1
|
Block AM, Wiegert PC, Namugenyi SB, Tischler AD. Transposon sequencing reveals metabolic pathways essential for Mycobacterium tuberculosis infection. PLoS Pathog 2024; 20:e1011663. [PMID: 38498580 PMCID: PMC10977890 DOI: 10.1371/journal.ppat.1011663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/28/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
New drugs are needed to shorten and simplify treatment of tuberculosis caused by Mycobacterium tuberculosis. Metabolic pathways that M. tuberculosis requires for growth or survival during infection represent potential targets for anti-tubercular drug development. Genes and metabolic pathways essential for M. tuberculosis growth in standard laboratory culture conditions have been defined by genome-wide genetic screens. However, whether M. tuberculosis requires these essential genes during infection has not been comprehensively explored because mutant strains cannot be generated using standard methods. Here we show that M. tuberculosis requires the phenylalanine (Phe) and de novo purine and thiamine biosynthetic pathways for mammalian infection. We used a defined collection of M. tuberculosis transposon (Tn) mutants in essential genes, which we generated using a custom nutrient-rich medium, and transposon sequencing (Tn-seq) to identify multiple central metabolic pathways required for fitness in a mouse infection model. We confirmed by individual retesting and complementation that mutations in pheA (Phe biosynthesis) or purF (purine and thiamine biosynthesis) cause death of M. tuberculosis in the absence of nutrient supplementation in vitro and strong attenuation in infected mice. Our findings show that Tn-seq with defined Tn mutant pools can be used to identify M. tuberculosis genes required during mouse lung infection. Our results also demonstrate that M. tuberculosis requires Phe and purine/thiamine biosynthesis for survival in the host, implicating these metabolic pathways as prime targets for the development of new antibiotics to combat tuberculosis.
Collapse
Affiliation(s)
- Alisha M. Block
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Parker C. Wiegert
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Sarah B. Namugenyi
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Anna D. Tischler
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31:571-585. [PMID: 36709096 DOI: 10.1016/j.tim.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Present address: Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| |
Collapse
|
3
|
Dellagostin OA, Borsuk S, Oliveira TL, Seixas FK. Auxotrophic Mycobacterium bovis BCG: Updates and Perspectives. Vaccines (Basel) 2022; 10:802. [PMID: 35632558 PMCID: PMC9146772 DOI: 10.3390/vaccines10050802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium bovis BCG has been used for a century as the only licensed vaccine against tuberculosis. Owing to its strong adjuvant properties, BCG has also been employed as an oncological immunotherapeutic as well as a live vaccine vector against other pathogens. However, BCG vaccination has limited efficacy in protecting against adult forms of tuberculosis (TB), raises concerns about its safety in immunocompromised populations, compromises the diagnosis of TB through the tuberculin test and lacks predictability for successful antigen expression and immune responses to heterologous antigens. Together, these factors propelled the construction and evaluation of auxotrophic BCG strains. Auxotrophs of BCG have been developed from mutations in the genes required for their growth using different approaches and have shown the potential to provide a model to study M. tuberculosis, a more stable, safe, and effective alternative to BCG and a vector for the development of recombinant live vaccines, especially against HIV infection. In this review, we provide an overview of the strategies for developing and using the auxotrophic BCG strains in different scenarios.
Collapse
Affiliation(s)
- Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil; (S.B.); (T.L.O.); (F.K.S.)
| | | | | | | |
Collapse
|
4
|
Minato Y, Gohl DM, Thiede JM, Chacón JM, Harcombe WR, Maruyama F, Baughn AD. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. mSystems 2019; 4:e00070-19. [PMID: 31239393 PMCID: PMC6593218 DOI: 10.1128/msystems.00070-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a combination of transposon insertion sequencing (Tn-seq) and comparative genomic analysis. To identify conditionally essential genes by Tn-seq, we used media with different nutrient compositions. Although many conditional gene essentialities were affected by the presence of relevant nutrient sources, we also found that the essentiality of genes in a subset of metabolic pathways was unaffected by metabolite availability. Comparative genomic analysis revealed that not all essential genes identified by Tn-seq were fully conserved within the M. tuberculosis complex, including some existing antitubercular drug target genes. In addition, we utilized an available M. tuberculosis genome-scale metabolic model, iSM810, to predict M. tuberculosis gene essentiality in silico Comparing the sets of essential genes experimentally identified by Tn-seq to those predicted in silico reveals the capabilities and limitations of gene essentiality predictions, highlighting the complexity of M. tuberculosis essential metabolic functions. This study provides a promising platform to study essential cellular functions in M. tuberculosis IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of tuberculosis (TB), resulting in over 1 million deaths each year. TB therapy is challenging because it requires a minimum of 6 months of treatment with multiple drugs. Protracted treatment times and the emergent spread of drug-resistant M. tuberculosis necessitate the identification of novel targets for drug discovery to curb this global health threat. Essential functions, defined as those indispensable for growth and/or survival, are potential targets for new antimicrobial drugs. In this study, we aimed to define gene essentialities of M. tuberculosis on a genomewide scale to comprehensively identify potential targets for drug discovery. We utilized a combination of experimental (functional genomics) and in silico approaches (comparative genomics and flux balance analysis). Our functional genomics approach identified sets of genes whose essentiality was affected by nutrient availability. Comparative genomics revealed that not all essential genes were fully conserved within the M. tuberculosis complex. Comparing sets of essential genes identified by functional genomics to those predicted by flux balance analysis highlighted gaps in current knowledge regarding M. tuberculosis metabolic capabilities. Thus, our study identifies numerous potential antitubercular drug targets and provides a comprehensive picture of the complexity of M. tuberculosis essential cellular functions.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, Minnesota, USA
| | - Joshua M Thiede
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jeremy M Chacón
- Biotechnology Institute and Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - William R Harcombe
- Biotechnology Institute and Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo, Japan
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Moscoso M, García P, Cabral MP, Rumbo C, Bou G. A D-Alanine auxotrophic live vaccine is effective against lethal infection caused by Staphylococcus aureus. Virulence 2018; 9:604-620. [PMID: 29297750 PMCID: PMC5955480 DOI: 10.1080/21505594.2017.1417723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus infections are becoming a major global health issue due to the rapid emergence of multidrug-resistant strains. Therefore, there is an urgent need to develop an effective vaccine to prevent and control these infections. In order to develop a universal immunization strategy, we constructed a mutant derivative of S. aureus 132 which lacks the genes involved in D-alanine biosynthesis, a structural component of cell wall peptidoglycan. This unmarked deletion mutant requires the exogenous addition of D-alanine for in vitro growth. The aim of this study was to examine the ability of this D-alanine auxotroph to induce protective immunity against staphylococcal infection. Our findings demonstrate that this deletion mutant is highly attenuated, elicits a protective immune response in mice and generates cross-reactive antibodies. Moreover, the D-alanine auxotroph was completely eliminated from the blood of mice after its intravenous or intraperitoneal injection. We determined that the protective effect was dependent on antibody production since the adoptive transfer of immune serum into naïve mice resulted in effective protection against S. aureus bacteremia. In addition, splenocytes from mice immunized with the D-alanine auxotroph vaccine showed specific production of IL-17A after ex vivo stimulation. We conclude that this D-alanine auxotroph protects mice efficiently against virulent staphylococcal strains through the combined action of antibodies and IL-17A, and therefore constitutes a promising vaccine candidate against staphylococcal disease, for which no licensed vaccine is available yet.
