1
|
Liang YC, Sun Z, Lu C, Lupien A, Xu Z, Berton S, Xu P, Behr MA, Yang W, Sun J. Discovery of benzo[c]phenanthridine derivatives with potent activity against multidrug-resistant Mycobacterium tuberculosis. Microbiol Spectr 2024; 12:e0124624. [PMID: 39361873 PMCID: PMC11537118 DOI: 10.1128/spectrum.01246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 10/05/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis (TB), is the leading cause of bacterial disease-related death worldwide. Current antibiotic regimens for the treatment of TB remain dated and suffer from long treatment times as well as the development of drug resistance. As such, the search for novel chemical modalities that have selective or potent anti-Mtb properties remains an urgent priority, particularly against multidrug-resistant (MDR) Mtb strains. Herein, we design and synthesize 35 novel benzo[c]phenanthridine derivatives (BPDs). The two most potent compounds, BPD-6 and BPD-9, accumulated within the bacterial cell and exhibited strong inhibitory activity (MIC90 ~2 to 10 µM) against multiple Mycobacterium strains while remaining inactive against a range of other Gram-negative and Gram-positive bacteria. BPD-6 and BPD-9 were also effective in reducing Mtb survival within infected macrophages, and BPD-9 reduced the burden of Mycobacterium bovis BCG in the lungs of infected mice. The two BPD compounds displayed comparable efficacy to rifampicin (RIF) against non-replicating Mtb (NR-Mtb). Importantly, BPD-6 and BPD-9 inhibited the growth of multiple MDR Mtb clinical isolates. Generation of BPD-9-resistant mutants identified the involvement of the Mmr efflux pump as an indirect resistance mechanism. The unique specificity of BPDs to Mycobacterium spp. and their efficacy against MDR Mtb isolates suggest a potential novel mechanism of action. The discovery of BPDs provides novel chemical scaffolds for anti-TB drug discovery.IMPORTANCEThe emergence of drug-resistant tuberculosis (TB) is a serious global health threat. There remains an urgent need to discover new antibiotics with unique mechanisms of action that are effective against drug-resistant Mycobacterium tuberculosis (Mtb). This study shows that novel semi-synthetic compounds can be derived from natural compounds to produce potent activity against Mtb. Importantly, the identified compounds have narrow spectrum activity against Mycobacterium species, including clinical multidrug-resistant (MDR) strains, are effective in infected macrophages and against non-replicating Mtb (NR-Mtb), and show anti-mycobacterial activity in mice. These new compounds provide promising chemical scaffolds to develop potent anti-Mtb drugs of the future.
Collapse
Affiliation(s)
- Yi Chu Liang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Zhiqi Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Chen Lu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Andréanne Lupien
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Peng Xu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Marcel A. Behr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jim Sun
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Franklin A, Layton AJ, Mize T, Salgueiro VC, Sullivan R, Benedict ST, Gurcha SS, Anso I, Besra GS, Banzhaf M, Lovering AL, Williams SJ, Guerin ME, Scott NE, Prados-Rosales R, Lowe EC, Moynihan PJ. The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563968. [PMID: 37961452 PMCID: PMC10634837 DOI: 10.1101/2023.10.26.563968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important amongst these are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are both trafficked out of the bacterium to the host via unknown mechanisms. An important class of exported LM/LAM is the capsular derivative of these molecules which is devoid of its lipid anchor. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures where arabinomannan acts as a signal for growth phase transition. Finally, we demonstrate that LamH is important for Mycobacterium tuberculosis survival in macrophages. These data provide a new framework for understanding the biological role of LAM in mycobacteria.
Collapse
Affiliation(s)
- Aaron Franklin
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Abigail J. Layton
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Todd Mize
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Vivian C. Salgueiro
- Department of Preventive Medicine, Public Health and Microbiology. School of Medicine. Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Samuel T. Benedict
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Itxaso Anso
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Manuel Banzhaf
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Andrew L. Lovering
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marcelo E. Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology. School of Medicine. Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Elisabeth C. Lowe
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, U.K., NE2 4HH
| | | |
Collapse
|
3
|
Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE. Protein adaptations in extremophiles: An insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 2018; 84:147-157. [PMID: 29331642 DOI: 10.1016/j.semcdb.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
The biological paradox about how extremophiles persist at extreme ecological conditions throws a fascinating picture of the enormous potential of a single cell to adapt to homeostatic conditions in order to propagate. Unicellular organisms face challenges from both environmental factors and the ecological niche provided by the host tissue. Although the existence of extremophiles and their physiological properties were known for a long time, availability of whole genome sequence has catapulted the study on mechanisms of adaptation and the underlying principles that have enabled these unique organisms to withstand evolutionary and environmental pressures. Comparative genomics has shown that extremophiles possess the unique set of genes and proteins that empower them with biochemical machinery necessary to thrive in extreme environments. The presence of these proteins safeguards the cell against a wide array of extreme conditions such as temperature, pressure, radiations, chemicals, drugs etc. An insight into these adaptive mechanisms in extremophiles may help us to devise strategies to alter the genes and proteins that may have therapeutic potential and commercial value. Here we present an overview of the various adaptations in extremophiles. We also try to explain how mycobacterium channelizes its proteome to survive in stress conditions posed by host immune system.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Anwar Alam
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Deeksha Tripathi
- Department of Microbiology, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Mamta Rani
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Hafeeza Khatoon
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India; JH-Institute of Molecular Medicine, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|
4
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
5
|
Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis. Infect Immun 2016; 84:1603-1614. [PMID: 26975994 DOI: 10.1128/iai.01470-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.
