70:6094-106. [PMID: 12379686 PMCID: PMC130422 DOI: 10.1128/iai.70.11.6094-6106.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that Legionella pneumophila secretes, via its type II secretion system, phospholipase A activities that are distinguished by their specificity for certain phospholipids. In this study, we identified and characterized plaA, a gene encoding a phospholipase A that cleaves fatty acids from lysophospholipids. The plaA gene encoded a 309-amino-acid protein (PlaA) which had homology to a group of lipolytic enzymes containing the catalytic signature GDSL. In Escherichia coli, the cloned gene conferred trypsin-resistant hydrolysis of lysophosphatidylcholine and lysophosphatidylglycerol. An L. pneumophila plaA mutant was generated by allelic exchange. Although the mutant grew normally in standard buffered yeast extract broth, its culture supernatants lost greater than 80% of their ability to release fatty acids from lysophosphatidylcholine and lysophosphatidylglycerol, implying that PlaA is the major secreted lysophospholipase A of L. pneumophila. The mutant's reduced lipolytic activity was confirmed by growth on egg yolk agar and thin layer chromatography and was complemented by reintroduction of an intact copy of plaA. Overexpression of plaA completely protected L. pneumophila from the toxic effects of lysophosphatidylcholine, suggesting a role for PlaA in bacterial detoxification of lysophospholipids. The plaA mutant grew like the wild type in U937 cell macrophages and Hartmannella vermiformis amoebae, indicating that PlaA is not essential for intracellular infection of L. pneumophila. In the course of characterizing plaA, we discovered that wild-type legionellae secrete a phospholipid cholesterol acyltransferase activity, highlighting the spectrum of lipolytic enzymes produced by L. pneumophila.
Collapse
Affiliation(s)
- Antje Flieger
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, Germany
| | | | | |
Collapse
|
29
|
Robey M, Cianciotto NP. Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 2002; 70:5659-69. [PMID: 12228295 PMCID: PMC128349 DOI: 10.1128/iai.70.10.5659-5669.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to determine the role of ferrous iron transport in Legionella pathogenesis, we identified and mutated the feoB gene in virulent Legionella pneumophila strain 130b. As it is in Escherichia coli, the L. pneumophila feoB gene was contained within a putative feoAB operon. L. pneumophila feoB insertion mutants exhibited decreased ferrous but not ferric iron uptake compared to the wild type. Growth on standard buffered charcoal yeast extract agar or buffered yeast extract broth was unaffected by the loss of L. pneumophila FeoB. However, the L. pneumophila feoB mutant had a reduced ability to grow on buffered charcoal yeast extract agar with a reduced amount of its usual iron supplementation, a phenotype that could be complemented by the addition of feoB in trans. In unsupplemented buffered yeast extract broth, the feoB mutant also had a growth defect, which was further exacerbated by the addition of the ferrous iron chelator, 2,2'-dipyridyl. The feoB mutant was also 2.5 logs more resistant to streptonigrin than wild-type 130b, confirming its decreased ability to acquire iron during extracellular growth. Decreased replication of the feoB mutant was noted within iron-depleted Hartmannella vermiformis amoebae and human U937 cell macrophages. The reduced intracellular infectivity of the feoB mutant was complemented by the introduction of a plasmid containing feoAB. The L. pneumophila feoB gene conferred a modest growth advantage for the wild type over the mutant in a competition assay within the lungs of A/J mice. Taken together, these results indicate that L. pneumophila FeoB is a ferrous iron transporter that is important for extracellular and intracellular growth, especially in iron-limited environments. These data represent the first evidence for the importance of ferrous iron transport for intracellular replication by a human pathogen.
Collapse
Affiliation(s)
- Marianne Robey
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
30
|
Brown JS, Gilliland SM, Ruiz-Albert J, Holden DW. Characterization of pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect Immun 2002; 70:4389-98. [PMID: 12117949 PMCID: PMC128127 DOI: 10.1128/iai.70.8.4389-4398.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 03/20/2002] [Accepted: 05/22/2002] [Indexed: 11/20/2022] Open
Abstract
Bacteria frequently have multiple mechanisms for acquiring iron, an essential micronutrient, from the environment. We have identified a four-gene Streptococcus pneumoniae operon, named pit, encoding proteins with similarity to components of a putative Brachyspira hyodysenteriae iron uptake ABC transporter, Bit. An S. pneumoniae strain containing a defined mutation in pit has impaired growth in medium containing the iron chelator ethylenediamine di-o-hydroxyphenylacetic acid, reduced sensitivity to the iron-dependent antibiotic streptonigrin, and impaired virulence in a mouse model of S. pneumoniae systemic infection. Furthermore, addition of a mutation in pit to a strain containing mutations in the two previously described S. pneumoniae iron uptake ABC transporters, piu and pia, resulted in a strain with impaired growth in two types of iron-deficient medium, a high degree of resistance to streptonigrin, and a reduced rate of iron uptake. Comparison of the susceptibilities to streptonigrin of the individual pit, piu, and pia mutant strains and comparison of the growth in iron-deficient medium and virulence of single and double mutant strains suggest that pia is the dominant iron transporter during in vitro and in vivo growth.
