1
|
Miyamoto K. [New Drug Discovery Targeting Iron in Bacterial Infectious Diseases]. YAKUGAKU ZASSHI 2024; 144:633-641. [PMID: 38825472 DOI: 10.1248/yakushi.23-00197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Iron is necessary for all living organisms, and bacteria that cause infections in human hosts also need ferrous ions for their growth and proliferation. In the human body, most ferric ions (Fe3+) are tightly bound to iron-binding proteins such as hemoglobin, transferrin, lactoferrin, and ferritin. Pathogenic bacteria express highly specific iron uptake systems, including siderophores and specific receptors. Most bacteria secrete siderophores, which are low-molecular weight metal-chelating agents, to capture Fe3+ outside cell. Siderophores are mainly classified as either catecholate or hydroxamate. Vibrio vulnificus, a Gram-negative pathogenic bacterium, is responsible for serious infections in humans and requires iron for growth. A clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, vulnibactin, that captures ferric ions from the environment. In our study, we generated deletion mutants of the genes encoding proteins involved in the vulnibactin mediated iron-utilization system, such as ferric-vulnibactin receptor protein (VuuA), periplasmic ferric-vulnibactin binding protein (FatB), ferric-vulnibactin reductase (VuuB), and isochorismate synthase (ICS). ICS and VuuA are required under low-iron conditions for ferric-utilization in M2799, but the alternative proteins FatB and VuuB can function as a periplasmic binding protein and a ferric-chelate reductase, respectively. VatD, which functions as ferric-hydroxamate siderophores periplasmic binding protein, was shown to participate in the ferric-vulnibactin uptake system in the absence of FatB. Furthermore, the ferric-hydroxamate siderophore reductase IutB was observed to participate in ferric-vulnibactin reduction in the absence of VuuB. We propose that ferric-siderophore periplasmic binding proteins and ferric-chelate reductases represent potential targets for drug discovery in the context of infectious diseases.
Collapse
Affiliation(s)
- Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
2
|
Abstract
The ability to acquire iron from the environment is often an important virulence factor for pathogenic bacteria and Vibrios are no exception to this. Vibrios are reported mainly from marine habitats and most of the species are pathogenic. Among those, the pathogenic vibrios eg. V cholerae, V. parahaemolyticus, V. vulnificus causes foodborne illnesses. Vibrios are capable of producing all different classes of siderophores like hydroxamate (aerobactin), catecholate (vibriobactin, fluvibactin), carboxylate (vibrioferrin), and amphiphilic (amphibactin). Every different species of vibrios are capable of utilizing some endogenous or xenosiderophores. Being Gram-negative bacteria, Vibrios import iron siderophore via TonB dependent transport system and unlike other Gamma proteobacteria these usually possess two or even three partially redundant TonB systems for iron siderophore transport. Other than selected few iron siderophores, most pathogenic Vibrios are known to be able to utilize heme as the sole iron source, while some species are capable of importing free iron from the environment. As per the present knowledge, the spectrum of iron compound transport and utilization in Vibrios is better understood than the siderophore biosynthetic capability of individual species.
Collapse
|
3
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Iron-Utilization System in Vibrio vulnificus M2799. Mar Drugs 2021; 19:md19120710. [PMID: 34940709 PMCID: PMC8706444 DOI: 10.3390/md19120710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Vibrio vulnificus is a Gram-negative pathogenic bacterium that causes serious infections in humans and requires iron for growth. A clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, vulnibactin, that captures ferric ions from the environment. In the ferric-utilization system in V. vulnificus M2799, an isochorismate synthase (ICS) and an outer membrane receptor, VuuA, are required under low-iron conditions, but alternative proteins FatB and VuuB can function as a periplasmic-binding protein and a ferric-chelate reductase, respectively. The vulnibactin-export system is assembled from TolCV1 and several RND proteins, including VV1_1681. In heme acquisition, HupA and HvtA serve as specific outer membrane receptors and HupB is a sole periplasmic-binding protein, unlike FatB in the ferric-vulnibactin utilization system. We propose that ferric-siderophore periplasmic-binding proteins and ferric-chelate reductases are potential targets for drug discovery in infectious diseases.
Collapse
|
5
|
Tanabe T, Miyamoto K, Nagaoka K, Tsujibo H, Funahashi T. Binding of AraC-Type Activator DesR to the Promoter Region of Vibrio vulnificus Ferrioxamine B Receptor Gene. Biol Pharm Bull 2021; 44:1790-1795. [PMID: 34719655 DOI: 10.1248/bpb.b21-00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio vulnificus can utilize the xenosiderophore desferrioxamine B (DFOB) as an iron source under iron-restricted conditions. We previously identified in V. vulnificus that transcription of the desA gene encoding the outer membrane receptor for ferrioxamine B (FOXB) is activated by the AraC-type transcriptional regulator encoded by desR together with DFOB. In this study, we overexpressed and purified DesR as a glutathione S-transferase-fused protein and examined interaction between the promoter region of desA and DesR. Electrophoretic mobility shift assay (EMSA) revealed that DesR directly binds to the regulatory region of desA, and this binding was enhanced by the presence of DFOB in a concentration-dependent manner, while the presence of FOXB did not affect the potentiation of their binding. Moreover, EMSA identified that DNA fragments lacking a probable DesR binding sequence were unable to form complexes with DesR. Finally, deoxyribonuclease I footprinting assay demonstrated that the DNA binding sequence of DesR is located between -27 and -50 nucleotides upstream of the desA transcription start site. These results strongly indicate that DesR can directly activate the transcription of desA in cooperation with DFOB, which acts as a coactivator for DesR.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University
| | - Hiroshi Tsujibo
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
6
|
Cleto S, Haslinger K, Prather KLJ, Lu TK. Natural combinatorial genetics and prolific polyamine production enable siderophore diversification in Serratia plymuthica. BMC Biol 2021; 19:46. [PMID: 33722216 PMCID: PMC7962358 DOI: 10.1186/s12915-021-00971-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/31/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Iron is essential for bacterial survival. Bacterial siderophores are small molecules with unmatched capacity to scavenge iron from proteins and the extracellular milieu, where it mostly occurs as insoluble Fe3+. Siderophores chelate Fe3+ for uptake into the cell, where it is reduced to soluble Fe2+. Siderophores are key molecules in low soluble iron conditions. The ability of bacteria to synthesize proprietary siderophores may have increased bacterial evolutionary fitness; one way that bacteria diversify siderophore structure is by incorporating different polyamine backbones while maintaining the catechol moieties. RESULTS We report that Serratia plymuthica V4 produces a variety of siderophores, which we term the siderome, and which are assembled by the concerted action of enzymes encoded in two independent gene clusters. Besides assembling serratiochelin A and B with diaminopropane, S. plymuthica utilizes putrescine and the same set of enzymes to assemble photobactin, a siderophore found in the bacterium Photorhabdus luminescens. The enzymes encoded by one of the gene clusters can independently assemble enterobactin. A third, independent operon is responsible for biosynthesis of the hydroxamate siderophore aerobactin, initially described in Enterobacter aerogenes. Mutant strains not synthesizing polyamine-siderophores significantly increased enterobactin production levels, though lack of enterobactin did not impact the production of serratiochelins. Knocking out SchF0, an enzyme involved in the assembly of enterobactin alone, significantly reduced bacterial fitness. CONCLUSIONS This study shows the natural occurrence of serratiochelins, photobactin, enterobactin, and aerobactin in a single bacterial species and illuminates the interplay between siderophore biosynthetic pathways and polyamine production, indicating routes of molecular diversification. Given its natural yields of diaminopropane (97.75 μmol/g DW) and putrescine (30.83 μmol/g DW), S. plymuthica can be exploited for the industrial production of these compounds.
