1
|
Zhang Y, Cheng H, Yu P, Wang S, Dong H, Lu S, Yang R, Li B, Luo J, Mao R, Zhang Z, Qi Y, Chen X, Ding J, He Z, Zhang J, Zhao T, Chen X, Lin R, Li H, Tian Y, Wu Y. High-throughput single-cell analysis reveals Omp38-specific monoclonal antibodies that protect against Acinetobacter baumannii infection. Emerg Microbes Infect 2025; 14:2437243. [PMID: 39614635 DOI: 10.1080/22221751.2024.2437243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
Infections caused by Acinetobacter baumannii (A. baumannii) have emerged as a global public health concern because of high pathogenicity of this bacterium. Monoclonal antibodies (mAbs) have a lower likelihood of promoting drug resistance and offer targeted treatment, thereby reducing potential adverse effects; however, the therapeutic potential of mAbs targeting A. baumannii has not been fully characterized. In this study, mAbs against the outer membrane proteins (OMPs) of A. baumannii were isolated in a high-throughput manner. The ability of Omp38-specific mAbs to bind to A. baumannii strains from diverse sources was confirmed via enzyme-linked immunosorbent assay (ELISA). Intravenous administration of the Omp38-specific mAbs significantly improved the survival rate and reduced the bacterial load in a mouse model of lethal A. baumannii infection. Flow cytometry and ELISA confirmed that immune cell infiltration and cytokine production, respectively, decreased in a mouse model of sublethal A. baumannii infection. In addition, analysis of the Omp38-mAb C3 binding conformation revealed the potential mechanism of broad-spectrum binding activity of this mAb against A. baumannii. Taken together, these findings indicate that mAbs against Omp38 facilitate bacterial clearance from host, minimize inflammatory mediator release and reduce host damage, highlighting the potential of Omp38-specific mAbs in the clinical treatment of A. baumannii infection.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Cheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Peng Yu
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Shufeng Wang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hui Dong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Song Lu
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Ruiqi Yang
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Baiqing Li
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jie Luo
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ruihan Mao
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhaohui Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yong Qi
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xiaohua Chen
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jinya Ding
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zemin He
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jingbo Zhang
- General Hospital of Central Theater Command, Wuhan, Hubei, People's Republic of China
| | - Tingting Zhao
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, People's Republic of China
| | - Rong Lin
- Sanya People's Hospital, Sanya, People's Republic of China
| | - Haibo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yi Tian
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Hosseini SF, Jalali Nadoushan M, Fekrirad Z, Rasooli I. Omp34-Mediated Acinetobacter baumannii Invasion of Human Cervical Carcinoma Epithelial, HeLa Cells, and the Influence of Anti-Omp34 Antibodies. Anal Cell Pathol (Amst) 2025; 2025:1931119. [PMID: 40256153 PMCID: PMC12006715 DOI: 10.1155/ancp/1931119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Acinetobacter baumannii is known for its ability to invade and persist within eukaryotic cells, impacting infection outcomes and disease progression. This study investigates the role of Omp34, a key outer membrane protein (Omp), in A. baumannii interaction with epithelial cells and the protective effects of anti-Omp34 antibodies (Abs). Omp34 is a key regulator of A. baumannii epithelial cell invasion, influencing bacterial adherence, internalization, and intracellular proliferation. The presence of anti-Omp34 Abs mitigates A. baumannii-induced cellular damage and enhances bacterial clearance. The process involved the expression and purification of Omp34, which in turn induced Abs in BALB/c mice against Omp34. The acute toxicity of Omp34 was studied through a histological analysis conducted on six distinct organs in mice. HeLa cells were infected by A. baumannii ATCC 19606 and a clinical strain. Various aspects of A. baumannii behavior with HeLa cells, including HeLa cell viability, adherence, serum resistance, cell internalization, and intracellular proliferation with and without anti-Omp34 sera. Cytoskeleton inhibitors were used to study the potential roles played in the process of A. baumannii invasion by microfilaments and microtubules. Omp34 effectively triggered Ab production in mice without resulting in any toxicity. The assay for serum resistance revealed potent bactericidal and antibiofilm effects on both A. baumannii strains. Bacterial internalization was constrained when actin polymerization was inhibited. Examination under the microscope revealed instances of adherence, alterations in the cell membrane, apoptosis, vacuolization, and cell damage. HeLa cells exposed to anti-Omp34 serum showed decreased cell damage. The results provide substantial evidence of the adherence capacity of A. baumannii to proliferate in the epithelial cells. In conclusion, Omp34 plays a substantial role in regulating interactions between epithelial cells and A. baumannii, the multifaceted nature of which intricately modifies the trajectory of infection within host cells by A. baumannii.
