1
|
McEwan TBD, De Oliveira DMP, Stares EK, Hartley-Tassell LE, Day CJ, Proctor EJ, Nizet V, Walker MJ, Jennings MP, Sluyter R, Sanderson-Smith ML. M proteins of group A Streptococcus bind hyaluronic acid via arginine-arginine/serine-arginine motifs. FASEB J 2024; 38:e70123. [PMID: 39436142 DOI: 10.1096/fj.202401301r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Tissue injury, including extracellular matrix (ECM) degradation, is a hallmark of group A Streptococcus (GAS) skin infection and is partially mediated by M proteins which possess lectin-like properties. Hyaluronic acid is a glycosaminoglycan enriched in the cutaneous ECM, yet an interaction with M proteins has yet to be explored. This study revealed that hyaluronic acid binding was conserved across phylogenetically diverse M proteins, mediated by RR/SR motifs predominantly localized in the C repeat region. Keratinocyte wound healing was decreased through the recruitment of hyaluronic acid by M proteins in an M type-specific manner. GAS strains 5448 (M1 serotype) and ALAB49 (M53 serotype) also bound hyaluronic acid via M proteins, but hyaluronic acid could increase bacterial adherence independently of M proteins. The identification of host-pathogen mechanisms that affect ECM composition and cell repair responses may facilitate the development of nonantibiotic therapeutics that arrest GAS disease progression in the skin.
Collapse
Affiliation(s)
- Tahnee B-D McEwan
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - David M P De Oliveira
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily K Stares
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Christopher J Day
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Emma-Jayne Proctor
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Mark J Walker
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael P Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ronald Sluyter
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
2
|
Zhang Y, Håkansson J, Fan Y, Andrén OCJ, San Jacinto García J, Qin L, Umerska A, Hutchinson DJ, Lüchow M, Mahlapuu M, Malkoch M. Dendritic Nanogels Directed Dual-Encapsulation Topical Delivery System of Antimicrobial Peptides Targeting Skin Infections. Macromol Biosci 2023; 23:e2200433. [PMID: 36639138 DOI: 10.1002/mabi.202200433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/15/2022] [Indexed: 01/15/2023]
Abstract
Antimicrobial peptides (AMPs) are promising antibacterial agents in the fight against multidrug resistant pathogens. However, their application to skin infections is limited by the absence of a realizable topical delivery strategy. Herein, a hybrid hierarchical delivery system for topical delivery of AMPs is accomplished through the incorporation of AMPs into dendritic nanogels (DNGs) and their subsequent embedding into poloxamer gel. The high level of control over the crosslink density and the number of chosen functionalities makes DNGs ideal capsules with tunable loading capacity for DPK-060, a human kininogen-derived AMP. Once embedded into the poloxamer gel, DPK-060 encapsulated in DNGs displays a slower release rate compared to those entrapped directly in the gels. In vitro EpiDerm Skin Irritation Tests show good biocompatibility, while MIC and time-kill curves reveal the potency of the peptide toward Staphylococcus aureus. Anti-infection tests on ex vivo pig skin and in vivo mouse infection models demonstrate that formulations with 0.5% and 1% AMPs significantly inhibit the growth of S. aureus. Similar outcomes are observed for an in vivo mouse surgical site infection model. Importantly, when normalizing the bacteria inhibition to released/free DPK-060 at the wound site, all formulations display superior efficacy compared to DPK-060 in solution.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, 130061, P. R. China
| | - Joakim Håkansson
- Biological Function Unit, RISE Research Institutes of Sweden, Methodology, Textile and Medical Devices, Borås, SE-501 15, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, P.O. Box 440, Gothenburg, SE-40530, Sweden
| | - Yanmiao Fan
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Oliver C J Andrén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Jorge San Jacinto García
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Liguo Qin
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.,Institute of Design Science and Basic Components, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Anita Umerska
- Biological Function Unit, RISE Research Institutes of Sweden, Methodology, Textile and Medical Devices, Borås, SE-501 15, Sweden
| | - Daniel J Hutchinson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mads Lüchow
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | | | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
3
|
Håkansson J, Cavanagh JP, Stensen W, Mortensen B, Svendsen JS, Svenson J. In vitro and in vivo antibacterial properties of peptide AMC-109 impregnated wound dressings and gels. J Antibiot (Tokyo) 2021; 74:337-345. [PMID: 33495549 DOI: 10.1038/s41429-021-00406-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Synthetic mimics of antimicrobial peptides (AMPs) is a promising class of molecules for a variety of antimicrobial applications. Several hurdles must be passed before effective systemic infection therapies with AMPs can be achieved, but the path to effective topical treatment of skin, nail, and soft tissue infections appears less challenging to navigate. Skin and soft tissue infection is closely coupled to the emergence of antibiotic resistance and represents a major burden to the healthcare system. The present study evaluates the promising synthetic cationic AMP mimic, AMC-109, for treatment of skin infections in vivo. The compound is evaluated both in impregnated cotton wound dressings and in a gel formulation against skin infections caused by Staphylococcus aureus and methicillin resistant S. aureus. Both the ability to prevent colonization and formation of an infection, as well as eradicate an ongoing infection in vivo with a high bacterial load, were evaluated. The present work demonstrates that AMC-109 displays a significantly higher antibacterial activity with up to a seven-log reduction in bacterial loads compared to current clinical standard therapy; Altargo cream (1% retapamulin) and Fucidin cream (2% fusidic acid) in the in vivo wound models. It is thus concluded that AMC-109 represents a promising entry in the development of new and effective remedies for various skin infections.