Collapse
Affiliation(s)
- Sara Cleto
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristina Haslinger
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Kristala L J Prather
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy K Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Spatiotemporal Regulation of Vibrio Exotoxins by HlyU and Other Transcriptional Regulators. Toxins (Basel) 2020; 12:toxins12090544. [PMID: 32842612 PMCID: PMC7551375 DOI: 10.3390/toxins12090544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
After invading a host, bacterial pathogens secrete diverse protein toxins to disrupt host defense systems. To ensure successful infection, however, pathogens must precisely regulate the expression of those exotoxins because uncontrolled toxin production squanders energy. Furthermore, inappropriate toxin secretion can trigger host immune responses that are detrimental to the invading pathogens. Therefore, bacterial pathogens use diverse transcriptional regulators to accurately regulate multiple exotoxin genes based on spatiotemporal conditions. This review covers three major exotoxins in pathogenic Vibrio species and their transcriptional regulation systems. When Vibrio encounters a host, genes encoding cytolysin/hemolysin, multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin, and secreted phospholipases are coordinately regulated by the transcriptional regulator HlyU. At the same time, however, they are distinctly controlled by a variety of other transcriptional regulators. How this coordinated but distinct regulation of exotoxins makes Vibrio species successful pathogens? In addition, anti-virulence strategies that target the coordinating master regulator HlyU and related future research directions are discussed.
Collapse
|
8
|
Hernández-Cabanyero C, Amaro C. Phylogeny and life cycle of the zoonotic pathogen Vibrio vulnificus. Environ Microbiol 2020; 22:4133-4148. [PMID: 32567215 DOI: 10.1111/1462-2920.15137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Vibrio vulnificus is a zoonotic pathogen able to cause diseases in humans and fish that occasionally result in sepsis and death. Most reviews about this pathogen (including those related to its ecology) are clearly biased towards its role as a human pathogen, emphasizing its relationship with oysters as its main reservoir, the role of the known virulence factors as well as the clinic and the epidemiology of the human disease. This review tries to give to the reader a wider vision of the biology of this pathogen covering aspects related to its phylogeny and evolution and filling the gaps in our understanding of the general strategies that V. vulnificus uses to survive outside and inside its two main hosts, the human and the eel, and how its response to specific environmental parameters determines its survival, its death, or the triggering of an infectious process.
Collapse
Affiliation(s)
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, Valencia, 46100, Spain
| |
Collapse
|
9
|
Okai N, Miyamoto K, Tomoo K, Tsuchiya T, Komano J, Tanabe T, Funahashi T, Tsujibo H. VuuB and IutB reduce ferric-vulnibactin in Vibrio vulnificus M2799. Biometals 2020; 33:187-200. [PMID: 32681432 DOI: 10.1007/s10534-020-00241-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Vibrio vulnificus, a pathogenic bacterium that causes serious infections in humans, requires iron for growth. Clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, namely, vulnibactin, to capture iron (III) from the environment. Growth experiments using a deletion mutant indicated that VuuB, a member of the FAD-containing siderophore-interacting protein family, plays a crucial role in Fe3+-vulnibactin reduction. IutB, a member of the ferric-siderophore reductase family, stands a substitute for VuuB in its absence. It remained unclear why V. vulnificus M2799 has two proteins with relevant functions. Here we biochemically characterized VuuB and IutB using purified recombinant proteins. Purified VuuB, a flavoprotein, catalyzed the reduction of Fe3+-nitrilotriacetic acid as its electron acceptor, in the presence of NADH as its electron donor and FAD as its cofactor. IutB catalyzed the reduction of Fe3+-nitrilotriacetic acid, in the presence of NADH, NADPH, or reduced glutathione as its electron donor. The optimal pH values and temperatures of VuuB and IutB were 7.0 and 37 °C, and 8.5 and 45 °C, respectively. On analyzing their ferric-chelate reductase activities, both VuuB and IutB were found to catalyze the reduction of Fe3+-aerobactin, Fe3+-vibriobactin, and Fe3+-vulnibactin. When the biologically relevant substrate, Fe3+-vulnibactin, was used, the levels of ferric-chelate reductase activities were similar between VuuB and IutB. Finally, the mRNA levels were quantified by qRT-PCR in M2799 cells cultivated under low-iron conditions. The number of vuuB mRNA was 8.5 times greater than that of iutB. The expression ratio correlated with the growth of their mutants in the presence of vulnibactin.
Collapse
Affiliation(s)
- Naoko Okai
- Department of Microbiology and Infection Control, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Koji Tomoo
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takahiro Tsuchiya
- Department of Microbiology and Infection Control, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Jun Komano
- Department of Microbiology and Infection Control, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology and Infection Control, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
10
|
Lemos ML, Balado M. Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. J Appl Microbiol 2020; 129:104-115. [PMID: 31994331 DOI: 10.1111/jam.14595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/29/2022]
Abstract
This review summarizes the current knowledge about iron uptake systems in bacterial fish pathogens and their involvement in the infective process. Like most animal pathogens, fish pathogens have evolved sophisticated iron uptake mechanisms some of which are key virulence factors for colonization of the host. Among these systems, siderophore production and heme uptake systems are the best studied in fish pathogenic bacteria. Siderophores like anguibactin or piscibactin, have been described in Vibrio and Photobacterium pathogens as key virulence factors to cause disease in fish. In many other bacterial fish pathogens production of siderophores was demonstrated but the compounds were not yet chemically characterized and their role in virulence was not determined. The role of heme uptake in virulence was not yet clearly elucidated in fish pathogens although there exist evidence that these systems are expressed in fish tissues during infection. The relationship of other systems, like Fe(II) transporters or the use of citrate as iron carrier, with virulence is also unclear. Future trends of research on all these iron uptake mechanisms in bacterial fish pathogens are also discussed.
Collapse
Affiliation(s)
- M L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Yamazaki K, Kashimoto T, Morita M, Kado T, Matsuda K, Yamasaki M, Ueno S. Identification of in vivo Essential Genes of Vibrio vulnificus for Establishment of Wound Infection by Signature-Tagged Mutagenesis. Front Microbiol 2019; 10:123. [PMID: 30774628 PMCID: PMC6367243 DOI: 10.3389/fmicb.2019.00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus can cause severe necrotic lesions within a short time. Recently, it has been reported that the numbers of wound infection cases in healthy hosts are increasing, for which surgical procedures are essential in many instances to eliminate the pathogen owing to its rapid proliferation. However, the mechanisms by which V. vulnificus can achieve wound infection in healthy hosts have not been elucidated. Here, we advance a systematic understanding of V. vulnificus wound infection through genome-wide identification of the relevant genes. Signature-tagged mutagenesis (STM) has been developed to identify functions required for the establishment of infection including colonization, rapid proliferation, and pathogenicity. Previously, STM had been regarded to be unsuitable for negative selection to detect the virulence genes of V. vulnificus owing to the low colonization and proliferation ability of this pathogen in the intestinal tract and systemic circulation. Alternatively, we successfully identified the virulence genes by applying STM to a murine model of wound infection. We examined a total of 5418 independent transposon insertion mutants by signature-tagged transposon mutagenesis and detected 71 clones as attenuated mutants consequent to disruption of genes by the insertion of a transposon. This is the first report demonstrating that the pathogenicity of V. vulnificus during wound infection is highly dependent on its characteristics: flagellar-based motility, siderophore-mediated iron acquisition system, capsular polysaccharide, lipopolysaccharide, and rapid chromosome partitioning. In particular, these functions during the wound infection process and are indispensable for proliferation in healthy hosts. Our results may thus allow the potential development of new strategies and reagents to control the proliferation of V. vulnificus and prevent human infections.
