1
|
Zhai YJ, Liu PY, Luo XW, Liang J, Sun YW, Cui XD, He DD, Pan YS, Wu H, Hu GZ. Analysis of Regulatory Mechanism of AcrB and CpxR on Colistin Susceptibility Based on Transcriptome and Metabolome of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0053023. [PMID: 37358428 PMCID: PMC10434024 DOI: 10.1128/spectrum.00530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.
Collapse
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pei-Yi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xing-Wei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Liang
- Zhengzhou Animal Husbandry Bureau, Zhengzhou, China
| | - Ya-Wei Sun
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao-Die Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Amory H, Cesarini C, De Maré L, Loublier C, Moula N, Detilleux J, Saulmont M, Garigliany MM, Lecoq L. Relationship between the Cycle Threshold Value (Ct) of a Salmonella spp. qPCR Performed on Feces and Clinical Signs and Outcome in Horses. Microorganisms 2023; 11:1950. [PMID: 37630510 PMCID: PMC10459194 DOI: 10.3390/microorganisms11081950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this retrospective study was to evaluate the clinical significance of fecal quantitative real-time polymerase chain reaction (qPCR) Salmonella results when taking the cycle threshold values (Ct) into account. The study included 120 Salmonella qPCR-positive fecal samples obtained from 88 hospitalized horses over a 2-year period. The mean Ct of the qPCR test was evaluated in regard to (1) clinical outcome and (2) systemic inflammatory response syndrome (SIRS) status (no SIRS, moderate SIRS, or severe SIRS) of the sampled horses. An ROC analysis was performed to establish the optimal cut-off Ct values associated with severe SIRS. The mean ± SD Ct value was significantly lower in samples (1) from horses with a fatal issue (27.87 ± 5.15 cycles) than in surviving horses (31.75 ± 3.60 cycles), and (2) from horses with severe SIRS (27.87 ± 2.78 cycles) than from horses with no (32.51 ± 3.59 cycles) or moderate (31.54 ± 3.02 cycles) SIRS. In the ROC analysis, the optimal cut-off value of Ct associated with a severe SIRS was 30.40 cycles, with an AUC value of 0.84 [95% confidence interval 0.76-0.91] and an OR of 0.64 [0.51-0.79]. Results suggest that including the Ct value in the interpretation of fecal qPCR results could improve the diagnostic value of this test for clinical salmonellosis in horses.
Collapse
Affiliation(s)
- Hélène Amory
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Carla Cesarini
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Lorie De Maré
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Clémence Loublier
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Nassim Moula
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Johann Detilleux
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), 2 Allée des Artisans, ZA du Biron, 5590 Ciney, Belgium
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Laureline Lecoq
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| |
Collapse
|
3
|
Antimicrobial Resistance and Virulence of Non-Typhoidal Salmonella from Retail Foods Marketed in Bangkok, Thailand. Foods 2022; 11:foods11050661. [PMID: 35267294 PMCID: PMC8909193 DOI: 10.3390/foods11050661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nontyphoidal-Salmonella bacteria cause foodborne gastroenteritis that may lead to fatal bacteremia, osteomyelitis, and meningitis if not treated properly. The emergence of multidrug-resistant Salmonella strains is a global public health threat. Regular monitoring of genotypes and phenotypes of Salmonella isolated from humans, animals, foods, and environments is mandatory for effective reduction and control of this food-borne pathogen. In this study, antimicrobial-resistant and virulent genotypes and phenotypes of Salmonella isolated from retail food samples in Bangkok, Thailand, were investigated. From 252 raw food samples, 58 Salmonella strains that belonged only to serotype Enteritidis were isolated. Disc diffusion method showed that all isolates were still sensitive to amikacin and carbapenems. More than 30% of the isolates were resistant to ampicillin, tetracycline, and ciprofloxacin. Twenty isolates resist at least three antibiotic classes. Minimum inhibitory concentration tests showed that 12.07% of the isolates produced extended-spectrum β-Lactamase. Polymerase chain reaction indicated that 32.76, 81.03, 39.66, and 5.17% of the isolates carried blaTEM-1, tetA, sul2, and dfrA7, respectively. All isolates were positive for invasion-associated genes. Effective prevention and control of Salmonella (as well as other food-borne pathogens) is possible by increasing public awareness and applying food hygienic practices. Active and well harmonised “One Health” co-operation is required to effectively control food-borne zoonosis.
Collapse
|
4
|
Dietary Acrylamide Intake Alters Gut Microbiota in Mice and Increases Its Susceptibility to Salmonella Typhimurium Infection. Foods 2021; 10:foods10122990. [PMID: 34945541 PMCID: PMC8700958 DOI: 10.3390/foods10122990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
Acrylamide (AA) has been extensively examined for its potential toxicological effects on humans and animals, but its impacts on gut microbiota and effects on hosts’ susceptibility to enteric infection remain elusive. The present study was designed to evaluate the effect of AA on gut microbiota of mice and susceptibility of mice to S. Typhimurium infection. After four weeks’ intervention, mice fed with AA exhibited significantly decreased body weight. Meanwhile, 16S rRNA gene sequencing showed reduced relative abundance of Firmicutes and increased abundance of Bacteroidetes in AA-treated mice prior to infection. In addition, we observed high relative abundance of Burkholderiales and Erysipelotrichales, more specifically the genus Sutterella and Allobaculum, respectively, in AA-treated mice before infection. Subsequently, the mice were orally infected with S. Typhimurium. The histological changes, systemic dissemination of S. Typhimurium, and inflammatory responses were examined. Compared to mice fed with normal diet, mice fed AA exhibited higher level of bacterial counts in liver, spleen, and ileum, which was consistent with exacerbated tissue damage determined by histological analyses. In addition, higher expression of pro-inflammaroty cytokines, p-IκBα, and p-P65 and lower mRNA expressions of mucin2, occludin, zo-1, claudin-1, and E-cadherin were detected in AA-treated mice. These findings provide novel insights into the potential health impact of AA consumption and the detailed mechanism for its effect on S. Typhimurium infection merit further exploration.
Collapse
|
5
|
Roche SM, Holbert S, Le Vern Y, Rossignol C, Rossignol A, Velge P, Virlogeux-Payant I. A large panel of chicken cells are invaded in vivo by Salmonella Typhimurium even when depleted of all known invasion factors. Open Biol 2021; 11:210117. [PMID: 34784793 PMCID: PMC8596019 DOI: 10.1098/rsob.210117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poultry are the main source of human infection by Salmonella. As infected poultry are asymptomatic, identifying infected poultry farms is difficult, thus controlling animal infections is of primary importance. As cell tropism is known to govern disease, our aim was therefore to identify infected host-cell types in the organs of chicks known to be involved in Salmonella infection and investigate the role of the three known invasion factors in this process (T3SS-1, Rck and PagN). Chicks were inoculated with wild-type or isogenic fluorescent Salmonella Typhimurium mutants via the intracoelomic route. Our results show that liver, spleen, gall bladder and aortic vessels could be foci of infection, and that phagocytic and non-phagocytic cells, including immune, epithelial and endothelial cells, are invaded in vivo in each organ. Moreover, a mutant defective for the T3SS-1, Rck and PagN remained able to colonize organs like the wild-type strain and invaded non-phagocytic cells in each organ studied. As the infection of the gall bladder had not previously been described in chicks, invasion of gall bladder cells was confirmed by immunohistochemistry and infection was shown to last several weeks after inoculation. Altogether, for the first time these findings provide insights into cell tropism of Salmonella in relevant organs involved in Salmonella infection in chicks and also demonstrate that the known invasion factors are not required for entry into these cell types.
Collapse
Affiliation(s)
- S. M. Roche
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - S. Holbert
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - Y. Le Vern
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - C. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - A. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - P. Velge
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | | |
Collapse
|
6
|
The sRNA MicC downregulates hilD translation to control the SPI1 T3SS in Salmonella enterica serovar Typhimurium. J Bacteriol 2021; 204:e0037821. [PMID: 34694902 DOI: 10.1128/jb.00378-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium invades the intestinal epithelium and induces inflammatory diarrhea using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Expression of the SPI1 T3SS is controlled by three AraC-like regulators, HilD, HilC and RtsA, which form a feed-forward regulatory loop that leads to activation of hilA, encoding the main transcriptional regulator of the T3SS structural genes. This complex system is affected by numerous regulatory proteins and environmental signals, many of which act at the level of hilD mRNA translation or HilD protein function. Here, we show that the sRNA MicC blocks translation of the hilD mRNA by base pairing near the ribosome binding site. MicC does not induce degradation of the hilD message. Our data indicate that micC is transcriptionally activated by SlyA, and SlyA feeds into the SPI1 regulatory network solely through MicC. Transcription of micC is negatively regulated by the OmpR/EnvZ two-component system, but this regulation is dependent on SlyA. OmpR/EnvZ control SPI1 expression partially through MicC, but also affect expression through other pathways, including an EnvZ-dependent, OmpR-independent mechanism. MicC-mediated regulation plays a role during infection, as evidenced by a SPI1 T3SS-dependent increase in Salmonella fitness in the intestine in the micC deletion mutant. These results further elucidate the complex regulatory network controlling SPI1 expression and add to the list of sRNAs that control this primary virulence factor. IMPORTANCE The Salmonella SPI1 T3SS is the primary virulence factor required for causing intestinal disease and initiating systemic infection. The system is regulated in response to a large variety of environmental and physiological factors such that the T3SS is expressed at only the appropriate time and place in the host during infection. Here we show how the sRNA MicC affects expression of the system. This work adds to our detailed mechanistic studies aimed at a complete understanding of the regulatory circuit.
