1
|
Peterson LW, Philip NH, Dillon CP, Bertin J, Gough PJ, Green DR, Brodsky IE. Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote Yersinia-Induced Apoptosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4110-4117. [PMID: 27733552 DOI: 10.4049/jimmunol.1601294] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023]
Abstract
Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4- and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-κB and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense.
Collapse
Affiliation(s)
- Lance W Peterson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Naomi H Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
2
|
Luo J, Hu J, Zhang Y, Hu Q, Li S. Hijacking of death receptor signaling by bacterial pathogen effectors. Apoptosis 2015; 20:216-23. [PMID: 25528554 DOI: 10.1007/s10495-014-1068-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Death receptors such as Tumor necrosis factor receptor 1, FAS and TNF-associated apoptosis-inducing ligand-R1/2 play a major role in counteracting with bacterial pathogen infection through regulation of inflammation and programmed cell death. The highly regulated death receptor signaling is frequently targeted by gram-negative bacterial pathogens such as Salmonella, Shigella, enteropathogenic Escherichia coli and enterohamorrhagic Escherichia coli, which harbor a conserved type III secretion system that delivers a repertoire of effector proteins to manipulate host signal transductions for their own benefit. This review focuses on how bacterial gut pathogens hijack death receptor signaling to inhibit host NF-κB and programmed cell death pathways.
Collapse
Affiliation(s)
- Jie Luo
- Taihe Hospital, Hubei University of Medicine, #32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | | | | | | | | |
Collapse
|
3
|
Rosenheinrich M, Heine W, Schmühl CM, Pisano F, Dersch P. Natural Killer Cells Mediate Protection against Yersinia pseudotuberculosis in the Mesenteric Lymph Nodes. PLoS One 2015; 10:e0136290. [PMID: 26296209 PMCID: PMC4546584 DOI: 10.1371/journal.pone.0136290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/02/2015] [Indexed: 01/11/2023] Open
Abstract
Natural killer cells play a crucial role in the initial defense against bacterial pathogens. The crosstalk between host cells infected with intracellular pathogens and NK cells has been studied intensively, but not much attention has been given to characterize the role of NK cells in the response to extracellular bacterial pathogens such as yersiniae. In this study we used antibody-mediated NK cell depletion to address the importance of this immune cell type in controlling a Y. pseudotuberculosis infection. Analysis of the bacterial counts was used to follow the infection and flow cytometry was performed to characterize the composition and dynamic of immune cells. Depletion of NK cells led to higher bacterial loads within the mesenteric lymph nodes. We further show that in particular CD11b+ CD27+ NK cells which express higher levels of the activation marker CD69 increase within the mesenteric lymph nodes during a Y. pseudotuberculosis infection. Moreover, in response to the activation NK cells secrete higher levels of IFNy, which in turn triggers the production of the proinflammatory cytokine TNFα. These results suggest, that NK cells aid in the clearance of Y. pseudotuberculosis infections mainly by triggering the expression of proinflammatory cytokines manipulating the host immune response.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/microbiology
- B-Lymphocytes/pathology
- Female
- Gene Expression
- Immunophenotyping
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/microbiology
- Killer Cells, Natural/pathology
- Lymph Nodes/immunology
- Lymph Nodes/microbiology
- Lymph Nodes/pathology
- Lymphocyte Count
- Lymphocyte Depletion
- Macrophages/immunology
- Macrophages/microbiology
- Macrophages/pathology
- Mesentery/immunology
- Mesentery/microbiology
- Mesentery/pathology
- Mice
- Mice, Inbred C57BL
- Neutrophils/immunology
- Neutrophils/microbiology
- Neutrophils/pathology
- Spleen/immunology
- Spleen/microbiology
- Spleen/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/microbiology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Yersinia pseudotuberculosis/immunology
- Yersinia pseudotuberculosis Infections/immunology
- Yersinia pseudotuberculosis Infections/microbiology
- Yersinia pseudotuberculosis Infections/pathology
Collapse
Affiliation(s)
- Maik Rosenheinrich
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wiebke Heine
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carina M. Schmühl
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
4
|
Wong Fok Lung T, Pearson JS, Schuelein R, Hartland EL. The cell death response to enteropathogenic Escherichia coli infection. Cell Microbiol 2014; 16:1736-45. [PMID: 25266336 DOI: 10.1111/cmi.12371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022]
Abstract
Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor-induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.