Collapse
Affiliation(s)
- Kohei Yamazaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takashige Kashimoto
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Mio Morita
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takehiro Kado
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kaho Matsuda
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Moeko Yamasaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Shunji Ueno
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
12
|
Thode SK, Rojek E, Kozlowski M, Ahmad R, Haugen P. Distribution of siderophore gene systems on a Vibrionaceae phylogeny: Database searches, phylogenetic analyses and evolutionary perspectives. PLoS One 2018; 13:e0191860. [PMID: 29444108 PMCID: PMC5812596 DOI: 10.1371/journal.pone.0191860] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/13/2018] [Indexed: 11/19/2022] Open
Abstract
Siderophores are small molecules synthesized and secreted by bacteria and fungi to scavenge iron. Extracellular ferri-siderohores are recognized by cognate receptors on the cell surface for transport over membranes. Several siderophore systems from Vibrionaceae representatives are known and well understood, e.g., the molecular structure of the siderophore, the biosynthesis gene cluster and pathway, and the gene expression pattern. Less is known about how these systems are distributed among the ~140 Vibrionaceae species, and which evolutionary processes contributed to the present-day distribution. In this work, we compiled existing knowledge on siderophore biosynthesis systems and siderophore receptors from Vibrionaceae and used phylogenetic analyses to investigate their organization, distribution, origin and evolution. Through literature searches, we identified nine different siderophore biosynthesis systems and thirteen siderophore receptors in Vibrionaceae. Homologs were identified by BLAST searches, and the results were mapped onto a Vibrionaceae phylogeny. We identified 81 biosynthetic systems distributed in 45 Vibrionaceae species and 16 unclassified Vibrionaceae strains, and 409 receptors in 89 Vibrionaceae species and 49 unclassified Vibrionaceae strains. The majority of taxa are associated with at least one type of siderophore biosynthesis system, some (e.g., aerobactin and vibrioferrin) of which are widely distributed in the family, whereas others (i.e., bisucaberin and vibriobactin) are found in one lineage. Cognate receptors are found more widespread. Phylogenetic analysis of three siderophore systems (piscibactin, vibrioferrin and aerobactin) show that their present-day distribution can be explained by an old insertion into Vibrionaceae, followed mainly by stable vertical evolution and extensive loss, and some cases of horizontal gene transfers. The present work provides an up to date overview of the distribution of siderophore-based iron acquisition systems in Vibrionaceae, and presents phylogenetic analysis of these systems. Our results suggest that the present-day distribution is a result of several evolutionary processes, such as old and new gene acquisitions, gene loss, and both vertical and horizontal gene transfers.
Collapse
Affiliation(s)
- Sunniva Katharina Thode
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT − The Arctic University of Norway, Tromsø, Norway
| | - Ewelina Rojek
- Department of Natural Sciences and Technology, Faculty of Education and Natural Sciences, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Mikolaj Kozlowski
- Department of Natural Sciences and Technology, Faculty of Education and Natural Sciences, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Rafi Ahmad
- Department of Natural Sciences and Technology, Faculty of Education and Natural Sciences, Inland Norway University of Applied Sciences, Hamar, Norway
- * E-mail: (PH); (RA)
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics (SfB), Faculty of Science and Technology, UiT − The Arctic University of Norway, Tromsø, Norway
- * E-mail: (PH); (RA)
| |
Collapse
|
13
|
Chen CL, Chien SC, Leu TH, Harn HIC, Tang MJ, Hor LI. Vibrio vulnificus MARTX cytotoxin causes inactivation of phagocytosis-related signaling molecules in macrophages. J Biomed Sci 2017; 24:58. [PMID: 28822352 PMCID: PMC5563386 DOI: 10.1186/s12929-017-0368-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio vulnificus is a marine bacterial species that causes opportunistic infections manifested by serious skin lesions and fulminant septicemia in humans. We have previously shown that the multifunctional autoprocessing repeats in toxin (MARTXVv1) of a biotype 1 V. vulnificus strain promotes survival of this organism in the host by preventing it from engulfment by the phagocytes. The purpose of this study was to further explore how MARTXVv1 inhibits phagocytosis of this microorganism by the macrophage. Methods We compared between a wild-type V. vulnificus strain and its MARTXVv1-deficient mutant for a variety of phagocytosis-related responses, including morphological change and activation of signaling molecules, they induced in the macrophage. We also characterized a set of MARTXVv1 domain-deletion mutants to define the regions associated with antiphagocytosis activity. Results The RAW 264.7 cells and mouse peritoneal exudate macrophages underwent cell rounding accompanied by F-actin disorganization in the presence of MARTXVv1. In addition, phosphorylation of some F-actin rearrangement-associated signaling molecules, including Lyn, Fgr and Hck of the Src family kinases (SFKs), focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), phosphoinositide 3-kinase (PI3K) and Akt, but not p38, was decreased. By using specific inhibitors, we found that these kinases were all involved in the phagocytosis of MARTXVv1-deficient mutant in an order of SFKs-FAK/Pyk2-PI3K-Akt. Deletion of the effector domains in the central region of MARTXVv1 could lead to reduced cytotoxicity, depending on the region and size of deletion, but did not affect the antiphagocytosis activity and ability to cause rounding of macrophage. Reduced phosphorylation of Akt was closely associated with inhibition of phagocytosis by the wild-type strain and MARTXVv1 domain-deletion mutants, and expression of the constitutively active Akt, myr-Akt, enhanced the engulfment of these strains by macrophage. Conclusions MARTXVv1 could inactivate the SFKs-FAK/Pyk2-PI3K-Akt signaling pathway in the macrophages. This might lead to impaired phagocytosis of the V. vulnificus-infected macrophage. The majority of the central region of MARTXVv1 is not associated with the antiphagocytosis activity. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0368-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Chun Chien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzeng-Horng Leu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Pharmacology College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
14
|
Ho YC, Hung FR, Weng CH, Li WT, Chuang TH, Liu TL, Lin CY, Lo CJ, Chen CL, Chen JW, Hashimoto M, Hor LI. Lrp, a global regulator, regulates the virulence of Vibrio vulnificus. J Biomed Sci 2017; 24:54. [PMID: 28800764 PMCID: PMC5554404 DOI: 10.1186/s12929-017-0361-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background An attenuated mutant (designated NY303) of Vibrio vulnificus, which causes serious wound infection and septicemia in humans, was isolated fortuitously from a clinical strain YJ016. This mutant was defective in cytotoxicity, migration on soft agar and virulence in the mouse. The purpose of this study was to map the mutation in this attenuated mutant and further explore how the gene thus identified is involved in virulence. Methods The whole genome sequence of mutant NY303 determined by next-generation sequencing was compared with that of strain YJ016 to map the mutations. By isolating and characterizing the specific gene-knockout mutants, the gene associated with the phenotype of mutant NY303 was identified. This gene encodes a global regulator, Lrp. A mutant, YH01, deficient in Lrp was isolated and examined in vitro, in vivo and ex vivo to find the affected virulence mechanisms. The target genes of Lrp were further identified by comparing the transcriptomes, which were determined by RNA-seq, of strain YJ016 and mutant YH01. The promoters bound by Lrp were identified by genome footprinting-sequencing, and those related with virulence were further examined by electrophoretic mobility shift assay. Results A mutation in lrp was shown to be associated with the reduced cytotoxicity, chemotaxis and virulence of mutant NY303. Mutant YH01 exhibited a phenotype resembling that of mutant NY303, and was defective in colonization in the mouse and growth in mouse serum, but not the antiphagocytosis ability. 596 and 95 genes were down- and up-regulated, respectively, in mutant YH01. Many of the genes involved in secretion of the MARTX cytotoxin, chemotaxis and iron-acquisition were down-regulated in mutant YH01. The lrp gene, which was shown to be negatively autoregulated, and 7 down-regulated virulence-associated genes were bound by Lrp in their promoters. A 14-bp consensus sequence, mkCrTTkwAyTsTG, putatively recognized by Lrp was identified in the promoters of these genes. Conclusions Lrp is a global regulator involved in regulation of cytotoxicity, chemotaxis and iron-acquisition in V. vulnificus. Down-regulation of many of the genes associated with these properties may be responsible, at least partly, for loss of virulence in mutant NY303. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0361-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Chi Ho
