1
|
Wilson L, Nielsen K, Caspasso-Villanueva S, O'Brien T, Hefner LA, Slick P, Petty L, Dienna R, Castillo H, Chavez A. Characterization of virulence-related phenotypes of Candida parapsilosis and Rhodotorula mucilaginosa isolated from the International Space Station (ISS). LIFE SCIENCES IN SPACE RESEARCH 2025; 45:16-24. [PMID: 40280638 DOI: 10.1016/j.lssr.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 04/29/2025]
Abstract
There is increased interest in characterizing and describing the effects of space stressors on human microflora. This study describes virulence-related phenotypes of two human yeast commensals, Rhodotorula mucilaginosa and Candida parapsilosis, isolated from the International Space Station (ISS). The strains were compared with ATCC control strains to provide insights into adaptation and phenotypic switching of fungal species in spacecraft environments. Strains were grown in media that induce filamentation and capsule production. Antimycotic susceptibility was determined after exposure of liquid cultures to fluconazole, amphotericin B, and caspofungin. Biofilm formation was quantified using the crystal violet assay, and autoinducer (AI) production was detected by activation of a reporter fluorescent gene present in biosensor bacterial strains. In vivo infection studies were conducted using a C. elegans killing model. Results indicated increased filamentation production patterns in ISS Candida parapsilosis and increased capsule production in ISS Rhodotorula. Additionally, there was increased resistance to antifungal activity, biofilm formation, long-chain autoinducer production, and heightened nematode virulence detected in the ISS isolates. These results suggest that space conditions might enhance adaptation and phenotypic plasticity in yeast, leading to increased virulence-related phenotypes.
Collapse
Affiliation(s)
- Lauren Wilson
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA
| | - Kaitlyn Nielsen
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA
| | - Stefani Caspasso-Villanueva
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA
| | - Takara O'Brien
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA
| | - Lily A Hefner
- Westminster College, 501 Westminster Avenue, Fulton, MO 665251, USA
| | - Paulina Slick
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, 4202 E Fowler Ave, Tampa, Florida 33620, USA
| | - Logan Petty
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA
| | - Riley Dienna
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA
| | - Hugo Castillo
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA
| | - Alba Chavez
- Department of Human Factors and Behavioral Neurobiology, College of Arts and Sciences, Embry-Riddle Aeronautical University, 1 Aerospace Blvd, Daytona Beach 32114, FL, USA.
| |
Collapse
|
2
|
Kang MK, Bevington J, Tullman-Ercek D. Evaluation of the Salmonella type 3 secretion system (T3SS) as part of a protein production platform for space biology applications. Front Bioeng Biotechnol 2025; 13:1567596. [PMID: 40242353 PMCID: PMC12000002 DOI: 10.3389/fbioe.2025.1567596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
As interest in space exploration and in situ resource utilization grows, the potential to leverage synthetic biology and engineered microorganisms has garnered significant attention. Microorganisms provide a robust and efficient biological chassis to demonstrate the human blueprint for advancing space biology. However, progress toward these applications is hindered by the limited access to space-like environments and a lack of knowledge about how unique environmental factors affect relevant microbial systems. To address these issues, we evaluated the Salmonella Pathogenicity Island 1 (SPI-1) type Ⅲ secretion system (T3SS) as a protein production platform for space applications. Using a NASA-designed microgravity-simulating bioreactor system, we investigated the effects of simulated microgravity on cell growth, stress response, and protein secretion via SPI-1 T3SS. Our results demonstrated increased stress responses in cells grown under simulated microgravity. However, the SPI-1 T3SS maintained its ability to secrete proteins directly into the extracellular space in a single step under simulated microgravity, simplifying downstream purification processes. These findings suggest that the SPI-1 T3SS is a viable candidate for future space biology applications.
Collapse
Affiliation(s)
- Min-Kyoung Kang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - James Bevington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Interplanetary Exploration Institute Ltd., Sydney, Australia
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
3
|
Marchal S, Choukér A, Bereiter-Hahn J, Kraus A, Grimm D, Krüger M. Challenges for the human immune system after leaving Earth. NPJ Microgravity 2024; 10:106. [PMID: 39557881 PMCID: PMC11574097 DOI: 10.1038/s41526-024-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
From the start of life on Earth, several immune defense mechanisms have evolved to guarantee cellular integrity, homeostasis, and host survival. All these sophisticated balances as shaped by and towards the environmental needs have occurred over hundreds of millions of years. Human spaceflight involves various health hazards, such as higher levels of radiation, altered gravity, isolation and confinement, living in tight quarters, and stress associated with being away from home. A growing body of evidence points towards immunological changes in astronauts, including heightened pro-inflammatory responses, reactivation of latent viruses, and cell-mediated alterations, reflecting a dysbalanced state in astronauts. Simultaneously, enhanced pathogenicity, virulence, and drug resistance properties of microorganisms tip the scale out of favor for prolonged stay in space. As we have learned from the past, we see potential for the human immune system, forged and maintained throughout evolutionary history, to adapt to the space exposome. It is unlikely that this will happen in the short time frames set for current space exploration missions. Instead, major risks to astronaut health need to be addressed first, before humans can safely evolve into the space environment.
Collapse
Affiliation(s)
- Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, LMU University Hospital, LMU Munich, Marchioninistr. 15, Munich, Germany
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Armin Kraus
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
| |
Collapse
|
4
|
Aksoyalp ZŞ, Temel A, Karpuz M. Pharmacological Innovations in Space: Challenges and Future Perspectives. Pharm Res 2024; 41:2095-2120. [PMID: 39532779 DOI: 10.1007/s11095-024-03788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems. METHODS Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review. RESULTS In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications. CONCLUSIONS Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye.
| |
Collapse
|
5
|
Chen KZM, Vu LM, Vollmer AC. Cultivation in long-term simulated microgravity is detrimental to pyocyanin production and subsequent biofilm formation ability of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0021124. [PMID: 39162544 PMCID: PMC11448113 DOI: 10.1128/spectrum.00211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa forms aggregates known as biofilms. Previous studies have shown that when P. aeruginosa is cultivated in space, thicker and structurally different biofilms are formed than from those grown on Earth. We investigated how microgravity, simulated in a laboratory setting, influenced the growth, colonization, and virulence potentials of a P. aeruginosa PA14 wild-type strain, as well as two surface attachment-defective (sad) mutants altered at crucial biofilm-forming steps: flgK and pelA. Using high-aspect ratio rotating-wall vessel (HARV) bioreactors, P. aeruginosa bacteria were grown to stationary phase under prolonged (6 days) exposure to simulated microgravity or normal gravity conditions. After the exposure, the capacity of the culture to form biofilms was measured. Additionally, pigment (pyocyanin) formed by each culture during the incubation was extracted and quantified. We demonstrate that the first prolonged exposure to low-shear modeled microgravity (LSMMG) and without nutrient replenishment significantly diminishes wild-type P. aeruginosa PA14 biofilm formation abilities after exposure and pyocyanin production during exposure, while the mutant strains exhibit differing outcomes for both properties. IMPORTANCE Given plans for humans to engage in prolonged space travel, we investigated biofilm and pigment/virulence factor formation in Pseudomonas aeruginosa when cultivated in microgravity. These bacteria are opportunistic pathogens in immunocompromised individuals. Previous studies of space travelers have shown some immune system diminutions. Hence, our studies shed some light on how prolonged cultivation of bacteria in simulated microgravity conditions affect their growth characteristics.