Collapse
Affiliation(s)
- Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | | | | | | |
Collapse
|
5
|
Stavropoulos PG, Soura E, Kanelleas A, Katsambas A, Antoniou C. Reactive arthritis. J Eur Acad Dermatol Venereol 2014; 29:415-24. [PMID: 25199646 DOI: 10.1111/jdv.12741] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/08/2014] [Indexed: 01/20/2023]
Abstract
Reactive arthritis (ReA) is an immune-mediated seronegative arthritis that belongs to the group of spondyloarthropathies and develops after a gastrointestinal or genitourinary system infection. The condition is considered to be characterized by a triad of symptoms (conjunctivitis, arthritis and urethritis) although a constellation of other manifestations may also be present. ReA is characterized by psoriasiform dermatological manifestations that may resemble those of pustular psoriasis and, similar to guttate psoriasis, is a post-infectious entity. Also, the articular manifestations of the disorder are similar to those of psoriatic arthritis and both conditions show a correlation with HLA-B27. These facts have led several authors to suggest that there is a connection between ReA and psoriasis, listing ReA among the disorders related to psoriasis. However, the pathogenetic mechanism behind the condition is complex and poorly understood. Bacterial antigenicity, the type of host response (i.e. Th1/Th2 imbalance) and various genetic factors (i.e. HLA-B27 etc.) play an important role in the development of the disorder. It is unknown whether all the aforementioned factors are part of a mechanism that could be similar to, or share basic aspects with known psoriasis pathogenesis mechanisms.
Collapse
Affiliation(s)
- P G Stavropoulos
- 1st Department of Dermatology/University Clinic, 'Andreas Syggros' Hospital, Athens, Greece
| | | | | | | | | |
Collapse
|
6
|
Sessler T, Healy S, Samali A, Szegezdi E. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 2013; 140:186-99. [PMID: 23845861 DOI: 10.1016/j.pharmthera.2013.06.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Death receptors are members of the tumour necrosis factor (TNF) receptor superfamily characterised by an ~80 amino acid long alpha-helical fold, termed the death domain (DD). Death receptors diversified during early vertebrate evolution indicating that the DD fold has plasticity and specificity that can be easily adjusted to attain additional functions. Eight members of the death receptor family have been identified in humans, which can be divided into four structurally homologous groups or clades, namely: the p75(NTR) clade (consisting of ectodysplasin A receptor, death receptor 6 (DR6) and p75 neurotrophin (NTR) receptor); the tumour necrosis factor receptor 1 clade (TNFR1 and DR3), the CD95 clade (CD95/FAS) and the TNF-related apoptosis-inducing ligand receptor (TRAILR) clade (TRAILR1 and TRAILR2). Receptors in the same clade participate in similar processes indicating that structural diversification enabled functional specialisation. On the surface of nearly all human cells multiple death receptors are expressed, enabling the cell to respond to a plethora of external signals. Activation of different death receptors converges on the activation of three main signal transduction pathways: nuclear factor-κB-mediated differentiation or inflammation, mitogen-associated protein kinase-mediated stress response and caspase-mediated apoptosis. While the ability to induce cell death is true for nearly all DRs, the FAS and TRAILR clades have specialised in inducing cell death. Here we summarise recent discoveries about the molecular regulation and structural requirements of apoptosis induction by death receptors and discuss how this information can be used to better explain the biological functions, similarities and distinguishing features of death receptors.