Collapse
|
7
|
Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathog 2020; 16:e1008304. [PMID: 32069333 PMCID: PMC7048300 DOI: 10.1371/journal.ppat.1008304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/28/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens. Enteric pathogens have evolved numerous strategies to successfully colonize and persist in the human gastrointestinal tract. However, especially for the research of virulence mechanisms of human pathogens, often only limited infection models are available. Here, we have applied and further advanced a tissue-engineered human intestinal tissue model based on an extracellular matrix scaffold reseeded with human cells that can faithfully mimic pathogenesis-determining processes of the zoonotic pathogen Campylobacter jejuni. Our three-dimensional (3D) intestinal infection model allows for the assessment of epithelial barrier function during infection as well as for the quantification of bacterial adherence, internalization, and transmigration. Investigation of C. jejuni mutant strains in our 3D tissue model revealed isolate-specific infection phenotypes, in-vivo relevant infection outcomes, and uncovered the involvement of a small RNA pair during C. jejuni pathogenesis. Overall, our results demonstrate the power of tissue-engineered models for studying host-pathogen interactions, and our model will also be helpful to investigate other gastrointestinal pathogens.
Collapse
Affiliation(s)
- Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sarah L. Svensson
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Fabian König
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research, Translational Centre Regenerative Therapies, Würzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail: (HW); (CMS)
| | - Cynthia M. Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- * E-mail: (HW); (CMS)
| |
Collapse
|
8
|
Lv Q, Chu X, Yao X, Ma K, Zhang Y, Deng X. Inhibition of the type III secretion system by syringaldehyde protects mice from Salmonella enterica serovar Typhimurium. J Cell Mol Med 2019; 23:4679-4688. [PMID: 31066220 PMCID: PMC6584516 DOI: 10.1111/jcmm.14354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022] Open
Abstract
The invasiveness of Salmonella enterica serovar Typhimurium (S. Typhimurium) is closely associated with the Salmonella pathogenicity island (SPI)‐encoded type Ⅲ secretion system (T3SS), which can directly inject a series of effector proteins into eukaryotic cells to enable bacterial infection. In this study, syringaldehyde was identified as an effective inhibitor of the S. Typhimurium T3SS using an effector protein‐lactamase fusion reporter system. Syringaldehyde treatment could inhibit the expression of important effector proteins (SipA, SipB and SipC) at a concentration of 0.18 mM without affecting bacterial growth. Additionally, significant inhibition of bacterial invasion and cellular injury was observed following the syringaldehyde treatment in the co‐infection system of HeLa cells and S. Typhimurium. Furthermore, treatment with syringaldehyde provided systemic protection to mice infected with S. Typhimurium, reducing mortality (40.00%) and bacterial loads and relieving caecal damage and systemic inflammation. The results presented in this study indicate that syringaldehyde significantly affects T3SS activity and is a potential leading compound for treating S. Typhimurium infections.
Collapse
Affiliation(s)
- Qianghua Lv
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xinyu Yao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Kelong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yong Zhang
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
9
|
Yanestria SM, Rahmaniar RP, Wibisono FJ, Effendi MH. Detection of invA gene of Salmonella from milkfish ( Chanos chanos) at Sidoarjo wet fish market, Indonesia, using polymerase chain reaction technique. Vet World 2019; 12:170-175. [PMID: 30936672 PMCID: PMC6431798 DOI: 10.14202/vetworld.2019.170-175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Aim: The study aimed to detect the invA gene in Salmonella isolated from milkfish in the Sidoarjo wet fish market. Materials and Methods: A total of 84 samples were prepared in enrichment media and isolated on the surface of Salmonella Shigella Agar. Salmonella growth produces transparent colonies with blackish color in the middle due to H2S gas formation. Samples were identified as Salmonella based on macroscopic colony morphology. Presumptive Salmonella sp. was put on Bismuth Sulfite Agar media. Salmonella was determined based on the results of the biochemical test that has been carried out using Microbact identification kits from negative gram staining. Results: The results of this study indicate that 32 of 84 samples (38.09%) were Salmonella bacteria. Furthermore, the invA gene detection was carried out using the polymerase chain reaction technique. Electrophoresis results showed four positive samples contained invA gene with a length of 284 bp. Conclusion: Results in this study indicate that contamination of milkfish with Salmonella needs strict hygienic measures to prevent their transmission to human.
Collapse
Affiliation(s)
- Sheila Marty Yanestria
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Wijaya Kusuma University, Surabaya, Indonesia
| | - Reina Puspita Rahmaniar
- Department of Microbiology, Faculty of Veterinary Medicine, Wijaya Kusuma University, Surabaya, Indonesia
| | - Freshinta Jellia Wibisono
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Wijaya Kusuma University, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
10
|
Chowdhury R, Das S, Ta A, Das S. Epithelial invasion by Salmonella Typhi using STIV-Met interaction. Cell Microbiol 2018; 21:e12982. [PMID: 30426648 DOI: 10.1111/cmi.12982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Typhoid is a life-threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1-encoded type 3 secretion system 1 (T3SS-1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS-1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20-amino-acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3-kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS-1-independent epithelial invasion of S. Typhi, and this crucial host-pathogen interaction may be targeted therapeutically to restrict pathogenesis.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
11
|
Roche SM, Holbert S, Trotereau J, Schaeffer S, Georgeault S, Virlogeux-Payant I, Velge P. Salmonella Typhimurium Invalidated for the Three Currently Known Invasion Factors Keeps Its Ability to Invade Several Cell Models. Front Cell Infect Microbiol 2018; 8:273. [PMID: 30148118 PMCID: PMC6095967 DOI: 10.3389/fcimb.2018.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
To establish an infection, Salmonella has to interact with eukaryotic cells. Invasion of non-phagocytic cells (i.e., epithelial, fibroblast and endothelial cells) involves either a trigger or a zipper mechanism mediated by the T3SS-1 or the invasin Rck, respectively. Another outer membrane protein, PagN, was also implicated in the invasion. However, other unknown invasion factors have been previously suggested. Our goal was to evaluate the invasion capability of a Salmonella Typhimurium strain invalidated for the three known invasion factors. Non-phagocytic cell lines of several animal origins were tested in a gentamicin protection assay. In most cells, we observed a drastic decrease in the invasion rate between the wild-type and the triple mutant. However, in five cell lines, the triple mutant invaded cells at a similarly high level to the wild-type, suggesting the existence of unidentified invasion factors. For the wild-type and the triple mutant, scanning-electron microscopy, confocal imaging and use of biochemical inhibitors confirmed their cellular uptake and showed a zipper-like mechanism of internalization involving both clathrin- and non-clathrin-dependent pathways. Despite a functional T3SS-1, the wild-type bacteria seemed to use the same entry route as the mutant in our cell model. All together, these results demonstrate the existence of unknown Salmonella invasion factors, which require further characterization.