Collapse
Affiliation(s)
| | - Linda My Vu
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Amy Cheng Vollmer
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
6
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
7
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
8
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
9
|
Bakr MM, Caswell GM, Hussein H, Shamel M, Al-Ankily MM. Considerations for oral and dental tissues in holistic care during long-haul space flights. Front Physiol 2024; 15:1406631. [PMID: 39055690 PMCID: PMC11269229 DOI: 10.3389/fphys.2024.1406631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
The health of astronauts during and after the return from long-haul space missions is paramount. There is plethora of research in the literature about the medical side of astronauts' health, however, the dental and oral health of the space crew seem to be overlooked with limited information in the literature about the effects of the space environment and microgravity on the oral and dental tissues. In this article, we shed some light on the latest available research related to space dentistry and provide some hypotheses that could guide the directions of future research and help maintain the oral health of space crews. We also promote for the importance of regenerative medicine and dentistry as well highlight the opportunities available in the expanding field of bioprinting/biomanufacturing through utilizing the effects of microgravity on stem cells culture techniques. Finally, we provide recommendations for adopting a multidisciplinary approach for oral healthcare during long-haul space flights.
Collapse
Affiliation(s)
- Mahmoud M. Bakr
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | | | - Habiba Hussein
- Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Mohamed Shamel
- Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | | |
Collapse
|
10
|
Kaur J, Kaur J, Nigam A. Extremophiles in Space Exploration. Indian J Microbiol 2024; 64:418-428. [PMID: 39010991 PMCID: PMC11246395 DOI: 10.1007/s12088-024-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/28/2024] [Indexed: 07/17/2024] Open
Abstract
In the era of deep space exploration, extremophile research represents a key area of research w.r.t space survival. This review thus delves into the intriguing realm of 'Space and Astro Microbiology', providing insights into microbial survival, resilience, and behavioral adaptations in space-like environments. This discussion encompasses the modified behavior of extremophilic microorganisms, influencing virulence, stress resistance, and gene expression. It then shifts to recent studies on the International Space Station and simulated microgravity, revealing microbial responses that impact drug susceptibility, antibiotic resistance, and its commercial implications. The review then transitions into Astro microbiology, exploring the possibilities of interplanetary transit, lithopanspermia, and terraforming. Debates on life's origin and recent Martian meteorite discoveries are noted. We also discuss Proactive Inoculation Protocols for selecting adaptable microorganisms as terraforming pioneers. The discussion concludes with a note on microbes' role as bioengineers in bioregenerative life support systems, in recycling organic waste for sustainable space travel; and in promoting optimal plant growth to prepare Martian and lunar basalt. This piece emphasizes the transformative impact of microbes on the future of space exploration.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110 049 India
| | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, 110 021 India
| | - Aeshna Nigam
- Shivaji College, University of Delhi, New Delhi, 110 027 India
| |
Collapse
|
11
|
Chou J, Ramroop JR, Saravia-Butler AM, Wey B, Lera MP, Torres ML, Heavner ME, Iyer J, Mhatre SD, Bhattacharya S, Govind S. Drosophila parasitoids go to space: Unexpected effects of spaceflight on hosts and their parasitoids. iScience 2024; 27:108759. [PMID: 38261932 PMCID: PMC10797188 DOI: 10.1016/j.isci.2023.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
While fruit flies (Drosophila melanogaster) and humans exhibit immune system dysfunction in space, studies examining their immune systems' interactions with natural parasites in space are lacking. Drosophila parasitoid wasps modify blood cell function to suppress host immunity. In this study, naive and parasitized ground and space flies from a tumor-free control and a blood tumor-bearing mutant strain were examined. Inflammation-related genes were activated in space in both fly strains. Whereas control flies did not develop tumors, tumor burden increased in the space-returned tumor-bearing mutants. Surprisingly, control flies were more sensitive to spaceflight than mutant flies; many of their essential genes were downregulated. Parasitoids appeared more resilient than fly hosts, and spaceflight did not significantly impact wasp survival or the expression of their virulence genes. Previously undocumented mutant wasps with novel wing color and wing shape were isolated post-flight and will be invaluable for host-parasite studies on Earth.
Collapse
Affiliation(s)
- Jennifer Chou
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Johnny R. Ramroop
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Amanda M. Saravia-Butler
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Brian Wey
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Matthew P. Lera
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Medaya L. Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Bionetics, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mary Ellen Heavner
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Janani Iyer
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, Mountain View, CA 94043, USA
| | - Siddhita D. Mhatre
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Shubha Govind
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
12
|
Yang J, Barrila J, Nauman EA, Nydam SD, Yang S, Park J, Gutierrez-Jensen AD, Castro CL, Ott CM, Buss K, Steel J, Zakrajsek AD, Schuff MM, Nickerson CA. Incremental increases in physiological fluid shear progressively alter pathogenic phenotypes and gene expression in multidrug resistant Salmonella. Gut Microbes 2024; 16:2357767. [PMID: 38783686 PMCID: PMC11135960 DOI: 10.1080/19490976.2024.2357767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during infection, as they experience wide fluid shear fluctuations in the host. However, little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. Herein, we combined mathematical modeling with hydrodynamic bacterial culture to profile transcriptomic and pathogenesis-related phenotypes of multidrug resistant S. Typhimurium (ST313 D23580) under different fluid shear conditions relevant to its transition from the intestinal tract to the bloodstream. We report that D23580 exhibited incremental changes in transcriptomic profiles that correlated with its pathogenic phenotypes in response to these progressive increases in fluid shear. This is the first demonstration that incremental changes in fluid shear forces alter stress responses and gene expression in any ST313 strain and offers mechanistic insight into how forces encountered by bacteria during infection might impact their disease-causing ability in unexpected ways.
Collapse
Affiliation(s)
- Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Eric A. Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Seth D. Nydam
- Department of Animal Care & Technologies, Arizona State University, Tempe, AZ, USA
| | - Shanshan Yang
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, USA
| | - Jin Park
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Ami D. Gutierrez-Jensen
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Christian L. Castro
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- JES Tech, Houston, TX, USA
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Kristina Buss
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Jason Steel
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Anne D. Zakrajsek
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Mary M. Schuff
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Cheryl A. Nickerson
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Sharma G, Zee PC, Zea L, Curtis PD. Whole genome-scale assessment of gene fitness of Novosphingobium aromaticavorans during spaceflight. BMC Genomics 2023; 24:782. [PMID: 38102595 PMCID: PMC10725011 DOI: 10.1186/s12864-023-09799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
In microgravity, bacteria undergo intriguing physiological adaptations. There have been few attempts to assess global bacterial physiological responses to microgravity, with most studies only focusing on a handful of individual systems. This study assessed the fitness of each gene in the genome of the aromatic compound-degrading Alphaproteobacterium Novosphingobium aromaticavorans during growth in spaceflight. This was accomplished using Comparative TnSeq, which involves culturing the same saturating transposon mutagenized library under two different conditions. To assess gene fitness, a novel comparative TnSeq analytical tool was developed, named TnDivA, that is particularly useful in leveraging biological replicates. In this approach, transposon diversity is represented numerically using a modified Shannon diversity index, which was then converted into effective transposon density. This transformation accounts for variability in read distribution between samples, such as cases where reads were dominated by only a few transposon inserts. Effective density values were analyzed using multiple statistical methods, including log2-fold change, least-squares regression analysis, and Welch's t-test. The results obtained across applied statistical methods show a difference in the number of significant genes identified. However, the functional categories of genes important to growth in microgravity showed similar patterns. Lipid metabolism and transport, energy production, transcription, translation, and secondary metabolite biosynthesis and transport were shown to have high fitness during spaceflight. This suggests that core metabolic processes, including lipid and secondary metabolism, play an important role adapting to stress and promoting growth in microgravity.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Peter C Zee
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Luis Zea
- Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA.