Collapse
Affiliation(s)
- Miriam Moscoso
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Patricia García
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Maria P Cabral
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Carlos Rumbo
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain.,b International Research Center in Critical Raw Materials-ICCRAM, University of Burgos , Burgos , Spain.,c Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology. Consolidated Research Unit UIC-154. Castilla y León. Spain. University of Burgos. Hospital del Rey s/n , Burgos , Spain
| | - Germán Bou
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| |
Collapse
|
6
|
Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of Mycobacterium tuberculosis through Nutrient Auxotrophy. mBio 2018; 9:mBio.00938-18. [PMID: 29844114 PMCID: PMC5974470 DOI: 10.1128/mbio.00938-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug-resistant (MDR) tuberculosis, defined as tuberculosis resistant to the two first-line drugs isoniazid and rifampin, poses a serious problem for global tuberculosis control strategies. Lack of a safe and convenient model organism hampers progress in combating the spread of MDR strains of Mycobacterium tuberculosis. We reasoned that auxotrophic MDR mutants of M. tuberculosis would provide a safe means for studying MDR M. tuberculosis without the need for a biosafety level 3 (BSL3) laboratory. Two different sets of triple auxotrophic mutants of M. tuberculosis were generated, which were auxotrophic for the nutrients leucine, pantothenate, and arginine or for leucine, pantothenate, and methionine. These triple auxotrophic strains retained their acid-fastness, their ability to generate both a drug persistence phenotype and drug-resistant mutants, and their susceptibility to plaque-forming mycobacterial phages. MDR triple auxotrophic mutants were obtained in a two-step fashion, selecting first for solely isoniazid-resistant or rifampin-resistant mutants. Interestingly, selection for isoniazid-resistant mutants of the methionine auxotroph generated isolates with single point mutations in katG, which encodes an isoniazid-activating enzyme, whereas similar selection using the arginine auxotroph yielded isoniazid-resistant mutants with large deletions in the chromosomal region containing katG. These M. tuberculosis MDR strains were readily sterilized by second-line tuberculosis drugs and failed to kill immunocompromised mice. These strains provide attractive candidates for M. tuberculosis biology studies and drug screening outside the BSL3 facility. Elimination of Mycobacterium tuberculosis, the bacterium causing tuberculosis, requires enhanced understanding of its biology in order to identify new drugs against drug-susceptible and drug-resistant M. tuberculosis as well as uncovering novel pathways that lead to M. tuberculosis death. To circumvent the need for a biosafety level 3 (BSL3) laboratory when conducting research on M. tuberculosis, we have generated drug-susceptible and drug-resistant triple auxotrophic strains of M. tuberculosis suitable for use in a BSL2 laboratory. These strains originate from a double auxotrophic M. tuberculosis strain, H37Rv ΔpanCD ΔleuCD, which was reclassified as a BSL2 strain based on its lack of lethality in immunocompromised and immunocompetent mice. A third auxotrophy (methionine or arginine) was introduced via deletion of metA or argB, respectively, since M. tuberculosis ΔmetA and M. tuberculosis ΔargB are unable to survive amino acid auxotrophy and infect their host. The resulting triple auxotrophic M. tuberculosis strains retained characteristics of M. tuberculosis relevant for most types of investigations.
Collapse
|
7
|
Karuppusamy S, Mutharia L, Kelton D, Karrow N, Kirby G. Identification of antigenic proteins from Mycobacterium avium subspecies paratuberculosis cell envelope by comparative proteomic analysis. MICROBIOLOGY-SGM 2018; 164:322-337. [PMID: 29458660 DOI: 10.1099/mic.0.000606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Johne's disease (JD) is a contagious, chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The aim of this study was to identify antigenic proteins from the MAP cell envelope (i.e. cell wall and cytoplasmic membranes) by comparing MAP, M. avium subsp. hominissuis (MAH) and M. smegmatis (MS) cell envelope protein profiles using a proteomic approach. Composite two-dimensional (2D) difference gel electrophoresis images revealed 13 spots present only in the image of the MAP cell envelope proteins. Using serum from MAP-infected cattle, immunoblot analysis of 2D gels revealed that proteins in the 13 spots were antigenic. These proteins were identified by liquid chromatography tandem mass spectrometry as products of the following genes: sdhA, fadE25_2, mkl, citA, gapdh, fadE3_2, moxR1, mmp, purC, mdh, atpG, fbpB and desA2 as well as two proteins without gene names identified as transcriptional regulator (MAP0035) protein and hypothetical protein (MAP1233). Protein functions ranged from energy generation, cell wall biosynthesis, protein maturation, bacterial replication and invasion of epithelial cells, functions considered essential to MAP virulence and intracellular survival. Five MAP cell envelope proteins, i.e. SdhA, FadE25_2, FadE3_2, MAP0035 and DesA2 were recombinantly expressed, three of which, i.e. SdhA, FadE25_2 and DesA2, were of sufficient purity and yield to generate polyclonal antibodies. Immunoblot analysis revealed antibodies reacted specifically to the respective MAP cell envelope proteins with minimal cross-reactivity with MAH and MS cell envelope proteins. Identification and characterization of MAP-specific proteins and antibodies to those proteins may be useful in developing new diagnostic tests for JD diagnosis.
Collapse
Affiliation(s)
| | - Lucy Mutharia
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gordon Kirby
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Abstract
Coevolution of pathogens and host has led to many metabolic strategies employed by intracellular pathogens to deal with the immune response and the scarcity of food during infection. Simply put, bacterial pathogens are just looking for food. As a consequence, the host has developed strategies to limit nutrients for the bacterium by containment of the intruder in a pathogen-containing vacuole and/or by actively depleting nutrients from the intracellular space, a process called nutritional immunity. Since metabolism is a prerequisite for virulence, such pathways could potentially be good targets for antimicrobial therapies. In this chapter, we review the current knowledge about the in vivo diet of Mycobacterium tuberculosis, with a focus on amino acid and cofactors, discuss evidence for the bacilli's nutritionally independent lifestyle in the host, and evaluate strategies for new chemotherapeutic interventions.
Collapse
|
9
|
Cabral MP, García P, Beceiro A, Rumbo C, Pérez A, Moscoso M, Bou G. Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy. Nat Commun 2017; 8:15480. [PMID: 28548079 PMCID: PMC5458566 DOI: 10.1038/ncomms15480] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 01/20/2023] Open
Abstract
Vaccine development is a priority for global health due to the growing multidrug resistance in bacteria. D-glutamate synthesis is essential for bacterial cell wall formation. Here we present a strategy for generating effective bacterial whole-cell vaccines auxotrophic for D-glutamate. We apply this strategy to generate D-glutamate auxotrophic vaccines for three major pathogens, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus. These bacterial vaccines show virulence attenuation and self-limited growth in mice, and elicit functional and cross-reactive antibodies, and cellular immunity. These responses correlate with protection against acute lethal infection with other strains of the same species, including multidrug resistant, virulent and/or high-risk clones such as A. baumannii AbH12O-A2 and Ab307-0294, P. aeruginosa PA14, and community-acquired methicillin-resistant S. aureus USA300LAC. This approach can potentially be applied for the development of live-attenuated vaccines for virtually any other bacterial pathogens, and does not require the identification of virulence determinants, which are often pathogen-specific.
Collapse
Affiliation(s)
- Maria P. Cabral
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Patricia García
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Alejandro Beceiro
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Carlos Rumbo
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Astrid Pérez
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Miriam Moscoso
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Germán Bou
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| |
Collapse
|
10
|
Rashid MI, Naz A, Ali A, Andleeb S. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Genomics 2017; 109:274-283. [PMID: 28487172 DOI: 10.1016/j.ygeno.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 11/27/2022]
Abstract
Pseudomonas aeruginosa is among top critical nosocomial infectious agents due to its persistent infections and tendency for acquiring drug resistance mechanisms. To date, there is no vaccine available for this pathogen. We attempted to exploit the genomic and proteomic information of P. aeruginosa though reverse-vaccinology approaches to unveil the prospective vaccine candidates. P. aeruginosa strain PAO1 genome was subjected to sequential prioritization approach following genomic, proteomics and structural analyses. Among, the predicted vaccine candidates: surface components of antibiotic efflux pumps (Q9HY88, PA2837), chaperone-usher pathway components (CupC2, CupB3), penicillin binding protein of bacterial cell wall (PBP1a/mrcA), extracellular component of Type 3 secretory system (PscC) and three uncharacterized secretory proteins (PA0629, PA2822, PA0978) were identified as potential candidates qualifying all the set criteria. These proteins were then analyzed for potential immunogenic surface exposed epitopes. These predicted epitopes may provide a basis for development of a reliable subunit vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Muhammad Ibrahim Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan.
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
11
|
Yong D, Tee KK, Yin WF, Chan KG. Characterization and Comparative Overview of Complete Sequences of the First Plasmids of Pandoraea across Clinical and Non-clinical Strains. Front Microbiol 2016; 7:1606. [PMID: 27790203 PMCID: PMC5064223 DOI: 10.3389/fmicb.2016.01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022] Open
Abstract
To date, information on plasmid analysis in Pandoraea spp. is scarce. To address the gap of knowledge on this, the complete sequences of eight plasmids from Pandoraea spp. namely Pandoraea faecigallinarum DSM 23572T (pPF72-1, pPF72-2), Pandoraea oxalativorans DSM 23570T (pPO70-1, pPO70-2, pPO70-3, pPO70-4), Pandoraea vervacti NS15 (pPV15) and Pandoraea apista DSM 16535T (pPA35) were studied for the first time in this study. The information on plasmid sequences in Pandoraea spp. is useful as the sequences did not match any known plasmid sequence deposited in public databases. Replication genes were not identified in some plasmids, a situation that has led to the possibility of host interaction involvement. Some plasmids were also void of par genes and intriguingly, repA gene was also not discovered in these plasmids. This further leads to the hypothesis of host-plasmid interaction. Plasmid stabilization/stability protein-encoding genes were observed in some plasmids but were not established for participating in plasmid segregation. Toxin-antitoxin systems MazEF, VapBC, RelBE, YgiT-MqsR, HigBA, and ParDE were identified across the plasmids and their presence would improve plasmid maintenance. Conjugation genes were identified portraying the conjugation ability amongst Pandoraea plasmids. Additionally, we found a shared region amongst some of the plasmids that consists of conjugation genes. The identification of genes involved in replication, segregation, toxin-antitoxin systems and conjugation, would aid the design of drugs to prevent the survival or transmission of plasmids carrying pathogenic properties. Additionally, genes conferring virulence and antibiotic resistance were identified amongst the plasmids. The observed features in the plasmids shed light on the Pandoraea spp. as opportunistic pathogens.
