1
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
2
|
Oliveira AER, Grazielle-Silva V, Ferreira LRP, Teixeira SMR. Close encounters between Trypanosoma cruzi and the host mammalian cell: Lessons from genome-wide expression studies. Genomics 2019; 112:990-997. [PMID: 31229555 DOI: 10.1016/j.ygeno.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/22/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a life-threatening disease that affects different tissues. Within its mammalian host, T. cruzi develops molecular strategies for successful invasion of different cell types and adaptation to the intracellular environment. Conversely, the host cell responds to the infection by activating intracellular pathways to control parasite replication. Here, we reviewed genome-wide expression studies based on microarray and RNA-seq data from both parasite and host genes generated from animal models of infection as well as from Chagas disease patients. As expected, analyses of T. cruzi genes highlighted changes related to parasite energy metabolism and cell surface molecules, whereas host cell transcriptome emphasized the role of immune response genes. Besides allowing a better understanding of mechanisms behind the pathogenesis of Chagas disease, these studies provide essential information for the development of new therapies as well as biomarkers for diagnosis and assessment of disease progression.
Collapse
Affiliation(s)
- Antonio Edson R Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila R P Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Huete-Pérez JA, Flores-Obando RE, Ghedin E, Caffrey CR. Genomic and proteomic approaches for Chagas’ disease: critical analysis of diagnostic methods. Expert Rev Mol Diagn 2014; 5:521-30. [PMID: 16013970 DOI: 10.1586/14737159.5.4.521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, a chronic inflammatory condition that results in heart and digestive complications. The first draft of the parasite genome is now complete and it is expected that, along with the published genomic and proteomic analyses discussed herein, it will lead to the identification of crucial genes and proteins directly associated with disease. This article reviews the current research trends addressing host-parasite interaction, parasite genetic variability and diagnosis. These advances will certainly bring about major developments not only in our understanding of Trypanosoma cruzi biology, but also in the application of new technologies to disease prevention and control.
Collapse
Affiliation(s)
- Jorge A Huete-Pérez
- Sandler Center for Basic Research in Parasitic Diseases, University of California, QB3 Building, Box 2550, 1700 4 Street, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
4
|
Bernabó G, Levy G, Ziliani M, Caeiro LD, Sánchez DO, Tekiel V. TcTASV-C, a protein family in Trypanosoma cruzi that is predominantly trypomastigote-stage specific and secreted to the medium. PLoS One 2013; 8:e71192. [PMID: 23923058 PMCID: PMC3726618 DOI: 10.1371/journal.pone.0071192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022] Open
Abstract
Among the several multigene families codified by the genome of T. cruzi, the TcTASV family was the latest discovered. The TcTASV (Trypomastigote, Alanine, Serine, Valine) family is composed of ∼40 members, with conserved carboxi- and amino-termini but with a variable central core. According to the length and sequence of the central region the family is split into 3 subfamilies. The TcTASV family is conserved in the genomes of – at least – lineages TcI and TcVI and has no orthologues in other trypanosomatids. In the present work we focus on the study of the TcTASV-C subfamily, composed by 16 genes in the CL Brener strain. We determined that TcTASV-C is preferentially expressed in trypomastigotes, but it is not a major component of the parasite. Both immunoflourescence and flow cytometry experiments indicated that TcTASV-C has a clonal expression, i.e. it is not expressed by all the parasites of a certain population at the same time. We also determined that TcTASV-C is phosphorylated and glycosylated. TASV-C is attached to the parasite surface by a GPI anchor and is shed spontaneously into the medium. About 30% of sera from infected hosts reacted with TcTASV-C, confirming its exposition to the immune system. Its superficial localization and secretory nature suggest a possible role in host-parasite interactions.
Collapse
Affiliation(s)
- Guillermo Bernabó
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Levy
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Ziliani
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucas D. Caeiro
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
5
|
Gene expression analysis by ESTs sequencing of the Brazilian frog Phyllomedusa nordestina skin glands. Toxicon 2012; 61:139-50. [PMID: 23159791 DOI: 10.1016/j.toxicon.2012.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/21/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
Abstract
The subfamily Phyllomedusinae has attracted a great interest of many researchers mainly due to the high diversity of these frog species and plethora of pharmacological activities frequently observed for their skin secretions. Despite of this fact, mainly for new species, limited information is available regarding the molecular composition of these skin secretions and the cellular components involved in their production. Phyllomedusa nordestina is a recently described Brazilian frog species also popularly known as 'tree-frogs'. Aiming at contributing to the biological knowledge of this species, we show here the gene expression profile of this frog skin secretion using a global ESTs analysis of a cDNA library. The marked aspect of this analysis revealed a significant higher transcriptional level of the opioid peptide dermorphins in P. nordestina skin secretion than in Phyllomedusa hypochondrialis, which is its closest related species, belonging both to the same phylogenetic group. Precursors of bioactive peptides as dermaseptins, phylloseptins, tryptophyllins, and bradykinin-like peptideswere also found in this library. Transcripts encoding proteins related to ordinary cellular functions and pathways were also described. Some of them are chiefly involved in the production of the skin secretion. Taken together, the data reported here constitute a contribution to the characterization of the molecular diversity of gene-encoded polypeptides with potential possibility of pharmacological exploitation. The transcriptional composition of the skin secretion may also help to give the necessary support for the definition of P. nordestina as a new species, which actually relies basically on frog morphological characteristics and geographical distribution.
Collapse
|
6
|
Shankar J, Madan T, Basir SF, Sarma PU. Identification and characterization of polyubiquitin gene from cDNA library of aspergillus fumigatus. Indian J Clin Biochem 2012; 20:208-12. [PMID: 23105524 DOI: 10.1007/bf02893072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aspergillus fumigatus (Afu) causes allergic and invasive forms of diseases in humans. In order to identify genes relevant for pathogenesis, a total of 235 cDNA clones were randomly selected and sequenced from cDNA library of Afu. One of the partially sequenced cDNA clones was homologous to polyubiquitin. Sequencing of the complete cDNA clone showed an open reading frame of 912 bases. Comparison with genomic sequence of Afu using BlastN program, revealed that polyubiquitin gene comprises of 992 bases and contains one intron of 80 bases. The recombinant expression of fusion protein showed an approximately molecular weight of 43-kDa on SDS-PAGE. The translation product of the cDNA sequence showed four tandem repeats of 76 amino acid residues in a single polyubiquitin protein and showed 100% identity with polyubiquitin protein sequences of S. cerevisiae, N. crassa, C. albicans, S. pombe, and M. grisae. Polyubiquitin gene is known to play important role in a variety of cellular processes and recently have been implicated in fungal pathogenesis. Identification of polyubiquitin gene of Afu has opened up scope to study its role in understanding Aspergillus biology and pathogenesis.