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Feng-Ru Hung
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Chao-Hui Weng
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Wei-Ting Li
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Tzu-Hung Chuang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Lin Liu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Jen-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan.,Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Masayuki Hashimoto
- Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
15
|
Hori M, Nakayama A, Kitagawa D, Fukushima H, Asai H, Kawai Y, Okuchi K. A case of Vibrio vulnificus infection complicated with fulminant purpura: gene and biotype analysis of the pathogen. JMM Case Rep 2017; 4:e005096. [PMID: 29026623 PMCID: PMC5630965 DOI: 10.1099/jmmcr.0.005096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Introduction.Vibrio vulnificus (V. vulnificus) causes a severe infection that develops in the compromised host. Its pathophysiology is classified into three types: (1) primary septicaemia, (2) gastrointestinal illness pattern and (3) wound infection pattern. Of these, primary septicaemia is critical. V. vulnificus can be classified into three biotypes and two genotypes and its pathogenicity is type-dependent. Case presentation. A 47-year-old man presented to a local hospital with chief complaints of fever, bilateral lower limb pain and diarrhoea. He had no history of foreign travel or known medical problems. He was in septic shock and developed fulminant purpura within 24 h of the onset. High-dose vasopressor and antibiotic administration failed to alter his status and he died 3 days after the onset of symptoms. V. vulnificus was isolated from blood, skin and nasal discharge cultures. Biotype and gene analysis of the microbe isolated identified it as Biotype 3, mainly reported in Israel in wound infections, and Genotype E, implicating an environmental isolate. These typing analyses indicated that the microbe isolated could be classified as a type with low pathogenicity. Conclusion. This case highlighted that Biotype 3 and Genotype E can also cause primary septicaemia. Although the majority of reports on Biotype 3 have been from the Middle East, this experience with the present case provided evidence that the habitat of Biotype 3 V. vulnificus has been extending to East Asia as well.
Collapse
Affiliation(s)
- Masatoshi Hori
- Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Akifumi Nakayama
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, 795-1 Aza-Nagamine, Ichihiraga, Seki City, Seki, Gifu, Japan
| | - Daisuke Kitagawa
- Department of Central Laboratory Medicine, Nara Prefecture General Medical Center, Hiramatsu, Nara, Nara Prefecture 631-0846, Japan
| | - Hidetada Fukushima
- Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Yasuyuki Kawai
- Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Kazuo Okuchi
- Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| |
Collapse
|
16
|
IutB participates in the ferric-vulnibactin utilization system in Vibrio vulnificus M2799. Biometals 2017; 30:203-216. [PMID: 28150143 DOI: 10.1007/s10534-017-9994-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus, an opportunistic pathogen that causes a serious, often fatal, infection in humans, requires iron for its growth. This bacterium utilizes iron from the environment via the vulnibactin-mediated iron uptake system. The mechanisms of vulnibactin biosynthesis, vulnibactin export, and ferric-vulnibactin uptake systems have been reported, whereas the ferric-vulnibactin reduction mechanism in the cell remains unclear. The results of our previous study showed that VuuB, a member of the flavin adenine dinucleotide-containing siderophore-interacting protein family, is a ferric-vulnibactin reductase, but there are other reductases that can complement for the defective vuuB. The aim of this study was to identify these proteins that can complement the loss of function of VuuB. We constructed mutants of genes encoding putative reductases in V. vulnificus M2799, and analyzed their growth under low-iron conditions. Complementation analyses confirmed that IutB, which functions as a ferric-aerobactin reductase, participates in ferric-vulnibactin reduction in the absence of VuuB. This is the first genetic evidence that ferric-vulnibactin is reduced by a member of the ferric-siderophore reductase protein family. In the aerobactin-utilization system, IutB plays a major role in ferric-aerobactin reduction in V. vulnificus M2799, and VuuB and DesB can compensate for the defect of IutB. Furthermore, the expression of iutB and desB was found to be regulated by iron and a ferric uptake regulator.
Collapse
|
17
|
Wen Y, Kim IH, Kim KS. Iron- and Quorum-sensing Signals Converge on Small Quorum-regulatory RNAs for Coordinated Regulation of Virulence Factors in Vibrio vulnificus. J Biol Chem 2016; 291:14213-14230. [PMID: 27151217 DOI: 10.1074/jbc.m116.714063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Vibrio vulnificus is a marine bacterium that causes human infections resulting in high mortality. This pathogen harbors five quorum-regulatory RNAs (Qrr1-5) that affect the expression of pathogenicity genes by modulating the expression of the master regulator SmcR. The qrr genes are activated by phosphorylated LuxO to different degrees; qrr2 is strongly activated; qrr3 and qrr5 are moderately activated, and qrr1 and qrr4 are marginally activated and are the only two that do not respond to cell density-dependent regulation. Qrrs function redundantly to inhibit SmcR at low cell density and fully repress when all five are activated. In this study, we found that iron inhibits qrr expression in three distinct ways. First, the iron-ferric uptake regulator (Fur) complex directly binds to qrr promoter regions, inhibiting LuxO activation by competing with LuxO for cis-acting DNA elements. Second, qrr transcription is repressed by iron independently of Fur. Third, LuxO expression is repressed by iron independently of Fur. We also found that, under iron-limiting conditions, the five Qrrs functioned additively, not redundantly, to repress SmcR, suggesting that cells lacking iron enter a high cell density mode earlier and could thereby modulate expression of virulence factors sooner. This study suggests that iron and quorum sensing, along with their cognate regulatory circuits, are linked together in the coordinated expression of virulence factors.
Collapse
Affiliation(s)
- Yancheng Wen
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Korea
| | - In Hwang Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Korea; Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Korea.
| |
Collapse
|
18
|
Temperature Change Induces the Expression of vuuA Encoding Vulnibactin Receptor and crp Encoding Cyclic AMP Receptor Protein in Vibrio vulnificus. Curr Microbiol 2016; 73:54-64. [PMID: 27016238 DOI: 10.1007/s00284-016-1026-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/04/2016] [Indexed: 12/19/2022]
Abstract
Upon entering the human body, Vibrio vulnificus, a gram-negative marine bacterium, must withstand a temperature change (TC) from 25 to 37 °C. This bacterium acquires iron mainly via the vulnibactin receptor (VuuA)-mediated iron uptake system (IUS), which is under the positive control of cyclic AMP receptor protein (CRP), a global regulator responsible for catabolite repression. In this study, we examined the effect of TC on the expression of vuuA and crp, and the reciprocal relation between VuuA-mediated IUS and CRP under iron-limited conditions. Iron limitation increased vuuA expression but decreased crp expression. TC resulted in increased vuuA and crp expression. A crp or vuuA mutation reciprocally decreased vuuA or crp expression. TC could increase vuuA or crp expression even in a crp- or vuuA-mutated background. These results indicate that TC increases the expression of both vuuA and crp by facilitating metabolism under iron-limited conditions, and that CRP and VuuA-mediated IUS interact coordinately toward optimal metabolism in V. vulnificus.