Collapse
Affiliation(s)
- Delicia Yong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
The In Vitro Redundant Enzymes PurN and PurT Are Both Essential for Systemic Infection of Mice in Salmonella enterica Serovar Typhimurium. Infect Immun 2016; 84:2076-2085. [PMID: 27113361 DOI: 10.1128/iai.00182-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/21/2016] [Indexed: 11/20/2022] Open
Abstract
Metabolic enzymes show a high degree of redundancy, and for that reason they are generally ignored in searches for novel targets for anti-infective substances. The enzymes PurN and PurT are redundant in vitro in Salmonella enterica serovar Typhimurium, in which they perform the third step of purine synthesis. Surprisingly, the results of the current study demonstrated that single-gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection indexes [CI] of <0.03) in mouse infections. While the ΔpurT mutant multiplied as fast as the wild-type strain in cultured J774A.1 macrophages, net multiplication of the ΔpurN mutant was reduced approximately 50% in 20 h. The attenuation of the ΔpurT mutant was abolished by simultaneous removal of the enzyme PurU, responsible for the formation of formate, indicating that the attenuation was related to formate accumulation or wasteful consumption of formyl tetrahydrofolate by PurU. In the process of further characterization, we disclosed that the glycine cleavage system (GCV) was the most important for formation of C1 units in vivo (CI = 0.03 ± 0.03). In contrast, GlyA was the only important enzyme for the formation of C1 units in vitro The results with the ΔgcvT mutant further revealed that formation of serine by SerA and further conversion of serine into C1 units and glycine by GlyA were not sufficient to ensure C1 formation in S Typhimurium in vivo The results of the present study call for reinvestigations of the concept of metabolic redundancy in S Typhimurium in vivo.
Collapse
|
13
|
Brucella abortusΔcydCΔcydD and ΔcydCΔpurD double-mutants are highly attenuated and confer long-term protective immunity against virulent Brucella abortus. Vaccine 2015; 34:237-244. [PMID: 26616550 DOI: 10.1016/j.vaccine.2015.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/13/2015] [Indexed: 11/24/2022]
Abstract
We constructed double deletion (ΔcydCΔcydD and ΔcydCΔpurD) mutants from virulent Brucella abortus biovar 1 field isolate (BA15) by deleting the genes encoding an ATP-binding cassette-type transporter (cydC and cydD genes) and a phosphoribosylamine-glycine ligase (purD). Both BA15ΔcydCΔcydD and BA15ΔcydCΔpurD double-mutants exhibited significant attenuation of virulence when assayed in murine macrophages or in BALB/c mice. Both double-mutants were readily cleared from spleens by 4 weeks post-inoculation even when inoculated at the dose of 10(8) CFU per mouse. Moreover, the inoculated mice showed no splenomegaly, which indicates that the mutants are highly attenuated. Importantly, the attenuation of in vitro and in vivo growth did not impair the ability of these mutants to confer long-term protective immunity in mice against challenge with B. abortus strain 2308. Vaccination of mice with either mutant induced humoral and cell-mediated immune responses, and provided significantly better protection than commercial B. abortus strain RB51 vaccine. These results suggest that highly attenuated BA15ΔcydCΔcydD and BA15ΔcydCΔpurD mutants can be used effectively as potential live vaccine candidates against bovine brucellosis.
Collapse
|
14
|
Villela A, Rodrigues-Junior V, Basso LA, Santos D. Development of Mycobacterium tuberculosis attenuated strains as live vaccine candidates for tuberculosis. BMC Proc 2014. [PMCID: PMC4204203 DOI: 10.1186/1753-6561-8-s4-o5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Dietary pyridoxine controls efficacy of vitamin B6-auxotrophic tuberculosis vaccine bacillus Calmette-Guérin ΔureC::hly Δpdx1 in mice. mBio 2014; 5:e01262-14. [PMID: 24895310 PMCID: PMC4049106 DOI: 10.1128/mbio.01262-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The only tuberculosis (TB) vaccine in use today, bacillus Calmette-Guérin (BCG), provides insufficient protection and can cause adverse events in immunocompromised individuals, such as BCGosis in HIV(+) newborns. We previously reported improved preclinical efficacy and safety of the recombinant vaccine candidate BCG ΔureC::hly, which secretes the pore-forming listeriolysin O of Listeria monocytogenes. Here, we evaluate a second-generation construct, BCG ΔureC::hly Δpdx1, which is deficient in pyridoxine synthase, an enzyme that is required for biosynthesis of the essential cofactor vitamin B6. This candidate was auxotrophic for vitamin B6 in a concentration-dependent manner, as was its survival in vivo. BCG ΔureC::hly Δpdx1 showed markedly restricted dissemination in subcutaneously vaccinated mice, which was ameliorated by dietary supplementation with vitamin B6. The construct was safer in severe combined immunodeficiency mice than the parental BCG ΔureC::hly. A prompt innate immune response to vaccination, measured by secretion of interleukin-6, granulocyte colony-stimulating factor, keratinocyte cytokine, and macrophage inflammatory protein-1α, remained independent of vitamin B6 administration, while acquired immunity, notably stimulation of antigen-specific CD4 T cells, B cells, and memory T cells, was contingent on vitamin B6 administration. The early protection provided by BCG ΔureC::hly Δpdx1 in a murine Mycobacterium tuberculosis aerosol challenge model consistently depended on vitamin B6 supplementation. Prime-boost vaccination increased protection against the canonical M. tuberculosis H37Rv laboratory strain and a clinical isolate of the Beijing/W lineage. We demonstrate that the efficacy of a profoundly attenuated recombinant BCG vaccine construct can be modulated by external administration of a small molecule. This principle fosters the development of safer vaccines required for immunocompromised individuals, notably HIV(+) infants. IMPORTANCE Mycobacterium tuberculosis can synthesize the essential cofactor vitamin B6, while humans depend on dietary supplementation. Unlike the lipophilic vitamins A, D, and E, water-soluble vitamin B6 is well tolerated at high doses. We generated a vitamin B6 auxotroph of the phase II clinical tuberculosis vaccine candidate bacillus Calmette-Guérin ΔureC::hly. The next-generation candidate was profoundly attenuated compared to the parental strain. Adaptive immunity and protection in mice consistently depended on increased dietary vitamin B6 above the daily required dose. Control of vaccine efficacy via food supplements such as vitamin B6 could provide a fast track toward improved safety. Safer vaccines are urgently needed for HIV-infected individuals at high risk of adverse events in response to live vaccines.