Collapse
Affiliation(s)
- Jata Shankar
- Molecular Biochemistry and Diagnostics Division, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, Mall Road, 110007 Delhi
| | | | | | | |
Collapse
|
7
|
Teixeira SM, de Paiva RMC, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35:1-17. [PMID: 22481868 PMCID: PMC3313497 DOI: 10.1590/s1415-47572012005000008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023] Open
Abstract
In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
8
|
Teixeira SM, El-Sayed NM, Araújo PR. The genome and its implications. ADVANCES IN PARASITOLOGY 2011; 75:209-30. [PMID: 21820558 DOI: 10.1016/b978-0-12-385863-4.00010-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trypanosoma cruzi has a heterogeneous population composed of a pool of strains that circulate in the domestic and sylvatic cycles. Genome sequencing of the clone CL Brener revealed a highly repetitive genome of about 110Mb containing an estimated 22,570 genes. Because of its hybrid nature, sequences representing the two haplotypes have been generated. In addition, a repeat content close to 50% made the assembly of the estimated 41 pairs of chromosomes quite challenging. Similar to other trypanosomatids, the organization of T. cruzi chromosomes was found to be very peculiar, with protein-coding genes organized in long polycistronic transcription units encoding 20 or more proteins in one strand separated by strand switch regions. Another remarkable feature of the T. cruzi genome is the massive expansion of surface protein gene families. Because of the high genetic diversity of the T. cruzi population, sequencing of additional strains and comparative genomic and transcriptome analyses are in progress. Five years after its publication, the genome data have proven to be an essential tool for the study of T. cruzi and increasing efforts to translate this knowledge into the development of new modes of intervention to control Chagas disease are underway.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
9
|
Avila ML, Tekiel V, Moretti G, Nicosia S, Bua J, Lammel EM, Stroppa MM, Gerez de Burgos NM, Sánchez DO. Gene discovery in Triatoma infestans. Parasit Vectors 2011; 4:39. [PMID: 21418565 PMCID: PMC3070679 DOI: 10.1186/1756-3305-4-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triatoma infestans is the most relevant vector of Chagas disease in the southern cone of South America. Since its genome has not yet been studied, sequencing of Expressed Sequence Tags (ESTs) is one of the most powerful tools for efficiently identifying large numbers of expressed genes in this insect vector. RESULTS In this work, we generated 826 ESTs, resulting in an increase of 47% in the number of ESTs available for T. infestans. These ESTs were assembled in 471 unique sequences, 151 of which represent 136 new genes for the Reduviidae family. CONCLUSIONS Among the putative new genes for the Reduviidae family, we identified and described an interesting subset of genes involved in development and reproduction, which constitute potential targets for insecticide development.
Collapse
Affiliation(s)
- María L Avila
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Av, Gral Paz 5445, Edificio 24, B1650KNA, San Martín, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
García EA, Ziliani M, Agüero F, Bernabó G, Sánchez DO, Tekiel V. TcTASV: a novel protein family in trypanosoma cruzi identified from a subtractive trypomastigote cDNA library. PLoS Negl Trop Dis 2010; 4. [PMID: 20957201 PMCID: PMC2950142 DOI: 10.1371/journal.pntd.0000841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The identification and characterization of antigens expressed in Trypanosoma cruzi stages that parasitize mammals are essential steps for the development of new vaccines and diagnostics. Genes that are preferentially expressed in trypomastigotes may be involved in key processes that define the biology of trypomastigotes, like cell invasion and immune system evasion. METHODOLOGY/PRINCIPAL FINDINGS With the initial aim of identifying trypomastigote-specific expressed tags, we constructed and sequenced an epimastigote-subtracted trypomastigote cDNA library (library TcT-E). More than 45% of the sequenced clones of the library could not be mapped to previously annotated mRNAs or proteins. We validated the presence of these transcripts by reverse northern blot and northern blot experiments, therefore providing novel information about the mRNA expression of these genes in trypomastigotes. A 280-bp consensus element (TcT-E element, TcT-Eelem) located at the 3' untranslated region (3' UTR) of many different open reading frames (ORFs) was identified after clustering the TcT-E dataset. Using an RT-PCR approach, we were able to amplify different mature mRNAs containing the same TcT-Eelem in the 3' UTR. The proteins encoded by these ORFs are members of a novel surface protein family in T. cruzi, (which we named TcTASV for T. cruzi Trypomastigote, Alanine, Serine and Valine rich proteins). All members of the TcTASV family have conserved coding amino- and carboxy-termini, and a central variable core that allows partitioning of TcTASV proteins into three subfamilies. Analysis of the T. cruzi genome database resulted in the identification of 38 genes/ORFs for the whole TcTASV family in the reference CL-Brener strain (lineage II). Because this protein family was not found in other trypanosomatids, we also looked for the presence of TcTASV genes in other evolutionary lineages of T. cruzi, sequencing 48 and 28 TcTASVs members from the RA (lineage II) and Dm28 (lineage I) T. cruzi strains respectively. Detailed phylogenetic analyses of TcTASV gene products show that this gene family is different from previously characterized mucin (TcMUCII), mucin-like, and MASP protein families. CONCLUSIONS/SIGNIFICANCE We identified TcTASV, a new gene family of surface proteins in T. cruzi.
Collapse
Affiliation(s)
- Elizabeth A. García
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - María Ziliani
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Guillermo Bernabó
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas (IIB-Intech), Universidad Nacional de General San Martín – CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
11
|
Grisard EC, Stoco PH, Wagner G, Sincero TCM, Rotava G, Rodrigues JB, Snoeijer CQ, Koerich LB, Sperandio MM, Bayer-Santos E, Fragoso SP, Goldenberg S, Triana O, Vallejo GA, Tyler KM, Dávila AMR, Steindel M. Transcriptomic analyses of the avirulent protozoan parasite Trypanosoma rangeli. Mol Biochem Parasitol 2010; 174:18-25. [PMID: 20600354 DOI: 10.1016/j.molbiopara.2010.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/24/2010] [Accepted: 06/11/2010] [Indexed: 11/25/2022]
Abstract
Two species of the genus Trypanosoma infective to humans have been extensively studied at a cell and molecular level, but study of the third, Trypanosoma rangeli, remains in relative infancy. T. rangeli is non-pathogenic, but is frequently mistaken for the related Chagas disease agent Trypanosoma cruzi with which it shares vectors, hosts, significant antigenicity and a sympatric distribution over a wide geographical area. In this study, we present the T. rangeli gene expression profile as determined by the generation of ESTs (Expressed Sequence Tags) and ORESTES (Open Reading Frame ESTs). A total of 4208 unique high quality sequences were analyzed, composed from epimastigote and trypomastigote forms of SC-58 and Choachí strains, representing the two major phylogenetic lineages of this species. Comparative analyses with T. cruzi and other parasitic kinetoplastid species allowed the assignment of putative biological functions to most of the sequences generated and the establishment of an annotated T. rangeli gene expression database. Even though T. rangeli is apathogenic to mammals, genes associated with virulence in other pathogenic kinetoplastids were found. Transposable elements and genes associated mitochondrial gene expression, specifically RNA editing components, are also described for the first time. Our studies confirm the close phylogenetic relationship between T. cruzi and T. rangeli and enable us to make an estimate for the size of the T. rangeli genome repertoire ( approximately 8500 genes).