Collapse
Affiliation(s)
- Sylvie M. Roche
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Sébastien Holbert
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Jérôme Trotereau
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Samantha Schaeffer
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
- INSERM UMR 1162, Institut de Génétique Moléculaire, Paris, France
| | - Sonia Georgeault
- Plateforme des Microscopies, Université et CHRU de Tours, Tours, France
| | - Isabelle Virlogeux-Payant
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| | - Philippe Velge
- ISP, Institut National de la Recherche Agronomique (INRA), UMR 1282, Université de Tours, Paris, France
| |
Collapse
|
12
|
Howe K, Salehi S, Hartford Bailey R, Brooks JP, Wills R, Lawrence ML, Karsi A. Supplemental invasion of Salmonella from the perspective of Salmonella enterica serovars Kentucky and Typhimurium. BMC Microbiol 2017; 17:88. [PMID: 28381209 PMCID: PMC5382418 DOI: 10.1186/s12866-017-0989-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/23/2017] [Indexed: 11/12/2022] Open
Abstract
Background Critical to the development of Salmonellosis in humans is the interaction of the bacterium with the epithelial lining of the gastrointestinal tract. Traditional scientific reasoning held type III secretion system (T3SS) as the virulence factor responsible for bacterial invasion. In this study, field-isolated Salmonella enterica serovar Kentucky and a known human pathogen Salmonella enterica serovar Typhimurium were mutated and evaluated for the invasion of human colorectal adenocarcinoma epithelial cells. Results S. enterica serovar Kentucky was shown to actively invade a eukaryotic monolayer, though at a rate that was significantly lower than Typhimurium. Additionally, strains mutated for T3SS formation were less invasive than the wild-type strains, but the decrease in invasion was not significant in Kentucky. Conclusions Strains mutated for T3SS formation were able to initiate invasion of the eukaryotic monolayer to varying degrees based on strain, In the case of Kentucky, the mutated strain initiated invasion at a level that was not significantly different from the wild-type strain. A different result was observed for Typhimurium as the mutation significantly lowered the rate of invasion in comparison to the wild-type strain.
Collapse
Affiliation(s)
- Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA
| | - Sanaz Salehi
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA
| | - R Hartford Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA.
| | - John P Brooks
- USDA-ARS, Genetics and Precision Agriculture Unit, Mississippi State, MS, USA
| | - Robert Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
13
|
Tang T, Gao Q, Barrow P, Wang M, Cheng A, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Chen X. Development and evaluation of live attenuated Salmonella vaccines in newly hatched duckings. Vaccine 2015; 33:5564-5571. [DOI: 10.1016/j.vaccine.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|
14
|
Abstract
Hemophagocytes are cells of the monocyte lineage that have engulfed erythrocytes and leukocytes. Hemophagocytes frequently accumulate in patients with severe acute bacterial infections, such as those caused by Salmonella enterica, Brucella abortus, and Mycobacterium tuberculosis. The relationship between hemophagocytosis and infection is not well understood. In the murine liver, S. enterica serovar Typhimurium resides within hemophagocytic macrophages containing leukocytes. Here we show that S. Typhimurium also resides within hemophagocytes containing erythrocytes. In cell culture, S. Typhimurium benefits from residence within hemophagocytes by accessing iron, but why macrophages hemophagocytose is unknown. We show that treatment of macrophages with a cocktail of the proinflammatory cytokine interferon gamma (IFN-γ) and lipopolysaccharide (LPS) stimulates engulfment of nonsenescent erythrocytes. Exposure of resting or IFN-γ-treated macrophages to live, but not to heat-killed, S. Typhimurium cells also stimulates erythrocyte engulfment. Single-cell analyses show that S. Typhimurium-infected macrophages are more likely to erythrophagocytose and that infected macrophages engulf more erythrocytes than uninfected macrophages within the same culture well. In addition, macrophages containing erythrocytes harbor more bacteria. However, S. Typhimurium does not promote macrophage engulfment of polystyrene beads, suggesting a role for a ligand on the target cell. Finally, neither of the two S. Typhimurium type 3 secretion systems, T3SS1 or T3SS2, is fully required for hemophagocytosis. These results indicate that infection of macrophages with live S. Typhimurium cells stimulates hemophagocytosis. Macrophages are white blood cells (leukocytes) that engulf and destroy pathogens. Hemophagocytes, a subset of macrophages, are characteristic of severe acute infection in patients with, for instance, typhoid fever, brucellosis, tuberculosis, and leishmaniasis. Each of these diseases has the potential to become chronic. Hemophagocytes (blood-eating cells) engulf and degrade red and white blood cells for unknown reasons. The bacterial pathogen Salmonella acquires the essential nutrient iron from murine hemophagocytes. We report that Salmonella stimulates macrophages to engulf blood cells, indicating that cells of this bacterium actively promote the formation of a specialized cellular niche in which they can acquire nutrients, evade killing by the host immune system, and potentially transition to chronic infection.
Collapse
|
15
|
Chowdhury R, Mandal RS, Ta A, Das S. An AIL family protein promotes type three secretion system-1-independent invasion and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol 2014; 17:486-503. [PMID: 25308535 DOI: 10.1111/cmi.12379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/25/2014] [Accepted: 10/04/2014] [Indexed: 02/05/2023]
Abstract
Adhesion and invasion of Intestinal Epithelial Cells (IECs) are critical for the pathogenesis of Salmonella Typhi, the aetiological agent of human typhoid fever. While type three secretion system-1 (T3SS-1) is a major invasion apparatus of Salmonella, independent invasion mechanisms were described for non-typhoidal Salmonellae. Here, we show that T2942, an AIL-like protein of S. Typhi Ty2 strain, is required for adhesion and invasion of cultured IECs. That invasion was T3SS-1 independent was proved by ectopic expression of T2942 in the non-invasive E. coli BL21 and double-mutant Ty2 (Ty2Δt2942ΔinvG) strains. Laminin and fibronectin were identified as the host-binding partners of T2942 with higher affinity for laminin. Standalone function of T2942 was confirmed by cell adhesion of the recombinant protein, while the protein or anti-T2942 antiserum blocked adhesion/invasion of S. Typhi, indicating specificity. A 20-amino acid extracellular loop was required for invasion, while several loop regions of T2942 contributed to adhesion. Further, T2942 cooperates with laminin-binding T2544 for adhesion and T3SS-1 for invasion. Finally, T2942 was required and synergistically worked with T3SS-1 for pathogenesis of S. Typhi in mice. Considering wide distribution of T2942 among clinical strains, the protein or the 20-mer peptide may be suitable for vaccine development.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33 Scheme XM C.I.T. Road, Beliaghata Kolkata, 700010, India
| | | | | | | |
Collapse
|
16
|
Boumart Z, Velge P, Wiedemann A. Multiple invasion mechanisms and different intracellular Behaviors: a new vision ofSalmonella-host cell interaction. FEMS Microbiol Lett 2014; 361:1-7. [DOI: 10.1111/1574-6968.12614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zineb Boumart
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
- Agence Nationale de Sécurité Sanitaire de l'alimentation; de l'environnement et du travail; Laboratoire de Ploufragan-Plouzané; Unité Hygiène et Qualité des Produits Avicoles et Porcins; Plouragan France
| | - Philippe Velge
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique; UMR1282 Infectiologie et Santé Publique; Nouzilly France
- Université François Rabelais; UMR1282 Infectiologie et Santé Publique; Tours France
| |
Collapse
|
17
|
Maier L, Barthel M, Stecher B, Maier RJ, Gunn JS, Hardt WD. Salmonella Typhimurium strain ATCC14028 requires H2-hydrogenases for growth in the gut, but not at systemic sites. PLoS One 2014; 9:e110187. [PMID: 25303479 PMCID: PMC4193879 DOI: 10.1371/journal.pone.0110187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization.
Collapse
Affiliation(s)
- Lisa Maier
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Bärbel Stecher
- Max von Pettenkofer-Institut, München, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - John S. Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Biomedical Research Tower, The Ohio State University, Columbus, Ohio, United States of America
| | | |
Collapse
|
18
|
Alizadeh-Hesar M, Bakhshi B, Najar-peerayeh S. Molecular Diagnosis of Salmonella enterica and Shigella spp. in Stool Sample of Children With Diarrhea in Tehran. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2014. [DOI: 10.17795/ijep17002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
20
|
Matulova M, Havlickova H, Sisak F, Rychlik I. Vaccination of chickens with SPI1-lon and SPI1-lon-fliC mutant of Salmonella enterica Serovar Enteritidis. PLoS One 2013; 8:e66172. [PMID: 23785484 PMCID: PMC3681909 DOI: 10.1371/journal.pone.0066172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/04/2013] [Indexed: 11/19/2022] Open
Abstract
The prevalence of Salmonella enterica serovar Enteritidis is gradually decreasing in poultry flocks in the EU, which may result in the demand for a vaccine that allows for the differentiation of vaccinated flocks from those infected by wild-type S. Enteritidis. In this study, we therefore constructed a (Salmonella Pathogenicity Island 1) SPI1-lon mutant with or without fliC encoding for S. Enteritidis flagellin. The combination of SPI1-lon mutations resulted in attenuated but immunogenic mutant suitable for oral vaccination of poultry. In addition, the vaccination of chickens with the SPI1-lon-fliC mutant enabled the serological differentiation of vaccinated and infected chickens. The absence of fliC therefore did not affect the immunogenicity of the vaccine strain and allowed for serological differentiation of the vaccinated chickens. The SPI1-lon-fliC mutant is therefore a suitable marker vaccine strain for oral vaccination of poultry.