Collapse
|
16
|
Puniya BL, Kulshreshtha D, Verma SP, Kumar S, Ramachandran S. Integrated gene co-expression network analysis in the growth phase of Mycobacterium tuberculosis reveals new potential drug targets. MOLECULAR BIOSYSTEMS 2014; 9:2798-815. [PMID: 24056838 DOI: 10.1039/c3mb70278b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have carried out weighted gene co-expression network analysis of Mycobacterium tuberculosis to gain insights into gene expression architecture during log phase growth. The differentially expressed genes between at least one pair of 11 different M. tuberculosis strains as source of biological variability were used for co-expression network analysis. This data included genes with highest coefficient of variation in expression. Five distinct modules were identified using topological overlap based clustering. All the modules together showed significant enrichment in biological processes: fatty acid biosynthesis, cell membrane, intracellular membrane bound organelle, DNA replication, Quinone biosynthesis, cell shape and peptidoglycan biosynthesis, ribosome and structural constituents of ribosome and transposition. We then extracted the co-expressed connections which were supported either by transcriptional regulatory network or STRING database or high edge weight of topological overlap. The genes trpC, nadC, pitA, Rv3404c, atpA, pknA, Rv0996, purB, Rv2106 and Rv0796 emerged as top hub genes. After overlaying this network on the iNJ661 metabolic network, the reactions catalyzed by 15 highly connected metabolic genes were knocked down in silico and evaluated by Flux Balance Analysis. The results showed that in 12 out of 15 cases, in 11 more than 50% of reactions catalyzed by genes connected through co-expressed connections also had altered fluxes. The modules 'Turquoise', 'Blue' and 'Red' also showed enrichment in essential genes. We could map 152 of the previously known or proposed drug targets in these modules and identified 15 new potential drug targets based on their high degree of co-expressed connections and strong correlation with module eigengenes.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- G N Ramachandran Knowledge Centre for Genome Informatics, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | | | | | | | | |
Collapse
|
17
|
Kaufmann SH, Cotton MF, Eisele B, Gengenbacher M, Grode L, Hesseling AC, Walzl G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 2014; 13:619-30. [PMID: 24702486 DOI: 10.1586/14760584.2014.905746] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculosis remains a major health threat and vaccines better than bacillus Calmette-Guérin (BCG) are urgently required. Here we describe our experience with a recombinant BCG expressing listeriolysin and deficient in urease. This potential replacement vaccine has demonstrated superior efficacy and safety over BCG in Mycobacterium tuberculosis aerosol-challenged mice and was safe in numerous animal models including immune-deficient mice, guinea pigs, rabbits and nonhuman primates. Phase I clinical trials in adults in Germany and South Africa have proven safety and a current Phase IIa trial is under way to assess immunogenicity and safety in its target population, newborns in a high tuberculosis incidence setting, with promising early results. Second-generation candidates are being developed to improve safety and efficacy.
Collapse
Affiliation(s)
- Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Duval N, Luhrs K, Wilkinson TG, Baresova V, Skopova V, Kmoch S, Vacano GN, Zikanova M, Patterson D. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders. Mol Genet Metab 2013; 108:178-189. [PMID: 23394948 PMCID: PMC4296673 DOI: 10.1016/j.ymgme.2013.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 02/06/2023]
Abstract
Purines are molecules essential for many cell processes, including RNA and DNA synthesis, regulation of enzyme activity, protein synthesis and function, energy metabolism and transfer, essential coenzyme function, and cell signaling. Purines are produced via the de novo purine biosynthesis pathway. Mutations in purine biosynthetic genes, for example phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS, E.C. 6.3.2.6/E.C. 4.1.1.21), can lead to developmental anomalies in lower vertebrates. Alterations in PAICS expression in humans have been associated with various types of cancer. Mutations in adenylosuccinate lyase (ADSL, E.C. 4.3.2.2) or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC, E.C. 2.1.2.3/E.C. 3.5.4.10) lead to inborn errors of metabolism with a range of clinical symptoms, including developmental delay, severe neurological symptoms, and autistic features. The pathogenetic mechanism is unknown for these conditions, and no effective treatments exist. The study of cells carrying mutations in the various de novo purine biosynthesis pathway genes provides one approach to analysis of purine disorders. Here we report the characterization of AdeD Chinese hamster ovary (CHO) cells, which carry genetic mutations encoding p.E177K and p.W363* variants of PAICS. Both mutations impact PAICS structure and completely abolish its biosynthesis. Additionally, we describe a sensitive and rapid analytical method for detection of purine de novo biosynthesis intermediates based on high performance liquid chromatography with electrochemical detection. Using this technique we detected accumulation of AIR in AdeD cells. In AdeI cells, mutant for the ADSL gene, we detected accumulation of SAICAR and SAMP and, somewhat unexpectedly, accumulation of AIR. This method has great potential for metabolite profiling of de novo purine biosynthesis pathway mutants, identification of novel genetic defects of purine metabolism in humans, and elucidating the regulation of this critical metabolic pathway.
Collapse
Affiliation(s)
- Nathan Duval
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Kyleen Luhrs
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Terry G. Wilkinson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Veronika Baresova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Vaclava Skopova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Stanislav Kmoch
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - Guido N. Vacano
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| | - Marie Zikanova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic
| | - David Patterson
- Eleanor Roosevelt Institute and Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave., Denver, CO 80208, USA
| |
Collapse
|
19
|
Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet 2012; 8:e1002887. [PMID: 22969433 PMCID: PMC3435247 DOI: 10.1371/journal.pgen.1002887] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 06/24/2012] [Indexed: 12/12/2022] Open
Abstract
Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence. Intracellular bacterial pathogens have developed sophisticated mechanisms to invade and replicate within eukaryotic cells. For successful replication, pathogens have adapted metabolically to the intracellular niche. While this adaptation is fundamental to the ability to cause disease, we know little about pathogen's intracellular metabolism and its association with virulence. In this study we took a global approach that combines computational and experimental methods to decipher the intracellular metabolic requirements of the human bacterial pathogen Listeria monocytogenes. We identified 12 metabolic pathways to be differentially active during infection in comparison to growth in rich lab media. We validated the essentiality of the active pathways for L. monocytogenes intracellular replication. Pathways included: biosynthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as the catabolism of L-rhamnose and glycerol. Next we analyzed whether the requirement for these nutrients associates with virulence. We found that limiting concentrations of BCAAs, primarily of isoleucine, results in robust induction of the bacterial virulence state, a response that is dependent on the isoleucine responsive regulator, CodY. CodY was responsible for the up-regulation of the major virulence regulator of L. monocytogenes, PrfA. This study supports the premise that pathogens metabolism and virulence are closely interlinked.
Collapse
|
20
|
Identification of MrtAB, an ABC transporter specifically required for Yersinia pseudotuberculosis to colonize the mesenteric lymph nodes. PLoS Pathog 2012; 8:e1002828. [PMID: 22876175 PMCID: PMC3410872 DOI: 10.1371/journal.ppat.1002828] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/15/2012] [Indexed: 12/26/2022] Open
Abstract
A highly conserved virulence plasmid encoding a type III secretion system is shared by the three Yersinia species most pathogenic for mammals. Although factors encoded on this plasmid enhance the ability of Yersinia to thrive in their mammalian hosts, the loss of this virulence plasmid does not eliminate growth or survival in host organs. Most notably, yields of viable plasmid-deficient Yersinia pseudotuberculosis (Yptb) are indistinguishable from wild-type Yptb within mesenteric lymph nodes. To identify chromosomal virulence factors that allow for plasmid-independent survival during systemic infection of mice, we generated transposon insertions in plasmid-deficient Yptb, and screened a library having over 20,000 sequence-identified insertions. Among the previously uncharacterized loci, insertions in mrtAB, an operon encoding an ABC family transporter, had the most profound phenotype in a plasmid-deficient background. The absence of MrtAB, however, had no effect on growth in the liver and spleen of a wild type strain having an intact virulence plasmid, but caused a severe defect in colonization of the mesenteric lymph nodes. Although this result is consistent with lack of expression of the type III secretion system by Wt Yptb in the mesenteric lymph nodes, a reporter for YopE indicated that expression of the system was robust. We demonstrate that the ATPase activity of MrtB is required for growth in mice, indicating that transport activity is required for virulence. Indeed, MrtAB appears to function as an efflux pump, as the ATPase activity enhances resistance to ethidium bromide while increasing sensitivity to pyocyanin, consistent with export across the inner membrane.
Collapse
|
21
|
Lefébure T, Richards VP, Lang P, Pavinski-Bitar P, Stanhope MJ. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae. PLoS One 2012; 7:e37607. [PMID: 22666370 PMCID: PMC3364286 DOI: 10.1371/journal.pone.0037607] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/24/2012] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Saikolappan S, Estrella J, Sasindran SJ, Khan A, Armitige LY, Jagannath C, Dhandayuthapani S. The fbpA/sapM double knock out strain of Mycobacterium tuberculosis is highly attenuated and immunogenic in macrophages. PLoS One 2012; 7:e36198. [PMID: 22574140 PMCID: PMC3344844 DOI: 10.1371/journal.pone.0036198] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 03/31/2012] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing and reduced Th1 responses. However, an Mtb derived ΔfbpA attenuated mutant underwent limited phagosome maturation, enhanced immunogenicity and was as effective as BCG in protecting mice against TB. To facilitate phagosome maturation of ΔfbpA, we disrupted an additional gene sapM, which encodes for an acid phosphatase. Compared to the wild type Mtb, the ΔfbpAΔsapM (double knock out; DKO) strain was attenuated for growth in mouse macrophages and PMA activated human THP1 macrophages. Attenuation correlated with increased oxidants in macrophages in response to DKO infection and enhanced labeling of lysosomal markers (CD63 and rab7) on DKO phagosomes. An in vitro Antigen 85B peptide presentation assay was used to determine antigen presentation to T cells by APCs infected with DKO or other mycobacterial strains. This revealed that DKO infected APCs showed the strongest ability to present Ag85B to T cells (>2500 pgs/mL in 4 hrs) as compared to APCs infected with wild type Mtb or ΔfbpA or ΔsapM strain (<1000 pgs/mL in 4 hrs), indicating that DKO strain has enhanced immunogenicity than other strains. The ability of DKO to undergo lysosomal fusion and vacuolar acidification correlated with antigen presentation since bafilomycin, that inhibits acidification in APCs, reduced antigen presentation. Finally, the DKO vaccine elicited a better Th1 response in mice after subcutaneous vaccination than either ΔfbpA or ΔsapM. Since ΔfbpA has been used in mice as a candidate vaccine and the DKO (ΔfbpAΔsapM) mutant is more immunogenic than ΔfbpA, we propose the DKO is a potential anti-tuberculosis vaccine.