| |
Collapse
|
14
|
Su X, Fang T, Fang L, Wang D, Jiang X, Liu C, Zhang H, Guo R, Wang J. Effects of short-term exposure to simulated microgravity on the physiology of Bacillus subtilis and multiomic analysis. Can J Microbiol 2023; 69:464-478. [PMID: 37463516 DOI: 10.1139/cjm-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In our study, Bacillus subtilis was disposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14 days, while the control group was disposed to the same bioreactors in a normal gravity (NG) environment for 14 days. The B. subtilis strain exposed to the SMG (labeled BSS) showed an enhanced growth ability, increased biofilm formation ability, increased sensitivity to ampicillin sulbactam and cefotaxime, and some metabolic alterations compared with the B. subtilis strain under NG conditions (labeled BSN) and the original strain of B. subtilis (labeled BSO). The differentially expressed proteins (DEPs) associated with an increased growth rate, such as DNA strand exchange activity, oxidoreductase activity, proton-transporting ATP synthase complex, and biosynthetic process, were significantly upregulated in BSS. The enhanced biofilm formation ability may be related with the DEPs of spore germination and protein processing in BSS, and differentially expressed genes involved in protein localization and peptide secretion were also significantly enriched. The results revealed that SMG may increase the level of related functional proteins by upregulating or downregulating affiliated genes to change physiological characteristics and modulate growth ability, biofilm formation ability (epsB, epsC, epsN), antibiotic sensitivity (penP) and metabolism. Our experiment may gives new ideas for the study of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Tingzheng Fang
- Sixth Department of Health Care, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Lin Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Dapeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Honglei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Rui Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
16
|
Totsline N, Kniel KE, Bais HP. Microgravity and evasion of plant innate immunity by human bacterial pathogens. NPJ Microgravity 2023; 9:71. [PMID: 37679341 PMCID: PMC10485020 DOI: 10.1038/s41526-023-00323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity's long and short-term space travel goals.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA
| |
Collapse
|
17
|
Jang H, Choi SY, Mitchell RJ. Staphylococcus aureus Sensitivity to Membrane Disrupting Antibacterials Is Increased under Microgravity. Cells 2023; 12:1907. [PMID: 37508571 PMCID: PMC10377918 DOI: 10.3390/cells12141907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In a survey of the International Space Station (ISS), the most common pathogenic bacterium identified in samples from the air, water and surfaces was Staphylococcus aureus. While growth under microgravity is known to cause physiological changes in microbial pathogens, including shifts in antibacterial sensitivity, its impact on S. aureus is not well understood. Using high-aspect ratio vessels (HARVs) to generate simulated microgravity (SMG) conditions in the lab, we found S. aureus lipid profiles are altered significantly, with a higher presence of branch-chained fatty acids (BCFAs) (14.8% to 35.4%) with a concomitant reduction (41.3% to 31.4%) in straight-chain fatty acids (SCFAs) under SMG. This shift significantly increased the sensitivity of this pathogen to daptomycin, a membrane-acting antibiotic, leading to 12.1-fold better killing under SMG. Comparative assays with two additional compounds, i.e., SDS and violacein, confirmed S. aureus is more susceptible to membrane-disrupting agents, with 0.04% SDS and 0.6 mg/L violacein resulting in 22.9- and 12.8-fold better killing in SMG than normal gravity, respectively. As humankind seeks to establish permanent colonies in space, these results demonstrate the increased potency of membrane-active antibacterials to control the presence and spread of S. aureus, and potentially other pathogens.
Collapse
Affiliation(s)
- Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
19
|
McDonagh F, Cormican M, Morris D, Burke L, Singh NK, Venkateswaran K, Miliotis G. Medical Astro-Microbiology: Current Role and Future Challenges. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362850 PMCID: PMC10082442 DOI: 10.1007/s41745-023-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
The second and third decades of the twenty-first century are marked by a flourishing of space technology which may soon realise human aspirations of a permanent multiplanetary presence. The prevention, control and management of infection with microbial pathogens is likely to play a key role in how successful human space aspirations will become. This review considers the emerging field of medical astro-microbiology. It examines the current evidence regarding the risk of infection during spaceflight via host susceptibility, alterations to the host's microbiome as well as exposure to other crew members and spacecraft's microbiomes. It also considers the relevance of the hygiene hypothesis in this regard. It then reviews the current evidence related to infection risk associated with microbial adaptability in spaceflight conditions. There is a particular focus on the International Space Station (ISS), as one of the only two crewed objects in low Earth orbit. It discusses the effects of spaceflight related stressors on viruses and the infection risks associated with latent viral reactivation and increased viral shedding during spaceflight. It then examines the effects of the same stressors on bacteria, particularly in relation to changes in virulence and drug resistance. It also considers our current understanding of fungal adaptability in spaceflight. The global public health and environmental risks associated with a possible re-introduction to Earth of invasive species are also briefly discussed. Finally, this review examines the largely unknown microbiology and infection implications of celestial body habitation with an emphasis placed on Mars. Overall, this review summarises much of our current understanding of medical astro-microbiology and identifies significant knowledge gaps. Graphical Abstract
Collapse
Affiliation(s)
- Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Department of Medical Microbiology, Galway University Hospitals, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
20
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
21
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
22
|
Siems K, Runzheimer K, Rehm A, Schwengers O, Heidler von Heilborn D, Kaser L, Arndt F, Neidhöfer C, Mengel JP, Parcina M, Lipski A, Hain T, Moeller R. Phenotypic and genomic assessment of the potential threat of human spaceflight-relevant Staphylococcus capitis isolates under stress conditions. Front Microbiol 2022; 13:1007143. [PMID: 36406458 PMCID: PMC9669719 DOI: 10.3389/fmicb.2022.1007143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/06/2022] [Indexed: 08/05/2023] Open
Abstract
Previous studies have reported that spaceflight specific conditions such as microgravity lead to changes in bacterial physiology and resistance behavior including increased expression of virulence factors, enhanced biofilm formation and decreased susceptibility to antibiotics. To assess if spaceflight induced physiological changes can manifest in human-associated bacteria, we compared three spaceflight relevant Staphylococcus capitis isolates (DSM 111179, ISS; DSM 31028, clean room; DSM 113836; artificial gravity bedrest study) with the type strain (DSM 20326T). We tested the three strains regarding growth, colony morphology, metabolism, fatty acid and polar lipid pattern, biofilm formation, susceptibility to antibiotics and survival in different stress conditions such as treatment with hydrogen peroxide, exposure to desiccation, and irradiation with X-rays and UV-C. Moreover, we sequenced, assembled, and analyzed the genomes of all four strains. Potential genetic determinants for phenotypic differences were investigated by comparative genomics. We found that all four strains show similar metabolic patterns and the same susceptibility to antibiotics. All four strains were considered resistant to fosfomycin. Physiological differences were mainly observed compared to the type strain and minor differences among the other three strains. The ISS isolate and the bedrest study isolate exhibit a strong delayed yellow pigmentation, which is absent in the other two strains. Pigments were extracted and analyzed by UV/Vis spectroscopy showing characteristic carotenoid spectra. The ISS isolate showed the highest growth rate as well as weighted average melting temperature (WAMT) of fatty acids (41.8°C) of all strains. The clean room isolate showed strongest biofilm formation and a high tolerance to desiccation. In general, all strains survived desiccation better in absence of oxygen. There were no differences among the strains regarding radiation tolerance. Phenotypic and genomic differences among the strains observed in this study are not inevitably indicating an increased virulence of the spaceflight isolate. However, the increased growth rate, higher WAMT and colony pigmentation of the spaceflight isolate are relevant phenotypes that require further research within the human spaceflight context. We conclude that combining genetic analysis with classical microbiological methods allows the detailed assessment of the potential threat of bacteria in highly regulated and extreme environments such as spaceflight environments.