Collapse
Affiliation(s)
- Joakim Håkansson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Sandvika, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - John-Sigurd Svendsen
- Amicoat A/S, Sandvika, Norway.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden. .,Cawthron Institute, Nelson, New Zealand.
| |
Collapse
|
4
|
Impetigo Animal Models: A Review of Their Feasibility and Clinical Utility for Therapeutic Appraisal of Investigational Drug Candidates. Antibiotics (Basel) 2020; 9:antibiotics9100694. [PMID: 33066386 PMCID: PMC7602235 DOI: 10.3390/antibiotics9100694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023] Open
Abstract
Impetigo (school sores), a superficial skin infection commonly seen in children, is caused by the gram-positive bacteria Staphylococcus aureus and/or Streptococcus pyogenes. Antibiotic treatments, often topical, are used as the first-line therapy for impetigo. The efficacy of potential new antimicrobial compounds is first tested in in vitro studies and, if effective, followed by in vivo studies using animal models and/or humans. Animal models are critical means for investigating potential therapeutics and characterizing their safety profile prior to human trials. Although several reviews of animal models for skin infections have been published, there is a lack of a comprehensive review of animal models simulating impetigo for the selection of therapeutic drug candidates. This review critically examines the existing animal models for impetigo and their feasibility for testing the in vivo efficacy of topical treatments for impetigo and other superficial bacterial skin infections.
Collapse
|
5
|
Epidemiological analysis of Group A Streptococcus infections in a hospital in Beijing, China. Eur J Clin Microbiol Infect Dis 2020; 39:2361-2371. [PMID: 32676802 DOI: 10.1007/s10096-020-03987-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Our study aimed to investigate the epidemiological and molecular characteristics of isolates collected from Group A Streptococcus (GAS) infections in children in Beijing China during the year 2019. Emm typing, superantigens, and erythromycin resistance genotypes were determined by PCR. Antimicrobial susceptibility testing was performed as recommended by Clinical Laboratory Standards Institute (CLSI). A total of 271 GAS isolates were collected. Thirteen different emm types, including 31 subtypes, were identified. The most prevalent emm types were emm12 (52.77%), emm1 (36.9%), emm3.1 (2.95%), and emm75.0 (2.95%). Two variant subtypes, STC36.0 and STG840.2, were identified. There was no difference in the portion of emm12 and emm1 isolates in scarlet fever, impetigo, and psoriasis. The majority of superantigens detected were smeZ (94.46%), speC (91.14%), and ssa (74.91%), followed by speH (56.46%), speI (45.76%), speJ (36.9%), and speA (34.32%). More scarlet fever isolates harbored speA (35.6%) and speJ (38.4%), more psoriasis isolates harbored speI (57.9%), and more impetigo isolates harbored ssa (89.7%). Isolates were universally susceptible to penicillin and resistant to erythromycin (94.83%). Moreover, 89.67% erythromycin resistance isolates harbored the ermB gene. The erythromycin resistance rate of the isolates from the three diseases was different. Scarlet fever is the common streptococcal infectious disease in dermatology. Emm12 and emm1 were the most prevalent emm types. The most prevalent superantigens detected were smeZ, spec, and ssa. There is association between diversity of superantigens and disease manifestation. Hence, continuous surveillance of GAS molecular epidemiological characterizations in different diseases is needed.
Collapse
|
6
|
Pandey M, Good MF. A Superficial Skin Scarification Method in Mice to Mimic Streptococcus pyogenes Skin Infection in Humans. Methods Mol Biol 2020; 2136:287-301. [PMID: 32430830 DOI: 10.1007/978-1-0716-0467-0_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Skin infections caused by Streptococcus pyogenes are a significant health concern in the tropics and among Indigenous populations of developed countries. To study the immunobiology of skin infections and to develop preventative and therapeutic measures to target these infections, an in vivo model is vital. We developed a mouse model to investigate immunity to skin infections and for testing the efficacy of several vaccine candidates. This article describes the method of induction of superficial skin infections, their progression and regression, and processing of samples to obtain critical readouts and analyses. This model could be valuable to inform clinical studies.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
7
|
Sumitomo T, Mori Y, Nakamura Y, Honda-Ogawa M, Nakagawa S, Yamaguchi M, Matsue H, Terao Y, Nakata M, Kawabata S. Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection. Front Cell Infect Microbiol 2018; 8:10. [PMID: 29416987 PMCID: PMC5787553 DOI: 10.3389/fcimb.2018.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB) as a proteolytic factor that cleaves the extracellular domains of desmoglein 1 and 3. In an epicutaneous infection model, lesional skin infected with an speB deletion mutant were significantly smaller as compared to those caused by the wild-type strain. Furthermore, immunohistological analysis indicated cleavage of desmogleins that developed around the invasion site of the wild-type strain. In contrast, the speB mutant was preferentially found on the epidermis surface layer. Taken together, our findings provide evidence that SpeB-mediated degradation of desmosomes has a pathogenic role in development of S. pyogenes cutaneous infection.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yasushi Mori
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mariko Honda-Ogawa
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
8
|
Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain. Infect Immun 2017; 85:IAI.00374-17. [PMID: 28808160 DOI: 10.1128/iai.00374-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022] Open
Abstract
Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains with a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene was found to be present in most skin specialist strains but largely absent from a genetically related subset of pharyngitis isolates. In an ΔfbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model of impetigo; the ΔfbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. In assays with highly sensitive outcome measures, Alab49ΔfbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., the M53 protein) had additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promoted Alab49 survival in whole blood and appears to fully account for the antiphagocytic effect attributable to pili. The finding that numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions.
Collapse
|
9
|
Le Breton Y, Belew AT, Freiberg JA, Sundar GS, Islam E, Lieberman J, Shirtliff ME, Tettelin H, El-Sayed NM, McIver KS. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog 2017; 13:e1006584. [PMID: 28832676 PMCID: PMC5584981 DOI: 10.1371/journal.ppat.1006584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 08/15/2017] [Indexed: 01/08/2023] Open
Abstract
The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments. The WHO ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues. The genetic requirements for M1T1 GAS 5448 within this niche were interrogated by in vivo transposon sequencing (Tn-seq), identifying 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during GAS 5448 soft tissue infection and dissemination into the bloodstream. Thus, this study improves the functional annotation of the GAS genome, providing new insights into GAS pathophysiology and enhancing the development of novel GAS therapeutics.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey A. Freiberg
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ganesh S. Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Joshua Lieberman
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark E. Shirtliff
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| |
Collapse
|
10
|
Bachert BA, Choi SJ, LaSala PR, Harper TI, McNitt DH, Boehm DT, Caswell CC, Ciborowski P, Keene DR, Flores AR, Musser JM, Squeglia F, Marasco D, Berisio R, Lukomski S. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus. Front Cell Infect Microbiol 2016; 6:90. [PMID: 27630827 PMCID: PMC5005324 DOI: 10.3389/fcimb.2016.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.