Collapse
Affiliation(s)
- Edmundo C Grisard
- Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brandão A. Trypanosomatid EST: a neglected information resource regarding flagellated protozoa? Mem Inst Oswaldo Cruz 2009; 103:622-6. [PMID: 18949338 DOI: 10.1590/s0074-02762008000600021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Adeilton Brandão
- Laboratório de Epidemiologia Molecular de Doenças Infecciosas, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
13
|
Moreno VR, Agüero F, Tekiel V, Sánchez DO. The Calcineurin A homologue from Trypanosoma cruzi lacks two important regulatory domains. Acta Trop 2007; 101:80-9. [PMID: 17207761 DOI: 10.1016/j.actatropica.2006.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 09/29/2006] [Accepted: 11/29/2006] [Indexed: 01/11/2023]
Abstract
A novel protein from the parasite Trypanosoma cruzi homologous to calcineurin (serine-threonine phosphatase 2B) was identified and characterized. The Calcineurin A gene is present as a single copy gene per haploid genome and encodes a protein of 43 kDa that is expressed in all major developmental stages of T. cruzi. Surprisingly, it is mainly localized in the cell nucleus, in sharp contrast with its mammalian counterpart. The T. cruzi calcineurin A protein presents the three invariants motifs characteristic of the PPP serine-threonine phosphatase superfamily. However, out of the four domains typically present in all calcineurin described to date, the T. cruzi calcineurin A possess only two domains: the catalytic and the calcineurin B binding domain. Sequence similarity searches in the T. cruzi, Trypanosoma brucei and Leishmania major genomes revealed that only L. major presents a gene encoding a putative protein containing the four domains. On the other hand, the T. cruzi Calcineurin B subunit showed a conserved structure, and a reasonable level of similarity over the entire length with calcineurin B proteins from other organisms. Interaction between Calcineurin A and Calcineurin B was analyzed by yeast Two-Hybrid and GST pull-down assays.
Collapse
Affiliation(s)
- Valeria Ruiz Moreno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Potenza M, Galat A, Minning TA, Ruiz AM, Duran R, Tarleton RL, Marín M, Fichera LE, Búa J. Analysis of the Trypanosoma cruzi cyclophilin gene family and identification of Cyclosporin A binding proteins. Parasitology 2006; 132:867-82. [PMID: 16700961 DOI: 10.1017/s0031182005009558] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/08/2005] [Accepted: 10/14/2005] [Indexed: 01/22/2023]
Abstract
The Trypanosoma cruzi cyclophilin gene family comprises 15 paralogues whose nominal masses vary from 19 to 110 kDa, namely TcCyP19, TcCyP20, TcCyP21, TcCyP22, TcCyP24, TcCyP25, TcCyP26, TcCyP28, TcCyP29, TcCyP30, TcCyP34, TcCyP35, TcCyP40, TcCyP42 and TcCyP110. Under the conditions used, only some of the T. cruzi cyclophilin paralogue products could be isolated by affinity chromatography. The 15 paralogues were aligned with 495 cyclophilins from diverse organisms. Analyses of clusters formed by the T. cruzi cyclophilins with others encoded in various genomes revealed that 8 of them (TcCyP19, TcCyP21, TcCyP22, TcCyP24, TcCyP35, TcCyP40, TcCyP42 and TcCyP110) have orthologues in many different genomes whereas the other 7 display less-defined patterns of their sequence attributes and their classification to a specific group of cyclophilin's orthologues remains uncertain. Seven epimastigote cDNA clones encoding cyclophilin isoforms were further studied. These genes were found dispersed throughout the genome of the parasite. Amastigote and trypomastigote mRNAs encoding these 7 genes were also detected. We isolated 4 cyclosporin A-binding proteins in T. cruzi epimastigote extracts, which were identified by mass spectrometry as TcCyP19, TcCyP22, TcCyP28 and TcCyP40. Cyclosporin A-binding to these cyclophilins might be of importance to the mechanism of action of Cyclosporin A and its non-immunosuppressive analogues, whose trypanocidal effects were previously reported, and therefore, of potential interest in the chemotherapy of Chagas' disease.
Collapse
Affiliation(s)
- M Potenza
- Instituto Nacional de Parasitología, Dr. M. Fatala Chabén, A.N.L.I.S. Malbrán, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Agüero F, Zheng W, Weatherly DB, Mendes P, Kissinger JC. TcruziDB: an integrated, post-genomics community resource for Trypanosoma cruzi. Nucleic Acids Res 2006; 34:D428-31. [PMID: 16381904 PMCID: PMC1347470 DOI: 10.1093/nar/gkj108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
TcruziDB () is an integrated post-genomics database for the parasitic organism, Trypanosoma cruzi, the causative agent of Chagas' disease. TcruziDB was established in 2003 as a flat-file database with tools for mining the unannotated sequence reads and preliminary contig assemblies emerging from the Tri-Tryp genome consortium (TIGR/SBRI/Karolinska). Today, TcruziDB houses the recently published assembled genomic contigs and annotation provided by the genome consortium in a relational database supported by the Genomics Unified Schema (GUS) architecture. The combination of an annotated genome and a relational architecture has facilitated the integration of genomic data with expression data (proteomic and EST) and permitted the construction of automated analysis pipelines. TcruziDB has accepted, and will continue to accept the deposition of genomic and functional genomic datasets contributed by the research community.
Collapse
Affiliation(s)
| | - Wenlong Zheng
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthens, GA 30602-2606, USA
| | - D. Brent Weatherly
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthens, GA 30602-2606, USA
| | - Pablo Mendes
- Department of Computer Science, University of GeorgiaGA, USA
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthens, GA 30602-2606, USA
- Department of Genetics, University of GeorgiaAthens, GA 30602-7223, USA
- To whom correspondence should be addressed. Tel: +1 706 542 6562; Fax: +1 706 542 3910;
| |
Collapse
|
16
|
Cerqueira GC, DaRocha WD, Campos PC, Zouain CS, Teixeira SMR. Analysis of expressed sequence tags from Trypanosoma cruzi amastigotes. Mem Inst Oswaldo Cruz 2005; 100:385-9. [PMID: 16113886 DOI: 10.1590/s0074-02762005000400008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A total of 880 expressed sequence tags (EST) originated from clones randomly selected from a Trypanosoma cruzi amastigote cDNA library have been analyzed. Of these, 40% (355 ESTs) have been identified by similarity to sequences in public databases and classified according to functional categorization of their putative products. About 11% of the mRNAs expressed in amastigotes are related to the translational machinery, and a large number of them (9% of the total number of clones in the library) encode ribosomal proteins. A comparative analysis with a previous study, where clones from the same library were selected using sera from patients with Chagas disease, revealed that ribosomal proteins also represent the largest class of antigen coding genes expressed in amastigotes (54% of all immunoselected clones). However, although more than thirty classes of ribosomal proteins were identified by EST analysis, the results of the immunoscreening indicated that only a particular subset of them contains major antigenic determinants recognized by antibodies from Chagas disease patients.