Collapse
Affiliation(s)
- Tamas Sessler
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Death receptors are members of the tumor necrosis factor receptor superfamily characterized by a cytoplasmic region known as the "death domain" that enables the receptors to initiate cytotoxic signals when engaged by cognate ligands. Binding to the ligand results in receptor aggregation and recruitment of adaptor proteins, which, in turn, initiates a proteolytic cascade by recruiting and activating initiator caspases 8 and 10. Death receptors were once thought to primarily induce cytotoxic signaling cascades. However, recent data indicate that they initiate multiple signaling pathways, unveiling a number of nonapoptosis-related functions, including regulation of cell proliferation and differentiation, chemokine production, inflammatory responses, and tumor-promoting activities. These noncytotoxic cascades are not simply a manifestation of inhibiting proapoptotic pathways but are intrinsically regulated by adaptor protein and receptor internalization processes. Insights into these various death receptor signaling pathways provide new therapeutic strategies targeting these receptors in pathophysiological processes.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | |
Collapse
|
9
|
Gröbner S, Adkins I, Schulz S, Richter K, Borgmann S, Wesselborg S, Ruckdeschel K, Micheau O, Autenrieth IB. Catalytically active Yersinia outer protein P induces cleavage of RIP and caspase-8 at the level of the DISC independently of death receptors in dendritic cells. Apoptosis 2008; 12:1813-25. [PMID: 17624595 DOI: 10.1007/s10495-007-0100-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Yersinia outer protein P (YopP) is injected by Y. enterocolitica into host cells thereby inducing apoptotic and necrosis-like cell death in dendritic cells (DC). Here we show the pathways involved in DC death caused by the catalytic activity of YopP. Infection with Yersinia enterocolitica, translocating catalytically active YopP into DC, triggered procaspase-8 cleavage and c-FLIPL degradation. YopP-dependent caspase-8 activation was, however, not mediated by tumor necrosis factor (TNF) receptor family members since the expression of both CD95/Fas/APO-1 and TRAIL-R2 on DC was low, and DC were resistant to apoptosis induced by agonistic anti-CD95 antibodies or TNF-related apoptosis-inducing ligand (TRAIL). Moreover, DC from TNF-Rp55-/- mice were not protected against YopP-induced cell death demonstrating that TNF-R1 is also not involved in this process. Activation of caspase-8 was further investigated by coimmunoprecitation of FADD from Yersinia-infected DC. We found that both cleaved caspase-8 and receptor interacting protein 1 (RIP1) were associated with the Fas-associated death domain (FADD) indicating the formation of an atypical death-inducing signaling complex (DISC). Furthermore, degradation of RIP mediated by the Hsp90 inhibitor geldanamycin significantly impaired YopP-induced cell death. Altogether our findings indicate that Yersinia-induced DC death is independent of death domain containing receptors, but mediated by RIP and caspase-8 at the level of DISC.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/metabolism
- Benzoquinones/metabolism
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- Caspase 8/metabolism
- Cell Death/physiology
- Cells, Cultured
- Death Domain Receptor Signaling Adaptor Proteins/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/metabolism
- Enzyme Activation
- Enzyme Inhibitors/metabolism
- Fas-Associated Death Domain Protein/metabolism
- Humans
- Lactams, Macrocyclic/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptors, Death Domain/genetics
- Receptors, Death Domain/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/physiology
- Yersinia enterocolitica/metabolism
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Sabine Gröbner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str., 6, 72076, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Allen HL, Deepe GS. Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum. J Clin Invest 2005; 115:2875-85. [PMID: 16151533 PMCID: PMC1199552 DOI: 10.1172/jci25365] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 06/28/2005] [Indexed: 01/09/2023] Open
Abstract
Pathogen-induced apoptosis of lymphocytes is associated with increased susceptibility to infection. In this study, we determined whether apoptosis influenced host resistance to the fungus Histoplasma capsulatum. The level of apoptotic leukocytes progressively increased in the lungs of naive and immune mice during the course of H. capsulatum infection. T cells constituted the dominant apoptotic population. Apoptosis was diminished in H. capsulatum-infected gld/gld and TNF-alpha-deficient mice; concomitantly, the fungal burden exceeded that of controls. Treatment of naive and H. capsulatum-immune mice with caspase inhibitors decreased apoptosis but markedly enhanced the severity of infection. Administration of a proapoptotic dose of suramin diminished the fungal burden. The increased burden in recipients of a caspase inhibitor was associated with elevations in IL-4 and IL-10 levels. In the absence of either of these cytokines, caspase inhibition suppressed apoptosis but did not increase the fungal burden. Thus, apoptosis is a critical element of protective immunity to H. capsulatum. Production of IL-4 and IL-10 is markedly elevated when apoptosis is inhibited, and the release of these cytokines exacerbates the severity of infection.