Collapse
Affiliation(s)
- Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Soo J Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Paul R LaSala
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Tiffany I Harper
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | | - Anthony R Flores
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Texas Children's HospitalHouston, TX, USA; Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital SystemHouston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital System Houston, TX, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
11
|
The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood. Infect Immun 2016; 84:1016-1031. [PMID: 26787724 DOI: 10.1128/iai.01296-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment.
Collapse
|
12
|
Pandey M, Langshaw E, Hartas J, Lam A, Batzloff MR, Good MF. A Synthetic M Protein Peptide Synergizes with a CXC Chemokine Protease To Induce Vaccine-Mediated Protection against Virulent Streptococcal Pyoderma and Bacteremia. THE JOURNAL OF IMMUNOLOGY 2015; 194:5915-25. [DOI: 10.4049/jimmunol.1500157] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/19/2015] [Indexed: 12/22/2022]
|
13
|
Abstract
Impetigo is a common cutaneous infection that is especially prevalent in children.
Historically, impetigo is caused by either group A β-hemolytic
streptococci or Staphylococcus aureus.
Currently, the most frequently isolated pathogen is S. aureus. This
article discusses the microbiologic and virulence factors of group A β-hemolytic
streptococci and Staphylococcus aureus, clinical characteristics,
complications, as well as the approach to diagnosis and management of impetigo.
Topical agents for impetigo therapy are reviewed.
Collapse
|
14
|
Dongari-Bagtzoglou A. Mucosal biofilms: challenges and future directions. Expert Rev Anti Infect Ther 2014; 6:141-4. [DOI: 10.1586/14787210.6.2.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, Vasilakos J, Dongari-Bagtzoglou A. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infect Dis 2012; 206:1936-45. [PMID: 23033146 DOI: 10.1093/infdis/jis607] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms.
Collapse
Affiliation(s)
- Zhihong Xie
- Department of Oral Health and Diagnostic Sciences, Division of Periodontology, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030-1710, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Pandey M, Batzloff MR, Good MF. Vaccination against rheumatic heart disease: a review of current research strategies and challenges. Curr Infect Dis Rep 2012; 14:381-90. [PMID: 22729401 DOI: 10.1007/s11908-012-0263-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are major health problems in many developing countries and Indigenous populations of developed countries. ARF and RHD are sequelae resulting from an infection of Streptococcus pyogenes. Despite advances in health care practices and technology, these diseases still pose major challenges in the communities where Streptococcus pyogenes is often endemic. Here we review and discuss the dynamic epidemiology of streptococcal infection and its associated diseases (ARF and RHD), with a focus on disease burden in temperate versus tropical regions, the tissue tropism of the organism and the efforts towards vaccine development in relation to the available animal models.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Griffith University, G26/4.30 Gold Coast Campus, Gold Coast, QLD, 4222, Australia,
| | | | | |
Collapse
|
17
|
Fischer K, Holt D, Currie B, Kemp D. Scabies: important clinical consequences explained by new molecular studies. ADVANCES IN PARASITOLOGY 2012; 79:339-73. [PMID: 22726646 DOI: 10.1016/b978-0-12-398457-9.00005-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2004, we reviewed the status of disease caused by the scabies mite Sarcoptes scabiei at the time and pointed out that very little basic research had ever been done. The reason for this was largely the lack of availability of mites for experimental purposes and, to a degree, a consequent lack of understanding of its importance, resulting in the trivial name 'itch mite'. Scabies is responsible for major morbidity in disadvantaged communities and immunocompromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by bacterial pathogens such as Streptococcus pyogenes and Staphylococcus aureus via skin lesions, resulting in severe downstream disease such as in a high prevalence of rheumatic fever/heart disease in affected communities. We now have further evidence that in disadvantaged populations living in tropical climates, scabies rather than 'Strep throat' is an important source of S. pyogenes causing rheumatic fever and eventually rheumatic heart disease. In addition, our work has resulted in two fundamental research tools that facilitate much of the current biomedical research efforts on scabies, namely a public database containing ~45,000 scabies mite expressed sequence tags and a porcine in vivo model. Here we will discuss novel and unexpected proteins encountered in the database that appear crucial to mite survival with regard to digestion and evasion of host defence. The mode(s) of action of some of these have been at least partially revealed. Further, newly discovered molecules that may well have a similar role, such as a family of inactivated cysteine proteases, are yet to be investigated. Hence, there are now whole families of potential targets for chemical inhibitors of S. scabiei. These efforts put today's scabies research in a unique position to design and test small molecules that may specifically interfere with mite-derived molecules, such as digestive proteases and mite complement inhibitors. The porcine scabies model will be available to trial in vivo treatment with potential inhibitors. New therapies for scabies may be developed from these studies and may contribute to reduce the spread of scabies and the subsequent prevalence of bacterial skin infections and their devastating sequelae in the community.
Collapse
Affiliation(s)
- Katja Fischer
- Queensland Institute of Medical Research, Herston, Austraria
| | | | | | | |
Collapse
|
18
|
Whole-genome association study on tissue tropism phenotypes in group A Streptococcus. J Bacteriol 2011; 193:6651-63. [PMID: 21949075 DOI: 10.1128/jb.05263-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Group A Streptococcus (GAS) has a rich evolutionary history of horizontal transfer among its core genes. Yet, despite extensive genetic mixing, GAS strains have discrete ecological phenotypes. To further our understanding of the molecular basis for ecological phenotypes, comparative genomic hybridization of a set of 97 diverse strains to a GAS pangenome microarray was undertaken, and the association of accessory genes with emm genotypes that define tissue tropisms for infection was determined. Of the 22 nonprophage accessory gene regions (AGRs) identified, only 3 account for all statistically significant linkage disequilibrium among strains having the genotypic biomarkers for throat versus skin infection specialists. Networked evolution and population structure analyses of loci representing each of the AGRs reveal that most strains with the skin specialist and generalist biomarkers form discrete clusters, whereas strains with the throat specialist biomarker are highly diverse. To identify coinherited and coselected accessory genes, the strength of genetic associations was determined for all possible pairwise combinations of accessory genes among the 97 GAS strains. Accessory genes showing very strong associations provide the basis for an evolutionary model, which reveals that a major transition between many throat and skin specialist haplotypes correlates with the gain or loss of genes encoding fibronectin-binding proteins. This study employs a novel synthesis of tools to help delineate the major genetic changes associated with key adaptive shifts in an extensively recombined bacterial species.
