1
|
DiGiannivittorio P, Schutz K, Hinkel LA, Wargo MJ. Sphingosylphosphorylcholine (SPC) is a substrate for the Pseudomonas aeruginosa phospholipase C/sphingomyelinase, PlcH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645745. [PMID: 40196467 PMCID: PMC11974790 DOI: 10.1101/2025.03.27.645745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sphingolipids are critical to eukaryotic cell membrane structure and function and play important roles in a variety of host processes that impact infection. Thus, it is not surprising that many pathogens can perturb host sphingolipid homeostasis, often to promote pathogenesis. Pseudomonas aeruginosa is a common opportunistic pathogen that, among many virulence factors, secretes the dual-functioning hemolytic phospholipase C/sphingomyelinase, PlcH. PlcH contributes to P. aeruginosa pathogenesis in several ways and plcH mutants are defective in nearly every infection model, wherein PlcH has been shown to hydrolyze both phosphatidylcholine and sphingomyelin, resulting in inflammation and rupture of host cell membranes. Here, we demonstrate that PlcH can also hydrolyze sphingosylphosphocholine (SPC, also known as lysosphingomyelin), an important host signaling sphingolipid responsible for regulating cellular and tissue responses such as inflammation and endothelial barrier function. PlcH hydrolyzes sphingomyelin to generate phosphocholine and ceramide, and analogously, here we demonstrate that PlcH hydrolyzes SPC to sphingosine and putatively, phosphocholine. We provide evidence that SPC induction of PlcH is primarily regulated by the sphingosine-responsive SphR regulator and that resultant sphingosine liberated from SPC induces transcription from the other genes in the SphR regulon. This work introduces another way that P. aeruginosa can alter the host sphingolipidome, potentially a different mechanism to promote pathogenesis. The capacity for the hemolytic Clostridium perfringens alpha toxin to also cleave SPC suggests that SPC may be a common substrate for phosphocholine-specific phospholipases C.
Collapse
Affiliation(s)
- Pauline DiGiannivittorio
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont
| | - Kristin Schutz
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
| | - Lauren A. Hinkel
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
| |
Collapse
|
2
|
Mackinder JR, Hinkel LA, Schutz K, Eckstrom K, Fisher K, Wargo MJ. Sphingosine induction of the Pseudomonas aeruginosa hemolytic phospholipase C/sphingomyelinase (PlcH). J Bacteriol 2024; 206:e0038223. [PMID: 38411048 PMCID: PMC10955842 DOI: 10.1128/jb.00382-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.
Collapse
Affiliation(s)
- Jacob R. Mackinder
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Lauren A. Hinkel
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Kristin Schutz
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Kira Fisher
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
3
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
4
|
Virulence Induction in Pseudomonas aeruginosa under Inorganic Phosphate Limitation: a Proteomics Perspective. Microbiol Spectr 2022; 10:e0259022. [PMID: 36354317 PMCID: PMC9769906 DOI: 10.1128/spectrum.02590-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inorganic phosphate (Pi) is a central nutrient and signal molecule for bacteria. Pi limitation was shown to increase the virulence of several phylogenetically diverse pathogenic bacteria with different lifestyles. Hypophosphatemia enhances the risk of death in patients due to general bacteremia and was observed after surgical injury in humans. Phosphate therapy, or the reduction of bacterial virulence by the administration of Pi or phosphate-containing compounds, is a promising anti-infective therapy approach that will not cause cytotoxicity or the emergence of antibiotic-resistant strains. The proof of concept of phosphate therapy has been obtained using primarily Pseudomonas aeruginosa (PA). However, a detailed understanding of Pi-induced changes at protein levels is missing. Using pyocyanin production as proxy, we show that the Pi-mediated induction of virulence is a highly cooperative process that occurs between 0.2 to 0.6 mM Pi. We present a proteomics study of PA grown in minimal medium supplemented with either 0.2 mM or 1 mM Pi and rich medium. About half of the predicted PA proteins could be quantified. Among the 1,471 dysregulated proteins comparing growth in 0.2 mM to 1 mM Pi, 1,100 were depleted under Pi-deficient conditions. Most of these proteins are involved in general and energy metabolism, different biosynthetic and catabolic routes, or transport. Pi depletion caused accumulation of proteins that belong to all major families of virulence factors, including pyocyanin synthesis, secretion systems, quorum sensing, chemosensory signaling, and the secretion of proteases, phospholipases, and phosphatases, which correlated with an increase in exoenzyme production and antibacterial activity. IMPORTANCE Antibiotics are our main weapons to fight pathogenic bacteria, but the increase in antibiotic-resistant strains and their consequences represents a major global health challenge, revealing the necessity to develop alternative antimicrobial strategies that do not involve the bacterial killing or growth inhibition. P. aeruginosa has been placed second on the global priority list to guide research on the development of new antibiotics. One of the most promising alternative strategies is the phosphate therapy for which the proof of concept has been obtained for P. aeruginosa. This article reports the detailed changes at the protein levels comparing P. aeruginosa grown under Pi-abundant and Pi-depleted conditions. These data describe in detail the molecular mechanisms underlying phosphate therapy. Apart from Pi, several other phosphate-containing compounds have been used for phosphate therapy and this study will serve as a reference for comparative studies aimed at evaluating the effect of alternative compounds.