Collapse
Affiliation(s)
- Gustavo C Cerqueira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
17
|
Gomes GG, Peter Urményi T, Rondinelli E, Williams N, Silva R. TcRRMs and Tcp28 genes are intercalated and differentially expressed in Trypanosoma cruzi life cycle. Biochem Biophys Res Commun 2004; 322:985-92. [PMID: 15336561 DOI: 10.1016/j.bbrc.2004.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Indexed: 10/26/2022]
Abstract
The identification and characterization of RNA binding proteins in Trypanosoma cruzi are particularly relevant as they play key roles in the regulatory mechanisms of gene expression. In this work, we have identified coding sequences for the proteins, named TcRRM1 and TcRRM2, in the EST database generated by the T. cruzi genomic initiative. TcRRM1 and TcRRM2 contain two RNA binding domains (RRM) and are very similar to two Trypanosoma brucei RNA binding proteins previously reported, Tbp34 and Tbp37, and to a not yet annotated ORF in Leishmania major genome project. The T. cruzi RRM genes are organized in tandem, alternating with copies of Tcp28, a gene of unknown function. However, TcRRM transcript accumulation is higher in the spheromastigote stage, while Tcp28 transcripts accumulate more in the trypomastigote stage suggesting developmental regulation.
Collapse
|
18
|
Agüero F, Abdellah KB, Tekiel V, Sánchez DO, González A. Generation and analysis of expressed sequence tags from Trypanosoma cruzi trypomastigote and amastigote cDNA libraries. Mol Biochem Parasitol 2004; 136:221-5. [PMID: 15478800 DOI: 10.1016/j.molbiopara.2004.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have generated 2771 expressed sequence tags (ESTs) from two cDNA libraries of Trypanosoma cruzi CL-Brener. The libraries were constructed from trypomastigote and amastigotes, using a spliced leader primer to synthesize the cDNA second strand, thus selecting for full-length cDNAs. Since the libraries were not normalized nor pre-screened, we compared the representation of transcripts between the two using a statistical test and identify a subset of transcripts that show apparent differential representation. A non-redundant set of 1619 reconstructed transcripts was generated by sequence clustering. This dataset was used to perform similarity searches against protein and nucleotide databases. Based on these searches, 339 sequences could be assigned a putative identity. One thousand one-hundred and sixteen sequences in the non-redundant clustered dataset (68.8%) are new expression tags, not represented in the T. cruzi epimastigote ESTs that are in the public databases. Additional information is provided online at http://genoma.unsam.edu.ar/projects/tram. To the best of our knowledge these are the first ESTs reported for the life cycle stages of T. cruzi that occur in the vertebrate host.
Collapse
Affiliation(s)
- Fernán Agüero
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín-CONICET, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
19
|
Snoeijer CQ, Picchi GF, Dambrós BP, Steindel M, Goldenberg S, Fragoso SP, Lorenzini DM, Grisard EC. Trypanosoma rangeli Transcriptome Project: Generation and analysis of expressed sequence tags. KINETOPLASTID BIOLOGY AND DISEASE 2004; 3:1. [PMID: 15142279 PMCID: PMC419976 DOI: 10.1186/1475-9292-3-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 05/13/2004] [Indexed: 11/10/2022]
Abstract
Trypanosoma rangeli is an important hemoflagellate parasite of several mammalian species in Central and South America, sharing geographical areas, vectors and reservoirs with T. cruzi, the causative agent of Chagas disease. Thus, the occurrence of single and/or mixed infections, including in humans, must be expected and are of great importance for specific diagnosis and epidemiology. In comparison to several Trypanosomatidae species, the T. rangeli biology and genome are little known, reinforcing the needs of a gene discovery initiative. The T. rangeli transcriptome initiative aims to promote gene discovery through the generation of expressed sequence tags (ESTs) and Orestes (ORF ESTs) from both epimastigote and trypomastigote forms of the parasite, allowing further studies of the parasite biology, taxonomy and phylogeny.
Collapse
Affiliation(s)
- Cristiane Quimelli Snoeijer
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | | | - Bibiana Paula Dambrós
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | - Mário Steindel
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | | | | | - Daniel Macedo Lorenzini
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | - Edmundo Carlos Grisard
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| |
Collapse
|
20
|
Jung YK, Jeong JH, Ryoo HM, Kim HN, Kim YJ, Park EK, Si HJ, Kim SY, Takigawa M, Lee BH, Park RW, Kim IS, Choi JY. Gene expression profile of human chondrocyte HCS-2/8 cell line by EST sequencing analysis. Gene 2004; 330:85-92. [PMID: 15087127 DOI: 10.1016/j.gene.2004.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/22/2003] [Accepted: 01/08/2004] [Indexed: 11/23/2022]
Abstract
Large-scale single-pass sequencing of randomly selected cDNA clones from cell type specific libraries has proven to be a powerful approach for the discovery of novel gene functions, identification of novel gene family members, and definition of gene expression profiles. HCS-2/8 chondrocyte has been used as a cell culture model to study chondrocyte differentiation. Here we performed 3350 single-pass sequencing reactions obtained from the 5' ends of cDNAs from HCS-2/8 cells. To define the expression profiles of HCS-2/8 chondrocytes, we analyzed the identity of these representative cDNA sequences using database searches (BLAST). The sequences represent 1927 unique genes with known function (i.e., unigene clusters), 38 transcripts that are similar to genes with known function, 739 expressed genes with unknown function (i.e., expressed sequence tags), and 18 cDNAs which have not previously been sequenced. Interestingly, many transcripts were expressed from chromosome 12 compared with total genes, while the fewer numbers of cDNAs were derived from genes on chromosomes 14, 18 and Y. The chondrocytic phenotype of HCS-2/8 cells is reflected by abundant expression of genes related to cell structure and motility and the 20 most frequently expressed unigenes reflect a chondrocyte-related gene expression signature. Thus, our data establish a representative set of more than 2000 genes expressed in a chondrocytic cell line. This finding provides a framework for understanding cell growth and differentiation of chondrocytes and their metabolic function in the formation and remodeling of cartilage.