Collapse
|
19
|
Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One 2011; 6:e16218. [PMID: 21283544 PMCID: PMC3026825 DOI: 10.1371/journal.pone.0016218] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022] Open
Abstract
Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.
Collapse
Affiliation(s)
- Prabhat Dwivedi
- Department of Microbiology, University of Texas, Houston, Texas, United States of America
| | - Angela Thompson
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Zhihong Xie
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Helena Kashleva
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Shantanu Ganguly
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anna Dongari-Bagtzoglou
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
20
|
Abstract
Salmonella enterica serovar Typhi is a pathogen that only infects humans. Currently, there is no animal model for studying this pathogen. Recently, alymphoid RAG-2(-/-)/γ(c)(-/-) mice engrafted with human leukocytes, known as humanized mice, have been successfully utilized to develop experimental models for several human-specific viral infections, including HIV, human-like dengue fever and hepatitis C virus. Little is known about the usefulness and feasibility of the humanized mouse model for the study of human-specific bacterial pathogens, such as S. typhi. The aim of this study was to determine if Salmonella enterica serovar Typhi could establish productive infection in humanized mice. Here we report that intravenous inoculation of S. typhi into humanized mice, but not controls, established S. typhi infections. High bacterial loads were found in the liver, spleen, blood and bone marrow of mice reconstituted with human leukocytes, but not in the unreconstituted control mice. Importantly, S. typhi-infected humanized mice lost significant body weight, and some of the infected mice displayed neurological symptoms. Our data suggest, for the first time, that humanized mice are susceptible to S. typhi challenge and that this model can be utilized to study the pathogenesis of S. typhi to develop novel therapeutic strategies.
Collapse
|
21
|
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen that is highly prevalent throughout the world. The vast majority of GAS infections lead to a mild disease involving the epithelial surfaces of either the throat or skin. The concept of distinct sets of 'throat' and 'skin' strains of GAS has long been conceived. From an ecological standpoint, the epithelium of the throat and skin are important because it is where the organism is most successful in reproducing and transmitting to new hosts. This article examines key features of the epidemiology, population biology and molecular pathogenesis that underlie the tissue site preferences for infection exhibited by GAS, with an emphasis on work from our laboratory on skin tropisms. Recombinational replacement with orthologous gene forms, following interspecies transfer, appears to be an important genetic step leading up to the exploitation of new niches by GAS.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10573, USA, Tel.: +1 914 594 4193, Fax: +1 914 594 4176
| | | |
Collapse
|
22
|
Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J. Characterization of mucosal Candida albicans biofilms. PLoS One 2009; 4:e7967. [PMID: 19956771 PMCID: PMC2776351 DOI: 10.1371/journal.pone.0007967] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/22/2009] [Indexed: 11/18/2022] Open
Abstract
C. albicans triggers recurrent infections of the alimentary tract mucosa that result from biofilm growth. Although the ability of C. albicans to form a biofilm on abiotic surfaces has been well documented in recent years, no information exists on biofilms that form directly on mucosal surfaces. The objectives of this study were to characterize the structure and composition of Candida biofilms forming on the oral mucosa. We found that oral Candida biofilms consist of yeast, hyphae, and commensal bacteria, with keratin dispersed in the intercellular spaces. Neutrophils migrate through the oral mucosa and form nests within the biofilm mass. The cell wall polysaccharide β-glucan is exposed during mucosal biofilm growth and is more uniformly present on the surface of biofilm organisms invading the oral mucosa. We conclude that C. albicans forms complex mucosal biofilms consisting of both commensal bacterial flora and host components. These discoveries are important since they can prompt a shift of focus for current research in investigating the role of Candida-bacterial interactions in the pathogenesis of mucosal infections as well as the role of β-glucan mediated signaling in the host response.
Collapse
Affiliation(s)
- Anna Dongari-Bagtzoglou
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail:
| | - Helena Kashleva
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Prabhat Dwivedi
- Department of Microbiology, University of Texas, Houston, Texas, United States of America
| | - Patricia Diaz
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | | |
Collapse
|
23
|
Bessen DE. Population biology of the human restricted pathogen, Streptococcus pyogenes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9:581-93. [PMID: 19460325 PMCID: PMC2685916 DOI: 10.1016/j.meegid.2009.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 12/31/2022]
Abstract
Streptococcus pyogenes, also referred to as beta-hemolytic group A streptococci, are strictly human pathogens with a global distribution and high prevalence of infection. The organisms are characterized by high levels of genetic recombination, extensive strain diversity, and a narrow habitat. This review highlights many key features of the population genetics and molecular epidemiology of this biologically diverse bacterial species, with special emphasis on ecological subdivisions and tissue-specific infections, strain diversity and population dynamics in communities, selection pressures arising from the specific host immune response and antibiotic exposure, and within-host selection during the course of invasive disease.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
24
|
Bessen DE. Population biology of the human restricted pathogen, Streptococcus pyogenes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9. [PMID: 19460325 PMCID: PMC2685916 DOI: 10.1016/j.meegid.2009.03.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus pyogenes, also referred to as beta-hemolytic group A streptococci, are strictly human pathogens with a global distribution and high prevalence of infection. The organisms are characterized by high levels of genetic recombination, extensive strain diversity, and a narrow habitat. This review highlights many key features of the population genetics and molecular epidemiology of this biologically diverse bacterial species, with special emphasis on ecological subdivisions and tissue-specific infections, strain diversity and population dynamics in communities, selection pressures arising from the specific host immune response and antibiotic exposure, and within-host selection during the course of invasive disease.