Collapse
|
5
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 500] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
6
|
Monturiol-Gross L, Villalta-Romero F, Flores-Díaz M, Alape-Girón A. Bacterial phospholipases C with dual activity: phosphatidylcholinesterase and sphingomyelinase. FEBS Open Bio 2021; 11:3262-3275. [PMID: 34709730 PMCID: PMC8634861 DOI: 10.1002/2211-5463.13320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria
monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabian Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
7
|
Fijalkowska D, Fijalkowski I, Willems P, Van Damme P. Bacterial riboproteogenomics: the era of N-terminal proteoform existence revealed. FEMS Microbiol Rev 2021; 44:418-431. [PMID: 32386204 DOI: 10.1093/femsre/fuaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
With the rapid increase in the number of sequenced prokaryotic genomes, relying on automated gene annotation became a necessity. Multiple lines of evidence, however, suggest that current bacterial genome annotations may contain inconsistencies and are incomplete, even for so-called well-annotated genomes. We here discuss underexplored sources of protein diversity and new methodologies for high-throughput genome reannotation. The expression of multiple molecular forms of proteins (proteoforms) from a single gene, particularly driven by alternative translation initiation, is gaining interest as a prominent contributor to bacterial protein diversity. In consequence, riboproteogenomic pipelines were proposed to comprehensively capture proteoform expression in prokaryotes by the complementary use of (positional) proteomics and the direct readout of translated genomic regions using ribosome profiling. To complement these discoveries, tailored strategies are required for the functional characterization of newly discovered bacterial proteoforms.
Collapse
Affiliation(s)
- Daria Fijalkowska
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Patrick Willems
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Franco M, D'haeseleer PM, Branda SS, Liou MJ, Haider Y, Segelke BW, El-Etr SH. Proteomic Profiling of Burkholderia thailandensis During Host Infection Using Bio-Orthogonal Noncanonical Amino Acid Tagging (BONCAT). Front Cell Infect Microbiol 2018; 8:370. [PMID: 30406044 PMCID: PMC6206043 DOI: 10.3389/fcimb.2018.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, and are often fatal to humans and animals. Owing to the high fatality rate, potential for spread by aerosolization, and the lack of efficacious therapeutics, B. pseudomallei and B. mallei are considered biothreat agents of concern. In this study, we investigate the proteome of Burkholderia thailandensis, a closely related surrogate for the two more virulent Burkholderia species, during infection of host cells, and compare to that of B. thailandensis in culture. Studying the proteome of Burkholderia spp. during infection is expected to reveal molecular mechanisms of intracellular survival and host immune evasion; but proteomic profiling of Burkholderia during host infection is challenging. Proteomic analyses of host-associated bacteria are typically hindered by the overwhelming host protein content recovered from infected cultures. To address this problem, we have applied bio-orthogonal noncanonical amino acid tagging (BONCAT) to B. thailandensis, enabling the enrichment of newly expressed bacterial proteins from virtually any growth condition, including host cell infection. In this study, we show that B. thailandensis proteins were selectively labeled and efficiently enriched from infected host cells using BONCAT. We also demonstrate that this method can be used to label bacteria in situ by fluorescent tagging. Finally, we present a global proteomic profile of B. thailandensis as it infects host cells and a list of proteins that are differentially regulated in infection conditions as compared to bacterial monoculture. Among the identified proteins are quorum sensing regulated genes as well as homologs to previously identified virulence factors. This method provides a powerful tool to study the molecular processes during Burkholderia infection, a much-needed addition to the Burkholderia molecular toolbox.
Collapse
Affiliation(s)
- Magdalena Franco
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | | | | | - Megan J Liou
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Yasmeen Haider
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Brent W Segelke
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sahar H El-Etr
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
9
|
Meydan S, Vázquez-Laslop N, Mankin AS. Genes within Genes in Bacterial Genomes. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0020-2018. [PMID: 30003865 PMCID: PMC11633611 DOI: 10.1128/microbiolspec.rwr-0020-2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic coding in bacteria largely operates via the "one gene-one protein" paradigm. However, the peculiarities of the mRNA structure, the versatility of the genetic code, and the dynamic nature of translation sometimes allow organisms to deviate from the standard rules of protein encoding. Bacteria can use several unorthodox modes of translation to express more than one protein from a single mRNA cistron. One such alternative path is the use of additional translation initiation sites within the gene. Proteins whose translation is initiated at different start sites within the same reading frame will differ in their N termini but will have identical C-terminal segments. On the other hand, alternative initiation of translation in a register different from the frame dictated by the primary start codon will yield a protein whose sequence is entirely different from the one encoded in the main frame. The use of internal mRNA codons as translation start sites is controlled by the nucleotide sequence and the mRNA folding. The proteins of the alternative proteome generated via the "genes-within-genes" strategy may carry important functions. In this review, we summarize the currently known examples of bacterial genes encoding more than one protein due to the utilization of additional translation start sites and discuss the known or proposed functions of the alternative polypeptides in relation to the main protein product of the gene. We also discuss recent proteome- and genome-wide approaches that will allow the discovery of novel translation initiation sites in a systematic fashion.
Collapse
Affiliation(s)
- Sezen Meydan
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
10
|
Candida albicans: Molecular interactions with Pseudomonas aeruginosa and Staphylococcus aureus. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
High-level over-expression, purification, and crystallization of a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Protein Expr Purif 2012. [PMID: 23201280 PMCID: PMC3601568 DOI: 10.1016/j.pep.2012.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hemolytic phospholipase C/sphingomyelinase PlcH from the
opportunistic pathogen Pseudomonas aeruginosa represents the
founding member of a growing family of virulence factors identified in a wide range of
bacterial and fungal pathogens. In P. aeruginosa PlcH is
co-expressed with a 17 kDa chaperone (PlcR2) and secreted as a fully
folded heterodimer (PlcHR2) of approximately 95 kDa, by the twin
arginine translocase (TAT) via the cytoplasmic membrane and through the outer membrane, by
the Xcp (TypeII) secretory system. PlcHR2 has been shown to be an important virulence
factor in model P. aeruginosa infections and is selectively
cytotoxic, at picomolar concentrations to mammalian endothelial cells. Here we report how
the various challenges starting from protein overexpression in the native organism
P. aeruginosa, the use of detergents in the crystallization and
data collection using the most advanced μ-focus synchrotron beam lines were overcome.