Collapse
Affiliation(s)
- Youn-Kwan Jung
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu 700-422, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Porcile PE, Santos MRM, Souza RT, Verbisck NV, Brandão A, Urmenyi T, Silva R, Rondinelli E, Lorenzi H, Levin MJ, Degrave W, Franco da Silveira J. A refined molecular karyotype for the reference strain of the Trypanosoma cruzi genome project (clone CL Brener) by assignment of chromosome markers. Gene 2003; 308:53-65. [PMID: 12711390 DOI: 10.1016/s0378-1119(03)00489-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We present a useful refinement of the molecular karyotype of clone CL Brener, the reference clone of the Trypanosoma cruzi Genome Project. The assignment of 210 genetic markers (142 expressed sequence tags (ESTs), seven cDNAs, 32 protein-coding genes, eight sequence tagged sites (STSs), 21 repetitive sequences) to the chromosomal bands separated by pulsed field gel electrophoresis (PFGE) identified 61 chromosome-specific markers, two size-polymorphic chromosomes and seven linkage groups. Fourteen new repetitive elements were isolated in this work and mapped to the chromosomal bands. We found that at least ten repetitive elements can be mapped to each chromosomal band, which may render the whole genome sequence assembly a difficult task. To construct the integrated map of chromosomal band XX, we used yeast artificial chromosome (YAC) overlapping clones and a variety of probes (i.e. known gene sequences, ESTs, STSs generated from the YAC ends). The total length covered by the YAC contig was approximately 1.3 Mb, covering 37% of the entire chromosome. We found some degree of polymorphism among YACs derived from band XX. These results are in agreement with data from phylogenetic analysis of T. cruzi which suggest that clone CL Brener is a hybrid genotype [Mol. Biochem. Parasitol. 92 (1998) 253; Proc. Natl. Acad. Sci. USA 98 (2001) 7396]. The physical map of the chromosomal bands, together with the isolation of specific chromosomal markers, will contribute in the global effort to sequence the nuclear genome of this parasite.
Collapse
Affiliation(s)
- Patricio E Porcile
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, R. Botucatu 862, CEP 04023-062, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Felipe MSS, Andrade RV, Petrofeza SS, Maranhão AQ, Torres FAG, Albuquerque P, Arraes FBM, Arruda M, Azevedo MO, Baptista AJ, Bataus LAM, Borges CL, Campos EG, Cruz MR, Daher BS, Dantas A, Ferreira MASV, Ghil GV, Jesuino RSA, Kyaw CM, Leitão L, Martins CR, Moraes LMP, Neves EO, Nicola AM, Alves ES, Parente JA, Pereira M, Poças-Fonseca MJ, Resende R, Ribeiro BM, Saldanha RR, Santos SC, Silva-Pereira I, Silva MAS, Silveira E, Simões IC, Soares RBA, Souza DP, De-Souza MT, Andrade EV, Xavier MAS, Veiga HP, Venancio EJ, Carvalho MJA, Oliveira AG, Inoue MK, Almeida NF, Walter MEMT, Soares CMA, Brígido MM. Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. Yeast 2003; 20:263-71. [PMID: 12557278 DOI: 10.1002/yea.964] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Paracoccidioides brasiliensis is a pathogenic fungus that undergoes a temperature-dependent cell morphology change from mycelium (22 degrees C) to yeast (36 degrees C). It is assumed that this morphological transition correlates with the infection of the human host. Our goal was to identify genes expressed in the mycelium (M) and yeast (Y) forms by EST sequencing in order to generate a partial map of the fungus transcriptome. Individual EST sequences were clustered by the CAP3 program and annotated using Blastx similarity analysis and InterPro Scan. Three different databases, GenBank nr, COG (clusters of orthologous groups) and GO (gene ontology) were used for annotation. A total of 3,938 (Y = 1,654 and M = 2,274) ESTs were sequenced and clustered into 597 contigs and 1,563 singlets, making up a total of 2,160 genes, which possibly represent one-quarter of the complete gene repertoire in P. brasiliensis. From this total, 1,040 were successfully annotated and 894 could be classified in 18 functional COG categories as follows: cellular metabolism (44%); information storage and processing (25%); cellular processes-cell division, posttranslational modifications, among others (19%); and genes of unknown functions (12%). Computer analysis enabled us to identify some genes potentially involved in the dimorphic transition and drug resistance. Furthermore, computer subtraction analysis revealed several genes possibly expressed in stage-specific forms of P. brasiliensis. Further analysis of these genes may provide new insights into the pathology and differentiation of P. brasiliensis.
Collapse
Affiliation(s)
- M S S Felipe
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, DF, Brasil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
do Carmo MS, dos Santos MRM, Cano MI, Araya JE, Yoshida N, da Silveira JF. Expression and genome-wide distribution of the gene family encoding a 90 kDa surface glycoprotein of metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 125:201-6. [PMID: 12467988 DOI: 10.1016/s0166-6851(02)00212-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mirian Silva do Carmo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu 862, CEP 04023-062 Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Gaines PJ, Brandt KS, Eisele AM, Wagner WP, Bozic CM, Wisnewski N. Analysis of expressed sequence tags from subtracted and unsubtracted Ctenocephalides felis hindgut and Malpighian tubule cDNA libraries. INSECT MOLECULAR BIOLOGY 2002; 11:299-306. [PMID: 12144694 DOI: 10.1046/j.1365-2583.2002.00337.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Insect hindgut and Malpighian tubule (HMT) tissues regulate the contents of the haemolymph through the excretion of waste products and the specific reabsorption of nutrients. As such, they perform a role that is essential for survival and may contain molecular targets for insect control strategies. In order to discover genes expressed in the HMT tissues of the cat flea, Ctenocephalides felis, expressed sequence tags (ESTs) were generated from an unsubtracted HMT cDNA library and from a subtracted HMT cDNA library that had been enriched for HMT-specific cDNAs. A total of 4844 ESTs were analysed from both libraries: 3657 from the subtracted library and 1187 from the unsubtracted library. Of the 1418 distinct ESTs identified from both libraries, 953 had significant similarity to other sequences reported in the GenBank database. A comparison of the results from the two libraries confirmed that the percentages of genes likely to be involved with metabolism, cell structure, and digestion were reduced by the subtraction procedure, whereas genes likely to be involved with ion transport were enriched. Analysis of the prevalence of three individual cDNAs in each library revealed that the actin cDNA was reduced in the subtracted library whereas the cDNAs encoding allantoinase and a peritrophin-like protein were greatly enriched in the subtracted library. Northern blot analysis demonstrated that the actin cDNA was expressed in both the HMT and carcass tissues, whereas the allantoinase and peritrophin-like cDNAs were detected exclusively in the HMT tissues. In total, 97 distinct ESTs that appear to encode proteins involved with ion transport were analysed. Some of these proteins may be directly involved with diuresis or the specific reabsorption of salts and nutrients, and thus may be potential molecular targets for flea control strategies.