Collapse
Affiliation(s)
- Sankaralingam Saikolappan
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Jaymie Estrella
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Smitha J. Sasindran
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lisa Y. Armitige
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Subramanian Dhandayuthapani
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| |
Collapse
|
23
|
Abstract
Given that TB still constitutes a tremendous public health problem at the start of the 21st Century, it may come as a surprise that Bacillus Calmette-Guérin (BCG), developed nearly 100 years ago, is today still the only vaccine available against TB. Owing to its limited efficiency in controlling TB, much effort has been deployed to develop new, improved vaccines, with initial preclinical models showing encouraging results. However, since most individuals worldwide have been vaccinated with BCG, new vaccine developments have to be placed in that context. Consequently, several approaches explore the heterologous prime-boost strategy. In this strategy, BCG-primed immunity will be strengthened or prolonged by the administration of antigens present in BCG but formulated in a different manner; either as purified antigens in the presence of appropriate adjuvants, as DNA vaccines or as viral-encoded mycobacterial antigens.
Collapse
|
24
|
Larsen MH, Jacobs WR, Porcelli SA, Kim J, Ranganathan UDK, Fennelly GJ. Balancing safety and immunogenicity in live-attenuated mycobacterial vaccines for use in humans at risk for HIV: response to misleading comments in Ranganathan et al. "recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice". Vaccine 2010; 28:3633-4. [PMID: 20347058 DOI: 10.1016/j.vaccine.2010.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/24/2010] [Accepted: 03/11/2010] [Indexed: 11/17/2022]
|
25
|
A Burkholderia pseudomallei deltapurM mutant is avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion from select-agent lists. Infect Immun 2010; 78:3136-43. [PMID: 20404077 DOI: 10.1128/iai.01313-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei causes the disease melioidosis in humans and is classified as a category B select agent. Research utilizing this pathogen is highly regulated in the United States, and even basic studies must be conducted in biosafety level 3 (BSL-3) facilities. There is currently no attenuated B. pseudomallei strain available that is excluded from select-agent regulations and can be safely handled at BSL-2 facilities. To address this need, we created Bp82 and Bp190, which are DeltapurM derivatives of B. pseudomallei strains 1026b and K96243 that are deficient in adenine and thiamine biosynthesis but replication competent in vitro in rich medium. A series of animal challenge studies was conducted to ensure that these strains were fully attenuated. Whereas the parental strains 1026b and K96243 and the complemented mutants Bp410 and Bp454 were virulent in BALB/c mice following intranasal inoculation, the DeltapurM mutants Bp82 and Bp190 were avirulent even when they were administered at doses 4 logs higher than the doses used for the parental strains. Animals challenged with high doses of the DeltapurM mutants rapidly cleared the bacterium from tissues (lung, liver, and spleen) and remained free of culturable bacteria for the duration of the experiments (up to 60 days postinfection). Moreover, highly susceptible 129/SvEv mice and immune incompetent mice (IFN-gamma-/-, SCID) were resistant to challenges with DeltapurM mutant Bp82. This strain was also avirulent in the Syrian hamster challenge model. We concluded that DeltapurM mutant Bp82 is fully attenuated and safe for use under BSL-2 laboratory conditions and thus is a candidate for exclusion from the select-agent list.
Collapse
|
26
|
Abstract
The human tubercle bacillus Mycobacterium tuberculosis can synthesize NAD(+) using the de novo biosynthesis pathway or the salvage pathway. The salvage pathway of the bovine tubercle bacillus Mycobacterium bovis was reported defective due to a mutation in the nicotinamidase PncA. This defect prevents nicotinic acid secretion, which is the basis for the niacin test that clinically distinguishes M. bovis from M. tuberculosis. Surprisingly, we found that the NAD(+)de novo biosynthesis pathway (nadABC) can be deleted from M. bovis, demonstrating a functioning salvage pathway. M. bovisDeltanadABC fails to grow in mice, whereas M. tuberculosisDeltanadABC grows normally in mice, suggesting that M. tuberculosis can acquire nicotinamide from its host. The introduction of M. tuberculosis pncA into M. bovisDeltanadABC is sufficient to fully restore growth in a mouse, proving that the functional salvage pathway enables nicotinamide acquisition by the tubercle bacilli. This study demonstrates that NAD(+) starvation is a cidal event in the tubercle bacilli and confirms that enzymes common to the de novo and salvage pathways may be good drug targets.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Brian Weinrick
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ka-Wing Wong
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bing Chen
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William R. Jacobs
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
27
|
Re: Misleading comments in Ranganathan et al. "Recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice". Vaccine 2010; 28:2064-5. [PMID: 20038429 DOI: 10.1016/j.vaccine.2009.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
|
28
|
Singhal N, Bisht D, Joshi B. Immunoprophylaxis of tuberculosis: an update of emerging trends. Arch Immunol Ther Exp (Warsz) 2010; 58:97-106. [PMID: 20140756 DOI: 10.1007/s00005-010-0068-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/06/2009] [Indexed: 11/25/2022]
Abstract
Developing effective prophylactics to combat tuberculosis is currently in an exploratory stage. The HIV pandemic and emergence of multi- and extensively drug-resistant strains of Mycobacterium tuberculosis indicate that the current preventive measures against this ever-evolving pathogen are inadequate. The currently available vaccine BCG in its present form affords variable protection which usually wanes with aging. Various reasons have been cited to explain the discrepancies in the efficacy of BCG, including generic differences in the different BCG vaccine strains used in immunization program throughout the world. The low efficacy of BCG vaccine has promoted the search for novel vaccines for tuberculosis. The search strategies aim at completely replacing the existing vaccine and/or augmenting/improving the current BCG vaccine. Among new vaccine candidates are live attenuated M. tuberculosis vaccines, recombinant BCG, DNA vaccines, subunit vaccine, and fusion protein-based vaccines. More than 200 new vaccine candidates have been developed as a result of research work over the past few years. To date, at least eight vaccine candidates are undergoing clinical evaluation, with a few of them successfully qualifying in the first phase of clinical testing. These recent advances present an optimistic insight whereby a new tuberculosis vaccine might be expected to be available for public use in the next few years.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Indian Council of Medical Research, Tajganj, Agra 282001, India
| | | | | |
Collapse
|
29
|
Quintero-Macias L, Santos-Mendoza T, Donis-Maturano L, Silva-Sanchez A, Aguilar D, Orozco H, Gicquel B, Estrada-Garcia I, Flores-Romo L, Hernandez-Pando R. T-Cell Responses and In Vivo Cytotoxicity in the Target Organ and the Regional Lymphoid Tissue During Airborne Infection with the Virulent Mycobacterium tuberculosis MT103 and its Lipid Mutant fadD26. Scand J Immunol 2010; 71:20-8. [DOI: 10.1111/j.1365-3083.2009.02335.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Assessment of live candidate vaccines for paratuberculosis in animal models and macrophages. Infect Immun 2009; 78:1383-9. [PMID: 20038535 DOI: 10.1128/iai.01020-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the causative agent of paratuberculosis, a chronic enteritis of ruminants. To control the considerable economic effect that paratuberculosis has on the livestock industry, a vaccine that induces protection with minimal side effects is required. We employed transposon mutagenesis and allelic exchange to develop three potential vaccine candidates, which were then tested for virulence with macrophages, mice, and goats. All three models identified the WAg906 mutant as being the most attenuated, but some differences in the levels of attenuation were evident among the models when testing the other strains. In a preliminary mouse vaccine experiment, limited protection was induced by WAg915, as evidenced by a reduced bacterial load in spleens and livers 12 weeks following intraperitoneal challenge with M. paratuberculosis K10. While we found macrophages and murine models to be rapid and cost-effective alternatives for the initial screening of M. paratuberculosis mutants for attenuation, it appears necessary to do the definitive assessment of attenuation with a ruminant model.