Collapse
|
6
|
Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int J Infect Dis 2016; 32:13-22. [PMID: 25809750 DOI: 10.1016/j.ijid.2014.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/06/2014] [Indexed: 02/03/2023] Open
Abstract
The nature and longevity of the T-cell response directed against Mycobacterium tuberculosis (MTB) are important for effective pathogen containment. We analyzed ex vivo the nature of MTB antigen-specific T-cell responses directed against the MTB secreted antigens Rv0288, Rv1886c, Rv3875, the antigens Rv2958c, Rv2957, and Rv0447c (intracellular, non-secreted enzymes) in blood from Korean patients with active tuberculosis (TB). MTB-specific T-cell function was defined by intracellular cytokine production (interleukin (IL)-2, interferon gamma, tumour necrosis factor alpha, and IL-17) and by multimer-guided (HLA-A*02:01 and HLA-A*24:02) analysis of epitope-specific CD8+ T-cells, along with phenotypic markers (CD45RA and CCR7), CD107a, a marker for degranulation, and CD127 co-staining for T-cell differentiation and homing. Cytokine production analysis underestimated the frequencies of MTB antigen-specific T-cells defined by major histocompatibility complex (MHC) class I-peptide multimer analysis. We showed that MTB antigen-specific CD8+ T-cells exhibit a distinct marker profile associated with the nature of the MTB antigens, i.e., Rv0288, Rv1886c, and Rv3875-reactive T-cells clustered in the precursor T-cell compartment, whereas Rv2958c, Rv2957, and Rv0447c-reactive T-cells were associated with the terminally differentiated T-cell phenotype, in the patient cohort. Rv0288, Rv1886c, and Rv3875-specific CD8+ T-cells were significantly enriched for CD107a+ T-cells in HLA-A*02:01 (p<0.0001) and HLA-A*24:02 (p=0.0018) positive individuals, as compared to Rv2958c, Rv2957, and Rv0447c antigens. CD127 (IL-7 receptor)-expressing T-cells were enriched in HLA-A*02:01-positive individuals for the Rv0288, Rv1886c, and Rv3875 specificities (p=0.03). A high proportion of antigen-specific T-cells showed a precursor-like phenotype (CD45RA+CCR7+) and expressed the stem cell-associated markers CD95 and c-kit. These data show that MTB-specific T-cells can express stem cell-like features; this is associated with the nature of the MTB antigen and the genetic background of the individual.
Collapse
|
7
|
Alvarez-Corrales N, Ahmed RK, Rodriguez CA, Balaji KN, Rivera R, Sompallae R, Vudattu NK, Hoffner SE, Zumla A, Pineda-Garcia L, Maeurer M. Differential cellular recognition pattern to M. tuberculosis targets defined by IFN-γ and IL-17 production in blood from TB + patients from Honduras as compared to health care workers: TB and immune responses in patients from Honduras. BMC Infect Dis 2013; 13:125. [PMID: 23497342 PMCID: PMC3599548 DOI: 10.1186/1471-2334-13-125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 02/25/2013] [Indexed: 01/02/2023] Open
Abstract
Background A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Methods Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). Results M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. Conclusions The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.
Collapse
Affiliation(s)
- Nancy Alvarez-Corrales
- Escuela de Microbiología, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa, Honduras
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shoen CM, DeStefano MS, Hager CC, Tham KT, Braunstein M, Allen AD, Gates HO, Cynamon MH, Kernodle DS. A Modified Bacillus Calmette-Guérin (BCG) Vaccine with Reduced Activity of Antioxidants and Glutamine Synthetase Exhibits Enhanced Protection of Mice despite Diminished in Vivo Persistence. Vaccines (Basel) 2013; 1:34-57. [PMID: 26343849 PMCID: PMC4552197 DOI: 10.3390/vaccines1010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/18/2012] [Accepted: 01/05/2013] [Indexed: 01/02/2023] Open
Abstract
Early attempts to improve BCG have focused on increasing the expression of prominent antigens and adding recombinant toxins or cytokines to influence antigen presentation. One such modified BCG vaccine candidate has been withdrawn from human clinical trials due to adverse effects. BCG was derived from virulent Mycobacterium bovis and retains much of its capacity for suppressing host immune responses. Accordingly, we have used a different strategy for improving BCG based on reducing its immune suppressive capacity. We made four modifications to BCG Tice to produce 4dBCG and compared it to the parent vaccine in C57Bl/6 mice. The modifications included elimination of the oxidative stress sigma factor SigH, elimination of the SecA2 secretion channel, and reductions in the activity of iron co-factored superoxide dismutase and glutamine synthetase. After IV inoculation of 4dBCG, 95% of vaccine bacilli were eradicated from the spleens of mice within 60 days whereas the titer of BCG Tice was not significantly reduced. Subcutaneous vaccination with 4dBCG produced greater protection than vaccination with BCG against dissemination of an aerosolized challenge of M. tuberculosis to the spleen at 8 weeks post-challenge. At this time, 4dBCG-vaccinated mice also exhibited altered lung histopathology compared to BCG-vaccinated mice and control mice with less well-developed lymphohistiocytic nodules in the lung parenchyma. At 26 weeks post-challenge, 4dBCG-vaccinated mice but not BCG-vaccinated mice had significantly fewer challenge bacilli in the lungs than control mice. In conclusion, despite reduced persistence in mice a modified BCG vaccine with diminished antioxidants and glutamine synthetase is superior to the parent vaccine in conferring protection against M. tuberculosis. The targeting of multiple immune suppressive factors produced by BCG is a promising strategy for simultaneously improving vaccine safety and effectiveness.
Collapse
Affiliation(s)
| | | | - Cynthia C Hager
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Kyi-Toe Tham
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Medical Center, Nashville, TN 37212, USA.
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Alexandria D Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Hiriam O Gates
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | - Douglas S Kernodle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Medical Center, Nashville, TN 37212, USA.
- Department of Microbiology, Immunology and Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Dong L, Shi J, Liu Y. Theoretical studies on the interaction of biphenyl inhibitors with Mycobacterium tuberculosis protein tyrosine phosphatase MptpB. J Mol Model 2012; 18:3847-56. [DOI: 10.1007/s00894-012-1384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
10
|
Bentley SD, Comas I, Bryant JM, Walker D, Smith NH, Harris SR, Thurston S, Gagneux S, Wood J, Antonio M, Quail MA, Gehre F, Adegbola RA, Parkhill J, de Jong BC. The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis 2012; 6:e1552. [PMID: 22389744 PMCID: PMC3289620 DOI: 10.1371/journal.pntd.0001552] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/17/2012] [Indexed: 01/16/2023] Open
Abstract
Background M. africanum West African 2 constitutes an ancient lineage of the M. tuberculosis complex that commonly causes human tuberculosis in West Africa and has an attenuated phenotype relative to M. tuberculosis. Methodology/Principal Findings In search of candidate genes underlying these differences, the genome of M. africanum West African 2 was sequenced using classical capillary sequencing techniques. Our findings reveal a unique sequence, RD900, that was independently lost during the evolution of two important lineages within the complex: the “modern” M. tuberculosis group and the lineage leading to M. bovis. Closely related to M. bovis and other animal strains within the M. tuberculosis complex, M. africanum West African 2 shares an abundance of pseudogenes with M. bovis but also with M. africanum West African clade 1. Comparison with other strains of the M. tuberculosis complex revealed pseudogenes events in all the known lineages pointing toward ongoing genome erosion likely due to increased genetic drift and relaxed selection linked to serial transmission-bottlenecks and an intracellular lifestyle. Conclusions/Significance The genomic differences identified between M. africanum West African 2 and the other strains of the Mycobacterium tuberculosis complex may explain its attenuated phenotype, and pave the way for targeted experiments to elucidate the phenotypic characteristic of M. africanum. Moreover, availability of the whole genome data allows for verification of conservation of targets used for the next generation of diagnostics and vaccines, in order to ensure similar efficacy in West Africa. Mycobacterium africanum, a close relative of M. tuberculosis, is studied for the following reasons: M. africanum is commonly isolated from West African patients with tuberculosis yet has not spread beyond this region, it is more common in HIV infected patients, and it is less likely to lead to tuberculosis after one is exposed to an infectious case. Understanding this organism's unique biology gets a boost from the decoding of its genome, reported in this issue. For example, genome analysis reveals that M. africanum contains a region shared with “ancient” lineages in the M. tuberculosis complex and other mycobacterial species, which was lost independently from both M. tuberculosis and M. bovis. This region encodes a protein involved in transmembrane transport. Furthermore, M. africanum has lost genes, including a known virulence gene and genes for vitamin synthesis, in addition to an intact copy of a gene that may increase its susceptibility to antibiotics that are insufficiently active against M. tuberculosis. Finally, the genome sequence and analysis reported here will aid in the development of new diagnostics and vaccines against tuberculosis, which need to take into account the differences between M. africanum and other species in order to be effective worldwide.