Collapse
Affiliation(s)
- Katharina Siems
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Katharina Runzheimer
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Anna Rehm
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Schwengers
- Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - David Heidler von Heilborn
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Bonn, Germany
| | - Liv Kaser
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Franca Arndt
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jan Philipp Mengel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - André Lipski
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Bonn, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Justus Liebig University Giessen, Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Ralf Moeller
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
23
|
Boquet-Pujadas A, Feaugas T, Petracchini A, Grassart A, Mary H, Manich M, Gobaa S, Olivo-Marin JC, Sauvonnet N, Labruyère E. 4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. SCIENCE ADVANCES 2022; 8:eabo5767. [PMID: 36269830 PMCID: PMC9586479 DOI: 10.1126/sciadv.abo5767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/02/2022] [Indexed: 05/31/2023]
Abstract
Physical forces are essential to biological function, but their impact at the tissue level is not fully understood. The gut is under continuous mechanical stress because of peristalsis. To assess the influence of mechanical cues on enteropathogen invasion, we combine computational imaging with a mechanically active gut-on-a-chip. After infecting the device with either of two microbes, we image their behavior in real time while mapping the mechanical stress within the tissue. This is achieved by reconstructing three-dimensional videos of the ongoing invasion and leveraging on-manifold inverse problems together with viscoelastic rheology. Our results show that peristalsis accelerates the destruction and invasion of intestinal tissue by Entamoeba histolytica and colonization by Shigella flexneri. Local tension facilitates parasite penetration and activates virulence genes in the bacteria. Overall, our work highlights the fundamental role of physical cues during host-pathogen interactions and introduces a framework that opens the door to study mechanobiology on deformable tissues.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Feaugas
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Alba Petracchini
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alexandre Grassart
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
- Unit of Bioengineering and Microbiology, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean-Christophe Olivo-Marin
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nathalie Sauvonnet
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Elisabeth Labruyère
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
24
|
Caswell G, Eshelby B. Skin microbiome considerations for long haul space flights. Front Cell Dev Biol 2022; 10:956432. [PMID: 36158225 PMCID: PMC9493037 DOI: 10.3389/fcell.2022.956432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the human skin microbiome has long been associated with changes to the pH of the skin, dermal immune function and chronic skin conditions. Dermatological issues have been noted as the most prevalent medical presentation in the microgravity environment of space. The change in gravitational forces has been implicated in human immuno-suppression, also impacted by changes in the gastrointestinal-skin axis and its impact on Vitamin D metabolism, altered microbial gene expression in resident flora (leading changes in biofilm formation) and increased virulence factors in potential pathogens. There are also other stressors to the skin microbiome unique to space travel, including increased exposure to radiation, prolonged periods of dry washing technique, air quality and changes in microbe replication and growth parameters. Optimal microbiome health leads to enhanced skin barrier manufacture and maintenance, along with improved skin immune function and healing. In a microgravity environment expected to be experienced during long space flights, disruptions to the skin microbiome, coupled with increased virulence of pathological viruses and bacteria has implications for holistic skin health, astronaut cognitive function and mental health, and is coupled with slowed rates of wound healing. Scenario management for holistic skin health and restoration of microbiome homeostasis on long space flights require consideration.
Collapse
|
25
|
Role of RpoS in Regulating Stationary Phase Salmonella Typhimurium Pathogenesis-Related Stress Responses under Physiological Low Fluid Shear Force Conditions. mSphere 2022; 7:e0021022. [PMID: 35913142 PMCID: PMC9429890 DOI: 10.1128/msphere.00210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The discovery that biomechanical forces regulate microbial virulence was established with the finding that physiological low fluid shear (LFS) forces altered gene expression, stress responses, and virulence of the enteric pathogen Salmonella enterica serovar Typhimurium during the log phase. These log phase LFS-induced phenotypes were independent of the master stress response regulator, RpoS (σS). Given the central importance of RpoS in regulating stationary-phase stress responses of S. Typhimurium cultured under conventional shake flask and static conditions, we examined its role in stationary-phase cultures grown under physiological LFS. We constructed an isogenic rpoS mutant derivative of wild-type S. Typhimurium and compared the ability of these strains to survive in vitro pathogenesis-related stresses that mimic those encountered in the infected host and environment. We also compared the ability of these strains to colonize (adhere, invade, and survive within) human intestinal epithelial cell cultures. Unexpectedly, LFS-induced resistance of stationary-phase S. Typhimurium cultures to acid and bile salts stresses did not rely on RpoS. Likewise, RpoS was dispensable for stationary-phase LFS cultures to adhere to and survive within intestinal epithelial cells. In contrast, the resistance of these cultures to challenges of oxidative and thermal stresses, and their invasion into intestinal epithelial cells was influenced by RpoS. These findings expand our mechanistic understanding of how physiological fluid shear forces modulate stationary-phase S. Typhimurium physiology in unexpected ways and provide clues into microbial mechanobiology and nuances of Salmonella responses to microenvironmental niches in the infected host. IMPORTANCE Bacterial pathogens respond dynamically to a variety of stresses in the infected host, including physical forces of fluid flow (fluid shear) across their surfaces. While pathogens experience wide fluctuations in fluid shear during infection, little is known about how these forces regulate microbial pathogenesis. This is especially important for stationary-phase bacterial growth, which is a critical period to understand microbial resistance, survival, and infection potential, and is regulated in many bacteria by the general stationary-phase stress response protein RpoS. Here, we showed that, unlike conventional culture conditions, several stationary-phase Salmonella pathogenic stress responses were not impacted by RpoS when bacteria were cultured under fluid shear conditions relevant to those encountered in the intestine of the infected host. These findings offer new insight into how physiological fluid shear forces encountered by Salmonella during infection might impact pathogenic responses in unexpected ways that are relevant to their disease-causing ability.
Collapse
|
26
|
Blachowicz A, Romsdahl J, Chiang AJ, Masonjones S, Kalkum M, Stajich JE, Torok T, Wang CCC, Venkateswaran K. The International Space Station Environment Triggers Molecular Responses in Aspergillus niger. Front Microbiol 2022; 13:893071. [PMID: 35847112 PMCID: PMC9280654 DOI: 10.3389/fmicb.2022.893071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Due to immense phenotypic plasticity and adaptability, Aspergillus niger is a cosmopolitan fungus that thrives in versatile environments, including the International Space Station (ISS). This is the first report of genomic, proteomic, and metabolomic alterations observed in A. niger strain JSC-093350089 grown in a controlled experiment aboard the ISS. Whole-genome sequencing (WGS) revealed that ISS conditions, including microgravity and enhanced irradiation, triggered non-synonymous point mutations in specific regions, chromosomes VIII and XII of the JSC-093350089 genome when compared to the ground-grown control. Proteome analysis showed altered abundance of proteins involved in carbohydrate metabolism, stress response, and cellular amino acid and protein catabolic processes following growth aboard the ISS. Metabolome analysis further confirmed that space conditions altered molecular suite of ISS-grown A. niger JSC-093350089. After regrowing both strains on Earth, production of antioxidant—Pyranonigrin A was significantly induced in the ISS-flown, but not the ground control strain. In summary, the microgravity and enhanced irradiation triggered unique molecular responses in the A. niger JSC-093350089 suggesting adaptive responses.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Abby J. Chiang
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Sawyer Masonjones
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Markus Kalkum
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
- *Correspondence: Kasthuri Venkateswaran,
| |
Collapse
|
27
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
28
|
Adaptation to simulated microgravity in Streptococcus mutans. NPJ Microgravity 2022; 8:17. [PMID: 35654802 PMCID: PMC9163064 DOI: 10.1038/s41526-022-00205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
Long-term space missions have shown an increased incidence of oral disease in astronauts’ and as a result, are one of the top conditions predicted to impact future missions. Here we set out to evaluate the adaptive response of Streptococcus mutans (etiological agent of dental caries) to simulated microgravity. This organism has been well studied on earth and treatment strategies are more predictable. Despite this, we are unsure how the bacterium will respond to the environmental stressors in space. We used experimental evolution for 100-days in high aspect ratio vessels followed by whole genome resequencing to evaluate this adaptive response. Our data shows that planktonic S. mutans did evolve variants in three genes (pknB, SMU_399 and SMU_1307c) that can be uniquely attributed to simulated microgravity populations. In addition, collection of data at multiple time points showed mutations in three additional genes (SMU_399, ptsH and rex) that were detected earlier in simulated microgravity populations than in the normal gravity controls, many of which are consistent with other studies. Comparison of virulence-related phenotypes between biological replicates from simulated microgravity and control orientation cultures generally showed few changes in antibiotic susceptibility, while acid tolerance and adhesion varied significantly between biological replicates and decreased as compared to the ancestral populations. Most importantly, our data shows the importance of a parallel normal gravity control, sequencing at multiple time points and the use of biological replicates for appropriate analysis of adaptation in simulated microgravity.