Collapse
Affiliation(s)
- Jeremy S Brown
- Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Faculty of Medicine, Imperial College School of Medicine, London SW7 2AZ, United Kingdom.
| | | | | | | |
Collapse
|
31
|
Parent MA, Bellaire BH, Murphy EA, Roop RM, Elzer PH, Baldwin CL. Brucella abortus siderophore 2,3-dihydroxybenzoic acid (DHBA) facilitates intracellular survival of the bacteria. Microb Pathog 2002; 32:239-48. [PMID: 12071680 DOI: 10.1006/mpat.2002.0500] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Siderophores are low molecular weight molecules that allow bacteria to acquire iron from host cell proteins. 2,3-dihydroxybenzoic acid (DHBA) is the only known siderophore produced by the intracellular pathogen Brucella abortus. Here its role in virulence was assessed by evaluating the ability of a mutant with a disruption of the entC gene to survive and replicate in vitro in murine and bovine cells and in vivo in resistant and susceptible murine hosts. It was hypothesized that DHBA is vital for bacterial virulence by its ability to chelate intracellular iron thereby preventing generation of anti-bacterial hydroxyl radicals via the Haber-Weiss reaction, to scavenge reactive oxygen intermediates and for acquisition of iron needed for nutritional purposes. The data showed DHBA played a significant role for bacterial survival in host cells after infection including in murine macrophages cultured in the presence and absence of exogenous interferon-gamma (IFN-gamma) and in bovine trophoblasts supplemented with erythritol. In severely iron-depleted conditions, DHBA was also found to be essential for growth in murine macrophages. Despite these deficiencies, the absence of DHBA had no long-term significant effect on the number of CFU recovered in vivo from either the Brucella-resistant C57BL/6 mice or Brucella-susceptible IFN-gamma knock-out C57BL/6 mice.
Collapse
Affiliation(s)
- Michelle A Parent
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Viswanathan VK, Kurtz S, Pedersen LL, Abu-Kwaik Y, Krcmarik K, Mody S, Cianciotto NP. The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 2002; 70:1842-52. [PMID: 11895946 PMCID: PMC127876 DOI: 10.1128/iai.70.4.1842-1852.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we obtained a Legionella pneumophila mutant, NU208, that is hypersensitive to iron chelators when grown on standard Legionella media. Here, we demonstrate that NU208 is also impaired for growth in media that simply lack their iron supplement. The mutant was not, however, impaired for the production of legiobactin, the only known L. pneumophila siderophore. Importantly, NU208 was also highly defective for intracellular growth in human U937 cell macrophages and Hartmannella and Acanthamoeba amoebae. The growth defect within macrophages was exacerbated by treatment of the host cells with an iron chelator. Sequence analysis demonstrated that the transposon disruption in NU208 lies within an open reading frame that is highly similar to the cytochrome c maturation gene, ccmC. CcmC is generally recognized for its role in the heme export step of cytochrome biogenesis. Indeed, NU208 lacked cytochrome c. Phenotypic analysis of two additional, independently derived ccmC mutants confirmed that the growth defect in low-iron medium and impaired infectivity were associated with the transposon insertion and not an entirely spontaneous second-site mutation. trans-complementation analysis of NU208 confirmed that L. pneumophila ccmC is required for cytochrome c production, growth under low-iron growth conditions, and at least some forms of intracellular infection. Although ccm genes have recently been implicated in iron assimilation, our data indicate, for the first time, that a ccm gene can be required for bacterial growth in an intracellular niche. Complete sequence analysis of the ccm locus from strain 130b identified the genes ccmA-H. Interestingly, however, we also observed that a 1.8-kb insertion sequence element was positioned between ccmB and ccmC. Southern hybridizations indicated that the open reading frame within this element (ISLp 1) was present in multiple copies in some strains of L. pneumophila but was absent from others. These findings represent the first evidence for a transposable element in Legionella and the first identification of an L. pneumophila strain-specific gene.