Collapse
Affiliation(s)
| | | | | | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
21
|
Pati NB, Vishwakarma V, Jaiswal S, Periaswamy B, Hardt WD, Suar M. Deletion of invH gene in Salmonella enterica serovar Typhimurium limits the secretion of Sip effector proteins. Microbes Infect 2013; 15:66-73. [DOI: 10.1016/j.micinf.2012.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 01/13/2023]
|
22
|
Bueno SM, Riquelme S, Riedel CA, Kalergis AM. Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 2012; 137:28-36. [PMID: 22703384 DOI: 10.1111/j.1365-2567.2012.03614.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Innate and adaptive immunity are inter-related by dendritic cells (DCs), which directly recognize bacteria through the binding of pathogen-associated molecular patterns (PAMPs) to specialized receptors on their surface. After capturing and degrading bacteria, DCs present their antigens as small peptides bound to MHC molecules and prime naive bacteria-specific T cells. In response to PAMP recognition DCs undergo maturation, which is a phenotypic change that increases their immunogenicity and promotes the activation of naive T cells. As a result, a specific immune response that targets bacteria-derived antigens is initiated. Therefore, the characterization of DC-bacteria interactions is important to understand the mechanisms used by virulent bacteria to avoid adaptive immunity. Furthermore, any impairment of DC function might contribute to bacterial survival and dissemination inside the host. An example of a bacterial pathogen capable of interfering with DC function is Salmonella enterica serovar Typhimurium (S. Typhimurium). Virulent strains of this bacterium are able to differentially modulate the entrance to DCs, avoid lysosomal degradation and prevent antigen presentation on MHC molecules. These features of virulent S. Typhimurium are controlled by virulence proteins, which are encoded by pathogenicity islands. Modulation of DC functions by these gene products is supported by several studies showing that pathogenesis might depend on this attribute of virulent S. Typhimurium. Here we discuss some of the recent data reported by the literature showing that several virulence proteins from Salmonella are required to modulate DC function and the activation of host adaptive immunity.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genetica Molecular y Microbiologia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
23
|
Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012; 1:243-58. [PMID: 23170225 PMCID: PMC3496970 DOI: 10.1002/mbo3.28] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/27/2023] Open
Abstract
The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food- and water-borne diseases ranging from self-limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold- and warm-blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island-1. However, recent evidence shows that Salmonella can cause infection in a T3SS-1-independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper-like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper-like or Trigger-like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella-induced diseases and to Salmonella-host specificity.
Collapse
Affiliation(s)
- P Velge
- INRA, UMR1282 Infectiologie et Santé Publique F-37380, Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique F-37000, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Weirdt R, Crabbé A, Roos S, Vollenweider S, Lacroix C, van Pijkeren JP, Britton RA, Sarker S, Van de Wiele T, Nickerson CA. Glycerol supplementation enhances L. reuteri's protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium. PLoS One 2012; 7:e37116. [PMID: 22693569 PMCID: PMC3365044 DOI: 10.1371/journal.pone.0037116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/15/2012] [Indexed: 01/12/2023] Open
Abstract
The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium was investigated. We used a three-dimensional (3-D) organotypic model of human colonic epithelium that was previously validated and applied to study interactions between S. Typhimurium and the intestinal epithelium that lead to enteric salmonellosis. Using this model system, we show that L. reuteri protects the intestinal cells against the early stages of Salmonella infection and that this effect is significantly increased when L. reuteri is stimulated to produce reuterin from glycerol. More specifically, the reuterin-containing ferment of L. reuteri caused a reduction in Salmonella adherence and invasion (1 log unit), and intracellular survival (2 log units). In contrast, the L. reuteri ferment without reuterin stimulated growth of the intracellular Salmonella population with 1 log unit. The short-term exposure to reuterin or the reuterin-containing ferment had no observed negative impact on intestinal epithelial cell health. However, long-term exposure (24 h) induced a complete loss of cell-cell contact within the epithelial aggregates and compromised cell viability. Collectively, these results shed light on a potential role for reuterin in inhibiting Salmonella-induced intestinal infections and may support the combined application of glycerol and L. reuteri. While future in vitro and in vivo studies of reuterin on intestinal health should fine-tune our understanding of the mechanistic effects, in particular in the presence of a complex gut microbiota, this the first report of a reuterin effect on the enteric infection process in any mammalian cell type.
Collapse
Affiliation(s)
- Rosemarie De Weirdt
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Center for Infectious Diseases and Vaccinology - The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Christophe Lacroix
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Jan Peter van Pijkeren
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert A. Britton
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Shameema Sarker
- Center for Infectious Diseases and Vaccinology - The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Cheryl A. Nickerson
- Center for Infectious Diseases and Vaccinology - The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
Matulova M, Havlickova H, Sisak F, Rychlik I. Vaccination of chickens with Salmonella Pathogenicity Island (SPI) 1 and SPI2 defective mutants of Salmonella enterica serovar Enteritidis. Vaccine 2012; 30:2090-7. [PMID: 22300724 DOI: 10.1016/j.vaccine.2012.01.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 12/11/2022]
Abstract
In this study we were interested in the vaccine potential of two attenuated mutants of Salmonella enterica serovar Enteritidis for poultry. The first mutant was attenuated by the removal of the whole Salmonella Pathogenicity Island 1 (SPI1) and the second mutant was devoid of the whole SPI2. These 2 mutants were used for oral vaccination of 2 chicken lines; Lohmann Brown and ISA Brown. Chickens were vaccinated orally on day 1 of life, revaccinated on day 21 and challenged on day 42. The challenge was performed either orally or intravenously. Despite a slightly different response between the two chicken lines, both the mutants gave protection to poultry against S. Enteritidis challenge as documented by findings such as the bacterial counts in tissues, spleen weight, antibody production and cytokine response (namely IL-17 and IL-22). When the 2 mutants were compared, vaccination with the SPI1 mutant proved to be more effective in the protection of poultry against S. Enteritidis challenge than the vaccination with the SPI2 mutant. On the other hand, vaccination with the SPI2 mutant stimulated a slightly higher antibody production and such a mutant might therefore be a better choice if Salmonella is used as a vector for the delivery of heterologous antigens with a desired stimulation of the humoral part of the immune system.
Collapse
Affiliation(s)
- M Matulova
- Veterinary Research Institute, Brno, Czech Republic
| | | | | | | |
Collapse
|
26
|
Bulmer DM, Kharraz L, Grant AJ, Dean P, Morgan FJE, Karavolos MH, Doble AC, McGhie EJ, Koronakis V, Daniel RA, Mastroeni P, Anjam Khan CM. The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella. PLoS Pathog 2012; 8:e1002500. [PMID: 22291596 PMCID: PMC3266929 DOI: 10.1371/journal.ppat.1002500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022] Open
Abstract
Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC. Salmonella are major global pathogens responsible for causing food-borne disease. In recent years the existence of a cytoskeleton in prokaryotes has received much attention. In this study the Salmonella cytoskeleton has been genetically disrupted, causing changes in morphology, motility and expression of key virulence factors. We provide evidence that the sensory protein RcsC detects changes at the cell surface caused by the disintegration of the bacterial cytoskeleton and modulates expression of key virulence factors. This study provides insights into the importance of the integrity of the bacterial cytoskeleton in the ability of Salmonella to cause disease, and thus may provide a novel target for antimicrobial drugs or vaccines.