Collapse
Affiliation(s)
- Stephen D. Bentley
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Iñaki Comas
- Genomics and Health Unit, Centre for Public Health Research, Valencia, Spain
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Josephine M. Bryant
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Danielle Walker
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Noel H. Smith
- TB Research Group, Veterinary Laboratories Agency (VLA), Weybridge, New Haw, Addlestone, Surrey, United Kingdom and The Centre for the Study of Evolution, University of Sussex, Brighton, United Kingdom
| | - Simon R. Harris
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Scott Thurston
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jonathan Wood
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Michael A. Quail
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Florian Gehre
- Vaccinology Theme, MRC Unit, Banjul, The Gambia
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Julian Parkhill
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Bouke C. de Jong
- Vaccinology Theme, MRC Unit, Banjul, The Gambia
- Institute of Tropical Medicine, Antwerp, Belgium
- New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ahmed RK, Rohava Z, Balaji KN, Hoffner SE, Gaines H, Magalhaes I, Zumla A, Skrahina A, Maeurer MJ. Pattern recognition and cellular immune responses to novel Mycobacterium tuberculosis-antigens in individuals from Belarus. BMC Infect Dis 2012; 12:41. [PMID: 22336002 PMCID: PMC3305616 DOI: 10.1186/1471-2334-12-41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 02/15/2012] [Indexed: 11/23/2022] Open
Abstract
Background Tuberculosis (TB) is an enduring health problem worldwide and the emerging threat of multidrug resistant (MDR) TB and extensively drug resistant (XDR) TB is of particular concern. A better understanding of biomarkers associated with TB will aid to guide the development of better targets for TB diagnosis and for the development of improved TB vaccines. Methods Recombinant proteins (n = 7) and peptide pools (n = 14) from M. tuberculosis (M.tb) antigens associated with M.tb pathogenicity, modification of cell lipids or cellular metabolism, were used to compare T cell immune responses defined by IFN-γ production using a whole blood assay (WBA) from i) patients with TB, ii) individuals recovered from TB and iii) individuals exposed to TB without evidence of clinical TB infection from Minsk, Belarus. Results We identified differences in M.tb target peptide recognition between the test groups, i.e. a frequent recognition of antigens associated with lipid metabolism, e.g. cyclopropane fatty acyl phospholipid synthase. The pattern of peptide recognition was broader in blood from healthy individuals and those recovered from TB as compared to individuals suffering from pulmonary TB. Detection of biologically relevant M.tb targets was confirmed by staining for intracellular cytokines (IL-2, TNF-α and IFN-γ) in T cells from non-human primates (NHPs) after BCG vaccination. Conclusions PBMCs from healthy individuals and those recovered from TB recognized a broader spectrum of M.tb antigens as compared to patients with TB. The nature of the pattern recognition of a broad panel of M.tb antigens will devise better strategies to identify improved diagnostics gauging previous exposure to M.tb; it may also guide the development of improved TB-vaccines.
Collapse
Affiliation(s)
- Raija K Ahmed
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobelsväg 16, SE 17182 Solna, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rapid Identification and Detection of Intracellular Survival Testing of Mycobacterium smegmatis mc2155 that Contains eis Gene from Mycobacterium tuberculosis by Flow Cytometry. Curr Microbiol 2011; 63:426-32. [DOI: 10.1007/s00284-011-9999-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
|
13
|
Chacon O, Bermudez LE, Zinniel DK, Chahal HK, Fenton RJ, Feng Z, Hanford K, Adams LG, Barletta RG. Impairment of d-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages. Microbiology (Reading) 2009; 155:1440-1450. [DOI: 10.1099/mic.0.024901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
d-Alanine is a structural component of mycobacterial peptidoglycan. The primary route of d-alanine biosynthesis in eubacteria is the enantiomeric conversion from l-alanine, a reaction catalysed by d-alanine racemase (Alr). Mycobacterium smegmatis alr insertion mutants are not dependent on d-alanine for growth and display a metabolic pattern consistent with an alternative pathway for d-alanine biosynthesis. In this study, we demonstrate that the M. smegmatis alr insertion mutant TAM23 can synthesize d-alanine at lower levels than the parental strain. The insertional inactivation of the alr gene also decreases the intracellular survival of mutant strains within primary human monocyte-derived macrophages. By complementation studies, we confirmed that the impairment of alr gene function is responsible for this reduced survival. Inhibition of superoxide anion and nitric oxide formation in macrophages suppresses the differential survival. In contrast, for bacteria grown in broth, both strains had approximately the same susceptibility to hydrogen peroxide, acidified sodium nitrite, low pH and polymyxin B. In contrast, TAM23 exhibited increased resistance to lysozyme. d-Alanine supplementation considerably increased TAM23 viability in nutritionally deficient media and within macrophages. These results suggest that nutrient deprivation in phagocytic cells combined with killing mediated by reactive intermediates underlies the decreased survival of alr mutants. This knowledge may be valuable in the construction of mycobacterial auxotrophic vaccine candidates.