Collapse
Affiliation(s)
- V K Viswanathan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Larson JA, Higashi DL, Stojiljkovic I, So M. Replication of Neisseria meningitidis within epithelial cells requires TonB-dependent acquisition of host cell iron. Infect Immun 2002; 70:1461-7. [PMID: 11854233 PMCID: PMC127810 DOI: 10.1128/iai.70.3.1461-1467.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/06/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis (meningococcus [MC]) is able to enter and replicate within epithelial cells. Iron, an essential nutrient for nearly all organisms, is an important determinant in the ability of MC to cause disease; however, its role in MC intracellular replication has not been investigated. We analyzed the growth of MC within the A431 human epithelial cell line and the dependence of this growth on iron uptake. We present evidence here that chelation of iron from infected tissue culture cells with Desferal strongly inhibited intracellular replication of wild-type (wt) MC. We also provide genetic evidence that iron must be acquired by MC from the host cell in order for it to replicate. An hmbR mutant that is unable to use hemoglobin iron and could not grow in tissue culture media without iron supplementation replicated more rapidly within epithelial cells than its wt parent strain. An fbpA mutant that is unable to utilize human transferrin iron or lactoferrin iron replicated normally within cells. In contrast, a tonB mutant could not replicate intracellularly unless infected cultures were supplemented with ferric nitrate. Taken together, these findings strongly suggest that MC intracellular replication requires TonB-dependent uptake of a novel host cell iron source.
Collapse
Affiliation(s)
- Jason A Larson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | | | |
Collapse
|
34
|
González Carreró MI, Sangari FJ, Agüero J, Garcı A Lobo JM. Brucella abortus strain 2308 produces brucebactin, a highly efficient catecholic siderophore. MICROBIOLOGY (READING, ENGLAND) 2002; 148:353-360. [PMID: 11832499 DOI: 10.1099/00221287-148-2-353] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brucella abortus is known to produce 2,3-dihydroxybenzoate (2,3-DHBA) and to use this catechol as a siderophore to grow under iron-limited conditions. In this study a mutant (BAM41) is described that is deficient in siderophore production by insertion of Tn5 in the virulent B. abortus strain 2308. This mutant was unable to grow on iron-deprived medium and its growth could not be restored by addition of 2,3-DHBA. Production of catecholic compounds by both the Brucella mutant and parental strains under iron-deprivation conditions was assayed by TLC. Two catecholic substances were identified in the supernatant of the parental strain 2308. The faster migrating spot showed the same retention factor (R(f)) as that of purified 2,3-DHBA. The mutant BAM41 overproduced 2,3-DHBA, but failed to form the slower migrating catechol. This defect could only be complemented by the addition of the slow-migrating catechol from strain 2308. The genomic region containing Tn5 in BAM41 was cloned and the position of the transposon was determined by nucleotide sequencing. The sequence revealed that the insertion had occurred at a gene with homology to Escherichia coli entF, a locus involved in the late steps of the biosynthesis of the complex catecholic siderophore enterobactin. Intracellular survival and growth rates of the B. abortus wild-type and entF mutant strains in mouse-derived J774 macrophages were similar, indicating that production of this siderophore was not essential in this model of infection. It is concluded that B. abortus synthesizes a previously unknown and highly efficient catecholic siderophore, different from 2,3-DHBA, for which the name brucebactin is proposed.