Native diffraction data of this heterodimeric protein complex were collected up to a
resolution of 4 Å, whereas needle-shaped crystals of
l-selenomethionine substituted PlcHR2 with a maximum
diameter of 10 micron were used to collect data sets with a maximum resolution of
2.75 Å.
Collapse
|
12
|
Identification and evaluation of twin-arginine translocase inhibitors. Antimicrob Agents Chemother 2012; 56:6223-34. [PMID: 23006747 DOI: 10.1128/aac.01575-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocase (TAT) in some bacterial pathogens, including Pseudomonas aeruginosa, Burkholderia pseudomallei, and Mycobacterium tuberculosis, contributes to pathogenesis by translocating extracellular virulence determinants across the inner membrane into the periplasm, thereby allowing access to the Xcp (type II) secretory system for further export in Gram-negative organisms, or directly to the outside surface of the cell, as in M. tuberculosis. TAT-mediated secretion appreciably contributes to virulence in both animal and plant models of bacterial infection. Consequently, TAT function is an attractive target for small-molecular-weight compounds that alone or in conjunction with extant antimicrobial agents could become novel therapeutics. The TAT-transported hemolytic phospholipase C (PlcH) of P. aeruginosa and its multiple orthologs produced by the above pathogens can be detected by an accurate and reproducible colorimetric assay using a synthetic substrate that detects phospholipase C activity. Such an assay could be an effective indicator of TAT function. Using carefully constructed recombinant strains to precisely control the expression of PlcH, we developed a high-throughput screening (HTS) assay to evaluate, in duplicate, >80,000 small-molecular-weight compounds as possible TAT inhibitors. Based on additional TAT-related functional assays, purified PlcH protein inhibition experiments, and repeat experiments of the initial screening assay, 39 compounds were selected from the 122 initial hits. Finally, to evaluate candidate inhibitors for TAT specificity, we developed a TAT titration assay that determines whether inhibition of TAT-mediated secretion can be overcome by increasing the levels of TAT expression. The compounds N-phenyl maleimide and Bay 11-7082 appear to directly affect TAT function based on this approach.
Collapse
|
13
|
|
14
|
Tashiro Y, Uchiyama H, Nomura N. Multifunctional membrane vesicles in Pseudomonas aeruginosa. Environ Microbiol 2011; 14:1349-62. [PMID: 22103313 DOI: 10.1111/j.1462-2920.2011.02632.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gram-negative bacteria secrete small particles called membrane vesicles (MVs) into the extracellular milieu. While MVs have important roles in delivering toxins from pathogenic bacteria to eukaryotic cells, these vesicles also play ecological roles necessary for survival in various environmental conditions. Pseudomonas aeruginosa, which lives in soil, ocean, plant, animal and human environments, has become a model organism for studying these small extracellular particles. Such studies have increased our understanding of the function and biogenesis of bacterial MVs. Pseudomonas aeruginosa MVs possess versatile components and chemical substances with unique structures. These characteristics allow MVs to play their multifunctional biological roles, including microbial interaction, maintenance of biofilm structure and host infection. This review summarizes the comprehensive biochemical and physiochemical properties of MVs derived from P. aeruginosa. These studies will help us understand their biological roles of MVs not only in pathogenicity but also in microbial ecology. Also, the mechanisms of MV production, as currently understood, are discussed.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
15
|
Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 2010; 74:81-94. [PMID: 20197500 DOI: 10.1128/mmbr.00031-09] [Citation(s) in RCA: 686] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens.
Collapse
|
16
|
Vasil ML, Stonehouse MJ, Vasil AI, Wadsworth SJ, Goldfine H, Bolcome RE, Chan J. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells. PLoS Pathog 2009; 5:e1000420. [PMID: 19424430 PMCID: PMC2673038 DOI: 10.1371/journal.ppat.1000420] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 04/08/2009] [Indexed: 11/19/2022] Open
Abstract
The hemolytic phospholipase C (PlcHR) expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC) produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase). Data presented herein indicate that picomolar (pM) concentrations of PlcHR are selectively lethal to endothelial cells (EC). An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS), but not control peptides (i.e., GDGRS), block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD) are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation), which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature). Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization). An active site mutant of PlcHR (Thr178Ala) exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where angiogenesis contributes pathological conditions (e.g., vascularization of tumors, diabetic retinopathy).
Collapse
Affiliation(s)
- Michael L Vasil
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Center, Aurora, Colorado, United States of America.