Collapse
Affiliation(s)
- Ofelia Chacon
- Sección de Bacteriología, Corporación para Investigaciones Biológicas (CIB), Carrera 72A No. 78B 141, A.A. 7378, Medellín, Colombia
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Denise K. Zinniel
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Harpreet K. Chahal
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Robert J. Fenton
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Zhengyu Feng
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Kathy Hanford
- Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - L. Garry Adams
- Sección de Bacteriología, Corporación para Investigaciones Biológicas (CIB), Carrera 72A No. 78B 141, A.A. 7378, Medellín, Colombia
| | - Raúl G. Barletta
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
14
|
Hayward D, van Helden PD, Wiid IJF. Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evol Biol 2009; 9:48. [PMID: 19245690 PMCID: PMC2667176 DOI: 10.1186/1471-2148-9-48] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the gene encoding for glutamine synthetase (glnA) is essential in several organisms, multiple glnA copies have been identified in bacterial genomes such as those of the phylum Actinobacteria, notably the mycobacterial species. Intriguingly, previous reports have shown that only one copy (glnA1) is essential for growth in M. tuberculosis, while the other copies (glnA2, glnA3 and glnA4) are not. RESULTS In this report it is shown that the glnA1 and glnA2 encoded glutamine synthetase sequences were inherited from an Actinobacteria ancestor, while the glnA4 and glnA3 encoded GS sequences were sequentially acquired during Actinobacteria speciation. The glutamine synthetase sequences encoded by glnA4 and glnA3 are undergoing reductive evolution in the mycobacteria, whilst those encoded by glnA1 and glnA2 are more conserved. CONCLUSION Different selective pressures by the ecological niche that the organisms occupy may influence the sequence evolution of glnA1 and glnA2 and thereby affecting phylogenies based on the protein sequences they encode. The findings in this report may impact the use of similar sequences as molecular markers, as well as shed some light on the evolution of glutamine synthetase in the mycobacteria.
Collapse
Affiliation(s)
- Don Hayward
- DST/NRF Centre for Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences - Stellenbosch University, South Africa.
| | | | | |
Collapse
|
15
|
Beresford NJ, Mulhearn D, Szczepankiewicz B, Liu G, Johnson ME, Fordham-Skelton A, Abad-Zapatero C, Cavet JS, Tabernero L. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J Antimicrob Chemother 2009; 63:928-36. [DOI: 10.1093/jac/dkp031] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Wong KC, Leong WM, Law HKW, Ip KF, Lam JTH, Yuen KY, Ho PL, Tse WS, Weng XH, Zhang WH, Chen S, Yam WC. Molecular characterization of clinical isolates of Mycobacterium tuberculosis and their association with phenotypic virulence in human macrophages. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1279-84. [PMID: 17715326 PMCID: PMC2168117 DOI: 10.1128/cvi.00190-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among 125 clinical isolates of Mycobacterium tuberculosis collected in Hong Kong and Shanghai, China, between 2002 and 2004, IS6110 typing revealed that 71 strains (57%) belonged to the Beijing family. The intracellular growth of the strains in human peripheral blood monocyte-derived macrophages was measured ex vivo on days 0, 3, 6, and 10. Among all tested strains, three hypervirulent strains showed significant increases in intracellular growth after 10 days of incubation. With an initial bacterial load of 10(4) CFU, most of the clinical isolates and H37Ra (an avirulent strain) exhibited no intracellular survival on day 10, while the three hypervirulent strains together with H37Rv (a virulent strain) showed on average a two- to fourfold rise in CFU count. These three hypervirulent strains belonging to a non-Beijing family were isolated from patients suffering from tuberculosis meningitis. Cytokines secreted by gamma interferon-activated macrophages were measured daily after challenge with selected strains of M. tuberculosis. The levels of tumor necrosis factor alpha were elevated after 24 h of infection among all strains, but the levels were significantly lower among the three hypervirulent strains, whereas interleukin 10 (IL-10) and IL-12 were not detected. Results were concordant with the differential expression of the corresponding cytokine genes in activated macrophages, as monitored by real-time PCR. Our findings highlighted that these three hypervirulent strains may possess an innate mechanism for escaping host immunity, which accounts for their characteristic virulence in patients presenting with a more severe form of disease.
Collapse
Affiliation(s)
- K C Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guyard C, Battisti JM, Raffel SJ, Schrumpf ME, Whitney AR, Krum JG, Porcella SF, Rosa PA, DeLeo FR, Schwan TG. Relapsing fever spirochaetes produce a serine protease that provides resistance to oxidative stress and killing by neutrophils. Mol Microbiol 2006; 60:710-22. [PMID: 16629672 DOI: 10.1111/j.1365-2958.2006.05122.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The spirochaetes that cause tick-borne relapsing fever and Lyme disease are closely related human pathogens, yet they differ significantly in their ecology and pathogenicity. Genome sequencing of two species of relapsing fever spirochaetes, Borrelia hermsii and Borrelia turicatae, identified a chromosomal open reading frame, designated bhpA, not present in the Lyme disease spirochaete Borrelia burgdorferi. The predicted amino acid sequence of bhpA was homologous with the HtrA serine proteases, which are involved with stress responses and virulence in other bacteria. B. hermsii produced an active serine protease that was recognized by BhpA antibodies and the recombinant BhpA protein-degraded beta-casein. bhpA was transcribed in vitro at all growth temperatures and transcription levels were slightly elevated at higher temperatures. These results correlated with the synthesis of BhpA during B. hermsii infection in mice. With the exception of Borrelia recurrentis, the bhpA gene, protein and enzymatic activity were found in all relapsing fever spirochaetes, but not in Lyme disease or related spirochaetes. Heterologous expression of bhpA in B. burgdorferi increased the spirochaete's resistance to both oxidative stress and killing by human neutrophils. Therefore, we propose that bhpA encodes a unique and functional serine protease in relapsing fever spirochaetes. This periplasmic enzyme may prevent the accumulation of proteins damaged by the innate immune response and contribute to the ability of the relapsing fever spirochaetes to achieve high cell densities in blood.
Collapse
Affiliation(s)
- Cyril Guyard
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Onwueme KC, Vos CJ, Zurita J, Ferreras JA, Quadri LEN. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 2005; 44:259-302. [PMID: 16115688 DOI: 10.1016/j.plipres.2005.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in the study of mycobacterial lipids indicate that the class of outer membrane lipids known as dimycocerosate esters (DIMs) are major virulence factors of clinically relevant mycobacteria including Mycobacterium tuberculosis and Mycobacterium leprae. DIMs are a structurally intriguing class of polyketide synthase-derived wax esters discovered over seventy years ago, yet, little was known until recently about their biosynthesis. Availability of several mycobacterial genomes has accelerated progress toward clarifying steps in the DIM biosynthetic pathway and it is our belief that reviewing the bases of our current knowledge will clarify outstanding issues and help direct future endeavors.