Collapse
Affiliation(s)
- Manuel I González Carreró
- Departamento de Biologı́a Molecular (Unidad Asociada al Centro de Investigaciones Biológicas, CSIC), Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, 39011-Santander, Spain1
| | - Félix J Sangari
- Departamento de Biologı́a Molecular (Unidad Asociada al Centro de Investigaciones Biológicas, CSIC), Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, 39011-Santander, Spain1
| | - Jesús Agüero
- Departamento de Biologı́a Molecular (Unidad Asociada al Centro de Investigaciones Biológicas, CSIC), Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, 39011-Santander, Spain1
| | - Juan M Garcı A Lobo
- Departamento de Biologı́a Molecular (Unidad Asociada al Centro de Investigaciones Biológicas, CSIC), Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, 39011-Santander, Spain1
| |
Collapse
|
35
|
Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 2001; 42:851-65. [PMID: 11722747 DOI: 10.1046/j.1365-2958.2001.02684.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this work, we characterize genes in Mycobacterium tuberculosis that are regulated by IdeR (iron-dependent regulator), an iron-responsive DNA-binding protein of the DtxR family that has been shown to regulate iron acquisition in Mycobacterium smegmatis. To identify some of the genes that constitute the IdeR regulon, we searched the M. tuberculosis genome for promoter regions containing the consensus IdeR/DxR binding sequence. Genes preceded by IdeR boxes included a set encoding proteins necessary for iron acquisition, such as the biosynthesis of siderophores (mbtA, mbtB, mbtI), aromatic amino acids (pheA, hisE, hisB-like) and others annotated to be involved in the synthesis of iron-storage proteins (bfrA, bfrB). Some putative IdeR-regulated genes identified in this search encoded proteins predicted to be engaged in the biosynthesis of lipopolysaccharide (LPS)-like molecules (rv3402c), lipids (acpP) and peptidoglycan (murB). We analysed four promoter regions containing putative IdeR boxes, mbtA-mbtB, mbI, rv3402c and bfrA-bfd, for interaction with IdeR and for iron-dependent expression. Gel retardation experiments and DNase footprinting analyses with purified IdeR showed that IdeR binds to these IdeR boxes in vitro. Analysis of the promoters by primer extension indicated that the IdeR boxes are located near the -10 position of each promoter, suggesting that IdeR acts as a transcriptional repressor by blocking RNA polymerase binding. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) coupled to molecular beacons, we showed that mRNA levels of mbtA, mbtB, mbtI, rv3402c and bfd are induced 14- to 49-fold in cultures of M. tuberculosis starved for iron, whereas mRNA levels of bfrA decreased about threefold. We present evidence that IdeR not only acts as a transcriptional repressor but also functions as an activator of bfrA. Three of the IdeR- and iron-repressed genes, mbtB, mbtI and rv3402c, were induced during M. tuberculosis infection of human THP-1 macrophages.
Collapse
Affiliation(s)
- B Gold
- Department of Microbiology, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
36
|
Brown JS, Gilliland SM, Holden DW. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 2001; 40:572-85. [PMID: 11359564 DOI: 10.1046/j.1365-2958.2001.02414.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Restricted iron availability is a major obstacle to growth and survival of pathogenic bacteria during infection. In contrast to Gram-negative pathogens, little is known about how Gram-positive pathogens obtain this essential metal. We have identified two Streptococcus pneumoniae genetic loci, pit1 and pit2, encoding homologues of ABC iron transporters that are required for iron uptake by this organism. S. pneumoniae strains containing disrupted copies of either pit1 or pit2 had decreased sensitivity to the iron-dependent antibiotic streptonigrin, and a strain containing disrupted copies of both pit1 and pit2 was unable to use haemoglobin as an iron source and had a reduced rate of iron uptake. The pit2- strain was moderately and the pit1-/pit2- strain strongly attenuated in virulence in mouse models of pulmonary and systemic infection, showing that the pit loci play a critical role during in vivo growth of S. pneumoniae. The pit2 locus is contained within a 27 kb region of chromosomal DNA that has several features of Gram-negative bacterial pathogenicity islands. This probable pathogenicity island (PPI-1) is the first to be described for S. pneumoniae, and its acquisition is likely to have played a significant role in the evolution of this important human pathogen.
Collapse
Affiliation(s)
- J S Brown
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
37
|
Aragon V, Kurtz S, Cianciotto NP. Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect Immun 2001; 69:177-85. [PMID: 11119504 PMCID: PMC97870 DOI: 10.1128/iai.69.1.177-185.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen of protozoa and alveolar macrophages. This bacterium contains a gene (pilD) that is involved in both type IV pilus biogenesis and type II protein secretion. We previously demonstrated that the PilD prepilin peptidase is crucial for intracellular infection by L. pneumophila and that the secreted pilD-dependent proteins include a metalloprotease, an acid phosphatase, an esterase/lipase, a phospholipase A, and a p-nitrophenyl phosphorylcholine hydrolase. Since mutants lacking type IV pili, the protease, or the phosphorylcholine hydrolase are not defective for intracellular infection, we sought to determine the significance of the secreted acid phosphatase activity. Three mutants defective in acid phosphatase activity were isolated from a population of mini-Tn10-mutagenized L. pneumophila. Supernatants as well as cell lysates from these mutants contained minimal acid phosphatase activity while possessing normal levels of other pilD-dependent exoproteins. Genetic studies indicated that the gene affected by the transposon insertions encoded a novel bacterial histidine acid phosphatase, which we designated Map for major acid phosphatase. Subsequent inhibitor studies indicated that Map, like its eukaryotic homologs, is a tartrate-sensitive acid phosphatase. The map mutants grew within macrophage-like U937 cells and Hartmannella amoebae to the same degree as did wild-type legionellae, indicating that this acid phosphatase is not essential for L. pneumophila intracellular infection. However, in the course of characterizing our new mutants, we gained evidence for a second pilD-dependent acid phosphatase activity that, unlike Map, is tartrate resistant.