Collapse
Affiliation(s)
- David M. Bulmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Lubna Kharraz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Dean
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Fiona J. E. Morgan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michail H. Karavolos
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Anne C. Doble
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Emma J. McGhie
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - C. M. Anjam Khan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Pavlova B, Volf J, Ondrackova P, Matiasovic J, Stepanova H, Crhanova M, Karasova D, Faldyna M, Rychlik I. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Vet Res 2011; 42:16. [PMID: 21314975 PMCID: PMC3037896 DOI: 10.1186/1297-9716-42-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 12/23/2010] [Indexed: 12/02/2022] Open
Abstract
Genes localized at Salmonella pathogenicity island-1 (SPI-1) are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS) may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The incidence of gastrointestinal infections continues to increase and infectious colitis contributes to significant morbidity and mortality worldwide. The purpose of this review is to highlight the recent advances in knowledge of pathogens causing infectious colitis. We describe the various pathogens and specifically focus on enterohemorrhagic Escherichia coli (EHEC) O157:H7, Salmonella, Shigella, Campylobacter, and Entamoeba histolytica infections, and their impact on long-term effects, including postinfectious irritable bowel syndrome and inflammatory bowel disease. RECENT FINDINGS Salmonella, Campylobacter, and EHEC outbreaks continue to occur with disturbing regularity. Peanut butter and peppers were recently responsible for outbreaks of nontyphoid Salmonella. Recent research has identified Salmonella genes required for colonization of various hosts and transposon-mediated differential hybridization was recently used to identify genes required during infection in different animal models. A number of other strains of EHEC in addition to O157:H7 are emerging as serious threats to food safety in the USA. Campylobacter jejuni isolates are of interest because of absence of genes encoding for classical enterotoxins, and lack of plasmids encoding genes promoting bacterial invasion. Recent research has identified that the organism is able to invade and replicate in infected epithelia via Toll-like receptor (TLR)-2 and TLR-4. Also patients with infectious colitis, in particular Salmonella and Campylobacter, are at increased risk of postinfectious irritable bowel syndrome and inflammatory bowel disease on long-term follow-up. The paradigm of Entamoeba histolytica infection is changing with recent reports of detection of E. dispar deoxyribonucleic acid sequences, previously considered nonpathogenic. SUMMARY There has been an explosion in the understanding of the epidemiology, pathobiology, and mechanisms underlying infectious colitis. Additional studies to address prevention strategies and strict screening modalities for these infections are necessary.
Collapse
|
29
|
Radtke AL, Wilson JW, Sarker S, Nickerson CA. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One 2010; 5:e15750. [PMID: 21206750 PMCID: PMC3012082 DOI: 10.1371/journal.pone.0015750] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 02/07/2023] Open
Abstract
The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrea L. Radtke
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - James W. Wilson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Shameema Sarker
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
30
|
Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol 2010; 8:791-801. [PMID: 20948552 DOI: 10.1038/nrmicro2423] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Appropriately simulating the three-dimensional (3D) environment in which tissues normally develop and function is crucial for engineering in vitro models that can be used for the meaningful dissection of host-pathogen interactions. This Review highlights how the rotating wall vessel bioreactor has been used to establish 3D hierarchical models that range in complexity from a single cell type to multicellular co-culture models that recapitulate the 3D architecture of tissues observed in vivo. The application of these models to the study of infectious diseases is discussed.
Collapse
Affiliation(s)
- Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Marathe SA, Ray S, Chakravortty D. Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model. PLoS One 2010; 5:e11511. [PMID: 20634977 PMCID: PMC2901387 DOI: 10.1371/journal.pone.0011511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/16/2010] [Indexed: 12/27/2022] Open
Abstract
Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides--pmrD and pmrHFIJKLM and genes with antioxidant function--mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.
Collapse
Affiliation(s)
- Sandhya A. Marathe
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Seemun Ray
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
32
|
Boonyom R, Karavolos MH, Bulmer DM, Khan CMA. Salmonella pathogenicity island 1 (SPI-1) type III secretion of SopD involves N- and C-terminal signals and direct binding to the InvC ATPase. Microbiology (Reading) 2010; 156:1805-1814. [PMID: 20185511 DOI: 10.1099/mic.0.038117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important pathogen and a causative agent of gastroenteritis. During infection, S. Typhimurium assembles molecular-needle complexes termed type III secretion (T3S) systems to translocate effector proteins from the bacterial cytoplasm directly into the host cell. The T3S signals that direct the secretion of effectors still remain enigmatic. SopD is a key T3S effector contributing to the systemic virulence of S. Typhimurium and the development of gastroenteritis. We have scrutinized the distribution of the SopD T3S signals using in silico analysis and a targeted deletion approach. We show that amino acid residues 6–10 act as the N-terminal secretion signal for Salmonella pathogenicity island 1 (SPI-1) T3S. Furthermore, we show that two putative C-terminal helical regions of SopD are essential for its secretion and also help prevent erroneous secretion through the flagellar T3S machinery. In addition, using protein–protein interaction assays, we have identified an association between SopD and the SPI-1 T3S system ATPase, InvC. These findings demonstrate that T3S of SopD involves multiple signals and protein interactions, providing important mechanistic insights into effector protein secretion.
Collapse
Affiliation(s)
- R. Boonyom
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - M. H. Karavolos
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - D. M. Bulmer
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - C. M. A. Khan
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
33
|
Karasova D, Sebkova A, Havlickova H, Sisak F, Volf J, Faldyna M, Ondrackova P, Kummer V, Rychlik I. Influence of 5 major Salmonella pathogenicity islands on NK cell depletion in mice infected with Salmonella enterica serovar Enteritidis. BMC Microbiol 2010; 10:75. [PMID: 20226037 PMCID: PMC2848020 DOI: 10.1186/1471-2180-10-75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 03/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background In this study we were interested in the colonisation and early immune response of Balb/C mice to infection with Salmonella Enteritidis and isogenic pathogenicity island free mutants. Results The virulence of S. Enteritidis for Balb/C mice was exclusively dependent on intact SPI-2. Infections with any of the mutants harbouring SPI-2 (including the mutant in which we left only SPI-2 but removed SPI-1, SPI-3, SPI-4 and SPI-5) resulted in fatalities, liver injures and NK cell depletion from the spleen. The infection was of minimal influence on counts of splenic CD4 CD8 T lymphocytes and γδ T-lymphocytes although a reduced ability of splenic lymphocytes to respond to non-specific mitogens indicated general immunosuppression in mice infected with SPI-2 positive S. Enteritidis mutants. Further investigations showed that NK cells were depleted also in blood but not in the caecal lamina propria. However, NK cell depletion was not directly associated with the presence of SPI-2 and was rather an indicator of virulence or avirulence of a particular mutant because the depletion was not observed in mice infected with other attenuated mutants such as lon and rfaL. Conclusions The virulence of S. Enteritidis for Balb/C mice is exclusively dependent on the presence of SPI-2 in its genome, and a major hallmark of the infection in terms of early changes in lymphocyte populations is the depletion of NK cells in spleen and blood. The decrease of NK cells in circulation can be used as a marker of attenuation of S. Enteritidis mutants for Balb/C mice.
Collapse
Affiliation(s)
- Daniela Karasova
- Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rychlik I, Karasova D, Sebkova A, Volf J, Sisak F, Havlickova H, Kummer V, Imre A, Szmolka A, Nagy B. Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 2009; 9:268. [PMID: 20021686 PMCID: PMC2803193 DOI: 10.1186/1471-2180-9-268] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/19/2009] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella is a highly successful parasite of reptiles, birds and mammals. Its ability to infect and colonise such a broad range of hosts coincided with the introduction of new genetic determinants, among them 5 major pathogenicity islands (SPI1-5), into the Salmonella genome. However, only limited information is available on how each of these pathogenicity islands influences the ability of Salmonella to infect chickens. In this study, we therefore constructed Salmonella Enteritidis mutants with each SPI deleted separately, with single individual SPIs (i.e. with the remaining four deleted) and a mutant with all 5 SPIs deleted, and assessed their virulence in one-day-old chickens, together with the innate immune response of this host. Results The mutant lacking all 5 major SPIs was still capable of colonising the caecum while colonisation of the liver and spleen was dependent on the presence of both SPI-1 and SPI-2. In contrast, the absence of SPI-3, SPI-4 or SPI-5 individually did not influence virulence of S. Enteritidis for chickens, but collectively they contributed to the colonisation of the spleen. Proinflammatory signalling and heterophil infiltration was dependent on intact SPI-1 only and not on other SPIs. Conclusions SPI-1 and SPI-2 are the two most important pathogenicity islands of Salmonella Enteritidis required for the colonisation of systemic sites in chickens.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Karasova D, Sebkova A, Vrbas V, Havlickova H, Sisak F, Rychlik I. Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential. Vaccine 2009; 27:5265-70. [PMID: 19577637 DOI: 10.1016/j.vaccine.2009.06.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
If any new live Salmonella vaccine is introduced in the future, it is quite probable that detailed characterisation of its attenuation will be required. In this study we therefore compared 34 isogenic mutants of S. Enteritidis in aroA, aroD, galE, ssrA, sseA, phoP, rpoS, ompR, htrA, clpP, lon, rfaL, rfaG, rfaC, hfq, sodCI, hilA, sipA, avrA, sopB, sopA, sopE, sifA, shdA, fliC, fur, relA, spoT, rel-spoT, misL, rmbA, STM4258, STM4259 and spvBC genes for their resistance to stresses likely to be expected in the host and for their virulence and immunogenicity in Balb/C mice. We found that the cold and bile resistances essentially did not correlate with the resistances to other stress factors. Resistance to acid pH, heat, polymyxin and serum correlated with each other and also with the attenuation. When the residual virulence and immunogenicity were both considered, mutants in htrA, ompR, aroA, aroD and lon performed the best in mice. Furthermore, when a detailed comparison of polymyxin and serum sensitive mutants was performed, the serum sensitive mutants were more immunogenic.