Collapse
Affiliation(s)
- Kenolisa C Onwueme
- Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
19
|
Pearson JT, Dabrowski MJ, Kung I, Atkins WM. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive. Arch Biochem Biophys 2005; 436:397-405. [PMID: 15797252 DOI: 10.1016/j.abb.2005.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Bacterial glutamine synthetases (GSs) are dodecameric aggregates comprised of two face-to-face hexameric rings, which form a cylindrical aqueous channel. Available crystal structures indicate that each subunit provides a 'central loop' that protrudes into this channel. Residues on either side of this loop contribute directly to substrate or metal ion cofactor binding. Although it has been suggested that this conspicuous structural feature may be functionally important, a systematic structure-function analysis of this loop has not been done. Here, we examine the behavior of a cysteine mutant, E165C, which yields inter-subunit disulfide bonds connecting the central loops. The inter-subunit disulfide bonds are readily detected by electrospray ionization mass spectrometry. Based on molecular models, the disulfide bonds would form only if the engineered cysteines on adjacent subunits moved approximately 5 A. Surprisingly, inter-subunit disulfide bonds between the central loops caused no detectable changes in the KMs for glutamate or ATP, nor the KD for either ATP or the transition state analog (L)-methionine sulfoximine (MSOX). Furthermore, covalent and quantitative adduction of the E165C mutant with iodo-acetamido-pyrene yielded nearly fully active enzyme bearing fluorescent pyrene excimers. The relative contribution of pyrene monomers to excimers in the steady state fluorescence is temperature dependent, suggesting thermal equilibrium between loop conformational states. However, the monomer-excimer ratio is independent of ligands such as MSOX, glutamate, or Mn2+. These results validate the suspected flexibility of the central loop, but raise significant doubt about its direct functional role in GS catalysis via conformational switching, including the proposed regulation of GS via ADP-ribosylation within this loop.
Collapse
Affiliation(s)
- Josh T Pearson
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610, USA
| | | | | | | |
Collapse
|
20
|
van der Sar AM, Abdallah AM, Sparrius M, Reinders E, Vandenbroucke-Grauls CMJE, Bitter W. Mycobacterium marinum strains can be divided into two distinct types based on genetic diversity and virulence. Infect Immun 2004; 72:6306-12. [PMID: 15501758 PMCID: PMC523024 DOI: 10.1128/iai.72.11.6306-6312.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium marinum causes a systemic tuberculosis-like disease in a large number of poikilothermic animals and is used as a model for mycobacterial pathogenesis. In the present study, we infected zebra fish (Danio rerio) with different strains of M. marinum to determine the variation in pathogenicity. Depending on the M. marinum isolate, the fish developed an acute or chronic disease. Acute disease was characterized by uncontrolled growth of the pathogen and death of all animals within 16 days, whereas chronic disease was characterized by granuloma formation in different organs and survival of the animals for at least 4 to 8 weeks. Genetic analysis of the isolates by amplified fragment length polymorphism showed that M. marinum strains could be divided in two clusters. Cluster I contained predominantly strains isolated from humans with fish tank granuloma, whereas the majority of the cluster II strains were isolated from poikilothermic species. Acute disease progression was noted only with strains belonging to cluster I, whereas all chronic-disease-causing isolates belonged to cluster II. This difference in virulence was also observed in vitro: cluster I isolate Mma20 was able to infect and survive more efficiently in the human macrophage THP-1 and the carp leukocyte CLC cell lines than was the cluster II isolate Mma11. We conclude that strain characteristics play an important role in the pathogenicity of M. marinum. In addition, the correlation between genetic variation and host origin suggests that cluster I isolates are more pathogenic for humans.
Collapse
Affiliation(s)
- Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Ahmad S, El-Shazly S, Mustafa AS, Al-Attiyah R. Mammalian Cell-Entry Proteins Encoded by the mce3 Operon of Mycobacterium tuberculosis are Expressed During Natural Infection in Humans. Scand J Immunol 2004; 60:382-91. [PMID: 15379863 DOI: 10.1111/j.0300-9475.2004.01490.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian cell-entry (mce)3 operon is one of four homologous mce operons on Mycobacterium tuberculosis genome that encodes six putative invasin/ adhesin-like proteins (Mce3A-F) possibly involved in the entry and survival of this bacterium inside macrophages. To study the in vivo expression of the mce3 operon-encoded proteins during natural human infection, the genes encoding Mce3A-F were cloned and expressed in Escherichia coli as fusion proteins with glutathione-S-transferase (GST) at the N-terminal and a x6 histidine (His) tag at the C-terminal end. The recombinant proteins appeared as major cellular proteins in SDS-PAGE gels and reacted with anti-GST and antipenta-His antibodies at the expected molecular mass of 70, 61, 68, 71, 66 and 72 [corrected] kDa for GST-Mce3A, GST-Mce3B, GST-Mce3C, GST-Mce3D, GST-Mce3E and GST-Mce3F, respectively. In Western immunoblots, all the six fusion proteins, particularly GST-Mce3A, GST-Mce3C, GST-Mce3D and GST-Mce3E, reacted with antibodies in combined human serum from 11 tuberculosis (TB) patients. Pure Mce3A, Mce3D and Mce3E could be isolated by specific proteolytic cleavage by thrombin protease of the respective purified fusion protein followed by preparative SDS-PAGE. The pure Mce3A, Mce3D and Mce3E reacted to various extents with antibodies in serum samples from TB patients. The Mce3E reacted with 51 of 55 (93%) and all the three proteins reacted with 34 of 55 (62%) serum samples. The Mce3A, Mce3D and Mce3E proteins also reacted, albeit at lower frequency, with one of 23 (4%) serum sample obtained from M. bovis bacillus Calmette-Guérin-vaccinated healthy subjects and four of 18 (22%) serum samples from long-term contacts of TB patients showing reactivity with all the three Mce3 proteins. The data show that Mce3A, Mce3D and Mce3E encoded by mce3 operon of M. tuberculosis are expressed and elicit antibody responses in humans during natural infection with this pathogen.
Collapse
Affiliation(s)
- S Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | |
Collapse
|
22
|
Hisert KB, Kirksey MA, Gomez JE, Sousa AO, Cox JS, Jacobs WR, Nathan CF, McKinney JD. Identification of Mycobacterium tuberculosis counterimmune (cim) mutants in immunodeficient mice by differential screening. Infect Immun 2004; 72:5315-21. [PMID: 15322028 PMCID: PMC517420 DOI: 10.1128/iai.72.9.5315-5321.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) is characterized by lifetime persistence of Mycobacterium tuberculosis. Despite the induction of a vigorous host immune response that curtails disease progression in the majority of cases, the organism is not eliminated. Subsequent immunosuppression can lead to reactivation after a prolonged period of clinical latency. Thus, while it is clear that protective immune mechanisms are engaged during M. tuberculosis infection, it also appears that the pathogen has evolved effective countermechanisms. Genetic studies with animal infection models and with patients have revealed a key role for the cytokine gamma interferon (IFN-gamma) in resistance to TB. IFN-gamma activates a large number of antimicrobial pathways. Three of these IFN-gamma-dependent mechanisms have been implicated in defense against M. tuberculosis: inducible nitric oxide synthase (iNOS), phagosome oxidase (phox), and the phagosome-associated GTPase LRG-47. In order to identify bacterial genes that provide protection against specific host immune pathways, we have developed the strategy of differential signature-tagged transposon mutagenesis. Using this approach we have identified three M. tuberculosis genes that are essential for progressive M. tuberculosis growth and rapid lethality in iNOS-deficient mice but not in IFN-gamma-deficient mice. We propose that these genes are involved in pathways that allow M. tuberculosis to counter IFN-gamma-dependent immune mechanisms other than iNOS.