Collapse
|
29
|
Barrila J, Yang J, Franco Meléndez KP, Yang S, Buss K, Davis TJ, Aronow BJ, Bean HD, Davis RR, Forsyth RJ, Ott CM, Gangaraju S, Kang BY, Hanratty B, Nydam SD, Nauman EA, Kong W, Steel J, Nickerson CA. Spaceflight Analogue Culture Enhances the Host-Pathogen Interaction Between Salmonella and a 3-D Biomimetic Intestinal Co-Culture Model. Front Cell Infect Microbiol 2022; 12:705647. [PMID: 35711662 PMCID: PMC9195300 DOI: 10.3389/fcimb.2022.705647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Physical forces associated with spaceflight and spaceflight analogue culture regulate a wide range of physiological responses by both bacterial and mammalian cells that can impact infection. However, our mechanistic understanding of how these environments regulate host-pathogen interactions in humans is poorly understood. Using a spaceflight analogue low fluid shear culture system, we investigated the effect of Low Shear Modeled Microgravity (LSMMG) culture on the colonization of Salmonella Typhimurium in a 3-D biomimetic model of human colonic epithelium containing macrophages. RNA-seq profiling of stationary phase wild type and Δhfq mutant bacteria alone indicated that LSMMG culture induced global changes in gene expression in both strains and that the RNA binding protein Hfq played a significant role in regulating the transcriptional response of the pathogen to LSMMG culture. However, a core set of genes important for adhesion, invasion, and motility were commonly induced in both strains. LSMMG culture enhanced the colonization (adherence, invasion and intracellular survival) of Salmonella in this advanced model of intestinal epithelium using a mechanism that was independent of Hfq. Although S. Typhimurium Δhfq mutants are normally defective for invasion when grown as conventional shaking cultures, LSMMG conditions unexpectedly enabled high levels of colonization by an isogenic Δhfq mutant. In response to infection with either the wild type or mutant, host cells upregulated transcripts involved in inflammation, tissue remodeling, and wound healing during intracellular survival. Interestingly, infection by the Δhfq mutant led to fewer transcriptional differences between LSMMG- and control-infected host cells relative to infection with the wild type strain. This is the first study to investigate the effect of LSMMG culture on the interaction between S. Typhimurium and a 3-D model of human intestinal tissue. These findings advance our understanding of how physical forces can impact the early stages of human enteric salmonellosis.
Collapse
Affiliation(s)
- Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- *Correspondence: Jennifer Barrila, ; Cheryl A. Nickerson,
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Karla P. Franco Meléndez
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, FL, United States
| | - Shanshan Yang
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Kristina Buss
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Trenton J. Davis
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Heather D. Bean
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Richard R. Davis
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Rebecca J. Forsyth
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Sandhya Gangaraju
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Bianca Y. Kang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Brian Hanratty
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Seth D. Nydam
- Department of Animal Care & Technologies, Arizona State University, Tempe, AZ, United States
| | - Eric A. Nauman
- School of Mechanical Engineering, Weldon School of Biomedical Engineering and Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Wei Kong
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States
| | - Jason Steel
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Cheryl A. Nickerson
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Jennifer Barrila, ; Cheryl A. Nickerson,
| |
Collapse
|
30
|
Zhang B, Bai P, Wang D. Growth Behavior and Transcriptome Profile Analysis of Proteus mirabilis Strain Under Long- versus Short-Term Simulated Microgravity Environment. Pol J Microbiol 2022; 71:161-171. [PMID: 35635525 PMCID: PMC9252141 DOI: 10.33073/pjm-2022-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Spaceflight missions affect the behavior of microbes that are inevitably introduced into space environments and may impact astronauts’ health. Current studies have mainly focused on the biological characteristics and molecular mechanisms of microbes after short-term or long-term spaceflight, but few have compared the impact of various lengths of spaceflight missions on the characteristics of microbes. Researchers generally agree that microgravity (MG) is the most critical factor influencing microbial physiology in space capsules during flight missions. This study compared the growth behavior and transcriptome profile of Proteus mirabilis cells exposed to long-term simulated microgravity (SMG) with those exposed to short-term SMG. The results showed that long-term SMG decreased the growth rate, depressed biofilm formation ability, and affected several transcriptomic profiles, including stress response, membrane transportation, metal ion transportation, biological adhesion, carbohydrate metabolism, and lipid metabolism in contrast to short-term SMG. This study improved the understanding of long-term versus short-term SMG effects on P. mirabilis behavior and provided relevant references for analyzing the influence of P. mirabilis on astronaut health during spaceflights.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital , Binzhou , China
| | - Po Bai
- Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center , Beijing , China
| | - Dapeng Wang
- Respiratory Diseases Department, The Second Medical Center of PLA General Hospital , Beijing , China
| |
Collapse
|
31
|
Gilbert R, Tanenbaum N, Bhattacharya S. Asparagine biosynthesis as a mechanism of increased host lethality induced by Serratia marcescens in simulated microgravity environments. Heliyon 2022; 8:e09379. [PMID: 35592661 PMCID: PMC9111996 DOI: 10.1016/j.heliyon.2022.e09379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/15/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
While studies have shown an increase in pathogenicity in several microbes during spaceflight and after exposure to simulated microgravity, the mechanisms underlying these changes in phenotype are not understood across different pathogens, particularly in opportunistic pathogens. This study evaluates the mechanism for increased virulence of the opportunistic gram-negative bacterium, Serratia marcescens, in simulated microgravity. Low-shear modeled microgravity (LSMMG) is used in ground-based studies to simulate the effects of microgravity as experienced in spaceflight. Our previous findings showed that there was a significant increase in mortality rates of the Drosophila melanogaster host when infected with either spaceflight or LSMMG treated S. marcescens. Here, we report that LSMMG increases asparagine uptake and synthesis in S. marcescens and that the increased host lethality induced by LSMMG bacteria grown in rich media can be recapitulated in minimal media by adding only aspartate and glutamine, the substrates of asparagine biosynthesis. Interestingly, increased bacterial growth rate alone is not sufficient to contribute to maximal host lethality, since the addition of aspartate to minimal media caused an LSMMG-specific increase in bacterial growth rate that is comparable to that induced by the combination of aspartate and glutamine, but this increase in growth does not cause an equivalent rate of host mortality. However, the addition of both aspartate and glutamine cause both an increase in host mortality and an overexpression of asparagine pathway genes in a LSMMG-dependent manner. We also report that L-asparaginase-mediated breakdown of asparagine is an effective countermeasure for the increased host mortality caused by LSMMG-treated bacteria. This investigation underscores the importance of the asparagine utilization pathway by helping uncover molecular mechanisms that underlie increased mortality rates of a model host infected with microgravity-treated S. marcescens and provides a potential mitigation strategy.