Collapse
Affiliation(s)
- Debra E. Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA 10595, , +1-914-594-4193
| |
Collapse
|
25
|
Lizano S, Luo F, Tengra FK, Bessen DE. Impact of orthologous gene replacement on the circuitry governing pilus gene transcription in streptococci. PLoS One 2008; 3:e3450. [PMID: 18941636 PMCID: PMC2565503 DOI: 10.1371/journal.pone.0003450] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/23/2008] [Indexed: 01/31/2023] Open
Abstract
Background The evolutionary history of several genes of the bacterial pathogen Streptococcus pyogenes strongly suggests an origin in another species, acquired via replacement of the counterpart gene (ortholog) following a recombination event. An example of orthologous gene replacement is provided by the nra/rofA locus, which encodes a key regulator of pilus gene transcription. Of biological importance is the previous finding that the presence of the nra- and rofA-lineage alleles, which are ∼35% divergent, correlates strongly with genetic markers for streptococcal infection at different tissue sites in the human host (skin, throat). Methodology/Principal Findings In this report, the impact of orthologous gene replacement targeting the nra/rofA locus is experimentally addressed. Replacement of the native nra-lineage allele with a rofA-lineage allele, plus their respective upstream regions, preserved the polarity of Nra effects on pilus gene transcription (i.e., activation) in the skin strain Alab49. Increased pilus gene transcription in the rofA chimera correlated with a higher rate of bacterial growth at the skin. The transcriptional regulator MsmR, which represses nra and pilus gene transcription in the Alab49 parent strain, has a slight activating effect on pilus gene expression in the rofA chimera construct. Conclusions/Significance Data show that exchange of orthologous forms of a regulatory gene is stable and robust, and pathogenicity is preserved. Yet, new phenotypes may also be introduced by altering the circuitry within a complex transcriptional regulatory network. It is proposed that orthologous gene replacement via interspecies exchange is an important mechanism in the evolution of highly recombining bacteria such as S. pyogenes.
Collapse
Affiliation(s)
- Sergio Lizano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Feng Luo
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Farah K. Tengra
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Debra E. Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Luo F, Lizano S, Banik S, Zhang H, Bessen DE. Role of Mga in group A streptococcal infection at the skin epithelium. Microb Pathog 2008; 45:217-24. [PMID: 18588968 PMCID: PMC2593622 DOI: 10.1016/j.micpath.2008.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/26/2008] [Accepted: 05/27/2008] [Indexed: 01/26/2023]
Abstract
Group A streptococci (GAS) primarily cause infection at epithelial tissue sites of its human host. The role of the transcriptional regulator Mga in a humanized mouse model for superficial skin infection was investigated. Inactivation of mga in a skin strain (Alab49) led to loss of virulence. The Deltamga mutant displayed >100-fold decrease in emm (pam) transcript levels, and loss of bacterial-bound plasmin activity. A slight decrease in speB transcription, accompanied by a partial decrease in cysteine protease activity but no change in PrtF2 degradation, was also observed. Mga had no effect on transcription of nra, Nra-regulated pilus genes (cpa, fctA) or other FCT-region genes (msmR, prtF2). Combined with findings on other Alab49 mutants, data show that several essential virulence genes are regulated by Mga or Nra, but not both, implying that any coordinated response during skin infection likely operates at a higher level of transcriptional control. Mga was required for bacterial autoaggregation and biofilm-like growth on an abiotic surface; however, aggregation and biofilm formation have only partial overlap with the skin virulence phenotype. Findings on numerous phenotypes for 7 mutants constructed on the same genetic background yield a detailed, integrated model for GAS pathogenesis at the skin.
Collapse
Affiliation(s)
- Feng Luo
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Sergio Lizano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Sukalyani Banik
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Hong Zhang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Debra E. Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
27
|
Abstract
Living-tissue biofilms remained unrecognized until very recently, mainly as a result of traditional microbial sampling techniques or histologic processing, which disrupt the spatial organization of the tissue microorganisms. Thus, the biofilm nature of certain mucosal infections was frequently unintentionally missed or disregarded. To a large extent, the study of human tissue biofilms is still in its infancy. However, with the advent of newer methodologies, such as fluorescent in situ hybridization and endoscopic confocal laser scanning microscopy, which combine the identification of microbes with in situ, direct visualization of their relationships with each other and with their substratum, mucosal tissue biofilms are becoming easier to study and, thus, their role in human infections is becoming more apparent. This review summarizes the challenges in the study of tissue biofilms, proposes two inflammation-centered - albeit opposite - pathogenetic models of mucosal tissue biofilm infections and suggests directions for future research and novel therapeutic approaches.
Collapse
Affiliation(s)
- Anna Dongari-Bagtzoglou
- Department of Oral Health Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
28
|
Heterogeneity in the polarity of Nra regulatory effects on streptococcal pilus gene transcription and virulence. Infect Immun 2008; 76:2490-7. [PMID: 18347035 DOI: 10.1128/iai.01567-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transcription of several key virulence factors of Streptococcus pyogenes is under the control of Mga and Nra/RofA. In an M serotype 49 (M49) strain, Nra is a negative regulator of pilus gene transcription; also, Nra represses mga expression, leading to downregulation of the M protein surface fibril and secreted cysteine protease SpeB. In this report, the role of Nra in the virulence of an M53 classical skin strain was investigated. In contrast to the case for the M49 strain, Nra functions as a positive regulator of pilus gene transcription in the M53 strain, and inactivation of nra leads to loss of virulence in a humanized mouse model of superficial skin infection. Furthermore, Nra has no measurable effect on mga transcription in the M53 strain; this finding is further supported by a lack of detectable Nra effects on M protein- and SpeB-dependent phenotypes. Whereas MsmR is reported to activate nra and pilus gene transcription in the M49 strain, in the M53 strain it acts as a repressor of these genes. In both strains, MsmR and Nra form a feed-forward loop network motif for pilus gene transcription, but their effects have opposite signs. The findings demonstrate key strain-specific differences in the transcriptional circuitry governing virulence gene expression in S. pyogenes and its impact on pathogenesis.