| | | | | | | | | | | | | |
Collapse
|
17
|
GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites. Infect Immun 2008; 77:1103-11. [PMID: 19103776 DOI: 10.1128/iai.01008-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa hemolytic phospholipase C, PlcH, can degrade phosphatidylcholine (PC) and sphingomyelin in eukaryotic cell membranes and extracellular PC in lung surfactant. Numerous studies implicate PlcH in P. aeruginosa virulence. The phosphorylcholine released by PlcH activity on phospholipids is hydrolyzed by a periplasmic phosphorylcholine phosphatase, PchP. Both plcH gene expression and PchP enzyme activity are positively regulated by phosphorylcholine degradation products, including glycine betaine. Here we report that the induction of plcH and pchP transcription by glycine betaine is mediated by GbdR, an AraC family transcription factor. Mutants that lack gbdR are unable to induce plcH and pchP in media containing glycine betaine or choline and in phosphatidylcholine-rich environments, such as lung surfactant or mouse lung lavage fluid. In T broth containing choline, the gbdR mutant exhibited a 95% reduction in PlcH activity. In electrophoretic mobility shift assays, a GbdR-maltose binding protein fusion bound specifically to both the plcH and pchP promoters. Promoter mapping, alignment of GbdR-regulated promoter sequences, and analysis of targeted promoter mutants that lack GbdR-dependent induction of transcription were used to identify a region necessary for GbdR-dependent transcriptional activation. GbdR also plays a significant role in plcH and pchP regulation within the mouse lung. Our studies suggest that GbdR is the primary regulator of plcH and pchP expression in PC-rich environments, such as the lung, and that pchP and other genes involved in phosphorylcholine catabolism are necessary to stimulate the GbdR-mediated positive feedback induction of plcH.
Collapse
|
18
|
Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. J Bacteriol 2008; 190:6428-38. [PMID: 18658266 DOI: 10.1128/jb.00749-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is a system used by some bacteria to export proteins out from the cytosol to the cell surface or extracellular environment. A functional Tat pathway exists in the important human pathogen Mycobacterium tuberculosis. Identification of the substrates exported by the Tat pathway can help define the role that this pathway plays in the physiology and pathogenesis of M. tuberculosis. Here we used a reporter of Tat export, a truncated beta-lactamase, 'BlaC, to experimentally identify M. tuberculosis proteins with functional Tat signal sequences. Of the 13 proteins identified, one lacks the hallmark of a Tat-exported substrate, the twin-arginine dipeptide, and another is not predicted by in silico analysis of the annotated M. tuberculosis genome. Full-length versions of a subset of these proteins were tested to determine if the native proteins are Tat exported. For three proteins, expression in a Deltatat mutant of Mycobacterium smegmatis revealed a defect in precursor processing compared to expression in the wild type, indicating Tat export of the full-length proteins. Conversely, two proteins showed no obvious Tat export in M. smegmatis. One of this latter group of proteins was the M. tuberculosis virulence factor phospholipase C (PlcB). Importantly, when tested in M. tuberculosis a different result was obtained and PlcB was exported in a twin-arginine-dependent manner. This suggests the existence of an M. tuberculosis-specific factor(s) for Tat export of a proven virulence protein. It also emphasizes the importance of domains beyond the Tat signal sequence and bacterium-specific factors in determining if a given protein is Tat exported.
Collapse
|
19
|
Liffourrena AS, Massimelli MJ, Forrellad MA, Lisa AT, Domenech CE, Lucchesi GI. Tetradecyltrimethylammonium Inhibits Pseudomonas aeruginosa Hemolytic Phospholipase C Induced by Choline. Curr Microbiol 2007; 55:530-6. [PMID: 17899264 DOI: 10.1007/s00284-007-9027-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 07/05/2007] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa expresses hemolytic phospholipase C (PlcH) with choline or under phosphate-limiting conditions. PlcH from these conditions were differently eluted from the Celite-545 column after application of an ammonium sulfate linear reverse gradient. The PlcH from supernatants of bacteria grown in the presence of choline was eluted with 30% ammonium sulfate and was more than 85% inhibited by tetradecyltrimethylammonium. PlcH from supernatants of bacteria grown with succinate and ammonium ions in a low-phosphate medium was eluted as a peak with 10% of salt and was less than 10% inhibited by tetradecyltrimethylammonium. PlcH from low phosphate was purified associated with a protein of 17 kDa. This complex was dissociated and separated on a Sephacryl S-200 column with 1% (w/v) sodium dodecyl sulfate. After this dissociation, the resulting protein of 70 kDa, corresponding to PlcH, was inhibited by tetradecyltrimethylammonium, showing a protection effect of the accompanying protein. RT-PCR analyses showed that in choline media, the plcH gene was expressed independently of plcR. In low-phosphate medium, the plcH gene was expressed as a plcHR operon. Because plcR encodes for chaperone proteins, this result correlates with the observation that PlcH from supernatants of bacteria grown in the presence of choline was purified without an accompanying protein. The consequence of the absence of this chaperone was that tetradecyltrimethylammonium inhibited the PlcH activity.
Collapse
Affiliation(s)
- Andrés S Liffourrena
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, CP5800, Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
20
|
Son MS, Matthews WJ, Kang Y, Nguyen DT, Hoang TT. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 2007; 75:5313-24. [PMID: 17724070 PMCID: PMC2168270 DOI: 10.1128/iai.01807-06] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the hallmarks of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients is very-high-cell-density (HCD) replication in the lung, allowing this bacterium to induce virulence controlled by the quorum-sensing systems. However, the nutrient sources sustaining HCD replication in this chronic infection are largely unknown. Here, we performed microarray studies of P. aeruginosa directly isolated from the lungs of CF patients to demonstrate its metabolic capability and virulence in vivo. In vivo microarray data, confirmed by real-time reverse transcription-PCR, indicated that the P. aeruginosa population expressed several genes for virulence, drug resistance, and utilization of multiple nutrient sources (lung surfactant lipids and amino acids) contributing to HCD replication. The most abundant lung surfactant lipid molecule, phosphatidylcholine (PC), induces key genes of P. aeruginosa pertinent to PC degradation in vitro as well as in vivo within the lungs of CF patients. The results support recent research indicating that P. aeruginosa exists in the lungs of CF patients as a diverse population with full virulence potential. The data also indicate that there is deregulation of several pathways, suggesting that there is in vivo evolution by deregulation of a large portion of the transcriptome during chronic infection in CF patients. To our knowledge, this is the first in vivo transcriptome analysis of P. aeruginosa in a natural infection in CF patients, and the results indicate several important aspects of P. aeruginosa pathogenesis, drug resistance, nutrient utilization, and general metabolism within the lungs of CF patients.