Collapse
|
32
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
33
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
34
|
Nickerson CA, Medina-Colorado AA, Barrila J, Poste G, Ott CM. A vision for spaceflight microbiology to enable human health and habitat sustainability. Nat Microbiol 2021; 7:471-474. [PMID: 34903836 DOI: 10.1038/s41564-021-01015-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cheryl A Nickerson
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA
| | - C Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
35
|
Decreased biofilm formation in Proteus mirabilis after short-term exposure to a simulated microgravity environment. Braz J Microbiol 2021; 52:2021-2030. [PMID: 34558030 PMCID: PMC8578233 DOI: 10.1007/s42770-021-00588-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background Microbes threaten human health in space exploration. Studies have shown that Proteus mirabilis has been found in human space habitats. In addition, the biological characteristics of P. mirabilis in space have been studied unconditionally. The simulated microgravity environment provides a platform for understanding the changes in the biological characteristics of P. mirabilis. Objective This study intends to explore the effect of simulated microgravity on P. mirabilis, the formation of P. mirabilis biofilm, and its related mechanism. Methods The strange deformable rods were cultured continuously for 14 days under microgravity simulated in high-aspect rotating vessels (HARVs). The morphology, growth rate, metabolism, and biofilm formation of the strain were measured, and the phenotypic changes of P. mirabilis were evaluated. Transcriptome sequencing was used to detect differentially expressed genes under simulated microgravity and compared with phenotype. Results The growth rate, metabolic ability, and biofilm forming ability of P. mirabilis were lower than those of normal gravity culture under the condition of simulated microgravity. Further analysis showed that the decrease of growth rate, metabolic ability, and biofilm forming ability may be caused by the downregulation of related genes (pstS, sodB, and fumC). Conclusion The simulated microgravity condition enables us to explore the potential relationship between bacterial phenotype and molecular biology, thus opening up a suitable and constructive method for medical fields that have not been explored before. It provides a certain strategy for the treatment of P. mirabilis infectious diseases in space environment by exploring the microgravity of P. mirabilis. Supplementary Information The online version contains supplementary material available at 10.1007/s42770-021-00588-y.
Collapse
|
36
|
Su X, Guo Y, Fang T, Jiang X, Wang D, Li D, Bai P, Zhang B, Wang J, Liu C. Effects of Simulated Microgravity on the Physiology of Stenotrophomonas maltophilia and Multiomic Analysis. Front Microbiol 2021; 12:701265. [PMID: 34512577 PMCID: PMC8429793 DOI: 10.3389/fmicb.2021.701265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that the space environment plays a pivotal role in changing the characteristics of conditional pathogens, especially their pathogenicity and virulence. However, Stenotrophomonas maltophilia, a type of conditional pathogen that has shown to a gradual increase in clinical morbidity in recent years, has rarely been reported for its impact in space. In this study, S. maltophilia was exposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14days, while the control group was exposed to the same bioreactors in a normal gravity (NG) environment. Then, combined phenotypic, genomic, transcriptomic, and proteomic analyses were conducted to compare the influence of the SMG and NG on S. maltophilia. The results showed that S. maltophilia in simulated microgravity displayed an increased growth rate, enhanced biofilm formation ability, increased swimming motility, and metabolic alterations compared with those of S. maltophilia in normal gravity and the original strain of S. maltophilia. Clusters of Orthologous Groups (COG) annotation analysis indicated that the increased growth rate might be related to the upregulation of differentially expressed genes (DEGs) involved in energy metabolism and conversion, secondary metabolite biosynthesis, transport and catabolism, intracellular trafficking, secretion, and vesicular transport. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the increased motility might be associated the upregulation of differentially expressed proteins (DEPs) involved in locomotion, localization, biological adhesion, and binding, in accordance with the upregulated DEGs in cell motility according to COG classification, including pilP, pilM, flgE, flgG, and ronN. Additionally, the increased biofilm formation ability might be associated with the upregulation of DEPs involved in biofilm formation, the bacterial secretion system, biological adhesion, and cell adhesion, which were shown to be regulated by the differentially expressed genes (chpB, chpC, rpoN, pilA, pilG, pilH, and pilJ) through the integration of transcriptomic and proteomic analyses. These results suggested that simulated microgravity might increase the level of corresponding functional proteins by upregulating related genes to alter physiological characteristics and modulate growth rate, motility, biofilm formation, and metabolism. In conclusion, this study is the first general analysis of the phenotypic, genomic, transcriptomic, and proteomic changes in S. maltophilia under simulated microgravity and provides some suggestions for future studies of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yinghua Guo
- Medical School of Chinese PLA, Beijing, China.,College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tingzheng Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Dapeng Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Department of Academic Research, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2021; 17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
The unique nature of microgravity encountered in space provides an opportunity for drug discovery and development that cannot be replicated on Earth. From the production of superior protein crystals to the identification and validation of new drug targets to microarray analyses of transcripts attenuated by microgravity, there are numerous examples which demonstrate the benefit of exploiting the space environment. Moreover, studies conducted on Space Shuttle missions, the International Space Station and other craft have had a direct benefit for drug development programmes such as those directed against reducing bone and muscle loss or increasing bone formation. This review will highlight advances made in both drug discovery and development and offer some future insight into how drug discovery and associated technologies may be further advanced using the microgravity assist.
Collapse
Affiliation(s)
- Martin Braddock
- Sherwood Observatory, Mansfield and Sutton Astronomical Society, Coxmoor Road, Sutton-in-Ashfield, Nottinghamshire, NG17 5LF, United Kingdom
| |
Collapse
|
38
|
Abstract
Microbial research in space is being conducted for almost 50 years now. The closed system of the International Space Station (ISS) has acted as a microbial observatory for the past 10 years, conducting research on adaptation and survivability of microorganisms exposed to space conditions. This adaptation can be either beneficial or detrimental to crew members and spacecraft. Therefore, it becomes crucial to identify the impact of two primary stress conditions, namely, radiation and microgravity, on microbial life aboard the ISS. Elucidating the mechanistic basis of microbial adaptation to space conditions aids in the development of countermeasures against their potentially detrimental effects and allows us to harness their biotechnologically important properties. Several microbial processes have been studied, either in spaceflight or using devices that can simulate space conditions. However, at present, research is limited to only a few microorganisms, and extensive research on biotechnologically important microorganisms is required to make long-term space missions self-sustainable.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Elisa Stephens
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
39
|
Simões MF, Antunes A. Microbial Pathogenicity in Space. Pathogens 2021; 10:450. [PMID: 33918768 PMCID: PMC8069885 DOI: 10.3390/pathogens10040450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
After a less dynamic period, space exploration is now booming. There has been a sharp increase in the number of current missions and also of those being planned for the near future. Microorganisms will be an inevitable component of these missions, mostly because they hitchhike, either attached to space technology, like spaceships or spacesuits, to organic matter and even to us (human microbiome), or to other life forms we carry on our missions. Basically, we never travel alone. Therefore, we need to have a clear understanding of how dangerous our "travel buddies" can be; given that, during space missions, our access to medical assistance and medical drugs will be very limited. Do we explore space together with pathogenic microorganisms? Do our hitchhikers adapt to the space conditions, as well as we do? Do they become pathogenic during that adaptation process? The current review intends to better clarify these questions in order to facilitate future activities in space. More technological advances are needed to guarantee the success of all missions and assure the reduction of any possible health and environmental risks for the astronauts and for the locations being explored.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| |
Collapse
|
40
|
Evaluating the effect of spaceflight on the host-pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 2021; 7:9. [PMID: 33750813 PMCID: PMC7943786 DOI: 10.1038/s41526-021-00136-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Spaceflight uniquely alters the physiology of both human cells and microbial pathogens, stimulating cellular and molecular changes directly relevant to infectious disease. However, the influence of this environment on host-pathogen interactions remains poorly understood. Here we report our results from the STL-IMMUNE study flown aboard Space Shuttle mission STS-131, which investigated multi-omic responses (transcriptomic, proteomic) of human intestinal epithelial cells to infection with Salmonella Typhimurium when both host and pathogen were simultaneously exposed to spaceflight. To our knowledge, this was the first in-flight infection and dual RNA-seq analysis using human cells.