Collapse
|
29
|
Lizano S, Luo F, Bessen DE. Role of streptococcal T antigens in superficial skin infection. J Bacteriol 2006; 189:1426-34. [PMID: 17012387 PMCID: PMC1797348 DOI: 10.1128/jb.01179-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FCT region genes of Streptococcus pyogenes encode surface proteins that include fibronectin- and collagen-binding proteins and the serological markers known as T antigens, some of which give rise to pilus-like appendages. It remains to be established whether FCT region surface proteins contribute to virulence by in vivo models of infection. In this study, a highly sensitive and ecologically relevant humanized mouse model was used to measure superficial skin infection. Three genes encoding FCT region surface proteins essential for T-serotype specificity were inactivated. Both the Deltacpa and DeltaprtF2 mutants were highly attenuated for virulence when topically applied to the skin following exponential growth but were fully virulent when delivered in stationary phase. In contrast, the DeltafctA mutant was virulent at the skin, regardless of its initial growth state. Immunoblots of cell extracts revealed anti-FctA-reactive, ladder-like polymers characteristic of streptococcal pili. In addition, FctA formed a heteropolymer with the putative collagen-binding protein Cpa. The DeltafctA mutant showed a loss in anti-Cpa-reactive polymers, whereas anti-FctA-reactive polymers were reduced in the Deltacpa mutant. The findings suggest that both FctA and Cpa are required for pilus formation, but importantly, an intact pilus is not essential for Cpa-mediated virulence. Although it is an integral part of the T-antigen complex, the fibronectin-binding protein PrtF2 is not covalently linked to the FctA- and Cpa-containing heteropolymer derived from cell extracts. The data provide direct evidence that streptococcal T antigens function as virulence factors in vivo, but they also reveal that a pilus-like structure is not essential for the most common form of streptococcal skin disease.
Collapse
Affiliation(s)
- Sergio Lizano
- Dept of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
30
|
Wiles S, Hanage WP, Frankel G, Robertson B. Modelling infectious disease — time to think outside the box? Nat Rev Microbiol 2006; 4:307-12. [PMID: 16518420 DOI: 10.1038/nrmicro1386] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Models occupy an essential position in the study of infectious disease as a result of the ethical problems of exposing humans to potentially lethal agents. Deliberately induced infections in well-defined animal models provide much useful information about disease processes in an approximation of their natural context. Despite this, animal models are not the natural disease process, and recent experimental advances show, perhaps not unsurprisingly, that there are large differences between natural infections and animal models. Focusing on mouse models of bacterial pathogens, we discuss some of these discrepancies and suggest ways of improving model systems in the future.
Collapse
Affiliation(s)
- Siouxsie Wiles
- Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
31
|
Cho KH, Caparon MG. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 2005; 57:1545-56. [PMID: 16135223 DOI: 10.1111/j.1365-2958.2005.04786.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of Streptococcus pyogenes to form biofilm-like bacterial communities during infection of soft tissue has suggested that the capacity to produce biofilm may be important for pathogenesis. To examine this relationship, a panel of mutants was evaluated for their ability to form biofilm on abiotic surfaces in several assays. Several established virulence factors were crucial for biofilm formation, including the M protein, required for initial cell-surface interactions, and the hyaluronic acid capsule, required for subsequent maturation into a three-dimensional structure. Mutants lacking the transcription regulators Mga and CovR (CsrR) also failed to form biofilm. Comparison of transcriptional profiles revealed differential regulation of approximately 25% of the genome upon adaptation to biofilm. During infection of zebrafish, several virulence factors (notably cysteine protease and streptokinase) were regulated in a biofilm-like manner. However, the overall profile of virulence factor expression indicated that tissue communities have a pattern of gene expression different from biofilm. Taken together, these data show that while biofilm and tissue communities have many characteristics in common, that biofilm reproduces only a subset of the myriad cues used by tissue communities for regulation of virulence.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St Louis, MO 63110-1093, USA
| | | |
Collapse
|
32
|
Tewodros W, Kronvall G. M protein gene (emm type) analysis of group A beta-hemolytic streptococci from Ethiopia reveals unique patterns. J Clin Microbiol 2005; 43:4369-76. [PMID: 16145079 PMCID: PMC1234087 DOI: 10.1128/jcm.43.9.4369-4376.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of group A streptococcal (GAS) isolates obtained in 1990 from Ethiopian children with various streptococcal diseases was studied by using emm gene sequence analysis. A total of 217 GAS isolates were included: 155 and 62 isolates from throat and skin, respectively. A total of 78 different emm/st types were detected among the 217 isolates. Of these, 166 (76.5%) belonged to 52 validated reference emm types, 26 (11.9%) belonged to 16 already recognized sequence types (st types) and 25 (11.5%) belonged to 10 undocumented new sequence types. Resistance to tetracycline (148 of 217) was not correlated to emm type. Isolation rate of the classical rheumatogenic and nephritogenic strains was low from cases of acute rheumatic fever (ARF) and acute glomerulonephritis (AGN), respectively. Instead, the recently discovered st types were overrepresented among isolates from patients with ARF (3 of 7) and AGN (9 of 16) (P < 0.01) compared to isolates from subjects with tonsillitis and from healthy carriers (10 of 57 and 16 of 90, respectively). In contrast to rheumatogenic strains from the temperate regions, more than half of the isolates from ARF (four of seven) carried the genetic marker for skin preference, emm pattern D, although most of them (six of seven) were isolated from throat. Of 57 tonsillitis-associated isolates, 16 (28%) belonged to emm pattern D compared to <1% in temperate regions. As in other reports emm patterns A to C were strongly associated with throat, whereas emm pattern D did not correlate to skin. This first large-scale emm typing report from Africa has demonstrated a heterogeneous GAS population and contrasting nature of GAS epidemiology in the region.