Collapse
Affiliation(s)
- V Aragon
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
38
|
Sturgill-Koszycki S, Swanson MS. Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 2000; 192:1261-72. [PMID: 11067875 PMCID: PMC2193360 DOI: 10.1084/jem.192.9.1261] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2000] [Accepted: 09/26/2000] [Indexed: 11/04/2022] Open
Abstract
After ingestion by macrophages, Legionella pneumophila inhibits acidification and maturation of its phagosome. After a 6-10-h lag period, the bacteria replicate for 10-14 h until macrophage lysis releases dozens of progeny. To examine whether the growth phase of intracellular L. pneumophila determines the fate of its phagosome, interactions between the endosomal network and pathogen vacuoles were analyzed throughout the primary infection period. Surprisingly, as L. pneumophila replicated exponentially, a significant proportion of the vacuoles acquired lysosomal characteristics. By 18 h, 70% contained lysosomal-associated membrane protein 1 (LAMP-1) and 40% contained cathepsin D; 50% of the vacuoles could be labeled by endocytosis, and the pH of this population of vacuoles averaged 5.6. Moreover, L. pneumophila appeared to survive and replicate within lysosomal compartments: vacuoles harboring more than five bacteria also contained LAMP-1, inhibition of vacuole acidification and maturation by bafilomycin A1 inhibited bacterial replication, bacteria within endosomal vacuoles responded to a metabolic inducer by expressing a gfp reporter gene, and replicating bacteria obtained from macrophages, but not broth, were acid resistant. Understanding how L. pneumophila first evades and then exploits the endosomal pathway to replicate within macrophages may reveal the mechanisms governing phagosome maturation, a process also manipulated by Mycobacteria, Leishmania, and Coxiella.
Collapse
Affiliation(s)
- S Sturgill-Koszycki
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
39
|
Coers J, Kagan JC, Matthews M, Nagai H, Zuckman DM, Roy CR. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol Microbiol 2000; 38:719-36. [PMID: 11115108 DOI: 10.1046/j.1365-2958.2000.02176.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Legionella pneumophila is a bacterial pathogen that can enter the human lung and grow inside alveolar macrophages. To grow within phagocytic host cells, the bacteria must create a specialized organelle that restricts fusion with lysosomes. Biogenesis of this replicative organelle is controlled by 24 dot and icm genes, which encode a type IV-related transport apparatus. To understand how this transporter functions, isogenic L. pneumophila dot and icm mutants were characterized, and three distinct phenotypic categories were identified. Our data show that, in addition to genes that encode the core Dot/Icm transport apparatus, subsets of genes are required for pore formation and modulation of phagosome trafficking. To understand activities required for virulence at a molecular level, we investigated protein-protein interactions. Specific interactions between different Icm proteins were detected by yeast two-hybrid and gel overlay analysis. These data support a model in which the IcmQ-IcmR complex regulates the formation of a translocation channel that delivers proteins into host cells, and the IcmS-IcmW complex is required for export of virulence determinants that modulate phagosome trafficking.
Collapse
Affiliation(s)
- J Coers
- Yale University School of Medicine, Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Room 354, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
40
|
Fettes PS, Susa M, Hacker J, Marre R. Characterization of the Legionella pneumophila gene ligA. Int J Med Microbiol 2000; 290:239-50. [PMID: 10959726 DOI: 10.1016/s1438-4221(00)80121-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is a bacterial pathogen that resides and multiplies in macrophages as well as in its natural aquatic hosts, the protozoa. Different bacterial factors contribute to pathogenicity and accompanying eukaryotic intracellular events. Sequencing of mip flanking regions revealed a gene of 2610 bp, ligA, that has no significant similarity to any of the genes identified previously. Epidemiological studies indicate that this gene is present in Legionella pneumophila, the species most often associated with cases of the Legionnaires' disease, but not in Legionella species other than L. pneumophila. The isogenic ligA deletion mutant was resistant to NaCl, and showed decreased cytotoxicity to human monocytes and decreased hemolytic activity to red blood cells. However, the most prominent effect of the L. pneumophila ligA mutant strain LEPF1 was the nearly completely reduced replication within the natural host Acanthamoeba castellanii. Since this gene is L. pneumophila specific and regulates numerous bacterial properties we designated this gene ligA for Legionella pneumophila infectivity gene A.