Collapse
Affiliation(s)
- Katherine B Hisert
- Laboratory of Infection Biology, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Douglas T, Daniel DS, Parida BK, Jagannath C, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J Bacteriol 2004; 186:3590-8. [PMID: 15150247 PMCID: PMC415777 DOI: 10.1128/jb.186.11.3590-3598.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme which reduces oxidized methionine to methionine. Since oxidation of methionine in proteins impairs their function, an absence of MsrA leads to abnormalities in different organisms, including alterations in the adherence patterns and in vivo survival of certain pathogenic bacteria. To understand the role of MsrA in intracellular survival of bacteria, we disrupted the gene encoding MsrA in Mycobacterium smegmatis through homologous recombination. The msrA mutant strain of M. smegmatis exhibited significantly reduced intracellular survival in murine J774A.1 macrophages compared to the survival of its wild-type counterpart. Furthermore, immunofluorescence and immunoblotting of phagosomes containing M. smegmatis strains revealed that the phagosomes with the msrA mutant strain acquired both p67(phox) of phagocyte NADPH oxidase and inducible nitric oxide synthase much earlier than the phagosomes with the wild-type strain. In addition, the msrA mutant strain of M. smegmatis was observed to be more sensitive to hydroperoxides than the wild-type strain was in vitro. These results suggest that MsrA plays an important role in both extracellular and intracellular survival of M. smegmatis.
Collapse
Affiliation(s)
- T Douglas
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
24
|
Mehta R, Pearson JT, Mahajan S, Nath A, Hickey MJ, Sherman DR, Atkins WM. Adenylylation and catalytic properties of Mycobacterium tuberculosis glutamine synthetase expressed in Escherichia coli versus mycobacteria. J Biol Chem 2004; 279:22477-82. [PMID: 15037612 DOI: 10.1074/jbc.m401652200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial glutamine synthetases (GSs) are complex dodecameric oligomers that play a critical role in nitrogen metabolism, converting ammonia and glutamate to glutamine. Recently published reports suggest that GS from Mycobacterium tuberculosis (MTb) may be a therapeutic target (Harth, G., and Horwitz, M. A. (2003) Infect. Immun. 71, 456-464). In some bacteria, GS is regulated via adenylylation of some or all of the subunits within the aggregate; catalytic activity is inversely proportional to the extent of adenylylation. The adenylylation and deadenylylation of GS are catalyzed by adenylyl transferase (ATase). Here, we demonstrate via electrospray ionization mass spectrometry that GS from pathogenic M. tuberculosis is adenylylated by the Escherichia coli ATase. The adenylyl group can be hydrolyzed by snake venom phosphodiesterase to afford the unmodified enzyme. The site of adenylylation of MTb GS by the E. coli ATase is Tyr-406, as indicated by the lack of adenylylation of the Y406F mutant, and, as expected, is based on amino acid sequence alignments. Using electrospray ionization mass spectroscopy methodology, we found that GS is not adenylylated when obtained directly from MTb cultures that are not supplemented with glutamine. Under these conditions, the highly related but non-pathogenic Mycobacterium bovis BCG yields partially ( approximately 25%) adenylylated enzyme. Upon the addition of glutamine to the cultures, the MTb GS becomes significantly adenylylated ( approximately 30%), whereas the adenylylation of M. bovis BCG GS does not change. Collectively, the results demonstrate that MTb GS is a substrate for E. coli ATase, but only low adenylylation states are accessible. This parallels the low adenylylation states observed for GS from mycobacteria and suggests the intriguing possibility that adenylylation in the pathogenic versus non-pathogenic mycobacteria is differentially regulated.
Collapse
Affiliation(s)
- Ranjana Mehta
- Departments of Pathobiology and Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
The Immunology and Pathogenesis of Tuberculosis. Tuberculosis (Edinb) 2004. [DOI: 10.1007/978-3-642-18937-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Bottai D, Batoni G, Esin S, Maisetta G, Pardini M, Florio W, Rindi L, Garzelli C, Campa M. Expression of SA5K, a secretion antigen of Mycobacterium tuberculosis, inside human macrophages and in sputum from tuberculosis patients. FEMS Microbiol Lett 2003; 226:229-35. [PMID: 14553916 DOI: 10.1016/s0378-1097(03)00602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An 8.3 kDa protein (SA5K), secreted by Mycobacterium tuberculosis/Mycobacterium bovis bacillus Calmette-Guérin (BCG) in culture filtrate, has been previously described in our laboratory. In the present study, analysis of the distribution of SA5K gene (Rv1174c) among M. tuberculosis strains, isolated from a wide variety of clinical specimens, revealed that the gene is present in all clinical isolates analyzed (29/29). SA5K expression inside human macrophages infected with BCG was demonstrated by reverse transcription-polymerase chain reaction (RT-PCR) on RNA extracted from bacterial cells following 24 and 48 h of infection. In addition, in order to evaluate whether SA5K gene was also expressed at the site of infection in the lung, a nested RT-PCR assay was developed to detect specific mRNA in sputum samples collected from smear positive tuberculosis patients. SA5K mRNA was detected in all the samples containing high numbers of tubercle bacilli demonstrating that the corresponding gene is expressed during the course of clinical infection.
Collapse
Affiliation(s)
- Daria Bottai
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università degli Studi di Pisa, Via S. Zeno 35-39, 56127 Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rahman MT, Herron LL, Kapur V, Meijer WG, Byrne BA, Ren J, Nicholson VM, Prescott JF. Partial genome sequencing of Rhodococcus equi ATCC 33701. Vet Microbiol 2003; 94:143-58. [PMID: 12781482 DOI: 10.1016/s0378-1135(03)00100-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preliminary analysis of a partial (30% coverage) genome sequence of Rhodococcus equi has revealed a number of important features. The most notable was the extent of the homology of genes identified with those of Mycobacterium tuberculosis. The similarities in the proportion of genes devoted to fatty acid degradation and to lipid biosynthesis was a striking but not surprising finding given the relatedness of these organisms and their success as intracellular pathogens. The rapid recent improvement in understanding of virulence in M. tuberculosis and other pathogenic mycobacteria has identified a large number of genes of putative or proven importance in virulence, homologs of many of which were also identified in R. equi. Although R. equi appears to have currently unique genes, and has important differences, its similarity to M. tuberculosis supports the need to understand the basis of virulence in this organism. The partial genome sequence will be a resource for workers interested in R. equi until such time as a full genome sequence has been characterized.