Collapse
Affiliation(s)
- D Karasova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
36
|
Salmonella enterica serovar enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 2009; 77:2866-75. [PMID: 19364835 DOI: 10.1128/iai.00039-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis is a leading cause of human food-borne illness that is mainly associated with the consumption of contaminated poultry meat and eggs. To cause infection, S. Enteritidis is known to use two type III secretion systems, which are encoded on two salmonella pathogenicity islands, SPI-1 and SPI-2, the first of which is thought to play a major role in invasion and bacterial uptake. In order to study the role of SPI-1 in the colonization of chicken, we constructed deletion mutants affecting the complete SPI-1 region (40 kb) and the invG gene. Both DeltaSPI-1 and DeltainvG mutant strains were impaired in the secretion of SipD, a SPI-1 effector protein. In vitro analysis using polarized human intestinal epithelial cells (Caco-2) revealed that both mutant strains were less invasive than the wild-type strain. A similar observation was made when chicken cecal and small intestinal explants were coinfected with the wild-type and DeltaSPI-1 mutant strains. Oral challenge of 1-week-old chicken with the wild-type or DeltaSPI-1 strains demonstrated that there was no difference in chicken cecal colonization. However, systemic infection of the liver and spleen was delayed in birds that were challenged with the DeltaSPI-1 strain. These data demonstrate that SPI-1 facilitates systemic infection but is not essential for invasion and systemic spread of the organism in chickens.
Collapse
|
37
|
Dieye Y, Ameiss K, Mellata M, Curtiss R. The Salmonella Pathogenicity Island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 2009; 9:3. [PMID: 19126220 PMCID: PMC2630912 DOI: 10.1186/1471-2180-9-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 01/06/2009] [Indexed: 11/30/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (Typhimurium) is an important pathogen that infects a broad range of hosts. In humans, Typhimurium causes a gastroenteritis characterized by vomiting, diarrhea, and abdominal pains. Typhimurium infection occurs mainly through the ingestion of contaminated food including poultry, pork, eggs, and milk. Chickens that are asymptomatic carriers of Typhimurium constitute a potential reservoir for infection. The type three secretion systems encoded by Salmonella pathogenicity islands (SPI) 1 and 2 are major virulence factors of Salmonella. However, only a few studies have investigated their role during the infection of chickens. Results We have taken a mixed infection approach to study the contribution of SPI1 and SPI2 to the colonization of the chicken by Typhimurium. We found that SPI1 contributes to colonization of both the cecum and spleen in the chicken. In contrast, SPI2 contributes to colonization of the spleen but not the cecum and, in the absence of SPI1, inhibits cecal colonization. Additionally, we show that the contribution of SPI1 in the spleen is greater than that of SPI2. These results are different from those observed during the infection of the mouse by Typhimurium where SPI2 is the major player during systemic colonization. Conclusion The co-infection model we used provides a sensitive assay that confirms the role of SPI1 and clarifies the role of SPI2 in the colonization of the chicken by Typhimurium.
Collapse
Affiliation(s)
- Yakhya Dieye
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | | | |
Collapse
|
38
|
Lahiri A, Das P, Chakravortty D. Arginase modulates Salmonella induced nitric oxide production in RAW264.7 macrophages and is required for Salmonella pathogenesis in mice model of infection. Microbes Infect 2008; 10:1166-1174. [PMID: 18625332 DOI: 10.1016/j.micinf.2008.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Arginine is a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The competition between iNOS and arginase for arginine contributes to the outcome of several parasitic and bacterial infections. Salmonella infection in macrophage cell line RAW264.7 induces iNOS. Because the availability of l-arginine is a major determinant for nitric oxide (NO) synthesis, we hypothesize that in the Salmonella infected macrophages NO production may be regulated by arginase. Here we report for the first time that Salmonella up-regulates arginase II but not arginase I isoform in RAW264.7 macrophages. Blocking arginase increases the substrate l-arginine availability to iNOS for production of more nitric oxide and perhaps peroxynitrite molecules in the infected cells allowing better killing of virulent Salmonella in a NO dependent manner. RAW264.7 macrophages treated with iNOS inhibitor Aminoguanidine reverts the attenuation in arginase-blocked condition. Further, the NO block created by Salmonella was removed by increasing concentration of l-arginine. The whole-mice system arginase I, although constitutive, is much more abundant than the inducible arginase II isoform. Inhibition of arginase activity in mice during the course of Salmonella infection reduces the bacterial burden and delays the disease outcome in a NO dependent manner.
Collapse
Affiliation(s)
- Amit Lahiri
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore 560012, India
| | | | | |
Collapse
|
39
|
Guo A, Lasaro MA, Sirard JC, Kraehenbühl JP, Schifferli DM. Adhesin-dependent binding and uptake of Salmonella enterica serovar Typhimurium by dendritic cells. MICROBIOLOGY-SGM 2007; 153:1059-1069. [PMID: 17379714 DOI: 10.1099/mic.0.2006/000331-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salmonella enterica serovar Typhimurium can be internalized by immature dendritic cells (DCs). The interacting host and bacterial molecules initiating this process remain uncharacterized. The objective of this study was to investigate whether specific fimbriae are involved in the early step of binding and uptake of Salmonella by DCs. Type 1 fimbriated S. enterica serovar Typhimurium or recombinant Escherichia coli expressing the type 1 fimbriae showed a significantly greater ability to attach to murine bone-marrow-derived DCs than non-fimbriated bacteria. The FimH adhesin was required for efficient interactions with DCs, since fimbriated fimH mutants were impaired in both binding and internalization. Finally, the internalization involved a FimH-dependent process but did not require sipB, a gene essential for Salmonella-mediated invasion of mammalian epithelial cells. Collectively, these data suggest that the bacterial interaction of DCs through the type 1 fimbrial adhesin FimH is sufficient to target S. enterica serovar Typhimurium for cellular uptake.
Collapse
Affiliation(s)
- Aizhen Guo
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Melissa A Lasaro
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Jean-Claude Sirard
- Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges, Switzerland
| | | | - Dieter M Schifferli
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, Bongaerts RJM, Ahmad N, Rhen M, Hinton JCD. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 2007; 10:958-84. [PMID: 18031307 PMCID: PMC2343689 DOI: 10.1111/j.1462-5822.2007.01099.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biogenesis of the Salmonella-containing vacuole within mammalian cells has been intensively studied over recent years. However, the ability of Salmonella to sense and adapt to the intracellular environment of different types of host cells has received much less attention. To address this issue, we report the transcriptome of Salmonella enterica serovar Typhimurium SL1344 within epithelial cells and show comparisons with Salmonella gene expression inside macrophages. We report that S. Typhimurium expresses a characteristic intracellular transcriptomic signature in response to the environments it encounters within different cell types. The signature involves the upregulation of the mgtBC, pstACS and iro genes for magnesium, phosphate and iron uptake, and Salmonella pathogenicity island 2 (SPI2). Surprisingly, in addition to SPI2, the invasion-associated SPI1 pathogenicity island and the genes involved in flagellar biosynthesis were expressed inside epithelial cells at later stages of the infection, while they were constantly downregulated in macrophage-like cells. To our knowledge, this is the first report of the simultaneous transcription of all three Type Three Secretion Systems (T3SS) within an intracellular Salmonella population. We discovered that S. Typhimurium strain SL1344 was strongly cytotoxic to epithelial cells after 6 h of infection and hypothesize that the time-dependent changes in Salmonella gene expression within epithelial cells reflects the bacterial response to host cells that have been injured by the infection process.
Collapse
Affiliation(s)
- I Hautefort
- Molecular Microbiology Group, Institute of Food Research, Norwich NR4 7UA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wall DM, Nadeau WJ, Pazos MA, Shi HN, Galyov EE, McCormick BA. Identification of the Salmonella enterica serotype typhimurium SipA domain responsible for inducing neutrophil recruitment across the intestinal epithelium. Cell Microbiol 2007; 9:2299-313. [PMID: 17697195 DOI: 10.1111/j.1462-5822.2007.00960.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In human intestinal disease induced by Salmonella enterica serotype Typhimurium (S. typhimurium) transepithelial migration of polymorphonuclear leukocytes (PMNs) rapidly follows attachment of the bacteria to the epithelial apical membrane. Previously, we have shown that the S. typhimurium effector protein, SipA, plays a pivotal role in signalling epithelial cell responses that lead to the transepithelial migration of PMNs. Thus, the objective of this study was to determine the functional domain of SipA that regulates this signalling event. SipA was divided into two fragments: the SipAb C-terminal fragment(426-684) (259 AA), which binds actin, and the SipAa fragment(2-425) (424 AA), which a role has yet to be described. In both in vitro and in vivo models of S. typhimurium-induced intestinal inflammation the SipAa fragment exhibited a profound ability to induce PMN transmigration, whereas the SipAb actin-binding domain failed to induce PMN transmigration. Subsequent mapping of the SipAa domain identified a 131-amino-acid region (SipAa3(294-424)) responsible for modulating PMN transepithelial migration. Interestingly, neither intracellular translocation nor actin association of SipA was necessary for its ability to induce PMN transepithelial migration. As these results indicate SipA has at least two separate functional domains, we speculate that during infection S. typhimurium requires delivery of SipA to both extracellular and intracellular spaces to maximize pro-inflammatory responses and mechanisms of bacterial invasion.