Collapse
Affiliation(s)
- Mike S Son
- Department of Microbiology, College of Natural Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
21
|
Snyder A, Vasil AI, Zajdowicz SL, Wilson ZR, Vasil ML. Role of the Pseudomonas aeruginosa PlcH Tat signal peptide in protein secretion, transcription, and cross-species Tat secretion system compatibility. J Bacteriol 2006; 188:1762-74. [PMID: 16484187 PMCID: PMC1426547 DOI: 10.1128/jb.188.5.1762-1774.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secretion of PlcH and its homolog PlcN of Pseudomonas aeruginosa through the inner membrane depends upon a functional twin arginine translocase (Tat) system and a Tat signal sequence. Conserved twin arginine (Arg) residues within the Tat signal sequence consensus motif (S/TRRxFLK) are considered essential for the secretion of Tat substrates, but some exceptions (e.g., Lys and Arg) to the twin Arg residues in this motif have been noted. The roles of all three Arg residues within the PlcH RRRTFLK consensus motif were examined. Data are presented which indicate that Arg-9 and Arg-10 are essential for PlcH secretion across the inner membrane, but the mutation of Arg-8 (e.g., to Ala or Ser) had no observable effect on the localization of PlcH. In the signal sequence of PlcH and in all of its homologs in other bacteria, there are basic amino acid residues (Arg, Lys, and Gln) immediately adjacent to the signal peptidase cleavage site (Ala-X-Ala) that are not seen in Sec-dependent signal sequences. The mutation of these basic residues to Ala caused slightly decreased levels of extracellular PlcH, but normal localization was still observed. Deletion of the entire Tat signal sequence of PlcH not only resulted in the absence of detectable extracellular PlcH activity and protein but also caused a substantial decrease in the detectable level of plcH mRNA. Finally, data are presented which indicate that P. aeruginosa PlcH exhibits cross-species compatibility with the Escherichia coli Tat secretion machinery, but only when the E. coli Tat machinery is expressed in a P. aeruginosa host.
Collapse
Affiliation(s)
- Aleksandra Snyder
- Department of Microbiology, Fitzsimons Mail Stop 8333, P.O. Box 6511, 12800 East 19th Ave., Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
22
|
Bronstein PA, Marrichi M, Cartinhour S, Schneider DJ, DeLisa MP. Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness. J Bacteriol 2005; 187:8450-61. [PMID: 16321949 PMCID: PMC1317023 DOI: 10.1128/jb.187.24.8450-8461.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/30/2005] [Indexed: 01/06/2023] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 (DC3000) causes disease in Arabidopsis thaliana and tomato plants, and it elicits the hypersensitive response in nonhost plants such as Nicotiana tabacum and Nicotiana benthamiana. While these events chiefly depend upon the type III protein secretion system and the effector proteins that this system translocates into plant cells, additional factors have been shown to contribute to DC3000 virulence and still many others are likely to exist. Therefore, we explored the contribution of the twin-arginine translocation (Tat) system to the physiology of DC3000. We found that a tatC mutant strain of DC3000 displayed a number of phenotypes, including loss of motility on soft agar plates, deficiency in siderophore synthesis and iron acquisition, sensitivity to copper, loss of extracellular phospholipase activity, and attenuated virulence in host plant leaves. In the latter case, we provide evidence that decreased virulence of tatC mutants likely arises from a synergistic combination of (i) compromised fitness of bacteria in planta; (ii) decreased efficiency of type III translocation; and (iii) cytoplasmically retained virulence factors. Finally, we demonstrate a novel broad-host-range genetic reporter based on the green fluorescent protein for the identification of Tat-targeted secreted virulence factors that should be generally applicable to any gram-negative bacterium. Collectively, our evidence supports the notion that virulence of DC3000 is a multifactorial process and that the Tat system is an important virulence determinant of this phytopathogenic bacterium.
Collapse
Affiliation(s)
- Philip A Bronstein
- U.S. Plant, Soil, and Nutrition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, USA
| | | | | | | | | |
Collapse
|
23
|
Sarkisova S, Patrauchan MA, Berglund D, Nivens DE, Franklin MJ. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 2005; 187:4327-37. [PMID: 15968041 PMCID: PMC1151780 DOI: 10.1128/jb.187.13.4327-4337.2005] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa colonizes the pulmonary tissue of patients with cystic fibrosis (CF), leading to biofilm-associated infections. The pulmonary fluid of CF patients usually contains elevated concentrations of cations and may contain the P. aeruginosa redox-active pigment pyocyanin, which is known to disrupt calcium homeostasis of host cells. Since divalent cations are important bridging ions for bacterial polysaccharides and since they may play regulatory roles in bacterial gene expression, we investigated the effect of calcium ions on the extracellular matrix constituents of P. aeruginosa biofilms. For mucoid strain P. aeruginosa FRD1, calcium addition (1.0 and 10 mM as CaCl(2)) resulted in biofilms that were at least 10-fold thicker than biofilms without added calcium. Scanning confocal laser microscopy showed increased spacing between cells for the thick biofilms, and Fourier transform infrared spectroscopy revealed that the material between cells is primarily alginate. An algD transcriptional reporter demonstrated that calcium addition caused an eightfold increase in alg gene expression in FRD1 biofilms. Calcium addition also resulted in increased amounts of three extracellular proteases (AprA, LasB, and PrpL). Immunoblots of the biofilm extracellular material established that AprA was harbored within the biofilm extracellular matrix. An aprA deletion mutation and a mutation in gene for a putative P. aeruginosa calmodulin-like protein did not significantly affect calcium-induced biofilm structure. Two-dimensional gel electrophoresis showed increased amounts of phenazine biosynthetic proteins in FRD1 biofilms and in calcium-amended planktonic cultures. Spectrochemical analyses showed that the calcium addition causes a three- to fivefold increase in pyocyanin production. These results demonstrate that calcium addition affects the structure and extracellular matrix composition of mucoid P. aeruginosa biofilms, through increased expression and stability of bacterial extracellular products. The calcium-induced extracellular matrix of mucoid P. aeruginosa consists primarily of the virulence factor alginate and also harbors extracellular proteases and perhaps pyocyanin, a biomolecule that may further disrupt cellular calcium levels.
