1
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
2
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
3
|
Zheng W, Tan TK, Paterson IC, Mutha NVR, Siow CC, Tan SY, Old LA, Jakubovics NS, Choo SW. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform. PLoS One 2016; 11:e0151908. [PMID: 27138013 PMCID: PMC4854451 DOI: 10.1371/journal.pone.0151908] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/06/2016] [Indexed: 11/19/2022] Open
Abstract
The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.
Collapse
Affiliation(s)
- Wenning Zheng
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tze King Tan
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ian C. Paterson
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Naresh V. R. Mutha
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Cheuk Chuen Siow
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shi Yang Tan
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lesley A. Old
- Center for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Nicholas S. Jakubovics
- Center for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Genome Solutions Sdn Bhd, Suite 8, Innovation Incubator UM, Level 5, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
- * E-mail: (SWC); (NSJ)
| | - Siew Woh Choo
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- * E-mail: (SWC); (NSJ)
| |
Collapse
|
4
|
Holden MTG, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A, Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Croucher NJ, Chieu TB, Mai NTH, Diep TS, Chinh NT, Kehoe M, Leigh JA, Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P, Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S, Barrell BG, Schultsz C, Maskell DJ, Parkhill J. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 2009; 4:e6072. [PMID: 19603075 PMCID: PMC2705793 DOI: 10.1371/journal.pone.0006072] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/22/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, approximately 40% of the approximately 2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three approximately 90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. CONCLUSIONS/SIGNIFICANCE The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.
Collapse
Affiliation(s)
- Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Nagata E, Okayama H, Ito HO, Yamashita Y, Inoue M, Oho T. Serotype-specific polysaccharide of Streptococcus mutans contributes to infectivity in endocarditis. ACTA ACUST UNITED AC 2006; 21:420-3. [PMID: 17064403 DOI: 10.1111/j.1399-302x.2006.00317.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans and other viridans streptococci have been implicated as major etiological agents of infective endocarditis. The serotype-specific rhamnose-glucose polysaccharide (RGP) of S. mutans has several biological functions that appear to be essential for the induction of infective endocarditis. The aim of this study was to examine the contribution of RGP to the infectivity of S. mutans in infective endocarditis using a rat model. The RGP-defective mutant of S. mutans showed reduced ability to induce infective endocarditis compared to the parental strain. The ability of S. mutans to induce infective endocarditis was not consistent with the binding capacity of the organism to extracellular matrix proteins. The results suggest that S. mutans containing whole RGP is more virulent than the RGP-defective mutant, and the RGP has an important role for the induction of infective endocarditis by S. mutans.
Collapse
Affiliation(s)
- E Nagata
- Department of Preventive Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Engels-Deutsch M, Pini A, Yamashita Y, Shibata Y, Haikel Y, Schöller-Guinard M, Klein JP. Insertional inactivation of pac and rmlB genes reduces the release of tumor necrosis factor alpha, interleukin-6, and interleukin-8 induced by Streptococcus mutans in monocytic, dental pulp, and periodontal ligament cells. Infect Immun 2003; 71:5169-77. [PMID: 12933861 PMCID: PMC187322 DOI: 10.1128/iai.71.9.5169-5177.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Streptococcus mutans possesses different cell wall molecules, such as protein of the I/II family, the serotype f polysaccharide rhamnose glucose polymer (RGP), and lipoteichoic acid (LTA), which act as adhesins and modulins, allowing S. mutans to colonize teeth and cause dental caries and pulpitis. We tested several isogenic mutants of S. mutans defective in protein I/II and/or RGP, as well as purified modulins such as protein I/II, RGP, and LTA, for their binding and activation abilities on monocytic, dental pulp (DP), and periodontal ligament (PDL) cells. Our results demonstrate that both protein I/II and RGP play important roles in streptococcal adherence to human monocytic and fibroblastic cells, whereas LTA is only a minor adhesin. In the activation process, the cytokine response elicited is polarized toward a Th1 response which seems principally due to protein I/II and RGP. Even if protein I/II seems to be more efficient in its purified form in triggering cells to release interleukin-8 (IL-8), RGP is the most efficient cytokine-stimulating component in intact bacteria, while LTA plays only a minor role. In cell activation, we showed, by using either cytochalasin D or coated ligands, that internalization of either S. mutans, S. mutans isogenic mutants, or purified ligands is not necessary to trigger cells to release IL-8. We also showed that, besides the implication of monocytes in pulpal inflammation, fibroblast-like cells such as DP and PDL cells are also actively implicated in local inflammation and in the generation of a Th1 response after stimulation with S. mutans cells or antigens.