Collapse
|
31
|
Abstract
Tularemia, caused by the Gram-negative bacterium Francisella tularensis, can be contracted by the bite of an arthropod vector or by inhalation. This disease occurs relatively infrequently but can be severe and even life-threatening if untreated. Until recently, there were few laboratories studying this organism; however, concerns over its potential use as a biological weapon have led to renewed attention to F. tularensis research, particularly in the area of vaccine development. Advances in the ability to genetically manipulate F. tularensis, along with knowledge gained from the creation and refinement of attenuated bacterial vaccines for other diseases, continue to foster significant progress in the development of live-attenuated bacterial vaccines, as well as defined antigen and subunit vaccines.
Collapse
Affiliation(s)
- Barbara J Mann
- Departments of Medicine & Microbiology, University of Virginia Health Systems, PO Box 801364, Charlottesville, VA 22908, USA Tel.: +1 434 924 9666 Fax: +1 434 924 0075
| | - Nicole M Ark
- Departments of Medicine & Microbiology, University of Virginia Health Systems, PO Box 801364, Charlottesville, VA 22908, USA Tel.: +1 434 924 9666 Fax: +1 434 924 0075
| |
Collapse
|
32
|
Awasthy D, Gaonkar S, Shandil RK, Yadav R, Bharath S, Marcel N, Subbulakshmi V, Sharma U. Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. MICROBIOLOGY-SGM 2009; 155:2978-2987. [PMID: 19542000 DOI: 10.1099/mic.0.029884-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M. tuberculosis. The mutant strain was found to be auxotrophic for all of the three branched-chain amino acids (isoleucine, leucine and valine), when grown with either C(6) or C(2) carbon sources, suggesting that the ilvB1 gene product is the major AHAS in M. tuberculosis. Depletion of these branched chain amino acids in the medium led to loss of viability of the DeltailvB1 strain in vitro, resulting in a 4-log reduction in colony-forming units after 10 days. Survival kinetics of the mutant strain cultured in macrophages maintained with sub-optimal concentrations of the branched-chain amino acids did not show any loss of viability, indicating either that the intracellular environment was rich in these amino acids or that the other AHAS catalytic subunits were functional under these conditions. Furthermore, the growth kinetics of the DeltailvB1 strain in mice indicated that although this mutant strain showed defective growth in vivo, it could persist in the infected mice for a long time, and therefore could be a potential vaccine candidate.
Collapse
Affiliation(s)
- Disha Awasthy
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | | | - R K Shandil
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Reena Yadav
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Sowmya Bharath
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Nimi Marcel
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | | | - Umender Sharma
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| |
Collapse
|
33
|
Ryan AA, Nambiar JK, Wozniak TM, Roediger B, Shklovskaya E, Britton WJ, Fazekas de St. Groth B, Triccas JA. Antigen Load Governs the Differential Priming of CD8 T Cells in Response to the Bacille Calmette Guérin Vaccine orMycobacterium tuberculosisInfection. THE JOURNAL OF IMMUNOLOGY 2009; 182:7172-7. [DOI: 10.4049/jimmunol.0801694] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Chacon O, Bermudez LE, Zinniel DK, Chahal HK, Fenton RJ, Feng Z, Hanford K, Adams LG, Barletta RG. Impairment of d-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages. Microbiology (Reading) 2009; 155:1440-1450. [DOI: 10.1099/mic.0.024901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
d-Alanine is a structural component of mycobacterial peptidoglycan. The primary route of d-alanine biosynthesis in eubacteria is the enantiomeric conversion from l-alanine, a reaction catalysed by d-alanine racemase (Alr). Mycobacterium smegmatis alr insertion mutants are not dependent on d-alanine for growth and display a metabolic pattern consistent with an alternative pathway for d-alanine biosynthesis. In this study, we demonstrate that the M. smegmatis alr insertion mutant TAM23 can synthesize d-alanine at lower levels than the parental strain. The insertional inactivation of the alr gene also decreases the intracellular survival of mutant strains within primary human monocyte-derived macrophages. By complementation studies, we confirmed that the impairment of alr gene function is responsible for this reduced survival. Inhibition of superoxide anion and nitric oxide formation in macrophages suppresses the differential survival. In contrast, for bacteria grown in broth, both strains had approximately the same susceptibility to hydrogen peroxide, acidified sodium nitrite, low pH and polymyxin B. In contrast, TAM23 exhibited increased resistance to lysozyme. d-Alanine supplementation considerably increased TAM23 viability in nutritionally deficient media and within macrophages. These results suggest that nutrient deprivation in phagocytic cells combined with killing mediated by reactive intermediates underlies the decreased survival of alr mutants. This knowledge may be valuable in the construction of mycobacterial auxotrophic vaccine candidates.
Collapse
Affiliation(s)
- Ofelia Chacon
- Sección de Bacteriología, Corporación para Investigaciones Biológicas (CIB), Carrera 72A No. 78B 141, A.A. 7378, Medellín, Colombia
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Denise K. Zinniel
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Harpreet K. Chahal
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Robert J. Fenton
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Zhengyu Feng
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Kathy Hanford
- Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - L. Garry Adams
- Sección de Bacteriología, Corporación para Investigaciones Biológicas (CIB), Carrera 72A No. 78B 141, A.A. 7378, Medellín, Colombia
| | - Raúl G. Barletta
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
35
|
Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Constant P, Levillain F, Neyrolles O, Gicquel B, Lemassu A, Daffé M, Jackson M. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol 2008; 70:762-74. [PMID: 18808383 PMCID: PMC2581643 DOI: 10.1111/j.1365-2958.2008.06445.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen-like alpha-glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface-exposed glucan in the physiology and virulence of these bacteria, orthologues of the glg genes involved in the biosynthesis of glycogen in Escherichia coli were identified in M. tuberculosis H37Rv and inactivated by allelic replacement. Biochemical analyses of the mutants and complemented strains indicated that the synthesis of glucan and glycogen involves the alpha-1,4-glucosyltransferases Rv3032 and GlgA (Rv1212c), the ADP-glucose pyrophosphorylase GlgC (Rv1213) and the branching enzyme GlgB (Rv1326c). Disruption of glgC reduced by half the glucan and glycogen contents of M. tuberculosis, whereas the inactivation of glgA and Rv3032 affected the production of capsular glucan and glycogen, respectively. Attempts to disrupt Rv3032 in the glgA mutant were unsuccessful, suggesting that a functional copy of at least one of the two alpha-1,4-glucosyltransferases is required for growth. Importantly, the glgA mutant was impaired in its ability to persist in mice, suggesting a role for the capsular glucan in the persistence phase of infection. Unexpectedly, GlgB was found to be an essential enzyme.
Collapse
Affiliation(s)
- Tounkang Sambou
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Département ⪡ Mécanismes Moléculaires des Infections Mycobactériennes ⪢, 205 route de Narbonne, 31077-Toulouse cedex 04, France
| | - Premkumar Dinadayala
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Département ⪡ Mécanismes Moléculaires des Infections Mycobactériennes ⪢, 205 route de Narbonne, 31077-Toulouse cedex 04, France
| | - Gustavo Stadthagen
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris cedex 15, France
| | - Nathalie Barilone
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris cedex 15, France
| | - Yann Bordat
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris cedex 15, France
| | - Patricia Constant
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Département ⪡ Mécanismes Moléculaires des Infections Mycobactériennes ⪢, 205 route de Narbonne, 31077-Toulouse cedex 04, France
| | - Florence Levillain
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Département ⪡ Mécanismes Moléculaires des Infections Mycobactériennes ⪢, 205 route de Narbonne, 31077-Toulouse cedex 04, France
| | - Olivier Neyrolles
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Département ⪡ Mécanismes Moléculaires des Infections Mycobactériennes ⪢, 205 route de Narbonne, 31077-Toulouse cedex 04, France
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris cedex 15, France
| | - Anne Lemassu
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Département ⪡ Mécanismes Moléculaires des Infections Mycobactériennes ⪢, 205 route de Narbonne, 31077-Toulouse cedex 04, France
| | - Mamadou Daffé
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (UMR 5089), Département ⪡ Mécanismes Moléculaires des Infections Mycobactériennes ⪢, 205 route de Narbonne, 31077-Toulouse cedex 04, France
| | - Mary Jackson
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris cedex 15, France
| |
Collapse
|
36
|
A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun 2008; 76:5200-14. [PMID: 18725418 DOI: 10.1128/iai.00434-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is the leading cause of death in AIDS patients, yet the current tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is contraindicated for immunocompromised individuals, including human immunodeficiency virus-positive persons, because it can cause disseminated disease; moreover, its efficacy is suboptimal. To address these problems, we have engineered BCG mutants that grow normally in vitro in the presence of a supplement, are preloadable with supplement to allow limited growth in vivo, and express the highly immunoprotective Mycobacterium tuberculosis 30-kDa major secretory protein. The limited replication in vivo renders these vaccines safer than BCG in SCID mice yet is sufficient to induce potent cell-mediated and protective immunity in the outbred guinea pig model of pulmonary tuberculosis. In the case of one vaccine, rBCG(mbtB)30, protection was superior to that with BCG (0.3-log fewer CFU of M. tuberculosis in the lung [P < 0.04] and 0.6-log fewer CFU in the spleen [P = 0.001] in aerosol-challenged animals [means for three experiments]); hence, rBCG(mbtB)30 is the first live mycobacterial vaccine that is both more attenuated than BCG in the SCID mouse and more potent than BCG in the guinea pig. Our study demonstrates the feasibility of developing safer and more potent vaccines against tuberculosis. The novel approach of engineering a replication-limited vaccine expressing a recombinant immunoprotective antigen and preloading it with a required nutrient, such as iron, that is capable of being stored should be generally applicable to other live vaccine vectors targeting intracellular pathogens.