Collapse
|
19
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
20
|
Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 2015; 17:47-57. [PMID: 25590758 DOI: 10.1016/j.chom.2014.12.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
Hereditary hemochromatosis, an iron overload disease caused by a deficiency in the iron-regulatory hormone hepcidin, is associated with lethal infections by siderophilic bacteria. To elucidate the mechanisms of this susceptibility, we infected wild-type and hepcidin-deficient mice with the siderophilic bacterium Vibrio vulnificus and found that hepcidin deficiency results in increased bacteremia and decreased survival of infected mice, which can be partially ameliorated by dietary iron depletion. Additionally, timely administration of hepcidin agonists to hepcidin-deficient mice induces hypoferremia that decreases bacterial loads and rescues these mice from death, regardless of initial iron levels. Studies of Vibrio vulnificus growth ex vivo show that high iron sera from hepcidin-deficient mice support extraordinarily rapid bacterial growth and that this is inhibited in hypoferremic sera. Our findings demonstrate that hepcidin-mediated hypoferremia is a host defense mechanism against siderophilic pathogens and suggest that hepcidin agonists may improve infection outcomes in patients with hereditary hemochromatosis or thalassemia.
Collapse
|
21
|
Miyano N, Igarashi T, Kawano H, Miyamoto K, Tsuchiya T, Tomoo K, Tsujibo H. Expression, purification, crystallization and X-ray crystallographic analysis of the periplasmic binding protein VatD from Vibrio vulnificus M2799. Acta Crystallogr F Struct Biol Commun 2015; 71:1078-82. [PMID: 26249703 PMCID: PMC4528945 DOI: 10.1107/s2053230x15011759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/18/2015] [Indexed: 11/10/2022] Open
Abstract
Vibrio vulnificus is a halophilic marine microorganism which causes gastroenteritis and primary septicaemia in humans. An important factor that determines the survival of V. vulnificus in the human body is its ability to acquire iron. VatD is a periplasmic siderophore-binding protein from V. vulnificus M2799. The current study reports the expression, purification and crystallization of VatD. Crystals of both apo VatD and a VatD-desferrioxamine B-Fe(3+) (VatD-FOB) complex were obtained. The crystal of apo VatD belonged to space group P6422, while the crystal of the VatD-FOB complex belonged to space group P21. The difference in the two crystal forms could be caused by the binding of FOB to VatD.
Collapse
Affiliation(s)
- Nao Miyano
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomoko Igarashi
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroaki Kawano
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takahiro Tsuchiya
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Koji Tomoo
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
22
|
Catechol Siderophore Transport by Vibrio cholerae. J Bacteriol 2015; 197:2840-9. [PMID: 26100039 DOI: 10.1128/jb.00417-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/14/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Siderophores, small iron-binding molecules secreted by many microbial species, capture environmental iron for transport back into the cell. Vibrio cholerae synthesizes and uses the catechol siderophore vibriobactin and also uses siderophores secreted by other species, including enterobactin produced by Escherichia coli. E. coli secretes both canonical cyclic enterobactin and linear enterobactin derivatives likely derived from its cleavage by the enterobactin esterase Fes. We show here that V. cholerae does not use cyclic enterobactin but instead uses its linear derivatives. V. cholerae lacked both a receptor for efficient transport of cyclic enterobactin and enterobactin esterase to promote removal of iron from the ferrisiderophore complex. To further characterize the transport of catechol siderophores, we show that the linear enterobactin derivatives were transported into V. cholerae by either of the catechol siderophore receptors IrgA and VctA, which also transported the synthetic siderophore MECAM [1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene]. Vibriobactin is transported via the additional catechol siderophore receptor ViuA, while the Vibrio fluvialis siderophore fluvibactin was transported by all three catechol receptors. ViuB, a putative V. cholerae siderophore-interacting protein (SIP), functionally substituted for the E. coli ferric reductase YqjH, which promotes the release of iron from the siderophore in the bacterial cytoplasm. In V. cholerae, ViuB was required for the use of vibriobactin but was not required for the use of MECAM, fluvibactin, ferrichrome, or the linear derivatives of enterobactin. This suggests the presence of another protein in V. cholerae capable of promoting the release of iron from these siderophores. IMPORTANCE Vibrio cholerae is a major human pathogen and also serves as a model for the Vibrionaceae, which include other serious human and fish pathogens. The ability of these species to persist and acquire essential nutrients, including iron, in the environment is epidemiologically important but not well understood. In this work, we characterize the ability of V. cholerae to acquire iron by using siderophores produced by other organisms. We resolve confusion in the literature regarding its ability to use the Escherichia coli siderophore enterobactin and identify the receptor and TonB system used for the transport of several siderophores. The use of some siderophores did not require the ferric reductase ViuB, suggesting that an uncharacterized ferric reductase is present in V. cholerae.
Collapse
|
23
|
The Fish Pathogen
Vibrio vulnificus
Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.ve-0005-2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Vibrio vulnificus
biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA1
3
, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of
rtxA1
3
are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood:
vep07
, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and
vep20
, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of
V. vulnificus
in nutrient-enriched aquatic environments, such as fish farms.
Collapse
|
24
|
Hasan T, Choi CH, Oh MH. Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii. Genomics Inform 2015; 13:2-6. [PMID: 25873846 PMCID: PMC4394237 DOI: 10.5808/gi.2015.13.1.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 11/25/2022] Open
Abstract
Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.
Collapse
Affiliation(s)
- Tarik Hasan
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| | - Chul Hee Choi
- Department of Microbiology and Research Institute for Medical Sciences, Chungnam National University College of Medicine, Daejeon 301-747, Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| |
Collapse
|
25
|
Kawano H, Miyamoto K, Yasunobe M, Murata M, Myojin T, Tsuchiya T, Tanabe T, Funahashi T, Sato T, Azuma T, Mino Y, Tsujibo H. The RND protein is involved in the vulnibactin export system in Vibrio vulnificus M2799. Microb Pathog 2014; 75:59-67. [PMID: 25205089 DOI: 10.1016/j.micpath.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/25/2022]
Abstract
Vibrio vulnificus, an opportunistic marine bacterium that causes a serious, often fatal, infection in humans, requires iron for its pathogenesis. This bacterium exports vulnibactin for iron acquisition from the environment. The mechanisms of vulnibactin biosynthesis and ferric-vulnibactin uptake systems have recently been reported, while the vulnibactin export system has not been reported. Mutant growth under low-iron concentration conditions and a bioassay of the culture supernatant indicate that the VV1_0612 protein plays a crucial role in the vulnibactin secretion as a component of the resistance-nodulation-division (RND)-type efflux system in V. vulnificus M2799. To identify which RND protein(s) together with VV1_0612 TolC constituted the RND efflux system for vulnibactin secretion, deletion mutants of 11 RND protein-encoding genes were constructed. The growth inhibition of a multiple mutant (Δ11) of the RND protein-encoding genes was observed 6 h after the beginning of the culture. Furthermore, ΔVV1_1681 exhibited a growth curve that was similar to that of Δ11, while the multiple mutant except ΔVV1_1681 showed the same growth as the wild-type strain. These results indicate that the VV1_1681 protein is involved in the vulnibactin export system of V. vulnificus M2799. This is the first genetic evidence that vulnibactin is secreted through the RND-type efflux systems in V. vulnificus.