Collapse
Affiliation(s)
- Marc Engels-Deutsch
- INSERM U 392, Université Louis Pasteur de Strasbourg, F-67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Kleschyov AL, Münzel T. Advanced spin trapping of vascular nitric oxide using colloid iron diethyldithiocarbamate. Methods Enzymol 2003; 359:42-51. [PMID: 12481558 DOI: 10.1016/s0076-6879(02)59170-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andrei L Kleschyov
- Division of Cardiology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | |
Collapse
|
9
|
Shibata Y, Yamashita Y, Ozaki K, Nakano Y, Koga T. Expression and characterization of streptococcal rgp genes required for rhamnan synthesis in Escherichia coli. Infect Immun 2002; 70:2891-8. [PMID: 12010977 PMCID: PMC128017 DOI: 10.1128/iai.70.6.2891-2898.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization.
Collapse
Affiliation(s)
- Yukie Shibata
- Department of Preventive Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
Dental caries is one of the most common infectious diseases. Of the oral bacteria, mutans streptococci, such as Streptococcus mutans and S. sobrinus, are considered to be causative agents of dental caries in humans. There have been numerous studies of the immunology of mutans streptococci. To control dental caries, dental caries vaccines have been produced using various cell-surface antigens of these organisms. Progress in recombinant DNA technology and peptide synthesis has been applied to the development of recombinant and synthetic peptide vaccines to control dental caries. Significant protective effects against dental caries have been shown in experimental animals, such as mice, rats and monkeys, which have been subcutaneously, orally, or intranasally immunized with these antigens. Only a few studies, however, have examined the efficacy of dental caries vaccines in humans. Recently, local passive immunization using murine monoclonal antibodies, transgenic plant antibodies, egg-yolk antibodies, and bovine milk antibodies to antigens of mutans streptococci have been used to control the colonization of the organisms and the induction of dental caries in human. Such immunization procedures may be a safer approach for controlling human dental caries than active immunization.
Collapse
Affiliation(s)
- Toshihiko Koga
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
11
|
Kumar A, Krieger A, Symeoneides S, Kumar A, Parrillo JE. Myocardial dysfunction in septic shock: Part II. Role of cytokines and nitric oxide. J Cardiothorac Vasc Anesth 2001; 15:485-511. [PMID: 11505357 DOI: 10.1053/jcan.2001.25003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- A Kumar
- Division of Cardiovascular Diseases and Critical Care Medicine, Department of Medicine, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
12
|
Kleschyov AL, Muller B, Keravis T, Stoeckel ME, Stoclet JC. Adventitia-derived nitric oxide in rat aortas exposed to endotoxin: cell origin and functional consequences. Am J Physiol Heart Circ Physiol 2000; 279:H2743-51. [PMID: 11087229 DOI: 10.1152/ajpheart.2000.279.6.h2743] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of adventitial cells in bacterial lipopolysaccharide (LPS)-induced vascular nitric oxide (NO) overproduction has been largely ignored. In rat aortas exposed to LPS in vitro or in vivo, it was found that adventitia contained the major part of NO synthase (NOS)-2 protein (Western blot and immunohistochemistry) and generated the largest amount of NO (electron paramagnetic resonance spin trapping). NOS-2 immunoreactive cells were mainly resident macrophages at an early stage (5 h, in vitro or in vivo) and fibroblasts at a later stage (20 h, in vitro). Adventitial NOS-2 activity largely accounted for 1) the relaxing effect of L-arginine in rings exposed to LPS in vivo, 2) generation of an "NO store" revealed by N-acetylcysteine-induced relaxation, and 3) formation of protein-bound dinitrosyl iron complexes in the medial layer of aortic rings exposed to LPS in vitro. In conclusion, the adventitia is a powerful source of NO triggered by LPS in the rat aorta. This novel source of NO has an important impact on smooth muscle function and might be implicated in various inflammatory diseases.