Collapse
Affiliation(s)
| | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Harding K, Malone L, Kyte NP, Jackson S, Smith L, Fineran P. Genome-wide identification of bacterial genes contributing to nucleus-forming jumbo phage infection. Nucleic Acids Res 2025; 53:gkae1194. [PMID: 39694477 PMCID: PMC11797060 DOI: 10.1093/nar/gkae1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
The Chimalliviridae family of bacteriophages (phages) form a proteinaceous nucleus-like structure during infection of their bacterial hosts. This phage 'nucleus' compartmentalises phage DNA replication and transcription, and shields the phage genome from DNA-targeting defence systems such as CRISPR-Cas and restriction-modification. Their insensitivity to DNA-targeting defences makes nucleus-forming jumbo phages attractive for phage therapy. However, little is known about the bacterial gene requirements during the infectious cycle of nucleus-forming phages or how phage resistance may emerge. To address this, we used the Serratia nucleus-forming jumbo phage PCH45 and exploited a combination of high-throughput transposon mutagenesis and deep sequencing (Tn-seq), and CRISPR interference (CRISPRi). We identified over 90 host genes involved in nucleus-forming phage infection, the majority of which were either involved in the biosynthesis of the primary receptor, flagella, or influenced swimming motility. In addition, the bacterial outer membrane lipopolysaccharide contributed to PCH45 adsorption. Other unrelated Serratia-flagellotropic phages used similar host genes as the nucleus-forming phage, indicating that phage resistance can lead to cross-resistance against diverse phages. Our findings demonstrate that resistance to nucleus-forming jumbo phages can readily emerge via bacterial surface receptor mutation and this should be a major factor when designing strategies for their use in phage therapy.
Collapse
Affiliation(s)
- Kate R Harding
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Natalie A P Kyte
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Panji Z, Nadoushan MJ, Fekrirad Z, Rasooli I. Modulation with anti-Oma87 antibodies of cytotoxicity, adherence, and internalization of Acinetobacter baumannii in human cervical carcinoma epithelial cells. APMIS 2024; 132:843-858. [PMID: 39223818 DOI: 10.1111/apm.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BamA, an Omp85 superfamily member, is universally conserved and essential for cell viability. Using anti-Oma87 antibodies, we focus on understanding the effect of Oma87 of Acinetobacter baumannii on pathogenicity. Oma87 was expressed, purified, and used to induce anti-Oma87 antibodies in BALB/c mice. Acute toxicity of the protein was evaluated in mice. HeLa cells were infected with both live and killed A. baumannii 19606 and a clinical isolate. The effects of anti-Oma87 sera on A. baumannii adherence, internalization, and proliferation in HeLa cells were studied. The roles of microfilaments and microtubules in A. baumannii invasion were demonstrated by Actin disruption. Reduced bacterial population and biofilm formation were noted. The ability of A. baumannii to provoke autophagy through Oma87 induction leads to incomplete autophagy and potentially facilitates bacterial replication. Actin-mediated uptake, attachment, and invasion demonstrated A. baumannii survival and multiplication within vacuoles in the host cell. The findings underscore the potential of Oma87 as a therapeutic intervention target in infections caused by A. baumannii. This comprehensive analysis contributes valuable information for understanding the virulence mechanisms of A. baumannii, potentially guiding future strategies to combat infections caused by this pathogen.
Collapse
Affiliation(s)
- Zahra Panji
- Department of Biology, Shahed University, Tehran, Iran
| | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| |
Collapse
|
5
|
Rajabzadeh M, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Characterizing the interplay between Acinetobacter baumannii, A549 cells, and anti-Omp34 antibodies: implications for adherence, internalization, and cytotoxicity. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01218-4. [PMID: 39480642 DOI: 10.1007/s12223-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Acinetobacter baumannii thrives within eukaryotic cells, influencing persistence, treatment approaches, and progression of disease. We probed epithelial cell invasion by A. baumannii and the influence of antibodies raised to outer membrane protein 34 (Omp34) on epithelial interactions. We expressed and purified recombinant Omp34 and induced anti-Omp34 antibodies in Bagg albino or BALB/c mice. Omp34 was evaluated for acute toxicity in mice through histological analysis of six organs. The host cell line, A549, was exposed to both A. baumannii 19606 and a clinical isolate. The study also investigated serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells, with and without anti-Omp34 sera, utilizing cell culture techniques and light microscopy. A549 cell viability was evaluated by A. baumannii challenge and exposure to anti-Omp34 sera. Actin disruption experiments using cytochalasin D probed microfilament and microtubule roles in A. baumannii invasion. Omp34 prompted antibody production without toxicity in mice. The serum showed bactericidal effects on both strains. Additionally, both A. baumannii