Collapse
|
33
|
Bessen DE, Manoharan A, Luo F, Wertz JE, Robinson DA. Evolution of transcription regulatory genes is linked to niche specialization in the bacterial pathogen Streptococcus pyogenes. J Bacteriol 2005; 187:4163-72. [PMID: 15937178 PMCID: PMC1151717 DOI: 10.1128/jb.187.12.4163-4172.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes is a highly prevalent bacterial pathogen, most often giving rise to superficial infections at the throat or skin of its human host. Three genotype-defined subpopulations of strains exhibiting strong tropisms for either the throat or skin (specialists) or having no obvious tissue site preference (generalists) are recognized. Since the microenvironments at the throat and skin are distinct, the signal transduction pathways leading to the control of gene expression may also differ for throat versus skin strains of S. pyogenes. Two loci (mga and rofA/nra) encoding global regulators of virulence gene expression are positioned 300 kb apart on the genome; each contains alleles forming two major sequence clusters of approximately 25 to 30% divergence that are under balancing selection. Strong linkage disequilibrium is observed between sequence clusters of the transcription regulatory loci and the subpopulations of throat and skin specialists, against a background of high recombination rates among housekeeping genes. A taxonomically distinct commensal species (Streptococcus dysgalactiae subspecies equisimilus) shares highly homologous rof alleles. The findings provide strong support for a mechanism underlying niche specialization that involves orthologous replacement of regulatory genes following interspecies horizontal transfer, although the directionality of gene exchange remains unknown.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|
34
|
Engleberg NC, Heath A, Vardaman K, DiRita VJ. Contribution of CsrR-regulated virulence factors to the progress and outcome of murine skin infections by Streptococcus pyogenes. Infect Immun 2004; 72:623-8. [PMID: 14742501 PMCID: PMC321567 DOI: 10.1128/iai.72.2.623-628.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes with null mutations in the csrRS regulatory locus are highly virulent in mice due to derepression of hyaluronic acid capsule synthesis and exotoxins, e.g., streptolysin S (SLS) and pyrogenic exotoxin B (SpeB). We generated derivatives of a DeltacsrRS strain that also carry deletions in hasAB (leading to an acapsular phenotype) or in sagA (phenotypically SLS-) or an interruption of speB (SpeB-) to test the relative contributions of these factors to the development of necrotic skin lesions. Inoculation of 2 x 10(6) to 4 x 10(6) CFU of either acapsular or SLS- strains into hairless mice resulted in lesions approximately 70% smaller than those of the DeltacsrRS parent strain. Elimination of SLS also reduced lethality from 100% to 0% at this inoculum (P < 10(-7); Fisher exact test). In contrast, SLS+ SpeB- mutants yielded lesions that were only 41% smaller than the parent strain (t = 2.2; P = 0.04), but only 3 the 17 lesions had dermal sloughing (P = 10(-5)). The nonulcerative lesions associated with SpeB- strains appeared pale with surrounding erythema. We conclude that capsule and SLS contribute to the subcutaneous spread of S. pyogenes and to a fatal outcome of infection. SpeB facilitates early dermal ulceration but has minor influence on lesion size and mortality. Large ulcerative lesions are observed only when both toxins are present.
Collapse
Affiliation(s)
- N Cary Engleberg
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0378, USA.
| | | | | | | |
Collapse
|
35
|
Davis PH, Stanley SL. Breaking the species barrier: use of SCID mouse-human chimeras for the study of human infectious diseases. Cell Microbiol 2003; 5:849-60. [PMID: 14641171 DOI: 10.1046/j.1462-5822.2003.00321.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mouse-human chimeras have become a novel way to model the interactions between microbial pathogens and human cells, tissues or organs. Diseases studied with human xenografts in severe combined immunodeficient (SCID) mice include Pseudomonas aeruginosa infection in cystic fibrosis, group A streptococci and impetigo, bacillary and amoebic dysentery, and AIDS. In many cases, disease in the human xenograft appears to accurately reproduce the disease in humans, providing a powerful model for identifying virulence factors, host responses to infection and the effects of specific interventions on disease. In this review, we summarize recent studies that have used mouse-human chimeras to understand the pathophysiology of specific bacterial and protozoan infections.
Collapse
Affiliation(s)
- Paul H Davis
- Department of Medicine, Washington University School of Medicine, Campus Box 8051, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
36
|
Affiliation(s)
- Justin Brown
- Dermatology, New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | | | | | |
Collapse
|
37
|
Firouzi R, Rolland A, Michel M, Jouvin-Marche E, Hauw JJ, Malcus-Vocanson C, Lazarini F, Gebuhrer L, Seigneurin JM, Touraine JL, Sanhadji K, Marche PN, Perron H. Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J Neurovirol 2003; 9:79-93. [PMID: 12587071 DOI: 10.1080/13550280390173328] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 08/26/2002] [Accepted: 09/11/2002] [Indexed: 10/20/2022]
Abstract
A retroviral element (multiple sclerosis-associated retrovirus, MSRV) defining a family of genetically inherited endogenous retroviruses (human endogenous retrovirus type W, HERV-W) has been characterized in cell cultures from patients with multiple sclerosis. Recently, MSRV retroviral particles or the envelope recombinant protein were shown to display superantigen activity in vitro, but no animal model has yet been set up for studying the pathogenicity of this retrovirus. In the present study, the pathogenicity of different sources of MSRV retroviral particles has been evaluated in a hybrid animal model: severe combined immunodeficiency (SCID) mice grafted with human lymphocytes and injected intraperitoneally with MSRV virion or mock controls. MSRV-injected mice presented with acute neurological symptoms and died within 5 to 10 days post injection. Necropsy revealed disseminated and major brain hemorrhages, whereas control animals did not show abnormalities (P <.001). In ill animals, reverse transcriptase-polymerase chain reaction (RT-PCR) analyses showed circulating MSRV RNA in serum, whereas overexpression of proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma was evidenced in spleen RNA. Neuropathological examination confirmed that hemorrhages occurred prior to death in multifocal areas of brain parenchyma and meninges. Further series addressed the question of immune-mediated pathogenicity, by inoculating virion to SCID mice grafted with total and T lymphocyte-depleted cells in parallel: dramatic and statistically significant reduction in the number of affected mice was observed in T-depleted series (P <.001). This in vivo study suggests that MSRV retroviral particles from MS cultures have potent immunopathogenic properties mediated by T cells compatible with the previously reported superantigen activity in vitro, which appear to be mediated by an overexpression of proinflammatory cytokines.