Collapse
|
41
|
Vroom MM, Rodriguez-Ocasio Y, Lynch JB, Ruby EG, Foster JS. Modeled microgravity alters lipopolysaccharide and outer membrane vesicle production of the beneficial symbiont Vibrio fischeri. NPJ Microgravity 2021; 7:8. [PMID: 33686090 PMCID: PMC7940393 DOI: 10.1038/s41526-021-00138-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Reduced gravity, or microgravity, can have a pronounced impact on the physiology of animals, but the effects on their associated microbiomes are not well understood. Here, the impact of modeled microgravity on the shedding of Gram-negative lipopolysaccharides (LPS) by the symbiotic bacterium Vibrio fischeri was examined using high-aspect ratio vessels. LPS from V. fischeri is known to induce developmental apoptosis within its symbiotic tissues, which is accelerated under modeled microgravity conditions. In this study, we provide evidence that exposure to modeled microgravity increases the amount of LPS released by the bacterial symbiont in vitro. The higher rates of shedding under modeled microgravity conditions are associated with increased production of outer-membrane vesicles (OMV), which has been previously correlated to flagellar motility. Mutants of V. fischeri defective in the production and rotation of their flagella show significant decreases in LPS shedding in all treatments, but levels of LPS are higher under modeled microgravity despite loss of motility. Modeled microgravity also appears to affect the outer-membrane integrity of V. fischeri, as cells incubated under modeled microgravity conditions are more susceptible to cell-membrane-disrupting agents. These results suggest that, like their animal hosts, the physiology of symbiotic microbes can be altered under microgravity-like conditions, which may have important implications for host health during spaceflight.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA
| | - Yaneli Rodriguez-Ocasio
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA
| | - Jonathan B Lynch
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Manoa, Honolulu, HI, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA.
| |
Collapse
|
42
|
Acres JM, Youngapelian MJ, Nadeau J. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. NPJ Microgravity 2021; 7:7. [PMID: 33619250 PMCID: PMC7900230 DOI: 10.1038/s41526-021-00135-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
As interest in space exploration rises, there is a growing need to quantify the impact of microgravity on the growth, survival, and adaptation of microorganisms, including those responsible for astronaut illness. Motility is a key microbial behavior that plays important roles in nutrient assimilation, tissue localization and invasion, pathogenicity, biofilm formation, and ultimately survival. Very few studies have specifically looked at the effects of microgravity on the phenotypes of microbial motility. However, genomic and transcriptomic studies give a broad general picture of overall gene expression that can be used to predict motility phenotypes based upon selected genes, such as those responsible for flagellar synthesis and function and/or taxis. In this review, we focus on specific strains of Gram-negative bacteria that have been the most studied in this context. We begin with a discussion of Earth-based microgravity simulation systems and how they may affect the genes and phenotypes of interest. We then summarize results from both Earth- and space-based systems showing effects of microgravity on motility-related genes and phenotypes.
Collapse
Affiliation(s)
| | | | - Jay Nadeau
- grid.262075.40000 0001 1087 1481Portland State University, Portland, OR USA
| |
Collapse
|
43
|
Decreased Biofilm Formation Ability of a Multidrug-Resistant Pseudomonas aeruginosa Strain After Exposure to a Simulated Microgravity Environment. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The refractory infection induced by multidrug-resistant (MDR) Pseudomonas aeruginosa has become one of the most urgent problems in hospitals. The biofilms formed by P. aeruginosa increase its resistance to antibiotics. A simulated microgravity (SMG) environment provides a platform to understand the factors affecting biofilm formation in bacteria. Objectives: This study aimed to investigate the SMG effects on MDR P. aeruginosa biofilm formation and explore the relevant mechanisms. Methods: In this study, a clinostat was used to simulate a microgravity (MG) environment. The motility and biofilm formation ability of MDR P. aeruginosa were observed using the swimming test and the crystal violet staining method, respectively. The underlying mechanism of phenotypic changes was further investigated by comparative transcriptomic analysis. Results: Multidrug-resistant P. aeruginosa grown under the SMG condition exhibited decreased swimming motility and biofilm formation ability compared to those under the normal gravity (NG) condition. Further analysis revealed that the decreased swimming motility and biofilm formation ability could be attributed to the downregulated expression of genes responsible for flagellar synthesis (flhB, fliQ, and fliR) and type IV pili biogenesis (pilDEXY1Y2VW). Conclusions: This is the first study to perform experiments on MDR P. aeruginosa under the SMG condition. It will be beneficial to understand the mechanism of MDR P. aeruginosa biofilm formation and develop new treatment strategies for infectious diseases induced by MDR P. aeruginosa in the future.
Collapse
|
44
|
Fajardo-Cavazos P, Nicholson WL. Mechanotransduction in Prokaryotes: A Possible Mechanism of Spaceflight Adaptation. Life (Basel) 2021; 11:33. [PMID: 33430182 PMCID: PMC7825584 DOI: 10.3390/life11010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the mechanisms of microgravity perception and response in prokaryotes (Bacteria and Archaea) lag behind those which have been elucidated in eukaryotic organisms. In this hypothesis paper, we: (i) review how eukaryotic cells sense and respond to microgravity using various pathways responsive to unloading of mechanical stress; (ii) we observe that prokaryotic cells possess many structures analogous to mechanosensitive structures in eukaryotes; (iii) we review current evidence indicating that prokaryotes also possess active mechanosensing and mechanotransduction mechanisms; and (iv) we propose a complete mechanotransduction model including mechanisms by which mechanical signals may be transduced to the gene expression apparatus through alterations in bacterial nucleoid architecture, DNA supercoiling, and epigenetic pathways.
Collapse
Affiliation(s)
| | - Wayne L. Nicholson
- Space Life Sciences Laboratory, Department of Microbiology and Cell Science, University of Florida, 505 Odyssey Way, Merritt Island, FL 32953, USA;
| |
Collapse
|
45
|
Abstract
The Rotary Cell Culture System (RCCS) is an apparatus that was originally designed by NASA engineers to simulate microgravity conditions for growth of both eukaryotic and bacterial cell cultures. The RCCS growth environment is also characterized by low fluid shear stress, thereby also providing an in vitro growth condition relevant to certain in vivo environments encountered during bacterial infection. This chapter describes a method for growing Staphylococcus aureus under simulated microgravity conditions using the RCCS and disposable High Aspect Ratio Vessels (HARVs). Small samples can be removed and replaced with fresh media during the experiment (continuous sampling method) or the whole culture can be removed at the end of the experiment (end-point sampling method) for larger sample volumes required for follow-up studies such as RNAseq or proteomics.