Collapse
Affiliation(s)
- Daniel M Wall
- Mucosal Immunology Laboratory, Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
42
|
Srikanth CV, Cherayil BJ. Intestinal innate immunity and the pathogenesis of Salmonella enteritis. Immunol Res 2007; 37:61-78. [PMID: 17496347 PMCID: PMC3199302 DOI: 10.1007/bf02686090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/30/2022]
Abstract
Acute gastroenteritis caused by Salmonella typhimurium infection is a clinical problem with significant public health impact. The availability of several experimental models of this condition has allowed detailed investigation of the cellular and molecular interactions involved in its pathogenesis. Such studies have shed light on the roles played by bacterial virulence factors and host innate immune mechanisms in the development of intestinal inflammation.
Collapse
Affiliation(s)
- Chittur V. Srikanth
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology and Nutrition, Room 3400, Massachusetts General Hospital East, Building 114, 16 Street, Charlestown, MA 02129.
| |
Collapse
|
43
|
Thompson A, Rolfe MD, Lucchini S, Schwerk P, Hinton JCD, Tedin K. The bacterial signal molecule, ppGpp, mediates the environmental regulation of both the invasion and intracellular virulence gene programs of Salmonella. J Biol Chem 2006; 281:30112-21. [PMID: 16905537 DOI: 10.1074/jbc.m605616200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During infection of mammalian hosts, facultative intracellular pathogens have to adjust rapidly to different environmental conditions encountered during passage through the gastrointestinal tract and following uptake into epithelial cells and macrophages. Successful establishment within the host therefore requires the coordinated expression of a large number of virulence genes necessary for the adaptation between the extracellular and intracellular phases of infection. In this study we show that the bacterial signal molecule, ppGpp, plays a major role in mediating the environmental signals involved in the regulation of both the extracellular and intracellular virulence gene programs. Under oxygen limiting conditions, we observed a strong ppGpp dependence for invasion gene expression, the result of severe reductions in expression of the Salmonella pathogenicity island (SPI) 1 transcriptional regulator genes hilA, C, and D and invF. Overexpression of the non-SPI1-encoded regulator RtsA restored hilA expression in the absence of ppGpp. SPI2-encoded genes, required for intracellular proliferation in macrophages, were activated in the wild type strain under aerobic, late log phase growth conditions. The expression of SPI2 genes was also shown to be ppGpp-dependent under these conditions. The results from this study suggest a mechanism for the alternate regulation of the opposing extracellular and intracellular virulence gene programs and indicate a remarkable specificity for ppGpp in the regulation of genes involved in virulence compared with the rest of the genome. This is the first demonstration that this highly conserved regulatory system is involved in bacterial virulence gene expression on a global scale.
Collapse
Affiliation(s)
- Arthur Thompson
- Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
44
|
Logsdon LK, Mecsas J. The proinflammatory response induced by wild-type Yersinia pseudotuberculosis infection inhibits survival of yop mutants in the gastrointestinal tract and Peyer's patches. Infect Immun 2006; 74:1516-27. [PMID: 16495522 PMCID: PMC1418670 DOI: 10.1128/iai.74.3.1516-1527.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Single-strain infections and coinfections are frequently used to assess roles of virulence factors in infected tissues. After oral inoculation of mice, Yersinia pseudotuberculosis yopE and yopH mutants colonize the intestines and Peyer's patches in single-strain infections but fail to persist in competition with wild-type Y. pseudotuberculosis, indicating that these two infection models provide different insights into the roles of Yops. To determine how wild-type Y. pseudotuberculosis hinders yop mutant survival, yop mutant colonization and host responses were investigated in several different infection models that isolated specific features of wild-type Y. pseudotuberculosis infection. Infection with wild-type Y. pseudotuberculosis caused significantly more inflammation than yop mutants. Results from coinfections of gamma interferon (IFN-gamma)-/- mice revealed that IFN-gamma-regulated defenses target these mutants, suggesting that YopE and YopH protect Y. pseudotuberculosis from these defenses in BALB/c mice. We developed an oral-intraperitoneal infection model to evaluate the effects of spleen and liver colonization by Y. pseudotuberculosis on yop mutants in the intestines. Spleen and liver infection increased inflammation and decreased yop mutant survival in the intestines, indicating that infection of these organs has consequences in intestinal tissues. Finally, competition infections with Y. pseudotuberculosis mutants with various abilities to induce inflammation demonstrated that survival of the yopE, but not the yopH, mutant was consistently decreased in inflamed tissues. In summary, infection with Y. pseudotuberculosis in intestinal and systemic sites induces intestinal inflammation, which decreases yop mutant survival. Thus, competition studies with wild-type yersiniae reveal critical roles of Yops in combating host responses to a normal virulent infection.
Collapse
Affiliation(s)
- Lauren K Logsdon
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave., Boston, MA 02111, USA
| | | |
Collapse
|
45
|
Bohez L, Ducatelle R, Pasmans F, Botteldoorn N, Haesebrouck F, Van Immerseel F. Salmonella enterica serovar Enteritidis colonization of the chicken caecum requires the HilA regulatory protein. Vet Microbiol 2006; 116:202-10. [PMID: 16647227 DOI: 10.1016/j.vetmic.2006.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/02/2006] [Accepted: 03/10/2006] [Indexed: 11/30/2022]
Abstract
Invasion of Salmonella into intestinal epithelial cells is believed to be essential for the pathogenesis of Salmonella infections. Invasion is mediated by genes located on the Salmonella pathogenicity Island I (SPI-1), which are needed for assembling a type three secretion system, that mediates injection of bacterial proteins into the cytosol of epithelial cells, resulting in cytoskeletal rearrangements and as a consequence invasion. HilA is the key regulator of the Salmonella Pathogenicity Island I. To assess the role of hilA in colonization of gut and internal organs in poultry, animals were infected with 10(8) CFU of a delta hilA mutant of S. Enteritidis and its parent strain at day of hatch. Very low numbers of delta hilA mutant strain were able to colonize the internal organs shortly after infection, but they were not eliminated from internal organs at 4 weeks post-infection. At that time, the colonization level of the wild type bacteria in internal organs was decreased to the same low level compared with delta hilA mutant strain bacteria. Shedding of the delta hilA mutant strain and colonization of the caeca was seriously decreased relative to the parent strain starting from Day 5 post-infection. At 4 weeks post-infection, the delta hilA mutant strain was more or less eliminated from the chicken gut, while the parent strain was still shed to a high level and colonized the caeca to a high extent (more than 10(7) CFU/g). It is concluded that hilA is involved in long-term shedding and colonization of S. Enteritidis in the chicken caeca.