Collapse
Affiliation(s)
- Hiroaki Kawano
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Megumi Yasunobe
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masahiro Murata
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomoka Myojin
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takahiro Tsuchiya
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Takaji Sato
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takashi Azuma
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Department of Analytical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
26
|
Host-nonspecific iron acquisition systems and virulence in the zoonotic serovar of Vibrio vulnificus. Infect Immun 2013; 82:731-44. [PMID: 24478087 DOI: 10.1128/iai.01117-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment.
Collapse
|
27
|
Kawano H, Miyamoto K, Sakaguchi I, Myojin T, Moriwaki M, Tsuchiya T, Tanabe T, Yamamoto S, Tsujibo H. Role of periplasmic binding proteins, FatB and VatD, in the vulnibactin utilization system of Vibrio vulnificus M2799. Microb Pathog 2013; 65:73-81. [DOI: 10.1016/j.micpath.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/04/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
|
28
|
Tanabe T, Naka A, Aso H, Nakao H, Narimatsu S, Inoue Y, Ono T, Yamamoto S. A Novel Aerobactin Utilization Cluster inVibrio vulnificuswith a Gene Involved in the Transcription Regulation of theiutAHomologue. Microbiol Immunol 2013; 49:823-34. [PMID: 16172537 DOI: 10.1111/j.1348-0421.2005.tb03671.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We demonstrated that Vibrio vulnificus M2799 utilizes aerobactin for growth as an exogenous siderophore under iron-limiting conditions, concomitant with enhanced production of the 76-kDa iron-repressible outer membrane protein. Subsequently, by applying the Fur titration assay method to the M2799 genomic libraries followed by further cloning of the regions surrounding the candidate genes, we identified the 8.4-kb aerobactin utilization gene cluster which consists of five genes arranged in three distinct transcriptional units. It was confirmed by disruption of the corresponding genes that the first unit forming a three-gene operon (vatCDB) and the third unit of a single gene (iutA) encode an ATP-binding cassette transport component and the 76-kDa ferric aerobactin receptor, respectively. The second unit of another single gene (iutR), encodes a homologue of the GntR family of transcriptional repressors. Although transcription of the first and third units was iron-regulated, the iutR gene was transcribed regardless of iron status in the growth medium. Construction of an iutR disruptant coupled with genetic complementation experiments suggested that the gene encodes a transcriptional repressor for iutA. This is the first example of a regulator gene involved in aerobactin-enhanced production of IutA.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Department of Molecular Biopharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim HY, Ayrapetyan M, Oliver JD. Survival of Vibrio vulnificus genotypes in male and female serum, and production of siderophores in human serum and seawater. Foodborne Pathog Dis 2013; 11:119-25. [PMID: 24161025 DOI: 10.1089/fpd.2013.1581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio vulnificus is an estuarine bacterium responsible for 95% of all seafood-related deaths in the United States. Several studies have demonstrated that V. vulnificus infections are enhanced when host iron availability is increased, such as occurs with chronic liver disease. Because of the gender difference seen in these infections, we examined whether there was a difference in the survival in both male and female serum by both the C (clinical) and E (environmental) genotypes of V. vulnificus. We further determined the significance of the catecholate and hydroxamate siderophores produced by this pathogen during both human infections and while in its natural estuarine environment. We found that only C-genotype strains were capable of growth in human serum, regardless of inoculum size, with growth in male and female serum being equal. We found the catecholate outer membrane receptor gene (vuuA) to be expressed significantly more than that for the hydroxamate siderophore (fhuA) when the cells were exposed to human serum, regardless of the genotype. When cells were exposed to natural seawater, fhuA showed increased expression over time, while vuuA showed decreased expression. Our data suggest that the catecholate siderophore is important during human infections, whereas the hydroxamate siderophore may be more important in the estuarine environment this pathogen inhabits.
Collapse
Affiliation(s)
- Hye-young Kim
- Department of Biology, University of North Carolina at Charlotte , Charlotte, North Carolina
| | | | | |
Collapse
|
30
|
Bisharat N, Bronstein M, Korner M, Schnitzer T, Koton Y. Transcriptome profiling analysis of Vibrio vulnificus during human infection. MICROBIOLOGY-SGM 2013; 159:1878-1887. [PMID: 23782800 DOI: 10.1099/mic.0.067900-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio vulnificus is a waterborne pathogen that was responsible for an outbreak of severe soft-tissue infections among fish farmers and fish consumers in Israel. Several factors have been shown to be associated with virulence. However, the transcriptome profile of the pathogen during human infection has not been determined yet. We compared the transcriptome profile, using RNA sequencing, of a human-pathogenic strain harvested directly from tissue of a patient suffering from severe soft-tissue infection with necrotizing fasciitis, with the same strain and three other environmental strains grown in vitro. The five sequenced libraries were aligned to the reference genomes of V. vulnificus strains CMCP6 and YJ016. Approximately 47.8 to 62.3 million paired-end raw reads were generated from the five runs. Nearly 84 % of the genome was covered by reads from at least one of the five runs, suggesting that nearly 16 % of the genome is not transcribed or is transcribed at low levels. We identified 123 genes that were differentially expressed during the acute phase of infection. Sixty-three genes were mapped to the large chromosome, 47 genes mapped to the small chromosome and 13 genes mapped to the YJ016 plasmid. The 123 genes fell into a variety of functional categories including transcription, signal transduction, cell motility, carbohydrate metabolism, intracellular trafficking and cell envelope biogenesis. Among the genes differentially expressed during human infection we identified genes encoding bacterial toxin (RtxA1) and genes involved in flagellar components, Flp-coding region, GGDEF family protein, iron acquisition system and sialic acid metabolism.
Collapse
Affiliation(s)
- Naiel Bisharat
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Medicine D, Emek Medical Center, Afula, Israel
| | - Michal Bronstein
- Center for Genomic Technologies, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Mira Korner
- Center for Genomic Technologies, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Temima Schnitzer
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Yael Koton
- Department of Medicine D, Emek Medical Center, Afula, Israel
| |
Collapse
|
31
|
Lee HJ, Kim JA, Lee MA, Park SJ, Lee KH. Regulation of haemolysin (VvhA) production by ferric uptake regulator (Fur) in Vibrio vulnificus: repression of vvhA transcription by Fur and proteolysis of VvhA by Fur-repressive exoproteases. Mol Microbiol 2013; 88:813-26. [PMID: 23560801 DOI: 10.1111/mmi.12224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
Abstract
VvhA produced by Vibrio vulnificus exhibits cytolytic activity to human cells including erythrocytes. Since haemolysis by VvhA may provide iron for bacterial growth and pathogenicity, we investigated the expression of VvhA to elucidate the regulatory roles of Fur, a major transcription factor controlling iron-homeostasis. Fur repressed the transcription of vvhBA operon via binding to the promoter region. However, haemolysin content and haemolytic activity were lowered in cell-free supernatant of fur mutant. This discrepancy between the levels of vvhA transcript and VvhA protein in fur mutant was caused by exoproteolytic activities of the elastase VvpE and another metalloprotease VvpM, which were also regulated by Fur. vvpE gene expression was repressed by Fur via binding to the Fur-box homologous region. Regulation of VvpM expression by Fur did not occur at the level of vvpM transcription. In vitro proteolysis assays showed that both proteases efficiently degraded VvhA. In addition, the extracellular levels of VvhA were higher in culture supernatants of vvpE or vvpM mutants than in the wild type. Thus this study demonstrates that Fur regulates haemolysin production at the transcription level of the vvhBA operon and at the post-translation level by regulating the expressions of two VvhA-degrading exoproteases, VvpE and VvpM.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | | | | | | | | |
Collapse
|
32
|
Natividad-Bonifacio I, Fernández FJ, Quiñones-Ramírez EI, Curiel-Quesada E, Vázquez-Salinas C. Presence of virulence markers in environmental Vibrio vulnificus strains. J Appl Microbiol 2013; 114:1539-46. [PMID: 23351134 DOI: 10.1111/jam.12149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/17/2022]
Abstract
AIMS This work aims to demonstrate the presence of several genes and factors associated with virulence in strains isolated from the environment at Pueblo Viejo Lagoon, State of Veracruz, Mexico. METHODS AND RESULTS In this study, we investigated the production of V. vulnificus virulence factors, as cytolysin (haemolysin), RTX toxin, metalloprotease, siderophores, capsular polysaccharide, adhesion structures (like type IV pili), and polar and lateral flagella, involved in swimming and swarming (or, at least, the presence of genes encoding some of them) in 40 strains of V. vulnificus isolated from water and food. The results indicate that strains of environmental origin possess potential virulence characteristics. CONCLUSIONS Caution should be exercised when consuming raw shellfish (especially by those more susceptible risk groups). SIGNIFICANCE AND IMPACT OF THE STUDY This is the first work focused on the evaluation of V. vulnificus virulence factors in Mexico.