Collapse
Affiliation(s)
- P J Gaines
- Heska Corporation, 1613 Prospect Parkway, Fort Collins, CO 80525, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kessler MM, Willins DA, Zeng Q, Del Mastro RG, Cook R, Doucette-Stamm L, Lee H, Caron A, McClanahan TK, Wang L, Greene J, Hare RS, Cottarel G, Shimer GH. The use of direct cDNA selection to rapidly and effectively identify genes in the fungus Aspergillus fumigatus. Fungal Genet Biol 2002; 36:59-70. [PMID: 12051895 DOI: 10.1016/s1087-1845(02)00002-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aspergillus fumigatus is one of the causes of invasive lung disease in immunocompromised individuals. To rapidly identify genes in this fungus, including potential targets for chemotherapy, diagnostics, and vaccine development, we constructed cDNA libraries. We began with non-normalized libraries, then to improve this approach we constructed a normalized cDNA library using direct cDNA selection. Normalization resulted in a reduction of the frequency of clones with highly expressed genes and an enrichment of underrepresented cDNAs. Expressed sequence tags generated from both the original and the normalized libraries were compared with the genomes of Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans, indicating that a large proportion of A. fumigatus genes do not have orthologs in these fungal species. This method allowed the expeditious identification of genes in a fungal pathogen. The same approach can be applied to other human or plant pathogens to rapidly identify genes without the need for genomic sequence information.
Collapse
|
26
|
Wikel SK, Alarcon-Chaidez FJ. Progress toward molecular characterization of ectoparasite modulation of host immunity. Vet Parasitol 2001; 101:275-87. [PMID: 11707302 DOI: 10.1016/s0304-4017(01)00556-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectoparasitic arthropods and vector-borne infectious agents are global medical and veterinary public health concerns. Economic impact due to direct effects of infestation and disease transmission are significant. These problems are increased by development of arthropod resistance to insecticides/acaricides; drug resistance of vector-borne pathogens; and, lack of effective vaccines to prevent many of these diseases. There is much to be gained from understanding the complex array of immunological interactions occurring at the arthropod-host-pathogen interface. One application of that knowledge is the development of novel vaccines for the control of both ectoparasitic arthropods and the diseases they transmit. We now realize that blood-feeding arthropods are not simply flying or crawling hypodermic needles and syringes. Ectoparasitic arthropods are not passive partners in their relationships with the immune systems of their hosts. These clever invertebrates produce numerous pharmacologically active molecules that help them migrate through tissues of their hosts or to successfully obtain blood meals. Arthropod parasites stimulate a spectrum of host immune responses that could potentially impair development, reduce feeding success, or kill the ectoparasite. Not unexpectedly, arthropods have developed sophisticated arsenals of countermeasures that modulate or deviate host immune responses. Not only does arthropod modulation of host immunity facilitate survival in tissues or increase the likelihood of obtaining a blood meal, but it is increasingly recognized as a critical factor in pathogen transmission. Those countermeasures to host immune defenses are the topics of this review. Emphasis is placed on our current understanding of the molecular bases of those changes; the molecules responsible for host immunomodulation; contemporary approaches for studying these complex relationships; and, the potential for using this information to develop innovative vaccine-based control strategies.
Collapse
Affiliation(s)
- S K Wikel
- Center for Microbial Pathogenesis, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue MC3710, Farmington, CT 06030, USA.
| | | |
Collapse
|
27
|
Búa J, Aslund L, Pereyra N, García GA, Bontempi EJ, Ruiz AM. Characterisation of a cyclophilin isoform in Trypanosoma cruzi. FEMS Microbiol Lett 2001; 200:43-7. [PMID: 11410347 DOI: 10.1111/j.1574-6968.2001.tb10690.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The immunosuppressive drug cyclosporin A (CsA) has shown antiparasitic activity against several protozoans and helminths, when complexed to proteins called cyclophilins (CyPs). In this paper, the molecular characterisation of one member of the CyP family in Trypanosoma cruzi is reported. TcCyP19 gene proved to be highly conserved compared to CyPs from other organisms and was highly homologous to a Trypanosoma brucei brucei CyPA. This gene was expressed in Escherichia coli and the purified recombinant protein exhibited a peptidyl prolyl cis-trans isomerase activity that was inhibited by CsA (IC(50) = 18.4 + /-0.8 nM). The TcCyP19 gene was located on two chromosomal bands in T. cruzi CL Brener clone.
Collapse
|
28
|
Affiliation(s)
- P D Rabinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
29
|
|
30
|
Todeschini AR, da Silveira EX, Jones C, Wait R, Previato JO, Mendonça-Previato L. Structure of O-glycosidically linked oligosaccharides from glycoproteins of Trypanosoma cruzi CL-Brener strain: evidence for the presence of O-linked sialyl-oligosaccharides. Glycobiology 2001; 11:47-55. [PMID: 11181561 DOI: 10.1093/glycob/11.1.47] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycoproteins on the cell surface of Trypanosoma cruzi are known to play important roles in the interaction of the parasite with the host cells. We previously determined the structures of the O-glycan chains from the sialoglycoproteins (mucin-like molecules) of the G- and Y-strains and observed significant differences between them. We now report the structures of the sialylated and nonsialylated O-linked oligosaccharides isolated from the cell surface glycoproteins of the myotropic CL-Brener strain grown in the presence of fetal calf serum. The structures of the O-linked oligosaccharide alditols obtained by reductive beta-elimination of the sialoglycoprotein were determined by a combination of methylation analysis, fast atom bombardment-mass spectrometry and nuclear magnetic resonance spectroscopy. The presence of a beta-galactopyranose substituent on the N-acetylglucosamine O-4 position shows that these O-linked oligosaccharides from CL-Brener strain belong to the same family as those isolated from mucins expressed by T. cruzi Y strain, a reticulotropic strain. In addition, novel O-glycans, including alpha2-3 mono-sialylated species are described.
Collapse
Affiliation(s)
- A R Todeschini
- Instituto de Microbiologia, CCS-Bloco I, Universidade Federal do Rio de Janeiro, 21944-970-Cidade Universitária, Rio de Janeiro-RJ, Brasil
| | | | | | | | | | | |
Collapse
|
31
|
Agüero F, Verdún RE, Frasch AC, Sánchez DO. A random sequencing approach for the analysis of the Trypanosoma cruzi genome: general structure, large gene and repetitive DNA families, and gene discovery. Genome Res 2000; 10:1996-2005. [PMID: 11116094 PMCID: PMC313047 DOI: 10.1101/gr.gr-1463r] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Accepted: 09/20/2000] [Indexed: 11/24/2022]
Abstract
A random sequence survey of the genome of Trypanosoma cruzi, the agent of Chagas disease, was performed and 11,459 genomic sequences were obtained, resulting in approximately 4.3 Mb of readable sequences or approximately 10% of the parasite haploid genome. The estimated total GC content was 50.9%, with a high representation of A and T di- and trinucleotide repeats. Out of the estimated 5000 parasite genes, 947 putative new genes were identified. Another 1723 sequences corresponded to genes detected previously in T. cruzi through expression sequence tag analysis. 7735 sequences had no matches in the database, but the presence of open reading frames that passed Fickett's test suggests that some might contain coding DNA. The survey was highly redundant, with approximately 35% of the sequences included in a few large sequence families. Some of them code for protein families present in dozens of copies, including proteins essential for parasite survival and retrotransposons. Other sequence families include repetitive DNA present in thousands of copies per haploid genome. Some families in the latter group are new, parasite-specific, repetitive DNAs. These results suggest that T. cruzi could constitute an interesting model to analyze gene and genome evolution due to its plasticity in terms of sequence amplification and divergence. Additional information can be found at http://www.iib.unsam.edu.ar/tcruzi.gss. html.