Collapse
|
37
|
Nod2 mediates susceptibility to Yersinia pseudotuberculosis in mice. PLoS One 2008; 3:e2769. [PMID: 18648508 PMCID: PMC2447872 DOI: 10.1371/journal.pone.0002769] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/16/2008] [Indexed: 01/07/2023] Open
Abstract
Nucleotide oligomerisation domain 2 (NOD2) is a component of the innate immunity known to be involved in the homeostasis of Peyer patches (PPs) in mice. However, little is known about its role during gut infection in vivo. Yersinia pseudotuberculosis is an enteropathogen causing gastroenteritis, adenolymphitis and septicaemia which is able to invade its host through PPs. We investigated the role of Nod2 during Y. pseudotuberculosis infection. Death was delayed in Nod2 deleted and Crohn's disease associated Nod2 mutated mice orogastrically inoculated with Y. pseudotuberculosis. In PPs, the local immune response was characterized by a higher KC level and a more intense infiltration by neutrophils and macrophages. The apoptotic and bacterial cell counts were decreased. Finally, Nod2 deleted mice had a lower systemic bacterial dissemination and less damage of the haematopoeitic organs. This resistance phenotype was lost in case of intraperitoneal infection. We concluded that Nod2 contributes to the susceptibility to Y. pseudotuberculosis in mice.
Collapse
|
38
|
Abstract
A third of the world's population is infected with Mycobacterium tuberculosis, and 2 million people die from tuberculosis every year even though the bacille Calmette Guérin (BCG) vaccine has been available for more than 75 years. In order to reduce the immense burden of tuberculosis, new vaccines or vaccination strategies, or both, are urgently needed. Why BCG vaccination has not reduced disease prevalence, especially in the developing world, is not yet understood. Important contributing factors might include background immunity induced by non-tuberculous environmental mycobacteria, diversity of BCG strains, and overattenuation of presently used strains. This review provides a summary of the immune responses thought to be important for protective tuberculosis immunity; various mycobacterial antigens that seem to be promising targets for vaccine-induced immunity; different vaccination approaches being developed for use in people; and the key issues involved in the selection of new vaccines for expanded phase II or III testing.
Collapse
Affiliation(s)
- Daniel F Hoft
- Division of Immunobiology, Department of Internal Medicine and Department of Molecular Microbiology, Saint Louis University Health Sciences Center, St Louis, MO, USA.
| |
Collapse
|
39
|
Construction of a severely attenuated mutant of Mycobacterium tuberculosis for reducing risk to laboratory workers. Tuberculosis (Edinb) 2008; 88:375-81. [PMID: 18457997 DOI: 10.1016/j.tube.2008.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 02/22/2008] [Accepted: 02/24/2008] [Indexed: 11/20/2022]
Abstract
The ability to construct defined deletions of Mycobacterium tuberculosis has allowed many genes involved in virulence to be identified. Deletion of nutritional genes leads to varying levels of attenuation, presumably reflecting the need for a particular molecule, and the availability (or lack) of that molecule in vivo. We have previously shown that M. tuberculosis mutants lacking either the trpD or ino1 gene are highly attenuated in mouse models of infection, but can grow when supplemented with tryptophan or inositol, respectively. In this paper we have constructed a double Delta trpDDelta ino1 mutant, and show that this is severely attenuated in SCID mouse and guinea pig models. As the strain will grow in the presence of supplements, we propose that this strain could be used for research and antigen preparative purposes, with reduced risks to laboratory workers.
Collapse
|
40
|
Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 2008; 105:4376-80. [PMID: 18334639 DOI: 10.1073/pnas.0711159105] [Citation(s) in RCA: 800] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A hallmark of tuberculosis is the ability of the causative agent, Mycobacterium tuberculosis, to persist for decades despite a vigorous host immune response. Previously, we identified a mycobacterial gene cluster, mce4, that was specifically required for bacterial survival during this prolonged infection. We now show that mce4 encodes a cholesterol import system that enables M. tuberculosis to derive both carbon and energy from this ubiquitous component of host membranes. Cholesterol import is not required for establishing infection in mice or for growth in resting macrophages. However, this function is essential for persistence in the lungs of chronically infected animals and for growth within the IFN-gamma-activated macrophages that predominate at this stage of infection. This finding indicates that a major effect of IFN-gamma stimulation may be to sequester potential pathogens in a compartment devoid of more commonly used nutrients. The unusual capacity to catabolize sterols allows M. tuberculosis to circumvent this defense and thereby sustain a persistent infection.
Collapse
|
41
|
A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bacteriol 2007; 190:1329-34. [PMID: 18065542 DOI: 10.1128/jb.01465-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Similarities between Mycobacterium tuberculosis phoP-phoR mutants and the attenuated laboratory strain M. tuberculosis H37Ra in terms of morphological and cytochemical properties, lipid content, gene expression and virulence attenuation prompted us to analyze the functionality of this two-component regulator in the latter strain. Sequence analysis revealed a base substitution resulting in a one-amino-acid change in the likely DNA-binding region of PhoP in H37Ra relative to H37Rv. Using gel-shift assays, we show that this mutation abrogates the ability of the H37Ra PhoP protein to bind to a 40-bp segment of its own promoter. Consistent with this result, the phoP gene from H37Rv but not that from H37Ra was able to restore the synthesis of sulfolipids, diacyltrehaloses and polyacyltrehaloses in an isogenic phoP-phoR knock-out mutant of M. tuberculosis Moreover, complementation of H37Ra with phoP from H37Rv fully restored sulfolipid, diacyltrehalose and polyacyltrehalose synthesis, clearly indicating that the lack of production of these lipids in H37Ra is solely due to the point mutation in phoP. Using a pks2-3/4 knock-out mutant of M. tuberculosis H37Rv, evidence is further provided that the above-mentioned polyketide-derived acyltrehaloses do not significantly contribute to the virulence of the tubercle bacillus in a mouse model of infection. Reasons for the attenuation of H37Ra thus most likely stand in other virulence factors, many of which are expected to belong to the PhoP regulon and another of which, unrelated to PhoP, appears to be the lack of production of phthiocerol dimycocerosates in this strain.
Collapse
|
42
|
Meher AK, Lella RK, Sharma C, Arora A. Analysis of complex formation and immune response of CFP-10 and ESAT-6 mutants. Vaccine 2007; 25:6098-106. [PMID: 17629379 DOI: 10.1016/j.vaccine.2007.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/30/2007] [Accepted: 05/12/2007] [Indexed: 11/22/2022]
Abstract
ESAT-6 and CFP-10 form a 1:1 heterodimeric complex which contributes to the virulence of Mycobacterium tuberculosis H37Rv. Based on the structure of CFP-10-ESAT-6 complex, we have selected four point mutations each of CFP-10 and ESAT-6 and have analyzed complex formation for the 25 possible combinations between wild-type and mutant CFP-10 and ESAT-6 proteins. We observed that the mutations L25R or F58R of CFP-10 and L29D or L65D of ESAT-6 lead to disruption of complex formation. We have evaluated the immunogenic responses of the wild-type and mutant CFP-10 and ESAT-6 proteins, the wild-type CFP-10-ESAT-6 complex, six complex-forming and two non-complex-forming combinations of wild-type/mutant CFP-10 and ESAT-6 proteins. CFP-10 mutants I21R, L25R, and W43R were found to have better immunogenic potential than wt-CFP-10, while none of the ESAT-6 mutants were better than wt-ESAT-6. Very interestingly, we have discovered that the non-complex-forming mixture of CFP-10-I21R and ESAT-6-L29D gives a strong immunogenic response.