Collapse
Affiliation(s)
- S Sarkisova
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
24
|
Filloux A. The underlying mechanisms of type II protein secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:163-79. [DOI: 10.1016/j.bbamcr.2004.05.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
|
25
|
Marquart ME, Dajcs JJ, Caballero AR, Thibodeaux BA, O'Callaghan RJ. Calcium and magnesium enhance the production of Pseudomonas aeruginosa protease IV, a corneal virulence factor. Med Microbiol Immunol 2003; 194:39-45. [PMID: 14628143 DOI: 10.1007/s00430-003-0207-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Indexed: 10/26/2022]
Abstract
The effect of calcium and magnesium on protease IV production during the growth of Pseudomonas aeruginosa was investigated. Strain PA103 was grown to stationary phase in medium containing various concentrations of either calcium or magnesium. Culture supernatants were concentrated, standardized relative to cell density, and the pyoverdine concentrations were measured. Overall extracellular protease activity and specific protease IV (lysine endoproteinase) activity were measured with or without TLCK, a serine protease inhibitor effective against protease IV activity. Protease IV activity was also observed by casein zymography. Calcium and magnesium were quantified in the corneas and aqueous humor of rabbits that were inoculated intrastromally with strain PA103. Pyoverdine production was not significantly different in cultures grown in medium with added calcium or magnesium, but extracellular caseinase activity increased in these cultures. Susceptibility of caseinase activity to TLCK inhibition and a specific assay for protease IV indicated that protease IV activity increased in cultures grown in calcium or magnesium. Casein zymography supported the observation that protease IV activity increased in the cultures with added calcium and magnesium. Addition of calcium or magnesium to the protease IV-specific assay had no effect on the catalytic activity of pure protease IV. Infection of rabbit corneas with PA103 did not change the magnesium concentration in either corneas or aqueous humor, but significantly increased the concentration of calcium in corneas. These results indicate that calcium and magnesium enhance the production of protease IV, but not pyoverdine production. Calcium increases in the cornea following infection with P. aeruginosa could favor production of protease IV.
Collapse
Affiliation(s)
- Mary E Marquart
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
26
|
Luberto C, Stonehouse MJ, Collins EA, Marchesini N, El-Bawab S, Vasil AI, Vasil ML, Hannun YA. Purification, characterization, and identification of a sphingomyelin synthase from Pseudomonas aeruginosa. PlcH is a multifunctional enzyme. J Biol Chem 2003; 278:32733-43. [PMID: 12799377 DOI: 10.1074/jbc.m300932200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin synthase is the enzyme that synthesizes sphingomyelin (SM) in mammalian cells by transferring a phosphorylcholine moiety from phosphatidylcholine to ceramide. Despite its importance, the gene and/or the protein responsible for this activity has not yet been identified. Here we report the purification, identification, and biochemical characterization of an enzymatic activity that synthesizes SM in Pseudomonas aeruginosa. SM synthase-like activity was found secreted in the culture medium of P. aeruginosa, strains PA01 and PAK, whereas it could not be detected in cultures of Escherichia coli. From the medium of PAK cultures, SM synthase was purified through sequential chromatographic columns. After separation on polyacrylamide-SDS gels and visualization by silver staining, the purified enzyme showed two bands, one of approximately 75 kDa and one of 30-35 kDa. Interestingly, the highly purified SM synthase preparation also showed neutral sphingomyelinase activity. We therefore investigated whether the protein we purified as SM synthase could actually be the previously identified PlcH, a 78-kDa phospholipase C known to hydrolyze phosphatidylcholine and SM in P. aeruginosa. First, the purified SM synthase preparation contained a 78-kDa protein that reacted with monoclonal antibodies raised against purified PlcH. Second, purified PlcH showed SM synthase activity. Third, using different knockout mutant strains for the PlcH operon, PlcH was found to be necessary for SM synthase activity in P. aeruginosa. Interestingly, SM synthase activity was specific to the Pseudomonas PlcH as other bacterial phospholipases did not display SM synthase activity. Biochemical studies on the Pseudomonas SM synthase confirmed that it is a transferase, similar to the mammalian enzyme, that specifically recognizes the choline head-group and the primary hydroxyl on ceramide. This SM synthase did not have reverse transferase activity. In conclusion, the Pseudomonas PlcH also exerts SM synthase activity; therefore, for the first time, we have identified a structural gene for a SM synthase.