Collapse
Affiliation(s)
- M T Rahman
- Department of Pathobiology, University of Guelph, Guelph, Ont. N1G 2W1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Taylor AB, Benglis DM, Dhandayuthapani S, Hart PJ. Structure of Mycobacterium tuberculosis methionine sulfoxide reductase A in complex with protein-bound methionine. J Bacteriol 2003; 185:4119-26. [PMID: 12837786 PMCID: PMC164888 DOI: 10.1128/jb.185.14.4119-4126.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide methionine sulfoxide reductase (MsrA) repairs oxidative damage to methionine residues arising from reactive oxygen species and reactive nitrogen intermediates. MsrA activity is found in a wide variety of organisms, and it is implicated as one of the primary defenses against oxidative stress. Disruption of the gene encoding MsrA in several pathogenic bacteria responsible for infections in humans results in the loss of their ability to colonize host cells. Here, we present the X-ray crystal structure of MsrA from the pathogenic bacterium Mycobacterium tuberculosis refined to 1.5 A resolution. In contrast to the three catalytic cysteine residues found in previously characterized MsrA structures, M. tuberculosis MsrA represents a class containing only two functional cysteine residues. The structure reveals a methionine residue of one MsrA molecule bound at the active site of a neighboring molecule in the crystal lattice and thus serves as an excellent model for protein-bound methionine sulfoxide recognition and repair.
Collapse
Affiliation(s)
- Alexander B Taylor
- Department of Biochemistry and the X-Ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
29
|
Itoh S, Kazumi Y, Abe C, Takahashi M. Heterogeneity of RNA polymerase gene (rpoB) sequences of Mycobacterium gordonae clinical isolates identified with a DNA probe kit and by conventional methods. J Clin Microbiol 2003; 41:1656-63. [PMID: 12682157 PMCID: PMC153870 DOI: 10.1128/jcm.41.4.1656-1663.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we have evaluated genetic identification by using the rpoB gene, which was recently introduced by Kim et al. (J. Clin. Microbiol. 39:2102-2109, 2001; J. Clin. Microbiol. 37:1714-1720, 1999). In this process, we examined the rpoB gene heterogeneity of clinical isolates identified as Mycobacterium gordonae with the conventional biological and biochemical tests and/or a commercially available DNA probe kit. Sequencing of the rpoB gene of 34 clinical isolates revealed that M. gordonae clinical isolates were classified into four major clusters (A, B, C, and D). Interestingly, organisms belonging to cluster D (15 isolates) did not hybridize with M. gordonae ATCC 14470 and specifically possessed urease activity. Therefore, it could be considered to be a novel mycobacterium. The identification of M. gordonae is known to have ambiguous results sometimes. On the other hand, identification of clinical isolates seems to be inconvenient and unsuitable because of a more than 99% 16S rRNA gene similarity value between clusters. These findings suggest that the existence of M. gordonae-like mycobacteria that share similar biochemical and biological characteristics with the 16S rRNA gene of an M. gordonae type strain but less similarity at the genomic DNA level may have complicated the identification of M. gordonae in many laboratories. Furthermore, compared with hsp65 PCR restriction analysis (PRA), rpoB PRA would have the advantage of producing no ambiguous results because of the intracluster homogeneity of the rpoB gene. In this case, rpoB would provide clearer results than hsp65, even if PRA analysis was used. We demonstrated that these M. gordonae-like mycobacteria were easily distinguished by PRA of the rpoB sequence. Additionally, the significance of this M. gordonae-like cluster may help to establish the comparison between the M. gordonae isolates from a clinical specimen and an infectious process in a given patient and to determine the true incidence of infection with this microorganism.
Collapse
Affiliation(s)
- Saotomo Itoh
- Bacteriology Division, The Research Institute of Tuberculosis, Japan Antituberculosis Association, Kiyose-shi, Tokyo 204-8533, Japan
| | | | | | | |
Collapse
|
30
|
Stefanelli P, Ippoliti R, Fazio C, Mastrantonio P. Role of immune sera in the in-vitro phagocytosis of Bordetella pertussis strains. Microb Pathog 2002; 32:135-41. [PMID: 11855944 DOI: 10.1006/mpat.2001.0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, phagocytosis of Bordetella pertussis was assessed using a human monocyte-derived macrophage line (THP-1) and immune sera from children who had received primary vaccination during the Italian clinical trial on the efficacy of two acellular three-component (PT-FHA-PRN) and one whole-cell pertussis vaccines. The results demonstrate that phagocytosis of opsonized bacteria with specific immune sera is not significantly enhanced compared with that of non-opsonized bacteria or bacteria opsonized with non-immune sera. A similar result was obtained also using B. pertussis strains showing variants of the pertactin antigen suggesting that those variations do not reduce the capability of the bacterium to invade the monocytes.
Collapse
Affiliation(s)
- Paola Stefanelli
- Department of Bacteriology and Medical Mycology, Istituto Superiore di Sanitá, Rome, Italy
| | | | | | | |
Collapse
|
31
|
Batoni G, Bottai D, Maisetta G, Pardini M, Boschi A, Florio W, Esin S, Campa M. Involvement of the Mycobacterium tuberculosis secreted antigen SA-5K in intracellular survival of recombinant Mycobacterium smegmatis. FEMS Microbiol Lett 2001; 205:125-9. [PMID: 11728726 DOI: 10.1111/j.1574-6968.2001.tb10935.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A new protein (SA-5K) secreted in culture filtrates by Mycobacterium bovis, Mycobacterium tuberculosis, and few other mycobacterial species was previously identified and purified in our laboratory. In order to evaluate the putative role of SA-5K during intracellular mycobacterial growth, in the present study the SA-5K gene was cloned and expressed in Mycobacterium smegmatis, a rapid growing non-pathogenic mycobacterium which does not contain the gene for the protein. SA-5K expression in the THP-1 human macrophage cell line infected with the recombinant strain (M. smegmatis-pROL5K) was demonstrated by RT-PCR on RNA extracted from bacterial cells following 24 and 48 h of infection. Intracellular SA5K expression was associated with a higher cfu increase of M. smegmatis-pROL5K in comparison to the negative control strain (M. smegmatis recombinant for the cloning vector) (P=0.01). No significant change in SA-5K synthesis by M. smegmatis-pROL5K was observed when the recombinant strain was grown in vitro in different stress conditions such as iron deprivation, pH 4.5, presence of nitric oxide or hydrogen peroxide. The results presented in this study suggest a possible role for SA-5K in intracellular survival of recombinant M. smegmatis, though the function of the protein remains unknown.