Collapse
Affiliation(s)
- P S Fettes
- Department of Medical Microbiology and Hygiene, University of Ulm, Germany
| | | | | | | |
Collapse
|
41
|
Harb OS, Gao LY, Abu Kwaik Y. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ Microbiol 2000; 2:251-65. [PMID: 11200426 DOI: 10.1046/j.1462-2920.2000.00112.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is becoming apparent that several intracellular bacterial pathogens of humans can also survive within protozoa. This interaction with protozoa may protect these pathogens from harsh conditions in the extracellular environment and enhance their infectivity in mammals. This relationship has been clearly established in the case of the interaction between Legionella pneumophila and its protozoan hosts. In addition, the adaptation of bacterial pathogens to the intracellular life within the primitive eukaryotic protozoa may have provided them with the means to infect the more evolved mammalian cells. This is evident from the existence of several similarities, at both the phenotypic and the molecular levels, between the infection of mammalian and protozoan cells by L. pneumophila. Thus, protozoa appear to play a central role in the transition of bacteria from the environment to mammals. In essence, protozoa may be viewed as a 'biological gym', within which intracellular bacterial pathogens train for their encounters with the more evolved mammalian cells. Thus, intracellular bacterial pathogens have benefited from the structural and biochemical conservation of cellular processes in eukaryotes. The interaction of intracellular bacterial pathogens and protozoa highlights this conservation and may constitute a simplified model for the study of these pathogens and the evolution of cellular processes in eukaryotes. Furthermore, in addition to being environmental reservoirs for known intracellular pathogens of humans and animals, protozoa may be sources of emerging pathogenic bacteria. It is thus critical to re-examine the relationship between bacteria and protozoa to further our understanding of current human bacterial pathogenesis and, possibly, to predict the appearance of emerging pathogens.
Collapse
Affiliation(s)
- O S Harb
- Department of Microbiology and Immunology, UKCMC, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
42
|
Viswanathan VK, Edelstein PH, Pope CD, Cianciotto NP. The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 2000; 68:1069-79. [PMID: 10678909 PMCID: PMC97250 DOI: 10.1128/iai.68.3.1069-1079.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, a facultative intracellular parasite of human alveolar macrophages and protozoa, causes Legionnaires' disease. Using mini-Tn10 mutagenesis, we previously isolated a L. pneumophila mutant that was hypersensitive to iron chelators. This mutant, NU216, and its allelic equivalent, NU216R, were also defective for intracellular infection, particularly in iron-deficient host cells. To determine whether NU216R was attenuated for virulence, we assessed its ability to cause disease in guinea pigs following intratracheal inoculation. NU216R-infected animals yielded 1,000-fold fewer bacteria from their lungs and spleen compared to wild-type-130b-infected animals that had received a 50-fold-lower dose. Moreover, NU216R-infected animals subsequently cleared the bacteria from these sites. While infection with 130b resulted in high fever, weight loss, and ruffled fur, inoculation with NU216R did not elicit any signs of disease. DNA sequence analysis revealed that the transposon insertion in NU216R lies in the first open reading frame of a two-gene operon. This open reading frame (iraA) encodes a 272-amino-acid protein that shows sequence similarity to methyltransferases. The second open reading frame (iraB) encodes a 501-amino-acid protein that is highly similar to di- and tripeptide transporters from both prokaryotes and eukaryotes. Southern hybridization analyses determined that the iraAB locus was largely limited to strains of L. pneumophila, the most pathogenic of the Legionella species. A newly derived mutant containing a targeted disruption of iraB showed reduced ability to grow under iron-depleted extracellular conditions, but it did not have an infectivity defect in the macrophage-like U937 cells. These data suggest that iraA is critical for virulence of L. pneumophila while iraB is involved in a novel method of iron acquisition which may utilize iron-loaded peptides.