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Pseudomonas aeruginosa is the dominant pathogen causing chronic respiratory infections in cystic fibrosis (CF). After an initial phase characterized by intermittent infections, a chronic colonization is established in CF upon the conversion of P. aeruginosa to the mucoid, exopolysaccharide alginate-overproducing phenotype. The emergence of mucoid P. aeruginosa in CF is associated with respiratory decline and poor prognosis. The switch to mucoidy in most CF isolates is caused by mutations in the mucA gene encoding an anti-sigma factor. The mutations in mucA result in the activation of the alternative sigma factor AlgU, the P. aeruginosa ortholog of Escherichia coli extreme stress sigma factor sigma(E). Because of the global nature of the regulators of mucoidy, we have hypothesized that other genes, in addition to those specific for alginate production, must be induced upon conversion to mucoidy, and their production may contribute to the pathogenesis in CF. Here we applied microarray analysis to identify on the whole-genome scale those genes that are coinduced with the AlgU sigmulon upon conversion to mucoidy. Gene expression profiles of AlgU-dependent conversion to mucoidy revealed coinduction of a specific subset of known virulence determinants (the major protease elastase gene, alkaline metalloproteinase gene aprA, and the protease secretion factor genes aprE and aprF) or toxic factors (cyanide synthase) that may have implications for disease in CF. Analysis of promoter regions of the most highly induced genes (>40-fold, P < or = 10(-4)) revealed a previously unrecognized, putative AlgU promoter upstream of the osmotically inducible gene osmE. This newly identified AlgU-dependent promoter of osmE was confirmed by mapping the mRNA 5' end by primer extension. The recognition of genes induced in mucoid P. aeruginosa, other than those associated with alginate biosynthesis, reported here revealed the identity of previously unappreciated factors potentially contributing to the morbidity and mortality caused by mucoid P. aeruginosa in CF.
Collapse
Affiliation(s)
- Aaron M Firoved
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
28
|
Engel JN. Molecular Pathogenesis of Acute Pseudomonas Aeruginosa Infections. SEVERE INFECTIONS CAUSED BY PSEUDOMONAS AERUGINOSA 2003. [DOI: 10.1007/978-1-4615-0433-7_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Stonehouse MJ, Cota-Gomez A, Parker SK, Martin WE, Hankin JA, Murphy RC, Chen W, Lim KB, Hackett M, Vasil AI, Vasil ML. A novel class of microbial phosphocholine-specific phospholipases C. Mol Microbiol 2002; 46:661-76. [PMID: 12410824 DOI: 10.1046/j.1365-2958.2002.03194.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this report we describe the 1,500-fold purification and characterization of the haemolytic phospholipase C (PLC) of Pseudomonas aeruginosa, the paradigm member of a novel PLC/phosphatase superfamily. Members include proteins from Mycobacterium tuberculosis, Bordetella spp., Francisella tularensis and Burkholderia pseudomallei. Purification involved overexpression of the plcHR1,2 operon, ion exchange chromatography and native preparative polyacrylamide gel electrophoresis. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry confirmed the presence of two proteins in the purified sample with sizes of 17,117.2 Da (PlcR2) and 78,417 Da (PlcH). Additionally, liquid chromatography electrospray mass spectrometry (LCMS) revealed that PlcH and PlcR2 are at a stoichiometry of 1 : 1. Western blot analysis demonstrated that the enzyme purifies as a heterodimeric complex, PlcHR2. PlcHR2 is only active on choline-containing phospholipids. It is equally active on phosphatidylcholine (PC) and sphingomyelin (SM) and is able to hydrolyse plasmenylcholine phospholipids (plasmalogens). Neither PlcHR2 nor the M. tuberculosis homologues are inhibited by D609 a widely used, competitive inhibitor of the Bacillus cereus PLC. PlcH, PlcR2, and the PlcHR2 complex bind calcium. While calcium has no detectable effect on enzymatic activity, it inhibits the haemolytic activity of PlcHR2. In addition to being required for the secretion of PlcH, the chaperone PlcR2 affects both the enzymatic and haemolytic properties of PlcH. Inclusive in these data is the conclusion that the members of this PC-PLC and phosphatase family possess a novel mechanism for the recognition and hydrolysis of their respective substrates.
Collapse
Affiliation(s)
- Martin J Stonehouse
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 E. Ninth Ave., Box B-175, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Bacterial-fungal interactions have great environmental, medical, and economic importance, yet few have been well characterized at the molecular level. Here, we describe a pathogenic interaction between Pseudomonas aeruginosa and Candida albicans, two opportunistic pathogens. P. aeruginosa forms a dense biofilm on C. albicans filaments and kills the fungus. In contrast, P. aeruginosa neither binds to nor kills yeast-form C. albicans. Several P. aeruginosa virulence factors that are important in disease are involved in the killing of C. albicans filaments. We propose that many virulence factors studied in the context of human infection may also have a role in bacterial-fungal interactions.
Collapse
Affiliation(s)
- Deborah A Hogan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Ochsner UA, Snyder A, Vasil AI, Vasil ML. Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A 2002; 99:8312-7. [PMID: 12034867 PMCID: PMC123064 DOI: 10.1073/pnas.082238299] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel secretion pathway originally found in plants has recently been discovered in bacteria and termed TAT, for "twin-arginine translocation," with respect to the presence of an Arg-Arg motif in the signal sequence of TAT-secreted products. However, it is unknown whether the TAT system contributes in any way to virulence through the secretion of factors associated with pathogenesis or stress response. We found that the opportunistic pathogen Pseudomonas aeruginosa produces several virulence factors that depend on the TAT system for proper export to the periplasm, outer membrane, or extracellular milieu. We identified at least 18 TAT substrates of P. aeruginosa and characterized the pleiotropic phenotypes of a tatC deletion mutant. The TAT system proved essential for the export of phospholipases, proteins involved in pyoverdine-mediated iron-uptake, anaerobic respiration, osmotic stress defense, motility, and biofilm formation. Because all these traits have been associated with virulence, we studied the role of TAT in a rat lung model. A tatC mutant did not cause the typical multifocal pulmonary abscesses and did not evoke a heavy inflammatory host response compared with wild type, indicating that tatC mutant cells are attenuated for virulence. Because the TAT apparatus is well conserved among important bacterial pathogens yet absent in mammalian cells, it represents a potential target for novel antimicrobial compounds.