Collapse
Affiliation(s)
- A L Kleschyov
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, Unité Mixte de Recherche 7034, Centre National de la Recherche Scientifique, Université Louis Pasteur de Strasbourg, 67401 Illkirch, France.
| | | | | | | | | |
Collapse
|
13
|
Trajkovic V, Samardzic T, Stosic-Grujicic S, Ramic Z, Mostarica Stojkovic M. Muramyl dipeptide potentiates cytokine-induced activation of inducible nitric oxide synthase in rat astrocytes. Brain Res 2000; 883:157-63. [PMID: 11064000 DOI: 10.1016/s0006-8993(00)02920-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the influence of muramyl dipeptide (MDP), a cell wall component of Gram-positive bacteria, on cytokine-induced nitric oxide (NO) production in rat primary astrocytes. MDP alone did not induce NO release in astrocyte cultures. However, MDP increased astrocyte NO production and subsequent nitrite accumulation triggered by IFN-gamma. IFN-gamma-activated expression of mRNA for inducible NO synthase (iNOS) and iNOS transcription factor interferon regulatory factor-1 (IRF-1) was markedly enhanced in astrocytes treated with MDP. The potentiating effect of MDP on IFN-gamma-induced NO production in astrocytes was completely blocked with protein tyrosine kinase (PTK) inhibitor genistein or mitogen activated protein kinase (MAPK) inhibitor PD98059. In contrast, protein kinase C (PKC) inhibitor calphostin C did not affect ability of MDP to augment IFN-gamma-triggered astrocyte NO synthesis. These results suggest that MDP synergizes with IFN-gamma in the induction of iNOS gene in astrocytes through mechanisms involving PTK and MAPK, but not PKC activation. Finally, MDP also augmented NO production and iNOS mRNA expression in astrocytes treated with IL-1beta.
Collapse
Affiliation(s)
- V Trajkovic
- Institute of Microbiology and Immunology, Dr. Subotica 1, School of Medicine, University of Belgrade, 11000, Belgrade, Yugoslavia
| | | | | | | | | |
Collapse
|
14
|
Tsuda H, Yamashita Y, Toyoshima K, Yamaguchi N, Oho T, Nakano Y, Nagata K, Koga T. Role of serotype-specific polysaccharide in the resistance of Streptococcus mutans to phagocytosis by human polymorphonuclear leukocytes. Infect Immun 2000; 68:644-50. [PMID: 10639428 PMCID: PMC97187 DOI: 10.1128/iai.68.2.644-650.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis.
Collapse
Affiliation(s)
- H Tsuda
- Departments of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamashita Y, Shibata Y, Nakano Y, Tsuda H, Kido N, Ohta M, Koga T. A novel gene required for rhamnose-glucose polysaccharide synthesis in Streptococcus mutans. J Bacteriol 1999; 181:6556-9. [PMID: 10515952 PMCID: PMC103797 DOI: 10.1128/jb.181.20.6556-6559.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene rgpG is required for biosynthesis of rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans. Its deduced amino acid sequence had similarity to WecA, which initiates syntheses of enterobacterial common antigen and some O antigens in Escherichia coli. Gene rgpG complemented a wecA mutation of E. coli, suggesting that rgpG may function similarly in RGP synthesis.