strains were found to form biofilms. Omp34 serum was observed to decrease biofilm formation, bacterial adherence, internalization, and proliferation in A549 cells. Furthermore, the use of anti-Omp34 serum enhanced the post-infection survival of the host cell. Pre-exposure of A549 cells to cytochalasin D reduced bacterial internalization, highlighting the role of actin polymerization in the invasion process. Microscopic analysis revealed various interactions, such as adherence, membrane alterations, vacuolization, apoptosis, and cellular damage. Anti-Omp34 serum-exposed A549 cells were protected and showed reduced damage. The findings reveal that A. baumannii can significantly multiply intracellularly within host cells. This suggests the bacterium's ability to establish an environment conducive to its replication by preventing fusion with degradative lysosomes and inhibiting acidification. This finding contributes to the understanding of A. baumannii's intracellular persistence and highlights the role of Omp34 in influencing apoptosis, autophagy, and bacterial adherence, which may impact the development of effective treatments against A. baumannii infections.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| |
Collapse
|
6
|
Park JY, Jang M, Lee SM, Woo J, Lee EJ, Kim D. Unveiling the novel regulatory roles of RpoD-family sigma factors in Salmonella Typhimurium heat shock response through systems biology approaches. PLoS Genet 2024; 20:e1011464. [PMID: 39471211 PMCID: PMC11548764 DOI: 10.1371/journal.pgen.1011464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024] Open
Abstract
Three RpoD-family sigma factors, RpoD, RpoS, and RpoH, play critical roles in transcriptional regulation in Salmonella enterica serovar Typhimurium under heat shock conditions. However, the genome-wide regulatory mechanisms of these sigma factors in response to heat stress have remained elusive. In this study, we comprehensively identified 2,319, 2,226, and 213 genome-wide binding sites for RpoD, RpoS, and RpoH, respectively, under sublethal heat shock conditions (42°C). Machine learning-based transcriptome analysis was employed to infer the relative activity of iModulons, providing valuable insights into the transcriptional impact of heat shock. Integrative data analysis enabled the reconstruction of the transcriptional regulatory network of sigma factors, revealing how they modulate gene expression to adapt to heat stress, including responses to anaerobic and oxidative stresses. Notably, we observed a significant expansion of the RpoS sigmulon from 97 to 301 genes in response to heat shock, underscoring the crucial role of RpoS in regulating various metabolic processes. Moreover, we uncovered a competition mechanism between RpoD and RpoS within RpoS sigmulons, where RpoS significantly increases its binding within promoter regions shared with RpoD under heat shock conditions. These findings illuminate how three RpoD-family sigma factors coordinate multiple cellular processes to orchestrate the overall response of S. Typhimurium to heat stress.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Minchang Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
7
|
Watanabe N, Savchenko A. Molecular insights into the initiation step of the Rcs signaling pathway. Structure 2024; 32:1381-1393.e4. [PMID: 38964336 DOI: 10.1016/j.str.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.
Collapse
Affiliation(s)
- Nobuhiko Watanabe
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA.
| |
Collapse
|
8
|
Serrano-Fujarte I, Calva E, García-Domínguez J, Ortiz-Jiménez S, Puente JL. Population structure and ongoing microevolution of the emerging multidrug-resistant Salmonella Typhimurium ST213. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:10. [PMID: 39843807 PMCID: PMC11721120 DOI: 10.1038/s44259-024-00027-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/06/2024] [Indexed: 01/24/2025]
Abstract
Salmonella enterica serovar Typhimurium ST213 is an emergent multidrug-resistant sequence type associated with the food chain, and gastrointestinal and invasive infections in North America. Here, we applied genomic and phenotypic analyses to illustrate the diversity and evolution of sequence type ST213. The population structure and evolutionary history of ST213 strains, particularly the North American isolates (NA-ST213) distinguish them from other S. Typhimurium sequence types, including European ST213 strains. NA-ST213 isolates were distributed in four co-circulating lineages with distinct multidrug resistance profiles and unique phage and CRISPR spacers patterns that could have shaped their local microevolution. Compared to the SL1344 reference strain, NA-ST213 demonstrated reduced adherence and internalization in cultured eukaryotic cell lines but exhibited more efficient replication and intracellular survival. This study underscores the relevance of studying an emergent S. Typhimurium sequence type and the events leading to its diversification beyond the well-characterized reference strains and worldwide predominant sequence types. However, it must also serve as a cautionary tale of the potential health risk the NA-ST213 may represent; particularly when there is a close relationship with pandemic sequence types such as the monophasic ST34.
Collapse
Affiliation(s)
- Isela Serrano-Fujarte
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico.