Collapse
Affiliation(s)
- Urs A Ochsner
- Department of Microbiology, University of Colorado Health Sciences Center, Campus Box B-175, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
32
|
Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A, Wu LF, Filloux A. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 2001; 20:6735-41. [PMID: 11726509 PMCID: PMC125745 DOI: 10.1093/emboj/20.23.6735] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The general secretory pathway (GSP) is a two-step process for the secretion of proteins by Gram-negative bacteria. The translocation across the outer membrane is carried out by the type II system, which involves machinery called the secreton. This step is considered to be an extension of the general export pathway, i.e. the export of proteins across the inner membrane by the Sec machinery. Here, we demonstrate that two substrates for the Pseudomonas aeruginosa secreton, both phospholipases, use the twin-arginine translocation (Tat) system, instead of the Sec system, for the first step of translocation across the inner membrane. These results challenge the previous vision of the GSP and suggest for the first time a mosaic model in which both the Sec and the Tat systems feed substrates into the secreton. Moreover, since P.aeruginosa phospholipases are secreted virulence factors, the Tat system appears to be a novel determinant of bacterial virulence.
Collapse
Affiliation(s)
| | | | - Bérengère Ize
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR9027 and
Laboratoire de Chimie Bactérienne, UPR9043, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France and Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO, USA Corresponding author e-mail:
| | - Michael L. Vasil
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR9027 and
Laboratoire de Chimie Bactérienne, UPR9043, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France and Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO, USA Corresponding author e-mail:
| | | | - Long-Fei Wu
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR9027 and
Laboratoire de Chimie Bactérienne, UPR9043, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France and Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO, USA Corresponding author e-mail:
| | - Alain Filloux
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR9027 and
Laboratoire de Chimie Bactérienne, UPR9043, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France and Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO, USA Corresponding author e-mail:
| |
Collapse
|
33
|
Terada LS, Johansen KA, Nowbar S, Vasil AI, Vasil ML. Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun 1999; 67:2371-6. [PMID: 10225897 PMCID: PMC115980 DOI: 10.1128/iai.67.5.2371-2376.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a persistent pathogen in the airways of patients with cystic fibrosis or bronchiectasis from other causes and appears to have evolved strategies to survive the inflammatory response of the host. We hypothesized that the secreted hemolytic phospholipase C (PLC) of P. aeruginosa (PlcHR) would decrease neutrophil respiratory burst activity. We found that while intact wild-type P. aeruginosa cells stimulated moderate respiratory burst activity from human neutrophils, an isogenic mutant pseudomonas (DeltaHR strain) containing a targeted deletion of the plcHR operon induced a much more robust oxidative burst from neutrophils. In contrast, a second pseudomonas mutant (DeltaN) containing a disruption in the gene encoding the nonhemolytic PLC (PlcN) was not different from the wild type in stimulating neutrophil O2.- production. Readdition of purified PlcHR to the DeltaHR strain suppressed neutrophil O2.- production to levels stimulated by wild-type bacteria. Interestingly, purified PlcHR decreased phorbol myristate acetate (PMA)- but not formyl methionyl-leucyl-proline (fMLP)-induced respiratory burst activity, suggesting interference by PlcHR with a protein kinase C (PKC)-specific signaling pathway. Accordingly, the PKC inhibitor bisindolylmaleimide inhibited the oxidative burst induced by either PMA or intact pseudomonas, but not by fMLP, whereas the p38 kinase inhibitor SB-203580 fully inhibited the respiratory burst induced by fMLP or the PlcHR-replete wild-type bacteria, but not PMA or the PlcHR-deficient DeltaHR bacterial mutant. We conclude that expression of PlcHR by P. aeruginosa suppresses bacterium-induced neutrophil respiratory burst by interfering with a PKC-dependent, non-p38 kinase-dependent pathway.
Collapse
Affiliation(s)
- L S Terada
- University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
34
|
Filloux A, Michel G, Bally M. GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 1998; 22:177-98. [PMID: 9818381 DOI: 10.1111/j.1574-6976.1998.tb00366.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteria have evolved several secretory pathways to release proteins into the extracellular medium. In Gram-negative bacteria, the exoproteins cross a cell envelope composed of two successive hydrophobic barriers, the cytoplasmic and outer membranes. In some cases, the protein is translocated in a single step across the cell envelope, directly from the cytoplasm to the extracellular medium. In other cases, outer membrane translocation involves an extension of the signal peptide-dependent pathway for translocation across the cytoplasmic membrane via the Sec machinery. By analogy with the so-called general export pathway (GEP), this latter route, including two separate steps across the inner and the outer membrane, was designated as the general secretory pathway (GSP) and is widely conserved among Gram-negative bacteria. In their great majority, exoproteins use the main terminal branch (MTB) of the GSP, namely the Xcp machinery in Pseudomonas aeruginosa, to reach the extracellular medium. In this review, we will use the P. aeruginosa Xcp system as a basis to discuss multiple aspects of the GSP mechanism, including machinery assembly, exoprotein recognition, energy requirement and pore formation for driving through the outer membrane.
Collapse
Affiliation(s)
- A Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires/UPR9027, IBSM-CNRS, Marseille, France.
| | | | | |
Collapse
|