Collapse
Affiliation(s)
- Holly L Allen
- Division of Infectious Diseases, Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The hallmark of ankylosing spondylitis is acute and chronic spinal inflammation initiating in the sacroiliac joints, often coupled with enthesitis, presenting as chronic inflammation at the sites of ligamentous and tendinous insertions into bone. Peripheral joint synovitis can be a prominent feature as well. Reactive arthritis is a sterile synovitis arising after an extra-articular infection of enteric or urogenital tracts. HLA-B27 has been known for about the past 30 years to be associated with ankylosing spondylitis and reactive arthritis, but the pathogenesis of ankylosing spondylitis and reactive arthritis is still not well defined. Although the clinical manifestations of ankylosing spondylitis and reactive arthritis may differ, this update discusses the two diseases together and focuses on recent evidence in both. RECENT FINDINGS With respect to HLA-B27 several recent studies address arthritogenic peptides, molecular mimicry, and aberrant forms of B27. Several candidate genes in addition to B27 have been implicated in recent genetic studies. With respect to bacterial infection, recent findings in bacterial antigenicity, host response through interactions of antigen-presenting cells, T cells, and cytokines are providing new understanding of host-pathogen interactions and the pathogenesis of arthritis. Endogenous host factors such as proteoglycans may play a role as autoantigens and contribute to chronic inflammation on that basis. SUMMARY Recent advances provide additional new insights into distinct pathogenetic mechanisms in AS and ReA that arise from a complex interplay between genetic factors including HLA-B27 and environmental factors.
Collapse
Affiliation(s)
- Tae-Hwan Kim
- The Hospital for Rheumatic Diseases, Hanyang University, Seoul, Korea
| | | | | |
Collapse
|
12
|
Abstract
Reactive arthritis (ReA), one of the spondyloarthropathies, is an infectious related disease that occurs in a genetically predisposed individual, characterized by an immune-mediated synovitis with intra-articular persistence of viable nonculturable bacteria and/or immunogenic bacterial antigens. ReA long term prognosis is not as good as it was earlier believed. Two-thirds of patients develop prolonged joint discomfort, low back pain, or enthesopathies after acute ReA, and 15% to 30% of them develop chronic symptoms. The therapeutic options for patients with the more severe forms of the disease have been rather limited. The efficacy of tumor necrosis factor antagonists in other spondyloarthritis suggested that anticytokine therapy could also be effective for ReA. This paper reviews the latest concepts in urogenital and postenteric human leukocyte antigen-B27-associated ReA.
Collapse
|
13
|
Colmegna I, Cuchacovich R, Espinoza LR. HLA-B27-associated reactive arthritis: pathogenetic and clinical considerations. Clin Microbiol Rev 2004; 17:348-69. [PMID: 15084505 PMCID: PMC387405 DOI: 10.1128/cmr.17.2.348-369.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current evidence supports the concept that reactive arthritis (ReA) is an immune-mediated synovitis resulting from slow bacterial infections and showing intra-articular persistence of viable, non-culturable bacteria and/or immunogenetic bacterial antigens synthesized by metabolically active bacteria residing in the joint and/or elsewhere in the body. The mechanisms that lead to the development of ReA are complex and basically involve an interaction between an arthritogenic agent and a predisposed host. The way in which a host accommodates to invasive facultative intracellular bacteria is the key to the development of ReA. The details of the molecular pathways that explain the articular and extra-articular manifestations of the disease are still under investigation. Several studies have been done to gain a better understanding of the pathogenesis of ReA; these constitute the basis for a more rational therapeutic approach to this disease.
Collapse
Affiliation(s)
- Inés Colmegna
- Section of Rheumatology, Department of Medicine, LSU Health Science Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
14
|
Moore TA, Perry ML, Getsoian AG, Monteleon CL, Cogen AL, Standiford TJ. Increased mortality and dysregulated cytokine production in tumor necrosis factor receptor 1-deficient mice following systemic Klebsiella pneumoniae infection. Infect Immun 2003; 71:4891-900. [PMID: 12933830 PMCID: PMC187315 DOI: 10.1128/iai.71.9.4891-4900.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 04/17/2003] [Accepted: 05/27/2003] [Indexed: 01/08/2023] Open
Abstract