Collapse
|
33
|
Hor LI, Chen CL. Cytotoxins of Vibrio vulnificus: Functions and roles in pathogenesis. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2012.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus. J Microbiol 2012; 50:320-5. [PMID: 22538662 DOI: 10.1007/s12275-012-2056-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/10/2012] [Indexed: 12/19/2022]
Abstract
The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.
Collapse
|
35
|
Kim HJ, Lee HJ, Lee KH, Cho JC. Simultaneous detection of Pathogenic Vibrio species using multiplex real-time PCR. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus. J Bacteriol 2012; 194:1753-62. [PMID: 22267518 DOI: 10.1128/jb.06582-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.
Collapse
|
37
|
Kim SP, Lee GW, Kim CM, Shin SH. Coordinate Regulation ofVibrio vulnificusHeme Receptor HupA Expression by Cyclic AMP-receptor Protein and Ferric Uptake Regulator. ACTA ACUST UNITED AC 2012. [DOI: 10.4167/jbv.2012.42.4.294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sun-Pyo Kim
- Department of Emergence Medicine, Chosun University Medical School, Gwangju, Korea
| | - Gang-Wook Lee
- Department of Emergence Medicine, Chosun University Medical School, Gwangju, Korea
| | - Choon-Mee Kim
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Korea
| | - Sung-Heui Shin
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Korea
- Department of Microbiology, Chosun University Medical School, Gwangju, Korea
| |
Collapse
|
38
|
Datta S, Crosa JH. Identification and characterization of a novel outer membrane protein receptor required for hemin utilization in Vibrio vulnificus. Biometals 2011; 25:275-83. [PMID: 22015545 DOI: 10.1007/s10534-011-9501-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/11/2011] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus, the cause of septicemia and serious wound infection in humans and fishes, require iron for its pathogenesis. Hemin uptake through the outer membrane receptor, HupA, is one of its many mechanisms by which it acquires iron. We report here the identification of an additional TonB-dependent hemin receptor HvtA, that is needed in conjunction with the HupA protein for optimal hemin utilization. The HvtA protein is significantly homologous to other outer membrane hemin receptors and its expression in trans restored the uptake of hemin and hemoglobin, the latter to a weaker extent, in a mutant strain that was defective in both receptors. Quantitative RT-PCR suggested that transcription of the hvtA gene was iron regulated. The operon containing the hvtA gene is homologous to the operon in V. cholerae containing the hemin receptor gene hutR suggesting a vertical transmission of the hvtA cluster from V. cholerae to V. vulnificus.
Collapse
Affiliation(s)
- Shreya Datta
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
39
|
Kim CM, Shin SH. Modulation of iron-uptake systems by a mutation of luxS encoding an autoinducer-2 synthase in Vibrio vulnificus. Biol Pharm Bull 2011; 34:632-7. [PMID: 21532149 DOI: 10.1248/bpb.34.632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio vulnificus possesses multiple iron-uptake systems which are mediated by VuuA (vulnibactin receptor), IutA (aerobactin receptor) and HupA (heme receptor). In this study, we determined the effect of a mutation of luxS encoding autoinducer-2 (AI-2) synthase on the expressions of the three receptors. A mutation and an in trans complementation of luxS did not affect the growing ability of V. vulnificus in iron-deficient conditions. Nevertheless, the luxS mutation slightly decreased vuuA expression, but slightly increased iutA and hupA expressions in the transcriptional reporter assay or Western blot analysis. These changes were all recovered by the luxS complementation. These results suggest that AI-2-mediated quorum sensing system may be involved in the fine modulation of V. vulnificus iron-uptake systems, positively affecting vuuA expression but negatively affecting iutA and hupA expressions.
Collapse
Affiliation(s)
- Choon Mee Kim
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Republic of Korea
| | | |
Collapse
|
40
|
Kashimoto T. [Current status and future prospects in a pathogenic study of Vibrio vulnificus]. Nihon Saikingaku Zasshi 2010; 65:369-78. [PMID: 20808058 DOI: 10.3412/jsb.65.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takashige Kashimoto
- Laboratory of Veterinary Public Health, Kitasato University School of Veterinary Medicine, Higashi, Towada-shi, Aomori
| |
Collapse
|
41
|
Abstract
Studying the organization and conservation of the TonB systems across the genus Vibrio, we can tease out trends in gene arrangement and function that lead to clues about the evolution and necessity of the proteins in multiple TonB systems. The TonB2 systems, with additional TtpC proteins, are in general more promiscuous regarding their interactions with many different TonB-dependent transporters in the outer membrane. Studies show that the TtpC protein spans the periplasmic space, suggesting that it can be the connection between the energy from the proton motive force and the outer membrane protein receptors, which the shorter TonB2 cannot provide. As an earlier system, the combination of the TtpC protein and a TonB2 system must have been necessary for the function of the smaller TonB2 protein and to transduce energy in a medium that can have osmotic challenges.
Collapse
Affiliation(s)
- Carole J Kuehl
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Portland, OR 97239, USA
| | - Jorge H Crosa
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Portland, OR 97239, USA
| |
Collapse
|
42
|
Carpenter BM, Whitmire JM, Merrell DS. This is not your mother's repressor: the complex role of fur in pathogenesis. Infect Immun 2009; 77:2590-601. [PMID: 19364842 PMCID: PMC2708581 DOI: 10.1128/iai.00116-09] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Heath Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
43
|
Bergeron RJ, Bharti N, Singh S, McManis JS, Wiegand J, Green LG. Vibriobactin antibodies: a vaccine strategy. J Med Chem 2009; 52:3801-13. [PMID: 19492834 PMCID: PMC2951131 DOI: 10.1021/jm900119q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new target strategy in the development of bacterial vaccines, the induction of antibodies to microbial outer membrane ferrisiderophore complexes, is explored. A vibriobactin (VIB) analogue, with a thiol tether, 1-(2,3-dihydroxybenzoyl)-5,9-bis[[(4S,5R)-2-(2,3-dihydroxyphenyl)-4,5-dihydro-5-methyl-4-oxazolyl]carbonyl]-14-(3-mercaptopropanoyl)-1,5,9,14-tetraazatetradecane, was synthesized and linked to ovalbumin (OVA) and bovine serum albumin (BSA). The antigenicity of the VIB microbial iron chelator conjugates and their iron complexes was evaluated. When mice were immunized with the resulting OVA-VIB conjugate, a selective and unequivocal antigenic response to the VIB hapten was observed; IgG monoclonal antibodies specific to the vibriobactin fragment of the BSA and OVA conjugates were isolated. The results are consistent with the idea that the isolated adducts of siderophores covalently linked to their bacterial outer membrane receptors represent a credible target for vaccine development.