Collapse
Affiliation(s)
- V K Viswanathan
- Department of Microbiology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
43
|
Liles MR, Scheel TA, Cianciotto NP. Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 2000; 182:749-57. [PMID: 10633110 PMCID: PMC94339 DOI: 10.1128/jb.182.3.749-757.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which Legionella pneumophila, a facultative intracellular parasite and the agent of Legionnaires' disease, acquires iron are largely unexplained. Several earlier studies indicated that L. pneumophila does not elaborate siderophores. However, we now present evidence that supernatants from L. pneumophila cultures can contain a nonproteinaceous, high-affinity iron chelator. More specifically, when aerobically grown in a low-iron, chemically defined medium (CDM), L. pneumophila secretes a substance that is reactive in the chrome azurol S (CAS) assay. Importantly, the siderophore-like activity was only observed when the CDM cultures were inoculated to relatively high density with bacteria that had been grown overnight to log or early stationary phase in CDM or buffered yeast extract. Inocula derived from late-stationary-phase cultures, despite ultimately growing, consistently failed to result in the elaboration of siderophore-like activity. The Legionella CAS reactivity was detected in the culture supernatants of the serogroup 1 strains 130b and Philadelphia-1, as well as those from representatives of other serogroups and other Legionella species. The CAS-reactive substance was resistant to boiling and protease treatment and was associated with the <1-kDa supernatant fraction. As would also be expected for a siderophore, the addition of 0.5 or 2.0 microM iron to the cultures repressed the expression of the CAS-reactive substance. Interestingly, the supernatants were negative in the Arnow, Csáky, and Rioux assays, indicating that the Legionella siderophore was not a classic catecholate or hydroxamate and, hence, might have a novel structure. We have designated the L. pneumophila siderophore legiobactin.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
44
|
Swanson MS, Hammer BK. Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 2000; 54:567-613. [PMID: 11018138 DOI: 10.1146/annurev.micro.54.1.567] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Legionella pneumophila first commanded attention in 1976, when investigators from the Centers for Disease Control and Prevention identified it as the culprit in a massive outbreak of pneumonia that struck individuals attending an American Legion convention (). It is now clear that this gram-negative bacterium flourishes naturally in fresh water as a parasite of amoebae, but it can also replicate within alveolar macrophages. L. pneumophila pathogenesis is discussed using the following model as a framework. When ingested by phagocytes, stationary-phase L. pneumophila bacteria establish phagosomes which are completely isolated from the endosomal pathway but are surrounded by endoplasmic reticulum. Within this protected vacuole, L. pneumophila converts to a replicative form that is acid tolerant but no longer expresses several virulence traits, including factors that block membrane fusion. As a consequence, the pathogen vacuoles merge with lysosomes, which provide a nutrient-rich replication niche. Once the amino acid supply is depleted, progeny accumulate the second messenger guanosine 3',5'-bispyrophosphate (ppGpp), which coordinates entry into the stationary phase with expression of traits that promote transmission to a new phagocyte. A number of factors contribute to L. pneumophila virulence, including type II and type IV secretion systems, a pore-forming toxin, type IV pili, flagella, and numerous other factors currently under investigation. Because of its resemblance to certain aspects of Mycobacterium, Toxoplasma, Leishmania, and Coxiella pathogenesis, a detailed description of the mechanism used by L. pneumophila to manipulate and exploit phagocyte membrane traffic may suggest novel strategies for treating a variety of infectious diseases. Knowledge of L. pneumophila ecology may also inform efforts to combat the emergence of new opportunistic macrophage pathogens.
Collapse
Affiliation(s)
- M S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ,
| | | |
Collapse
|
45
|
Edelstein PH, Edelstein MA, Higa F, Falkow S. Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc Natl Acad Sci U S A 1999; 96:8190-5. [PMID: 10393970 PMCID: PMC22210 DOI: 10.1073/pnas.96.14.8190] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila is the cause of Legionnaires' disease, which is a form of potentially fatal pneumonia. To identify genes required for virulence of the bacterium, a library of 1,386 L. pneumophila signature tagged transposon mutants was studied for guinea pig virulence. The mutants were screened in pools of 96 each in a guinea pig model of L. pneumophila pneumonia. Sixteen unique mutant clones were determined to have attenuated virulence after being screened twice in the animal model. All 16 mutants failed to multiply in both lungs and spleens. Four of the sixteen had no apparent defect for intracellular multiplication in macrophages. Partial DNA sequences of the interrupted genes adjacent to the transposon insertions showed that six of them had mutations in five known L. pneumophila virulence genes: dotB, dotF/icmG, dotO/icmB, icmX, and proA. Three of the sequenced clones contained mutations in genes without known homology to other published bacterial genes, and seven clones appeared to be homologous to five different known bacterial genes but are still being characterized. With this methodology, we demonstrate the existence of L. pneumophila genes responsible for non-macrophage-related virulence. The discovery of L. pneumophila virulence genes indicates the utility of the signature tagged mutagenesis technique for pulmonary pathogens.