A significant clinical complication of pulmonary infections with Klebsiella pneumoniae is peripheral blood dissemination, resulting in a systemic infection concurrent with the localized pulmonary infection. In this context, little is known about the role of tumor necrosis factor receptor 1 (TNFR1)-mediated innate immune responses during systemic Klebsiella infections. Mice lacking TNFR1 were significantly more susceptible to Klebsiella-induced mortality following intravenous inoculation. Bacterial clearance was impaired in TNFR1-deficient mice at early times following infection. Unexpectedly, bacterial burdens at the onset of mortality (days 2 to 3 postinfection) were not higher in mice lacking TNFR1. However, elevated production of liver-associated proinflammatory cytokines (interleukin-12, tumor necrosis factor alpha [TNF-alpha[, and gamma interferon [IFN-gamma]) and chemokines (MIP-1 alpha, MIP-2, and MCP-1) was observed within the first 24 h of infection. Additionally, excessive plasma-associated IFN-gamma was also observed late in the course of infection (day 3). Spleen cells from day-3 infected TNFR1-deficient mice secreted markedly enhanced levels of IFN-gamma when cultured in vitro. Additionally, there was a marked increase in the total number of activated lymphocyte subsets as indicated by CD69 upregulation. A notable exception was the sharp decrease in the frequency of splenic NK T cells in infected TNFR1 knockout (KO) mice. Anti-TNF-alpha therapy in TNFR1 KO mice significantly reduced chemokine production and liver injury. Combined, these data indicate a dysregulated antibacterial host response following intravenous Klebsiella infection in the absence of TNFR1 signaling, resulting in heightened cytokine production and hyperactivation of specific splenic lymphocyte subsets.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Chemokines/biosynthesis
- Cytokines/biosynthesis
- Inflammation Mediators/metabolism
- Interferon-gamma/biosynthesis
- Klebsiella Infections/immunology
- Klebsiella pneumoniae
- Liver/immunology
- Liver/injuries
- Lymphocyte Activation
- Lymphocyte Subsets/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutralization Tests
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Thomas A Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0642, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Yu D, Kuipers JG. Role of bacteria and HLA-B27 in the pathogenesis of reactive arthritis. Rheum Dis Clin North Am 2003; 29:21-36, v-vi. [PMID: 12635498 DOI: 10.1016/s0889-857x(02)00082-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Strictly speaking, "reactive arthritis" is a conventional term with no study-verified definition. This review will focus on the type of arthritis that is induced by the following species: Chlamydia, Shigella, Salmonella, Yersinia, and Campylobacter. The types of arthritis caused by these pathogens share a clinical pattern that is common in the spondyloarthropathies, especially undifferentiated spondyloarthropathy and Reiter's syndrome. All these diseases, including ankylosing spondylitis, must also share major pathogenetic pathways.
Collapse
Affiliation(s)
- David Yu
- Division of Rheumatology, University of California at Los Angeles, 35-40 Rehab Center, 1000 Veterans Avenue, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
16
|
Abstract
A single mouse click on the topic tumor necrosis factor (TNF) in PubMed reveals about 50,000 articles providing one or the other information about this pleiotropic cytokine or its relatives. This demonstrates the enormous scientific and clinical interest in elucidating the biology of a molecule (or rather a large family of molecules), which began now almost 30 years ago with the description of a cytokine able to exert antitumoral effects in mouse models. Although our understanding of the multiple functions of TNF in vivo and of the respective underlying mechanisms at a cellular and molecular level has made enormous progress since then, new aspects are steadily uncovered and it appears that still much needs to be learned before we can conclude that we have a full comprehension of TNF biology. This review shortly covers some general aspects of this fascinating molecule and then concentrates on the molecular mechanisms of TNF signal transduction. In particular, the multiple facets of crosstalk between the various signalling pathways engaged by TNF will be addressed.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Germany.
| | | | | |
Collapse
|
17
|
Graves DT, Oskoui M, Volejnikova S, Naguib G, Cai S, Desta T, Kakouras A, Jiang Y. Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. J Dent Res 2001; 80:1875-9. [PMID: 11706944 DOI: 10.1177/00220345010800100301] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
P. gingivalis is an important oral pathogen, which has been closely linked to periodontal disease as well as lesions of endodontic origin. Both infections are associated with a decrease in fibroblast numbers, formation of an inflammatory infiltrate, and bone resorption. The goal of this study was to investigate the role that the host response plays in the capacity of P. gingivalis to stimulate fibroblast apoptosis, PMN recruitment, and osteoclastogenesis. This was accomplished by the use of an in vivo calvarial model in mice with targeted deletion of TNF receptors p55 and p75 and matched wild-type mice. The results indicate that P. gingivalis induces fibroblast apoptosis in vivo and establish for the first time that this involves the stimulation of a host response. Moreover, bacteria-stimulated PMN recruitment and osteoclastogenesis were also dependent upon the host response. The results suggest that much of the damage caused by P. gingivalis infection, including fibroblast apoptosis, at least under some circumstances, results from stimulation of the host response rather than the direct effect of bacterial products. Furthermore, this may represent a more general mechanism by which bacterial challenge induces apoptosis of matrix-producing cells through the induction of TNF.