Collapse
|
46
|
Kirkpatrick AW, Hamilton DR, McKee JL, MacDonald B, Pelosi P, Ball CG, Roberts D, McBeth PB, Cocolini F, Ansaloni L, Peireira B, Sugrue M, Campbell MR, Kimball EJ, Malbrain MLNG, Roberts D. Do we have the guts to go? The abdominal compartment, intra-abdominal hypertension, the human microbiome and exploration class space missions. Can J Surg 2020. [PMID: 33278908 DOI: 10.1503/cjs.019219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Humans are destined to explore space, yet critical illness and injury may be catastrophically limiting for extraterrestrial travel. Humans are superorganisms living in symbiosis with their microbiomes, whose genetic diversity dwarfs that of humans. Symbiosis is critical and imbalances are associated with disease, occurring within hours of serious illness and injury. There are many characteristics of space flight that negatively influence the microbiome, especially deep space itself, with its increased radiation and absence of gravity. Prolonged weightlessness causes many physiologic changes that are detrimental; some resemble aging and will adversely affect the ability to tolerate critical illness or injury and subsequent treatment. Critical illness-induced intra-abdominal hypertension (IAH) may induce malperfusion of both the viscera and microbiome, with potentially catastrophic effects. Evidence from animal models confirms profound IAH effects on the gut, namely ischemia and disruption of barrier function, mechanistically linking IAH to resultant organ dysfunction. Therefore, a pathologic dysbiome, space-induced immune dysfunction and a diminished cardiorespiratory reserve with exacerbated susceptibility to IAH, imply that a space-deconditioned astronaut will be vulnerable to IAH-induced gut malperfusion. This sets the stage for severe gut ischemia and massive biomediator generation in an astronaut with reduced cardiorespiratory/immunological capacity. Fortunately, experiments in weightless analogue environments suggest that IAH may be ameliorated by conformational abdominal wall changes and a resetting of thoracoabdominal mechanics. Thus, review of the interactions of physiologic changes with prolonged weightlessness and IAH is required to identify appropriate questions for planning exploration class space surgical care.
Collapse
Affiliation(s)
- Andrew W Kirkpatrick
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Douglas R Hamilton
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Jessica L McKee
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Braedon MacDonald
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paolo Pelosi
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Chad G Ball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paul B McBeth
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Federico Cocolini
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Luca Ansaloni
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Bruno Peireira
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Michael Sugrue
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Mark R Campbell
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Edward J Kimball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Manu L N G Malbrain
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| |
Collapse
|
47
|
|
48
|
Mukhopadhyay S, Bagh S. A microgravity responsive synthetic genetic device in Escherichia coli. Biosens Bioelectron 2020; 167:112462. [DOI: 10.1016/j.bios.2020.112462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 01/23/2023]
|
49
|
Kirkpatrick AW, Hamilton DR, McKee JL, MacDonald B, Pelosi P, Ball CG, Roberts D, McBeth PB, Cocolini F, Ansaloni L, Peireira B, Sugrue M, Campbell MR, Kimball EJ, Malbrain MLNG, Roberts D. Do we have the guts to go? The abdominal compartment, intra-abdominal hypertension, the human microbiome and exploration class space missions. Can J Surg 2020; 63:E581-E593. [PMID: 33278908 PMCID: PMC7747844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/11/2023] Open
Abstract
Humans are destined to explore space, yet critical illness and injury may be catastrophically limiting for extraterrestrial travel. Humans are superorganisms living in symbiosis with their microbiomes, whose genetic diversity dwarfs that of humans. Symbiosis is critical and imbalances are associated with disease, occurring within hours of serious illness and injury. There are many characteristics of space flight that negatively influence the microbiome, especially deep space itself, with its increased radiation and absence of gravity. Prolonged weightlessness causes many physiologic changes that are detrimental; some resemble aging and will adversely affect the ability to tolerate critical illness or injury and subsequent treatment. Critical illness-induced intra-abdominal hypertension (IAH) may induce malperfusion of both the viscera and microbiome, with potentially catastrophic effects. Evidence from animal models confirms profound IAH effects on the gut, namely ischemia and disruption of barrier function, mechanistically linking IAH to resultant organ dysfunction. Therefore, a pathologic dysbiome, space-induced immune dysfunction and a diminished cardiorespiratory reserve with exacerbated susceptibility to IAH, imply that a space-deconditioned astronaut will be vulnerable to IAH-induced gut malperfusion. This sets the stage for severe gut ischemia and massive biomediator generation in an astronaut with reduced cardiorespiratory/immunological capacity. Fortunately, experiments in weightless analogue environments suggest that IAH may be ameliorated by conformational abdominal wall changes and a resetting of thoracoabdominal mechanics. Thus, review of the interactions of physiologic changes with prolonged weightlessness and IAH is required to identify appropriate questions for planning exploration class space surgical care.
Collapse
Affiliation(s)
- Andrew W Kirkpatrick
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Douglas R Hamilton
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Jessica L McKee
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Braedon MacDonald
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paolo Pelosi
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Chad G Ball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Paul B McBeth
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Federico Cocolini
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Luca Ansaloni
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Bruno Peireira
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Michael Sugrue
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Mark R Campbell
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Edward J Kimball
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Manu L N G Malbrain
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| | - Derek Roberts
- From the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Departments of Medicine and Engineering, University of Calgary, Calgary, Alta. (Kirkpatrick, Hamilton, McKee); the Departments of Critical Care Medicine and Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alta. (MacDonald); the Department of Surgical Sciences and Integrated Diagnostics, University of Genoa; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy (Pelosi); Regional Trauma Services; Departments of Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (Ball); the Division of Vascular and Endovascular Surgery, Department of Surgery, University of Ottawa, Ottawa, Ont. (Roberts); the Tele-Mentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group Collaborators; Regional Trauma Services; Foothills Medical Centre; Departments of Engineering, Surgery and Critical Care Medicine, University of Calgary, Calgary, Alta. (McBeth); the Departments of Trauma and Emergency Surgery, Pisa University Hospital, Pisa, Italy (Cocolini); the Departments of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy (Ansaloni); the Division of Trauma Surgery, University of Campinas, Campinas, São Paulo, Brazil (Peireira); the Department of Surgery, Letterkenny University Hospital, Letterkenny, Donegal, Ireland (Sugrue); the Paris Regional Medical Centre, Paris, Texas, United States (Campbell); the Departments of Surgery and Critical Care, Network Development and Telehealth, University of Utah, Salt Lake City, US (Kimball); the Faculties of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium (Malbrain)
| |
Collapse
|
50
|
Siddiqui R, Akbar N, Khan NA. Gut microbiome and human health under the space environment. J Appl Microbiol 2020; 130:14-24. [PMID: 32692438 DOI: 10.1111/jam.14789] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiome is well recognized to have a pivotal role in regulation of the health and behaviour of the host, affecting digestion, metabolism, immunity, and has been linked to changes in bones, muscles and the brain, to name a few. However, the impact of microgravity environment on gut bacteria is not well understood. In space environments, astronauts face several health issues including stress, high iron diet, radiation and being in a closed system during extended space missions. Herein, we discuss the role of gut bacteria in the space environment, in relation to factors such as microgravity, radiation and diet. Gut bacteria may exact their effects by synthesis of molecules, their absorption, and through physiological effects on the host. Moreover we deliberate the role of these challenges in the dysbiosis of the human microbiota and possible dysregulation of the immune system.
Collapse
Affiliation(s)
- R Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - N Akbar
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - N A Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|