Collapse
Affiliation(s)
- P H Edelstein
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
46
|
Segal G, Shuman HA. Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 1999; 67:2117-24. [PMID: 10225863 PMCID: PMC115946 DOI: 10.1128/iai.67.5.2117-2124.1999] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous reports we described a 22-kb Legionella pneumophila chromosomal locus containing 18 genes. Thirteen of these genes (icmT, -R, -Q, -P, -O, -M, -L, -K, -E, -C, -D, -J, and -B) were found to be completely required for intracellular growth and killing of human macrophages. Three genes (icmS, -G, and -F) were found to be partially required, and two genes (lphA and tphA) were found to be dispensable for intracellular growth and killing of human macrophages. Here, we analyzed the requirement of these genes for intracellular growth in the protozoan host Acanthamoeba castellanii, a well-established important environmental host of L. pneumophila. We found that all the genes that are completely required for intracellular growth in human macrophages are also completely required for intracellular growth in A. castellanii. However, the genes that are partially required for intracellular growth in human macrophages are completely required for intracellular growth in A. castellanii. In addition, the lphA gene, which was shown to be dispensable for intracellular growth in human macrophages, is partially required for intracellular growth in A. castellanii. Our results indicate that L. pneumophila utilizes the same genes to grow intracellularly in both human macrophages and amoebae.
Collapse
Affiliation(s)
- G Segal
- Department of Microbiology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
47
|
Abstract
Legionella pneumophila is a protozoan parasite that causes Legionnaires' disease. Its ability to do so is dependent on its capacity to replicate intracellularly within a phagosome that is not trafficked through the endosomal-lysosomal pathway and is surrounded by the rough endoplasmic reticulum. Within this unique niche, the bacterium undergoes alterations in gene expression. In addition, many virulence-related phenotypes that are induced in vitro by starvation are expressed intracellularly as the bacteria exit the logarithmic growth phase. (p)ppGpp appears to signal expression of the virulence-related genes in L. pneumophila upon starvation. This growth phase-dependent phenotypical transition is concomitant with lysis of the host cell, in which both necrosis and apoptosis seem to play roles. Many genetic loci that are required for intracellular replication within mammalian and protozoan cells have been identified, and the majority of them are novel. Two secretion systems have been identified, one of which may be distantly related to type IV secretion systems. The other is a type II secretion system similar to the PilBCD piliation system of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Y A Kwaik
- Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA.
| |
Collapse
|
48
|
|
49
|
Abu Kwaik Y, Gao LY, Stone BJ, Venkataraman C, Harb OS. Invasion of protozoa by Legionella pneumophila and its role in bacterial ecology and pathogenesis. Appl Environ Microbiol 1998; 64:3127-33. [PMID: 9726849 PMCID: PMC106699 DOI: 10.1128/aem.64.9.3127-3133.1998] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Y Abu Kwaik
- Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084, USA.
| | | | | | | | | |
Collapse
|
50
|
Liles MR, Viswanathan VK, Cianciotto NP. Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 1998; 66:1776-82. [PMID: 9529113 PMCID: PMC108120 DOI: 10.1128/iai.66.4.1776-1782.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Accepted: 01/27/1998] [Indexed: 02/07/2023] Open
Abstract
Previously, we had isolated by transposon mutagenesis a Legionella pneumophila mutant that appeared defective for intracellular iron acquisition. While sequencing in the proximity of the mini-Tn10 insertion, we found a locus that had a predicted protein product with strong similarity to PilB from Pseudomonas aeruginosa. PilB is a component of the type II secretory pathway, which is required for the assembly of type IV pili. Consequently, the locus was cloned and sequenced. Within this 4-kb region were three genes that appeared to be organized in an operon and encoded homologs of P. aeruginosa PilB, PilC, and PilD, proteins essential for pilus production and type II protein secretion. Northern blot analysis identified a transcript large enough to include all three genes and showed a substantial increase in expression of this operon when L. pneumophila was grown at 30 degrees C as opposed to 37 degrees C. The latter observation was then correlated with an increase in piliation when bacteria were grown at the lower temperature. Southern hybridization analysis indicated that the pilB locus was conserved within L. pneumophila serogroups and other Legionella species. These data represent the first isolation of type II secretory genes from an intracellular parasite and indicate that the legionellae express temperature-regulated type IV pili.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|