Collapse
Affiliation(s)
- G Batoni
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Via S. Zeno 35-39, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Miller BH, Shinnick TM. Identification of two Mycobacterium tuberculosis H37Rv ORFs involved in resistance to killing by human macrophages. BMC Microbiol 2001; 1:26. [PMID: 11716786 PMCID: PMC59890 DOI: 10.1186/1471-2180-1-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Accepted: 10/17/2001] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The ability of Mycobacterium tuberculosis to survive and replicate in macrophages is crucial for the mycobacterium's ability to infect the host and cause tuberculosis. To identify Mycobacterium tuberculosis genes involved in survival in macrophages, a library of non-pathogenic Mycobacterium smegmatis bacteria, each carrying an individual integrated cosmid containing M. tuberculosis H37Rv genomic DNA, was passed through THP-1 human macrophages three times. RESULTS Two of the clones recovered from this enrichment process, sur2 and sur3, exhibited significantly increased survival relative to wild-type bacteria. In coinfection experiments, the ratio of sur2 colonies to wild-type colonies was 1:1 at 0 hours but increased to 20:1 at 24 hours post phagocytosis. The ratio of sur3 colonies to wild-type colonies was 1:1 at 0 hours and 5:1 at 24 hours. The M. tuberculosis ORFs responsible for increased survival were shown to be Rv0365c for the sur2 clone and Rv2235 for the sur3 clone. These ORFs encode proteins with as-of-yet unknown functions. CONCLUSIONS We identified two M. tuberculosis ORFs which may be involved in the ability of tubercle bacilli to survive in macrophages.
Collapse
Affiliation(s)
- Barbara H Miller
- Department of Microbiology and Immunology, Emory University School of Medicine and Division of AIDS, STD, and TB Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Thomas M Shinnick
- Department of Microbiology and Immunology, Emory University School of Medicine and Division of AIDS, STD, and TB Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Vera-Cabrera L, Hernández-Vera MA, Welsh O, Johnson WM, Castro-Garza J. Phospholipase region of Mycobacterium tuberculosis is a preferential locus for IS6110 transposition. J Clin Microbiol 2001; 39:3499-504. [PMID: 11574563 PMCID: PMC88379 DOI: 10.1128/jcm.39.10.3499-3504.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes with phospholipase C activity in Mycobacterium tuberculosis have been recently described. The three genes encoding these proteins, plcA, plcB, and plcC, are located at position 2351 of the genomic map of M. tuberculosis H37Rv and are arranged in tandem. We have previously described the presence of variations in the restriction fragment length polymorphism patterns of the plcA and plcB genes in M. tuberculosis clinical isolates. In the present work we investigated the origin of this polymorphism by sequence analysis of the phospholipase-encoding regions of 11 polymorphic M. tuberculosis clinical isolates. To do so, a long-PCR assay was used to amplify a 5,131-bp fragment that contains the plcA and plcB genes and part of the plcC gene. In the M. tuberculosis strains studied the production of an amplicon approximately 1,400 bp larger than anticipated was observed. Sequence analysis of the PCR products indicated the presence of a foreign sequence that corresponded to an IS6110 element. We observed insertion elements in the plcA, plcB, and plcC genes. One site in plcB had the highest incidence of transposition (5 out of 11 strains). In two strains the insertion element was found in plcA in the same nucleotide position. In all the cases, IS6110 was transposed in the same direction. The high level of transposition in the phospholipase region can lead to the excision of fragments of genomic DNA by recombination of neighboring IS6110 elements, as demonstrated by finding the deletion, in two strains, of a 2,837-bp fragment that included plcA and most of plcB. This can explain the negative results obtained by some authors when detecting the mtp40 sequence (plcA) by PCR. Given the high polymorphism in this region, the use of the mtp40 sequence as a genetic marker for M. tuberculosis sensu stricto is very restricted.
Collapse
Affiliation(s)
- L Vera-Cabrera
- Servicio de Dermatología, Hospital Universitario José E. González, Madero y Gonzalitos, Col Mitras Centro, Monterrey, México.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Tuberculosis remains a global emergency because of our lack of understanding of the details of its pathogenesis. In the last 12 months there have been striking advances in the molecular genetics of the organism. Mutated strains of Mycobacterium tuberculosis have been used to study the genetic requirements for virulence and establishment of latency, and the biology of the interaction with host cells. Genes involved in lipid metabolism seem particularly important. The probable sites of latency within the host lungs have been identified by in situ polymerase chain reaction. The complex control by M. tuberculosis of apoptosis of T cells and macrophages has been somewhat clarified, and the data may suggest that M. tuberculosis causes death of a subset of T cells, while preserving some macrophages as hiding places with reduced microbicidal and antigen-presenting function. Similarly the demonstration of a very large relative increase in interleukin (IL)-4 and IL-13 expression, (together with IL-4delta2, the IL-4 splice variant), that correlates with lung damage, has been supported by data from flow cytometry and in situ hybridization, and indicates that a subversive T helper-2 (Th2) component in the response to M. tuberculosis may undermine the efficacy of immunity and contribute to immunopathology. Recently defined changes in metabolism of cortisol within the lesions may contribute to the development of the Th2 component. These findings underline the need to start testing vaccine candidates in models that mimic the situations in which bacille Calmette-Guerin fails, such as in the presence of latent infection, pre-existing Th2 responses to cross-reactive organisms, and stress.
Collapse
Affiliation(s)
- G A Rook
- Department of Bacteriology and Center for Infectious Diseases and International Health, Royal Free & University College Medical School, Windeyer Institute of Medical Sciences, London, UK.
| | | |
Collapse
|
35
|
Hartmann P, Becker R, Franzen C, Schell‐Frederick E, Römer J, Jacobs M, Fätkenheuer G, Plum G. Phagocytosis and killing of
Mycobacterium avium
complex by human neutrophils. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | - Jens Römer
- Department of Internal Medicine I, Germany
| | | | | | - Georg Plum
- Department of Medical Microbiology and Hygiene, University of Cologne, Germany
| |
Collapse
|
36
|
Abstract
Mycobacterium tuberculosis possesses a homologue of glnE, potentially encoding a regulator of glutamine synthetase activity. We attempted to construct glnE-disrupted mutants using a two-step strategy, whereby a single-crossover strain was first isolated, followed by sacB counterselection to isolate the double-crossover strain. Of 192 sucrose-resistant colonies tested, none were mutants, although the wild-type double crossover could be easily isolated. When a second copy of the wild-type glnE was integrated into the chromosome, we could isolate both wild-type and mutant double-crossover strains. Thus, the chromosomal gene could only be replaced with a disrupted copy when another functional copy of the gene was provided, demonstrating that this gene is essential under the conditions tested.
Collapse
Affiliation(s)
- T Parish
- Department of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.
| | | |
Collapse
|