Collapse
Affiliation(s)
- Y Yamashita
- Department of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Matsunaga T, Nakajima T, Sonoda M, Kawai S, Kobayashi J, Inoue I, Satomi A, Katayama S, Hara A, Hokari S, Honda T, Komoda T. Reactive oxygen species as a risk factor in verotoxin-1-exposed rats. Biochem Biophys Res Commun 1999; 260:813-9. [PMID: 10403847 DOI: 10.1006/bbrc.1999.0990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested the the interaction of Escherichia coli O157-derived verotoxins (VTs) with the vascular endothelium plays a central role in the pathogenesis of the thrombotic microangiopathy and ischemic lesions characteristic of hemolytic uremic syndrome (HUS) and E. coli O157-associated hemorrhagic colitis. Intravenous administration of both E. coli O157-derived VT1 and lipopolysaccharide (LPS) in the rat induced a synergistic increase in thiobarbituric acid (TBA) values in those animal's plasma, as compared with that injected with VT1 or LPS alone. We then hypothesized that an increase in lipid peroxidation in the rat plasma was due to an enhanced production of endothelial cell-derived reactive oxidant. Based on determination of rat sera and cultured human aortic endothelial cells (HAECs), VT1 had little if any effect on LPS-stimulated increase of nitric oxide and the resultant peroxynitrite generations. Both RT-PCR and Western blot studies of reactive oxygen species-related enzymes showed that VT1 markedly decreased the expression of catalase mRNA and protein in HAECs, but caused less alteration in the levels of Cu, Zn-superoxide dismutase, and NADPH oxidase mRNA. Further studies by spin trapping analysis using 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) revealed a time-dependent increase in hydroxyl radicals by VT1 in HAECs. The accumulated data thus suggest that bacterial VT1 reduces mainly catalase levels in endothelial cells, which is synergistically potentiated by LPS, and that the resulting hydroxyl radical participates in endothelium injury through a marked enhancement of lipid peroxidation, leading to HUS.
Collapse
Affiliation(s)
- T Matsunaga
- First Department of Biochemistry, Saitama Medical School, 38 Morohongo Moroyama, Iruma-gun, Saitama, 350-0495, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamashita Y, Tomihisa K, Nakano Y, Shimazaki Y, Oho T, Koga T. Recombination between gtfB and gtfC is required for survival of a dTDP-rhamnose synthesis-deficient mutant of Streptococcus mutans in the presence of sucrose. Infect Immun 1999; 67:3693-7. [PMID: 10377163 PMCID: PMC116568 DOI: 10.1128/iai.67.7.3693-3697.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rml genes are involved in dTDP-rhamnose synthesis in Streptococcus mutans. A gene fusion between gtfB and gtfC, which both encode extracellular water-insoluble glucan-synthesizing enzymes, accompanied by inactivation of the rml genes was observed for cells grown in the presence of sucrose. The survival rates of rml mutants isolated in the absence of sucrose were drastically reduced in the presence of sucrose. The rates were consistent with the frequency of spontaneous gene fusions between gtfB and gtfC, suggesting that the spontaneous recombinant organisms were selected in the presence of sucrose. The rml mutants with a gtfB-gtfC fusion gene had markedly reduced water-insoluble glucan synthetic activity and lost the ability to colonize glass surfaces in the presence of sucrose. These results suggest that the rml mutants of S. mutans, which are defective in dTDP-rhamnose synthesis, can survive only in the absence of water-insoluble glucan synthesis.