Collapse
Affiliation(s)
- F Agüero
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
32
|
Agüero F, Verdún RE, Frasch ACC, Sánchez DO. A Random Sequencing Approach for the Analysis of the Trypanosoma cruzi Genome: General Structure, Large Gene and Repetitive DNA Families, and Gene Discovery. Genome Res 2000. [DOI: 10.1101/gr.146300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A random sequence survey of the genome of Trypanosoma cruzi, the agent of Chagas disease, was performed and 11,459 genomic sequences were obtained, resulting in ∼4.3 Mb of readable sequences or ∼10% of the parasite haploid genome. The estimated total GC content was 50.9%, with a high representation of A and T di- and trinucleotide repeats. Out of the estimated 5000 parasite genes, 947 putative new genes were identified. Another 1723 sequences corresponded to genes detected previously in T. cruzi through expression sequence tag analysis. 7735 sequences had no matches in the database, but the presence of open reading frames that passed Fickett's test suggests that some might contain coding DNA. The survey was highly redundant, with ∼35% of the sequences included in a few large sequence families. Some of them code for protein families present in dozens of copies, including proteins essential for parasite survival and retrotransposons. Other sequence families include repetitive DNA present in thousands of copies per haploid genome. Some families in the latter group are new, parasite-specific, repetitive DNAs. These results suggest that T. cruzi could constitute an interesting model to analyze gene and genome evolution due to its plasticity in terms of sequence amplification and divergence. Additional information can be found at http://www.iib.unsam.edu.ar/tcruzi.gss.html.[The sequence data described in this paper have been submitted to the dbGSS database under the following GenBank accession nos.:AQ443439–AQ443513, AQ443743–AQ445667, AQ902981–AQ911366,AZ049857–AZ051184, and AZ302116–AZ302563.]
Collapse
|
33
|
Sleeman MA, Murison JG, Strachan L, Kumble K, Glenn MP, McGrath A, Grierson A, Havukkala I, Tan PL, Watson JD. Gene expression in rat dermal papilla cells: analysis of 2529 ESTs. Genomics 2000; 69:214-24. [PMID: 11031104 DOI: 10.1006/geno.2000.6300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dermal papilla (DEPA) cells are resident at the base of hair follicles and are fundamental to hair growth and development. Cultured DEPA cells, in contrast to normal fibroblast cells, are capable of inducing de novo hair follicle growth in vivo. By differential screening of a DEPA cDNA library, we have demonstrated that dermal papilla cells are different from fibroblasts at the molecular level. We further studied these cells by random sequencing of 5130 clones from the DEPA cDNA library. Fifty percent had a BLASTX E value < or =1 x 10(-25). Twenty-one percent had similarity to proteins involved in cell structure/motility with 4 of the top 10 most abundant clones encoding extracellular matrix proteins. Clones encoding growth factor molecules were also abundant. The remaining 50.7% of clones had low similarity scores, demonstrating many novel molecules. For example, we identified a new CTGF family member, the rat homologue of Elm1.
Collapse
Affiliation(s)
- M A Sleeman
- Genesis Research and Development Corporation Limited, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- A Ivens
- Pathogen Sequencing Unit, Sanger Centre, Hinxton, UK.
| |
Collapse
|
35
|
Porcel BM, Tran AN, Tammi M, Nyarady Z, Rydâker M, Urmenyi TP, Rondinelli E, Pettersson U, Andersson B, Aslund L. Gene survey of the pathogenic protozoan Trypanosoma cruzi. Genome Res 2000; 10:1103-7. [PMID: 10958628 PMCID: PMC310907 DOI: 10.1101/gr.10.8.1103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1999] [Accepted: 06/01/2000] [Indexed: 11/24/2022]
Abstract
We have performed a survey of the active genes in the important human pathogen Trypanosoma cruzi by analyzing 5013 expressed sequence tags (ESTs) generated from a normalized epimastigote cDNA library. Clustering of all sequences resulted in 771 clusters, comprising 54% of the ESTs. In total, the ESTs corresponded to 3054 transcripts that might represent one-fourth of the total gene repertoire in T. cruzi. About 33% of the T. cruzi transcripts showed similarity to sequences in the public databases, and a large number of hitherto undiscovered genes predicted to be involved in transcription, cell cycle control, cell division, signal transduction, secretion, and metabolism were identified. More than 140 full-length gene sequences were derived from the ESTs. Comparisons with all open reading frames in yeast and in Caenorhabditis elegans showed that only 12% of the T. cruzi transcripts were shared among diverse eukaryotic organisms. Comparison with other kinetoplastid sequences identified 237 orthologous genes that are shared between these evolutionarily divergent organisms. The generated data are a useful resource for further studies of the biology of the parasite and for development of new means to combat Chagas' disease.
Collapse
Affiliation(s)
- B M Porcel
- Department of Genetics & Pathology, Section of Medical Genetics, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Frasch AC. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:282-6. [PMID: 10858646 DOI: 10.1016/s0169-4758(00)01698-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trypanosomes are unable to synthesize the monosaccharide sialic acid, but some African trypanosomes and the American Trypanosoma cruzi can incorporate sialic acid derived from the host. To do so, T. cruzi expresses a trans-sialidase, an enzyme that catalyzes the transfer of sialic acid from host glycoconjugates to mucin-like molecules located on the parasite surface membrane. The importance of the process is indicated by the fact that T. cruzi has hundreds of genes encoding trans-sialidase, trans-sialidase-like proteins and mucin core proteins. Sequence divergence of members of these families has resulted in some molecules having functions unrelated to the acquisition of sialic acid. In this article, Alberto Frasch reviews the structure and possible function of the proteins making up these families.
Collapse
Affiliation(s)
- A C Frasch
- Instituto de Investigaciones Biotecnologicas, Universidad Nacional de General San Martin, CC30, San Martin, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Oshima T, Nakajima T, Wada H, Ikeda K, Takasaka T. Characterization of novel and identified genes in guinea pig organ of corti. Biochem Biophys Res Commun 2000; 273:84-9. [PMID: 10873568 DOI: 10.1006/bbrc.2000.2817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of proteins are expressed in the organ of Corti and are considered to be responsible for hearing. However, most of them have not been identified. Therefore, to achieve a better understanding of the genetic factors influencing these traits, the first step is to characterize the genes expressed in the organ of Corti. In the present study, a cDNA library was constructed from the guinea pig organ of Corti. After sequencing isolated clones, 196 expressed sequence tags (ESTs) were identified with FASTA analysis: 65 ESTs showed significant sequence homology to previously identified genes in guinea pig, human or other species, and 131 ESTs showed no significant matches to sequences already present in the DNA database DDBJ/GenBank/EMBL. A variety of matching sequences, some of which were known to be cochlea-specific, were found through FASTA analysis of the 65 clones. RT-PCR with a panel of 10 different tissue mRNA revealed the restricted expression of 13 unknown clones. The results of our analysis allowed the establishment of a list of genes expressed in the guinea pig organ of Corti.