Collapse
Affiliation(s)
- Raymond J Bergeron
- Department of Medicinal Chemistry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610-0485, USA.
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect Immun 2009; 77:1208-15. [PMID: 19139193 DOI: 10.1128/iai.01006-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Availability of free iron is extremely limited in the mammalian host, and the acquisition of iron in the host is essential for successful infection by pathogenic bacteria. Expression of many genes involved in acquiring iron is regulated in response to the level of iron availability, and iron regulation is mediated by Fur. In this study, cellular levels of Vibrio vulnificus HupA, a heme receptor protein, and the hupA transcript were found to increase in cells grown at 40 degrees C compared to cells grown at 30 degrees C. The results suggested that change in growth temperature, in addition to iron availability, is an environmental cue controlling the expression of the hupA gene. The influence of global regulatory proteins on the expression of hupA was examined, and the cyclic AMP receptor protein (CRP) was found to activate the expression of hupA at the transcriptional level. CRP exerts its effects by directly binding to DNA upstream of the hupA promoter P(hupA), and a CRP binding site, centered at 174 bp upstream of the transcription start site, was identified by a DNase I protection assay. Finally, a hupA mutant showed reduced virulence in mice and in tissue cultures, in which growth of the hupA mutant was impaired, indicating that HupA of V. vulnificus is essential for survival and multiplication during infection.
Collapse
|
46
|
Miyamoto K, Kosakai K, Ikebayashi S, Tsuchiya T, Yamamoto S, Tsujibo H. Proteomic analysis of Vibrio vulnificus M2799 grown under iron-repleted and iron-depleted conditions. Microb Pathog 2009; 46:171-7. [PMID: 19185608 DOI: 10.1016/j.micpath.2008.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/12/2008] [Accepted: 12/30/2008] [Indexed: 11/26/2022]
Abstract
Vibrio vulnificus is an opportunistic marine bacterium that causes a serious, often fatal, infection in human. An important factor that determines the survival of V. vulnificus in the human body is the ability to acquire iron. The differential expression of proteins in whole-cell lysates of V. vulnificus M2799, a clinical isolate, was evaluated under iron-repleted and iron-depleted conditions during the early, mid and late logarithmic growth phases. A total of 32, 53 and 42 iron-regulated spots were detected by two-dimensional differential gel electrophoresis (2D-DIGE) in the early, mid and late logarithmic growth phases, respectively. Of these, 18 (early logarithmic growth phase), 31 (mid logarithmic growth phase) and 26 (late logarithmic growth phase) proteins were subsequently identified by matrix-assisted laser desorption/ionization-time of flight analysis. These proteins were classified into 10 functional categories, including inorganic ion transport and metabolism, carbohydrate transport and metabolism, and amino acid transport and metabolism. Based on this classification, the expression of proteins involved in the iron acquisition system increased from the early to the mid logarithmic growth phases, while that of proteins involved in other metabolic pathways increased from the mid to the late logarithmic growth phases. Furthermore, when the protein expression profile of the wild type bacterium was compared with that of the fur mutant grown under the iron-repleted condition, the expression of 18 proteins was found to be regulated by iron and Fur.
Collapse
Affiliation(s)
- Katsushiro Miyamoto
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. Infect Immun 2008; 76:4019-37. [PMID: 18573903 DOI: 10.1128/iai.00208-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus multiplies rapidly in host tissues under iron-overloaded conditions. To understand the effects of iron in the physiology of this pathogen, we performed a genome-wide transcriptional analysis of V. vulnificus growing at three different iron concentrations, i.e., iron-limiting [Trypticase soy broth with 1.5% NaCl (TSBS) plus ethylenediamine-di-(o-hydroxyphenylacetic) acid (EDDA)], low-iron (1 microg Fe/ml; TSBS), and iron-rich (38 microg Fe/ml; TSBS plus ferric ammonium citrate) concentrations. A few genes were upregulated under the last two conditions, while several genes were expressed differentially under only one of them. A gene upregulated under both conditions encodes the outer membrane porin, OmpH, while others are related to the biosynthesis of amino sugars. An ompH mutant showed sensitivity to sodium dodecyl sulfate (SDS) and polymyxin B and also had a reduced competitive index compared with the wild type in the iron-overloaded mice. Under iron-limiting conditions, two of the TonB systems involved in vulnibactin transport were induced. These genes were essential for virulence in the iron-overloaded mice inoculated subcutaneously, underscoring the importance of active iron transport in infection, even under the high-iron conditions of this animal model. Furthermore, we demonstrated that a RyhB homologue is also essential for virulence in the iron-overloaded mouse. This novel information on the role of genes induced under iron limitation in the iron-overloaded mouse model and the finding of new genes with putative roles in virulence that are expressed only under iron-rich conditions shed light on the many strategies used by this pathogen to multiply rapidly in the susceptible host.
Collapse
|
48
|
Biosynthetic and regulatory elements involved in the production of the siderophore vanchrobactin in Vibrio anguillarum. Microbiology (Reading) 2008; 154:1400-1413. [DOI: 10.1099/mic.0.2008/016618-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Kim CM, Park YJ, Shin SH. A widespread deferoxamine-mediated iron-uptake system in Vibrio vulnificus. J Infect Dis 2007; 196:1537-45. [PMID: 18008234 DOI: 10.1086/523108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 06/06/2007] [Indexed: 11/03/2022] Open
Abstract
Vibrio vulnificus can use the standard iron chelator deferoxamine (Desferal) for efficient iron-uptake via the specific receptor DesA, which is encoded by desA. We investigated the ubiquity of the deferoxamine-mediated iron-uptake system in V. vulnificus strains and the potential risk of the system. By polymerase chain reaction (PCR), desA was found in 10 of 10 clinical strains and in 9 of 10 environmental strains, and their growth was stimulated by deferoxamine. By reverse-transcriptase PCR, desA was expressed only under iron-limited conditions containing deferoxamine. V. vulnificus growth in the presence of deferoxamine was suppressed by desA mutation, and the suppressed growth was recovered by desA complementation. Deferoxamine stimulated V. vulnificus growth in iron-limited in vitro and ex vivo backgrounds containing transferrin-bound iron. Overall, V. vulnificus can use transferrin-bound iron via the widespread deferoxamine-mediated iron-uptake system; this cautions that deferoxamine therapy in patients with iron overload may increase the risk of fatal infections caused by V. vulnificus.
Collapse
Affiliation(s)
- Choon-Mee Kim
- Research Center for Resistant Cells, Chosun University Medical School, 375 Seosuk-dong, Dong-Gu, Gwangju, Republic of Korea
| | | | | |
Collapse
|
50
|
Kustos I, Kocsis B, Kilár F. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics 2007; 4:91-106. [PMID: 17288518 DOI: 10.1586/14789450.4.1.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.
Collapse
Affiliation(s)
- Ildikó Kustos
- University of Pécs, Department of Medical Microbiology & Immunology, Faculty of Medicine, Pécs, Hungary.
| | | | | |
Collapse
|