Collapse
Affiliation(s)
- Akshaya K Meher
- Molecular and Structural Biology, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | |
Collapse
|
43
|
Abstract
Tuberculosis remains a major health problem in the world, which is compounded further by the alarmingly high rate of M. tuberculosis infections in AIDS patients. Thus, there is an urgent need to advance our understanding of the mycobacterium to develop new drugs. The extraordinary recent developments in mycobacterial genetic research, particularly in genomics will greatly facilitate this goal. The knowledge of the entire genome sequence of M. tuberculosis will help in designing new chemotherapeutic and immunotherapeutic interventions. This review highlights recent developments in genomics, mycobacterial genetics, novel vaccine strategies, and our understanding of tuberculous dormancy.
Collapse
Affiliation(s)
- A J Steyn
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|
44
|
Senaratne RH, Mougous JD, Reader JR, Williams SJ, Zhang T, Bertozzi CR, Riley LW. Vaccine efficacy of an attenuated but persistent Mycobacterium tuberculosis cysH mutant. J Med Microbiol 2007; 56:454-458. [PMID: 17374883 DOI: 10.1099/jmm.0.46983-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis strains and the widespread occurrence of AIDS demand newer and more efficient control of tuberculosis. The protective efficacy of the current Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine is highly variable. Therefore, development of an effective new vaccine has gained momentum in recent years. Recently, several M. tuberculosis mutants were tested as potential vaccine candidates in the mouse model of tuberculosis. However, only some of these mutants were able to generate protection equivalent to that of BCG in mice. This study reports the vaccine potential of an attenuated 5'-adenosine phosphosulfate reductase mutant (DeltacysH) of M. tuberculosis. Immunization of mice with either BCG or DeltacysH followed by infection with the virulent M. tuberculosis Erdman strain demonstrated that DeltacysH can generate protection equivalent to that of the BCG vaccine.
Collapse
Affiliation(s)
- Ryan H Senaratne
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Joseph D Mougous
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - J Rachel Reader
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Spencer J Williams
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Tianjiao Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Lee W Riley
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Cendron D, Ingoure S, Martino A, Casetti R, Horand F, Romagné F, Sicard H, Fournié JJ, Poccia F. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates. Eur J Immunol 2007; 37:549-65. [PMID: 17230439 DOI: 10.1002/eji.200636343] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.
Collapse
Affiliation(s)
- Delphine Cendron
- Groupe d'Etude des Antigènes Non-Conventionnels, Unité 563 INSERM, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gupta UD, Katoch VM, McMurray DN. Current status of TB vaccines. Vaccine 2007; 25:3742-51. [PMID: 17321015 DOI: 10.1016/j.vaccine.2007.01.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
During last 10 years, there has been extensive work for the development of potential tuberculosis vaccine candidates using the mice and guinea pig models. Though till date several promising candidates have been identified and at least eight vaccines have entered clinical evaluation. These recent advances in the clinical testing of new TB vaccines are very exciting and promising. However, there is a need to continue the search for additional vaccine candidates or vaccination strategies.
Collapse
Affiliation(s)
- Umesh Datta Gupta
- National JALMA Institute for Leprosy & Other Mycobacterial Disease (ICMR), P. Box No. 1101, Tajganj, Agra 282001, India.
| | | | | |
Collapse
|
47
|
Aguilar D, Infante E, Martin C, Gormley E, Gicquel B, Hernandez Pando R. Immunological responses and protective immunity against tuberculosis conferred by vaccination of Balb/C mice with the attenuated Mycobacterium tuberculosis (phoP) SO2 strain. Clin Exp Immunol 2007; 147:330-8. [PMID: 17223975 PMCID: PMC1810479 DOI: 10.1111/j.1365-2249.2006.03284.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2006] [Indexed: 11/29/2022] Open
Abstract
The Mycobacterium tuberculosis phoP mutant strain SO2 has been shown previously to be more attenuated than Mycobacterium bovis bacillus Calmette-Guérin (BCG) and confers protective immunity against tuberculosis in mice and guinea pig models. In this study we have investigated the survival and immunological responses of Balb/c mice infected with the M. tuberculosis SO2 strain. All Balb/C mice survived intratracheal infection with M. tuberculosis SO2 strain under conditions where all the mice infected with the parental M. tuberculosis MT103 had died after 9 weeks. Infection of Balb/c mice with M. tuberculosis SO2 was associated with comparatively lower levels of interferon (IFN)-gamma, interleukin (IL)-4 and tumour necrosis factor (TNF)-alpha and higher levels of inducible nitric oxide synthase (iNOS) during the late stage of infection, when compared with M. tuberculosis MT103 infection. The delayed-type hypersensitivity (DTH) response against M. tuberculosis culture filtrates was similar in mice infected with either the M. tuberculosis phoP SO2 strain or M. tuberculosis MT103. The protective efficacy of M. tuberculosis SO2 was compared with M. bovis BCG when delivered subcutaneously to groups of Balb/C mice. Following intratracheal challenge with M. tuberculosis H37Rv, protection was generated by 60 days post-challenge in mice vaccinated with either vaccine. At day 120 post-challenge the levels of protection were still significantly greater when compared with the non-vaccinated control group. The levels of protection conferred by vaccination with M. tuberculosis SO2 or with M. bovis BCG were similar, as measured by granuloma coalescence and pneumonia in addition to growth reduction of M. tuberculosis H37Rv.
Collapse
Affiliation(s)
- D Aguilar
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubiràn, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
48
|
Pei Y, Parreira V, Nicholson VM, Prescott JF. Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2007; 71:1-7. [PMID: 17193875 PMCID: PMC1636002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genesfurA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes.
Collapse
Affiliation(s)
| | | | | | - John F. Prescott
- Address all correspondence and reprint requests to Dr. John F. Prescott; telephone: (519) 824-4120, ext. 54453; fax: (519) 824-5930; e-mail:
| |
Collapse
|
49
|
Lee S, Jeon BY, Bardarov S, Chen M, Morris SL, Jacobs WR. Protection elicited by two glutamine auxotrophs of Mycobacterium tuberculosis and in vivo growth phenotypes of the four unique glutamine synthetase mutants in a murine model. Infect Immun 2006; 74:6491-5. [PMID: 17057098 PMCID: PMC1695480 DOI: 10.1128/iai.00531-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We generated four individual glutamine synthetase (GS) mutants (DeltaglnA1, DeltaglnA2, DeltaglnA3, and DeltaglnA4) and one triple mutant (DeltaglnA1EA2) of Mycobacterium tuberculosis to investigate the roles of GS enzymes. Subcutaneous immunization with the DeltaglnA1EA2 and DeltaglnA1 glutamine auxotrophic mutants conferred protection on C57BL/6 mice against an aerosol challenge with virulent M. tuberculosis, which was comparable to that provided by Mycobacterium bovis BCG vaccination.
Collapse
Affiliation(s)
- Sunhee Lee
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
50
|
Quarry JE, Isherwood KE, Michell SL, Diaper H, Titball RW, Oyston PCF. A Francisella tularensis subspecies novicida purF mutant, but not a purA mutant, induces protective immunity to tularemia in mice. Vaccine 2006; 25:2011-8. [PMID: 17241711 DOI: 10.1016/j.vaccine.2006.11.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 11/15/2006] [Accepted: 11/23/2006] [Indexed: 11/26/2022]
Abstract
Francisella tularensis subspecies novicida mutants have been made with deletions introduced into the purA or purF genes. These mutants demonstrated the expected growth requirement for purines and complementation with the wild type genes restored the ability to grow on purine deficient media. The mutants were at least 10,000-fold attenuated by the ip challenge route in Balb/C mice and defective for survival in J774A.1 mouse macrophages. Immunisation with the purA mutant did not provide protection against a subsequent challenge with 100 median lethal doses of F. tularensis subspecies novicida. Immunisation of mice with the purF mutant provided protection against a subsequent challenge with F. tularensis subspecies novicida but not against a subspecies tularensis challenge. These findings suggest that purine auxotrophs of F. tularensis should be further evaluated as live attenuated vaccines against tularemia, but that differential effects are seen depending on which step in the biosynthetic pathway is inactivated.
Collapse
Affiliation(s)
- J E Quarry
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 OJQ, UK
| | | | | | | | | | | |
Collapse
|