Collapse
Affiliation(s)
- Y Yamashita
- Department of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Stoclet JC, Muller B, György K, Andriantsiothaina R, Kleschyov AL. The inducible nitric oxide synthase in vascular and cardiac tissue. Eur J Pharmacol 1999; 375:139-55. [PMID: 10443572 DOI: 10.1016/s0014-2999(99)00221-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Expression of the inducible form of nitric oxide synthase (iNOS) has been reported in a variety of cardiovascular diseases. The resulting high output nitric oxide (NO) formation, besides the level of iNOS expression, depends also on the expression of the metabolic pathways providing the enzyme with substrate and cofactor. NO may trigger short and long term effects which are either beneficial or deleterious, depending on the molecular targets with which it interacts. These interactions are governed by local factors (like the redox state). In the cardiovascular system, the major targets involve not only guanylyl cyclase, but also other haem proteins, protein thiols, iron-non-haem complexes, and superoxide anion (forming peroxynitrite). The latter has several intracellular targets and may be cytotoxic, despite the existence of endogenous defence mechanisms. These interactions may either trigger NO effects or represent releasable NO stores, able to buffer NO and prolong its effects in blood vessels and in the heart. Besides selectively inhibiting iNOS, a number of other therapeutic strategies are conceivable to alleviate deleterious effects of excessive NO formation, including peroxynitrite (ONOO-) scavenging and inhibition of metabolic pathways triggered by ONOO-. When available, these approaches might have the advantage to preserve beneficial effects of iNOS induction. Counteracting vascular hyper-responsiveness to endogenous vasoconstrictor agonists in septic shock, or inducing cardiac protection against ischaemia-reperfusion injury are examples of such beneficial effects of iNOS induction.
Collapse
Affiliation(s)
- J C Stoclet
- Laboratoire de Pharmacologie et Physico-chimie des Interactions Cellulaires et Moléculaires (UMR CNRS), Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | | | | | | |
Collapse
|
19
|
Meyer MW, Gong K, Herzberg MC. Streptococcus sanguis-induced platelet clotting in rabbits and hemodynamic and cardiopulmonary consequences. Infect Immun 1998; 66:5906-14. [PMID: 9826372 PMCID: PMC108748 DOI: 10.1128/iai.66.12.5906-5914.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 09/11/1998] [Indexed: 11/20/2022] Open
Abstract
By mimicking hemostatic structural domains of collagen, Streptococcus sanguis (aggregation-positive phenotype; Agg+) induces platelets to aggregate in vitro. To test the hypothesis that aggregation occurs in vivo, S. sanguis (Agg+ or Agg- suspension) was infused intravenously into rabbits. The extent of hemodynamic and cardiopulmonary changes and the fate of circulating platelets were Agg+ strain dose dependent. Within 45 to 50 s of the start of infusion, 40 x 10(8) CFU of the Agg+ strain caused increased blood pressure. Thirty seconds after infusion, other changes occurred. Intermittent electrocardiographic abnormalities (13 of 15 rabbits), ST-segment depression (10 of 15 rabbits), and preventricular contractions (7 of 15 rabbits) manifested at 3 to 7 min, with frequencies dose dependent. Respiratory rate and cardiac contractility increased during this phase. Blood catecholamine concentration, thrombocytopenia, accumulation of 111Indium-labeled platelets in the lungs, and ventricular axis deviation also showed dose dependency. Rabbits were unaffected by inoculation of an Agg- strain. Therefore, Agg+ S. sanguis induced platelet aggregation in vitro. Platelet clots caused hemodynamic changes, acute pulmonary hypertension, and cardiac abnormalities, including ischemia.
Collapse
Affiliation(s)
- M W Meyer
- School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
20
|
Yamashita Y, Tsukioka Y, Tomihisa K, Nakano Y, Koga T. Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans. J Bacteriol 1998; 180:5803-7. [PMID: 9791140 PMCID: PMC107649 DOI: 10.1128/jb.180.21.5803-5807.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified in Streptococcus mutans six new genes (rgpA through rgpF), whose disruption results in a loss of serotype-specific antigenicity, specified by the glucose side chains of rhamnose-glucose polysaccharide from the cell wall. Rhamnose and glucose content of the cell wall decreased drastically in all these disruption mutants, except that in the rgpE mutant only the glucose content decreased. RgpC and RgpD are homologous to ATP-binding cassette transporter components and may be involved in polysaccharide export, whereas RgpE may be a transferase of side chain glucose.
Collapse
Affiliation(s)
- Y Yamashita
- Department of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
21
|
Stoclet JC, Andriantsitohaina R, Kleschyov A, Muller B. Nitric Oxide and cGMP in Regulation of Arterial Tone. Trends Cardiovasc Med 1998; 8:14-9. [DOI: 10.1016/s1050-1738(97)00122-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|