Collapse
Affiliation(s)
- Lotte Bohez
- Department of Pathology, Bacteriology and Avian Diseases, Research Group Veterinary Public Health and Zoonoses, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
46
|
Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, Monack DM. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2006; 2:e11. [PMID: 16518469 PMCID: PMC1383486 DOI: 10.1371/journal.ppat.0020011] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 01/11/2006] [Indexed: 11/20/2022] Open
Abstract
A microarray-based negative selection screen was performed to identify Salmonella enterica serovar Typhimurium (serovar Typhimurium) genes that contribute to long-term systemic infection in 129X1/SvJ (Nramp1r) mice. A high-complexity transposon-mutagenized library was used to infect mice intraperitoneally, and the selective disappearance of mutants was monitored after 7, 14, 21, and 28 d postinfection. One hundred and eighteen genes were identified to contribute to serovar Typhimurium infection of the spleens of mice by 28 d postinfection. The negatively selected mutants represent many known aspects of Salmonella physiology and pathogenesis, although the majority of the identified genes are of putative or unknown function. Approximately 30% of the negatively selected genes correspond to horizontally acquired regions such as those within Salmonella pathogenicity islands (SPI 1–5), prophages (Gifsy-1 and −2 and remnant), and the pSLT virulence plasmid. In addition, mutations in genes responsible for outer membrane structure and remodeling, such as LPS- and PhoP-regulated and fimbrial genes, were also selected against. Competitive index experiments demonstrated that the secreted SPI2 effectors SseK2 and SseJ as well as the SPI4 locus are attenuated relative to wild-type bacteria during systemic infection. Interestingly, several SPI1-encoded type III secretion system effectors/translocases are required by serovar Typhimurium to establish and, unexpectedly, to persist systemically, challenging the present description of Salmonella pathogenesis. Moreover, we observed a progressive selection against serovar Typhimurium mutants based upon the duration of the infection, suggesting that different classes of genes may be required at distinct stages of infection. Overall, these data indicate that Salmonella long-term systemic infection in the mouse requires a diverse repertoire of virulence factors. This diversity of genes presumably reflects the fact that bacteria sequentially encounter a variety of host environments and that Salmonella has evolved to respond to these selective forces in a way that permits both the bacteria and the host to survive. Bacteria belonging to the genus Salmonella are capable of establishing a long-term systemic infection in a variety of hosts, including humans, rodents, fowl, and cattle. The ability of Salmonella to subvert the active immune response of the host represents millions of years of co-evolution and is the result of specialized virulence factors that promote long-term infection. This study describes a microarray-based genome-wide screen designed to identify genes required by Salmonella enterica serovar Typhimurium (serovar Typhimurium) to persist and replicate in the spleen and liver of mice for up to 28 days. The results demonstrate that serovar Typhimurium utilizes a diverse repertoire of virulence factors, including both known and novel virulence genes, to establish infection and to persist in the host. The authors' data further established a previously unappreciated role for Salmonella pathogenicity island 1 in maintaining a persistent systemic infection. In addition, a progressive selection against serovar Typhimurium mutants based upon the duration of the infection was observed, suggesting that certain classes of genes are required at specific times during infection and providing a foundation to further dissect Salmonella pathogenesis into distinct temporal phases.
Collapse
Affiliation(s)
- Trevor D Lawley
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Ehrbar K, Winnen B, Hardt WD. The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Mol Microbiol 2006; 59:248-64. [PMID: 16359332 DOI: 10.1111/j.1365-2958.2005.04931.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Type III secretion systems (TTSS) are used by many Gram-negative pathogens for transporting effector proteins into eukaryotic host cells. Two modes of type III effector protein transport can be distinguished: transport into the surrounding medium (secretion) and cell-contact induced injection of effector proteins directly into the host cell cytosol (translocation). Two domains within the N-terminal regions of effector proteins determine the mode of transport. The amino terminal approximately 20 amino acids (N-terminal secretion signal, NSS) mediate secretion. In contrast, translocation generally requires the NSS, the adjacent approximately 100 amino acids (chaperone binding domain, CBD) and binding of the cognate chaperone to this CBD. TTSS are phylogenetically related to flagellar systems. Because both systems are expressed in Salmonella Typhimurium, correct effector protein transport involves at least two decisions: transport via the Salmonella pathogenicity island 1 (SPI-1) but not the flagellar TTSS (= specificity) and translocation into the host cell instead of secretion into the surrounding media (= transport mode). The mechanisms guiding these decisions are poorly understood. We have studied the S. Typhimurium effector protein SopE, which is specifically transported via the SPI-1 TTSS. Secretion and translocation strictly require the cognate chaperone InvB. Alanine replacement of amino acids 30-42 (and to some extent 44-54) abolished tight InvB binding, abolished translocation into the host cell and led to secretion of SopE via both, the flagellar and the SPI-1 TTSS. In clear contrast to wild-type SopE, secretion of SopE(Ala30-42) and SopE(Ala44-54) via the SPI-1 and the flagellar export system did not require InvB. These data reveal a novel function of the CBD: the CBD inhibits secretion of wild-type SopE via the flagellar and the SPI-1 TTSS in the absence of the chaperone InvB. Our data provide new insights into mechanisms ensuring specific effector protein transport by TTSS.
Collapse
Affiliation(s)
- Kristin Ehrbar
- Institute of Microbiology, D-BIOL, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
48
|
Hapfelmeier S, Hardt WD. A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol 2005; 13:497-503. [PMID: 16140013 DOI: 10.1016/j.tim.2005.08.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 07/26/2005] [Accepted: 08/12/2005] [Indexed: 12/20/2022]
Abstract
Salmonella typhimurium has emerged as a model pathogen that manipulates host cells in a complex fashion, thus causing disease. In humans, S. typhimurium causes acute intestinal inflammation. Intriguingly, type III secreted virulence proteins have a central role in this process. At the cellular level, the functions of these factors are well characterized; at present, animal models are required for elucidating how these factors trigger inflammatory disease in vivo. Calf infection models have been employed successfully and, recently, a mouse model was identified: in streptomycin-pretreated mice, S. typhimurium causes acute colitis. This mouse model provides a new avenue for research into acute intestinal inflammation because it enables the manipulation and dissection of both the bacterial and host contributions to the disease in unsurpassed detail.
Collapse
Affiliation(s)
- Siegfried Hapfelmeier
- Institute of Microbiology, ETH Hönggerberg, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
| | | |
Collapse
|
49
|
Ku YW, McDonough SP, Palaniappan RUM, Chang CF, Chang YF. Novel attenuated Salmonella enterica serovar Choleraesuis strains as live vaccine candidates generated by signature-tagged mutagenesis. Infect Immun 2005; 73:8194-203. [PMID: 16299315 PMCID: PMC1307036 DOI: 10.1128/iai.73.12.8194-8203.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/10/2005] [Accepted: 09/01/2005] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis is a host-adapted pathogen that causes swine paratyphoid. Signature-tagged mutagenesis (STM) was used to understand the pathogenicity of S. enterica serovar Choleraesuis in its natural host and also to develop novel attenuated live vaccine candidates against this disease. A library of 960 signature-tagged mutants of S. enterica serovar Choleraesuis was constructed and screened for attenuation in pigs. Thirty-three mutants were identified by the STM screening, and these mutants were further screened for attenuation by in vivo and in vitro competitive growth. Of these, 20 mutants targeting the outer membrane, type III secretion, transporter, lipopolysaccharide biosynthesis, and other unknown proteins were confirmed for attenuation. Five highly attenuated mutants (SC2D2 [ssaV], SC4A9 [gifsy-1], SC6F9 [dgoT], SC12B12 [ssaJ], and SC10B1[spiA]) were selected and evaluated for safety and protective efficacy in pigs by comparison with a commercially available vaccine strain. STM-attenuated live vaccine strains SC4A9 (gifsy-1) and SC2D2 (ssaV) were superior to commercially available live vaccine because they provided both safety and a protective immune response against challenge in pigs.
Collapse
Affiliation(s)
- Yu-We Ku
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
50
|
Chan K, Kim CC, Falkow S. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect Immun 2005; 73:5438-49. [PMID: 16113260 PMCID: PMC1231100 DOI: 10.1128/iai.73.9.5438-5449.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA microarrays provide an opportunity to combine the principles of signature-tagged mutagenesis (STM) with microarray technology to identify potentially important bacterial virulence genes. The scope of DNA microarrays allows for less laborious screening on a much larger scale than possible by STM alone. We have adapted a microarray-based transposon tracking strategy for use with a Salmonella enterica serovar Typhimurium cDNA microarray in order to identify genes important for survival and replication in RAW 264.7 mouse macrophage-like cells or in the spleens of BALB/cJ mice. A 50,000-CFU transposon library of S. enterica serovar Typhimurium strain SL1344 was serially passaged in cultured macrophages or intraperitoneally inoculated into BALB/cJ mice. The bacterial genomic DNA was isolated and processed for analysis on the microarray. The novel application of this approach to identify mutants unable to survive in cultured cells resulted in the identification of components of Salmonella pathogenicity island 2 (SPI2), which is known to be critical for intracellular survival and replication. In addition, array results indicated that a number of SPI1-associated genes, currently not associated with intracellular survival, are negatively selected. However, of the SPI1-associated mutants individually tested for intracellular survival, only a sirA mutant exhibited reduced numbers relative to those of wild-type bacteria. Of the mutants unable to survive in mice, significant proportions are either components of the SPI2 pathogenicity island or involved in lipopolysaccharide synthesis. This observation is in agreement with results obtained in the original S. enterica serovar Typhimurium STM screen, illustrating the utility of this approach for the high-throughput identification of virulence factors important for survival in the host.
Collapse
Affiliation(s)
- Kaman Chan
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305-5124, USA.
| | | | | |
Collapse
|