Collapse
Affiliation(s)
- T Oshima
- Department of Otorhinolaryngology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | | | | | | | |
Collapse
|
38
|
Di Noia JM, D'Orso I, Sánchez DO, Frasch AC. AU-rich elements in the 3'-untranslated region of a new mucin-type gene family of Trypanosoma cruzi confers mRNA instability and modulates translation efficiency. J Biol Chem 2000; 275:10218-27. [PMID: 10744707 DOI: 10.1074/jbc.275.14.10218] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi has a complex mucin gene family of 500 members with hypervariable regions expressed preferentially in vertebrate associated stages of the parasite. In this work, a novel mucin-type gene family is reported, composed of two groups of genes organized in independent tandems and having very short open reading frames. The structures of deduced proteins share the N and C termini but differ in central regions. One group has repeats with the consensus Lys-Asn-Thr(7)-Ser-Thr(3)-Ser(Ser/Lys)-Ala-Pro and the other a Thr-rich sequence of the type Asp-Gln-Thr(17-20)-Asn-Ala-Pro-Ala-Lys-Asp-Thr(5-7)-Asn-Ala-Pro-Ala-L ys. In both cases, expected mature core proteins are around 7 kDa. Both groups, named L and S, respectively, differ in the structure of genomic loci and mRNA, with differential blocks in the 3'-untranslated region. The highest mRNA level for S and L groups are in the epimastigote stage but they show distinct developmentally regulated patterns. Transcripts are short lived and their steady-state abundance is regulated post-transcriptionally with increased mRNA stability in insect stage epimastigote. AU-rich sequences, similar to ARE motives known to cause mRNA instability in higher eukaryotes, are present in the 3'-untranslated region of the transcripts. In transfection experiments this sequence is shown to be functional for the L group destabilizing its mRNA in a stage-specific manner. Furthermore, an effect of this AU-rich region on translation efficiency is shown. To our knowledge, this is the first time that a functional ARE sequence-dependent post-transcriptional regulation mechanism is reported in a lower eukaryote.
Collapse
Affiliation(s)
- J M Di Noia
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, C.C. 30, 1650 San Martín, Pcia. de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
39
|
Furuya T, Kashuba C, Docampo R, Moreno SN. A novel phosphatidylinositol-phospholipase C of Trypanosoma cruzi that is lipid modified and activated during trypomastigote to amastigote differentiation. J Biol Chem 2000; 275:6428-38. [PMID: 10692446 DOI: 10.1074/jbc.275.9.6428] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide (PI)-specific phospholipase C gene (TcPI-PLC) of the protozoan parasite Trypanosoma cruzi was cloned, sequenced, expressed in Escherichia coli, and the protein product (TcPI-PLC) was shown to have enzymatic characteristics similar to those of mammalian delta-type PI-PLCs. The TcPI-PLC gene is expressed at high levels in the epimastigote and amastigote stages of the parasite, and its expression is induced during the differentiation of trypomastigotes into amastigotes, where TcPI-PLC associates with the plasma membrane and increases its catalytic activity. In contrast to other PI-PLCs described so far, the deduced amino acid sequence of TcPI-PLC revealed some unique features such as an N-myristoylation consensus sequence at its amino-terminal end, lack of an apparent pleckstrin homology domain and a highly charged linker region between the catalytic X and Y domains. TcPI-PLC is lipid modified in vivo, as demonstrated by metabolic labeling with [(3)H]myristate and [(3)H]palmitate and fatty acid analysis of the immunoprecipitated protein, and may constitute the first example of a new group of PI-PLCs.
Collapse
Affiliation(s)
- T Furuya
- Laboratory of Molecular Parasitology, Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | |
Collapse
|
40
|
Tetteh KK, Loukas A, Tripp C, Maizels RM. Identification of abundantly expressed novel and conserved genes from the infective larval stage of Toxocara canis by an expressed sequence tag strategy. Infect Immun 1999; 67:4771-9. [PMID: 10456930 PMCID: PMC96808 DOI: 10.1128/iai.67.9.4771-4779.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1999] [Accepted: 06/01/1999] [Indexed: 12/31/2022] Open
Abstract
Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3' and 5' ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3' untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis.
Collapse
Affiliation(s)
- K K Tetteh
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland, United Kingdom
| | | | | | | |
Collapse
|
41
|
Urményi TP, Bonaldo MF, Soares MB, Rondinelli E. Construction of a normalized cDNA library for the Trypanosoma cruzi genome project. J Eukaryot Microbiol 1999; 46:542-4. [PMID: 10519221 DOI: 10.1111/j.1550-7408.1999.tb06072.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sequencing of the Trypanosoma cruzi genome is underway. Expressed sequence tags, obtained from cDNA libraries, facilitate mapping and gene discovery. The efficiency of large-scale generation of such tags is increased when using normalized cDNA libraries, where the frequency of individual clones is brought within a narrow range. Repetitive sequencing of abundant clones is therefore minimized. We constructed a normalized cDNA library from epimastigotes of clone CL Brener, and the efficiency of normalization of representative clones was assessed and shown to be adequate. The normalized cDNA library has been distributed to several groups and large-scale sequencing is currently in progress.
Collapse
Affiliation(s)
- T P Urményi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
42
|
Abstract
Cryptosporidium parvum is an obligate intracellular pathogen responsible for widespread infections in humans and animals. The inability to obtain purified samples of this organism's various developmental stages has limited the understanding of the biochemical mechanisms important for C. parvum development or host-parasite interaction. To identify C. parvum genes independent of their developmental expression, a random sequence analysis of the 10.4-megabase genome of C. parvum was undertaken. Total genomic DNA was sheared by nebulization, and fragments between 800 and 1,500 bp were gel purified and cloned into a plasmid vector. A total of 442 clones were randomly selected and subjected to automated sequencing by using one or two primers flanking the cloning site. In this way, 654 genomic survey sequences (GSSs) were generated, corresponding to >320 kb of genomic sequence. These sequences were assembled into 408 contigs containing >250 kb of unique sequence, representing approximately 2.5% of the C. parvum genome. Comparison of the GSSs with sequences in the public DNA and protein databases revealed that 107 contigs (26%) displayed similarity to previously identified proteins and rRNA and tRNA genes. These included putative genes involved in the glycolytic pathway, DNA, RNA, and protein metabolism, and signal transduction pathways. The repetitive sequence elements identified included a telomere-like sequence containing hexamer repeats, 57 microsatellite-like elements composed of dinucleotide or trinucleotide repeats, and a direct repeat sequence. This study demonstrates that large-scale genomic sequencing is an efficient approach to analyze the organizational characteristics and information content of the C. parvum genome.
Collapse
Affiliation(s)
- C Liu
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|