Collapse
Affiliation(s)
- R Firouzi
- Laboratoire des déficits Immunitaires, Faculté de Médecine Laënnec, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Svensson MD, Sjöbring U, Luo F, Bessen DE. Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3933-3945. [PMID: 12480897 DOI: 10.1099/00221287-148-12-3933] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Primary infection by group A streptococci (GAS) takes place at either the throat or skin of the human host, often leading to pharyngitis or impetigo, respectively. Many GAS strains differ in their preference for throat and skin tissue sites. Previous epidemiological findings show that many of the strains displaying strong tropism for the skin have a high-affinity binding site for plasminogen, located within M protein (PAM), a prominent surface fibril. Plasminogen bound by PAM interacts with streptokinase, a plasminogen activator secreted by GAS, to yield bacterial-bound plasmin activity. In this study, PAM and streptokinase were tested for their roles in infection using an experimental model that closely mimics human impetigo. Inactivation of genes encoding either PAM or streptokinase led to a partial, but significant, loss of virulence in vivo, as measured by net growth of the bacteria and pathological alterations. The relative loss in virulence in vivo was greater for the streptokinase mutant than for the PAM mutant. However, the PAM mutant, but not the streptokinase mutant, displayed a partial loss in resistance to phagocytosis in vitro. The combined experimental and epidemiological data provide evidence that PAM and streptokinase play a key role in mediating skin-specific infection by GAS. In addition, secreted cysteine proteinase activity due to SpeB leads to degradation of streptokinase in stationary phase broth cultures. Since SpeB is also a determinant of tissue-specific GAS infection at the skin, direct interactions between these two proteolytic pathways may constitute an important pathogenic mechanism. An integrated model for superficial infection at the skin is presented.
Collapse
Affiliation(s)
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Lund University, Lund, Sweden1
| | - Feng Luo
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, USA2
| | - Debra E Bessen
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, USA2
| |
Collapse
|
39
|
Kalia A, Spratt BG, Enright MC, Bessen DE. Influence of recombination and niche separation on the population genetic structure of the pathogen Streptococcus pyogenes. Infect Immun 2002; 70:1971-83. [PMID: 11895961 PMCID: PMC127860 DOI: 10.1128/iai.70.4.1971-1983.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The throat and skin of the human host are the principal reservoirs for the bacterial pathogen Streptococcus pyogenes. The emm locus encodes structurally heterogeneous surface fibrils that play numerous roles in virulence, depending on the strain. Isolates harboring the emm pattern A-C marker exhibit a strong tendency to cause throat infection, whereas emm pattern D strains are usually recovered from impetigo lesions; as a group, emm pattern E organisms fail to display obvious tissue tropisms. The peak incidence for streptococcal pharyngitis and impetigo varies with season and locale, leading to wide spatial and temporal distances between throat and skin strains. To assess any impact of niche separation on genetic variation, the extent of recombinational exchange between emm pattern A-C, D, and E subpopulations was evaluated. Analysis of nucleotide sequence data for internal portions of seven housekeeping loci from 212 isolates provides evidence of extensive recombination between strains belonging to different emm pattern subpopulations. Furthermore, no fixed nucleotide differences were found between emm pattern A-C and D strains. Thus, despite some niche separation created by distinct epidemiological trends and innate tissue tropisms there is little evidence for neutral gene divergence between throat and skin strains. Maintenance of a relationship between emm pattern and tissue tropism in the face of underlying recombination suggests that tissue tropism is associated with emm or a closely linked gene.
Collapse
Affiliation(s)
- Awdhesh Kalia
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
40
|
Zhang Z, Jin L, Champion G, Seydel KB, Stanley SL. Shigella infection in a SCID mouse-human intestinal xenograft model: role for neutrophils in containing bacterial dissemination in human intestine. Infect Immun 2001; 69:3240-7. [PMID: 11292746 PMCID: PMC98282 DOI: 10.1128/iai.69.5.3240-3247.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigellae infect human intestine and cause intense inflammation and destruction of colonic and rectal mucosa. To model the interactions of shigella with human intestine in vivo, we have studied shigella infection in human intestinal xenografts in severe combined immunodeficient mice (SCID-HU-INT mice). Inoculation of shigella into human intestinal xenografts caused severe inflammation and mucosal damage, which was apparent as soon as 4 h following infection. Shigella infection was associated with human intestinal production of interleukin-1B (IL-1B) and IL-8 and a marked neutrophil influx into the graft. Depletion of neutrophils from SCID-HU-INT mice reduced inflammation in the human intestinal xenograft in response to shigella infection but failed to significantly alter tissue damage. However, the number of intracellular bacteria was more than 20-fold higher in the human intestinal xenografts from neutrophil-depleted SCID-HU-INT mice. Infection of human intestinal xenografts with an attenuated vaccine strain of shigella (CVD1203) induced lower levels of IL-1B and IL-8 than wild-type shigella and caused only moderate damage to the intestinal permeability barrier. Our studies establish the SCID-HU-INT mouse as a viable model for studying the interactions between shigella and human intestine and indicate that neutrophils are important for controlling the invasion of human intestine by shigella.
Collapse
Affiliation(s)
- Z Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
41
|
Svensson MD, Scaramuzzino DA, Sjöbring U, Olsén A, Frank C, Bessen DE. Role for a secreted cysteine proteinase in the establishment of host tissue tropism by group A streptococci. Mol Microbiol 2000; 38:242-53. [PMID: 11069651 DOI: 10.1046/j.1365-2958.2000.02144.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary infection of the human host by group A streptococci (GAS) most often involves either the epidermis of the skin or the oropharyngeal mucosa. A humanized in vivo model for impetigo was used to investigate the basis for host tissue tropism among GAS. Disruption of the speB gene (encoding for a secreted cysteine proteinase) led to a loss of virulence for two impetigo-derived strains (M-types 33 and 53), as evidenced by a diminution in tissue damage and a lack of reproductive growth. The level of cysteine proteinase activity in overnight cultures was associated with the extent of gross pathological changes induced by strains displaying varied degrees of virulence in the impetigo model. Moreover, high levels of secreted cysteine proteinase activity correlated with a genetic marker for preferred tissue site of infection at the skin (emm pattern D). The addition of exogenous SpeB to a speB mutant (emm pattern D) or to an avirulent throat-like strain (emm pattern A) led to increased bacterial reproduction at the skin. The data provide both experimental and epidemiological evidence for a critical role of a secreted bacterial protease in promoting host tissue-specific infection.
Collapse
Affiliation(s)
- M D Svensson
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|