Collapse
Affiliation(s)
- D T Graves
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Knight B, Yeoh GC, Husk KL, Ly T, Abraham LJ, Yu C, Rhim JA, Fausto N. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med 2000; 192:1809-18. [PMID: 11120777 PMCID: PMC2213505 DOI: 10.1084/jem.192.12.1809] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Accepted: 10/06/2000] [Indexed: 11/04/2022] Open
Abstract
Hepatic stem cells (oval cells) proliferate within the liver after exposure to a variety of hepatic carcinogens and can generate both hepatocytes and bile duct cells. Oval cell proliferation is commonly seen in the preneoplastic stages of liver carcinogenesis, often accompanied by an inflammatory response. Tumor necrosis factor (TNF), an inflammatory cytokine, is also important in liver regeneration and hepatocellular growth. The experiments reported here explore the relationship among the TNF inflammatory pathway, liver stem cell activation, and tumorigenesis. We demonstrate that TNF is upregulated during oval cell proliferation induced by a choline-deficient, ethionine-supplemented diet and that it is expressed by oval cells. In TNF receptor type 1 knockout mice, oval cell proliferation is substantially impaired and tumorigenesis is reduced. Oval cell proliferation is impaired to a lesser extent in interleukin 6 knockout mice and is unchanged in TNF receptor type 2 knockout mice. These findings demonstrate that TNF signaling participates in the proliferation of oval cells during the preneoplastic phase of liver carcinogenesis and that loss of signaling through the TNF receptor type 1 reduces the incidence of tumor formation. The TNF inflammatory pathway may be a target for therapeutic intervention during the early stages of liver carcinogenesis.
Collapse
Affiliation(s)
- Belinda Knight
- University of Western Australia, Department of Biochemistry, Nedlands WA 6907, Australia
- Western Australian Institute for Medical Research, Queen Elizabeth II Medical Centre, Nedlands WA 6009, Australia
| | - George C.T. Yeoh
- University of Western Australia, Department of Biochemistry, Nedlands WA 6907, Australia
- Western Australian Institute for Medical Research, Queen Elizabeth II Medical Centre, Nedlands WA 6009, Australia
| | - Kirsten L. Husk
- University of Western Australia, Department of Biochemistry, Nedlands WA 6907, Australia
| | - Tina Ly
- University of Western Australia, Department of Biochemistry, Nedlands WA 6907, Australia
| | - Lawrence J. Abraham
- University of Western Australia, Department of Biochemistry, Nedlands WA 6907, Australia
| | - Changpu Yu
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Jonathan A. Rhim
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Nelson Fausto
- Department of Pathology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
19
|
Yamada K, Yoshino K, Sekikawa K, Madarame H, Yagita H, Nakane A. Effect of a matrix metalloproteinase inhibitor on host resistance against Listeria monocytogenes infection. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 29:187-94. [PMID: 11064265 DOI: 10.1111/j.1574-695x.2000.tb01522.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxy acid-based matrix metalloproteinase (MMP) inhibitors have been shown to inhibit tumor infiltration and growth, endotoxin shock, and acute graft-versus-host disease. Blockade of the release of soluble tumor necrosis factor-alpha (TNF-alpha) and CD95 ligand (CD95L; FasL) from cell-associated forms is reportedly involved in the mechanism of the drug effect. We investigated the effect of a MMP inhibitor, KB-R7785, on host resistance against Listeria monocytogenes infection, in which TNF-alpha is essentially required for the defense, in mice. The administration of KB-R7785 exacerbated listeriosis, while the drug prevented lethal shock induced by lipopolysaccharide and D-galactosamine. KB-R7785 inhibited soluble TNF-alpha production in spleen cell cultures stimulated by heat-killed L. monocytogenes and the drug treatment reduced serum TNF-alpha levels in infected mice, whereas the compound was ineffective on the modulation of interferon-gamma and interleukin-10 production. The effect of KB-R7785 was considered to be dependent on TNF-alpha because the drug failed to affect L. monocytogenes infection in anti-TNF-alpha monoclonal antibody-treated mice and TNF-alpha knockout mice. Anti-CD95L monoclonal antibody was also ineffective on the infection. These results suggest that induction of infectious diseases, to which TNF-alpha is critical in host resistance, should be considered in MMP inhibitor-treated hosts.
Collapse
Affiliation(s)
- K Yamada
- Department of Bacteriology, Hirosaki University School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | |
Collapse
|