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| | - Jimena García-Domínguez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico.
| |
Collapse
|
9
|
Barati H, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells. Microb Pathog 2024; 186:106473. [PMID: 38048840 DOI: 10.1016/j.micpath.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Outer membrane protein A (OmpA) is a critical virulence factor in Acinetobacter baumannii, influencing adhesion, biofilm formation, host immune response, and host cell apoptosis. We investigated the invasion of A549 alveolar epithelial cells by A. baumannii and examined how anti-OmpA antibodies impact these interactions. OmpA was expressed and purified, inducing anti-OmpA antibodies in BALB/c mice. The potential toxicity of OmpA was evaluated in mice by analyzing histology from six organs. A549 cells were exposed to A. baumannii strains 19606 and a clinical isolate. Using cell culture and light microscopy, we scrutinized the effects of anti-OmpA sera on serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells. The viability of A549 cells was assessed upon exposure to live A. baumannii and anti-OmpA sera. OmpA-induced antibody demonstrated potent bactericidal effects on both strains of A. baumannii. Both strains formed biofilms, which were reduced by anti-OmpA serum, along with decreased bacterial adherence, internalization, and proliferation in A549 cells. Anti-OmpA serum improved the survival of A549 cells post-infection. Pre-treatment with cytochalasin D hindered bacterial internalization, highlighting the role of actin polymerization in invasion. Microscopic examination revealed varied interactions encompassing adherence, apoptosis, membrane alterations, vacuolization, and damage. A549 cells treated with anti-OmpA serum exhibited improved structures and reduced damage. The findings indicate that A. baumannii can adhere to and proliferate within epithelial cells with OmpA playing a pivotal role in these interactions, and the complex nature of these interactions shapes the intricate course of A. baumannii infection in host cells.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
10
|
Castanheira S, García-Del Portillo F. Evidence of two differentially regulated elongasomes in Salmonella. Commun Biol 2023; 6:923. [PMID: 37689828 PMCID: PMC10492807 DOI: 10.1038/s42003-023-05308-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cell shape is genetically inherited by all forms of life. Some unicellular microbes increase niche adaptation altering shape whereas most show invariant morphology. A universal system of peptidoglycan synthases guided by cytoskeletal scaffolds defines bacterial shape. In rod-shaped bacteria, this system consists of two supramolecular complexes, the elongasome and divisome, which insert cell wall material along major and minor axes. Microbes with invariant shape are thought to use a single morphogenetic system irrespective of the occupied niche. Here, we provide evidence for two elongasomes that generate (rod) shape in the same bacterium. This phenomenon was unveiled in Salmonella, a pathogen that switches between extra- and intracellular lifestyles. The two elongasomes can be purified independently, respond to different environmental cues, and are directed by distinct peptidoglycan synthases: the canonical PBP2 and the pathogen-specific homologue PBP2SAL. The PBP2-elongasome responds to neutral pH whereas that directed by PBP2SAL assembles in acidic conditions. Moreover, the PBP2SAL-elongasome moves at a lower speed. Besides Salmonella, other human, animal, and plant pathogens encode alternative PBPs with predicted morphogenetic functions. Therefore, contrasting the view of morphological plasticity facilitating niche adaptation, some pathogens may have acquired alternative systems to preserve their shape in the host.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Rodríguez L, Peñalver M, Casino P, García-del Portillo F. Evolutionary analysis and structure modelling of the Rcs-repressor IgaA unveil a functional role of two cytoplasmic small β-barrel (SBB) domains. Heliyon 2023; 9:e16661. [PMID: 37303533 PMCID: PMC10248123 DOI: 10.1016/j.heliyon.2023.e16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
The Rcs sensor system, comprising the RcsB/RcsC/RcsD and RcsF proteins, is used by bacteria of the order Enterobacterales to withstand envelope damage. In non-stress conditions, Rcs is repressed by IgaA, a membrane protein with three cytoplasmic regions (cyt-1, cyt-2 and cyt-3). How the Rcs-IgaA axis evolved within Enterobacterales has not been yet explored. Here, we report phylogenetic data supporting co-evolution of IgaA with RcsC/RcsD. Functional exchange assays showed that IgaA from Shigella and Dickeya, but not from Yersinia or the endosymbionts Photorhabdus and Sodalis, repress the Rcs system of Salmonella. IgaA from Dickeya, however, repress only partially the Rcs system despite being produced at high levels in the complementation assay. The modelled structures of these IgaA variants uncovered one periplasmic and two cytoplasmic conserved β-rich architectures forming partially closed small β-barrel (SBB) domains. Conserved residues map in a connector linking cytoplasmic SSB-1 and SBB-2 domains (E180-R265); a region of cyt-1 facing cyt-2 (R188-E194-D309 and T191-H326); and between cyt-2 and cyt-3 (H293-E328-R686). These structures validated early in vivo studies in Salmonella that assigned a role in function to R188, T191 and G262, and in addition revealed a previously unnoticed "hybrid" SBB-2 domain to which cyt-1 and cyt-2 contribute. IgaA variants not functional or partially functional in Salmonella lack H192-P249 and R255-D313 interactions. Among these variants, only IgaA from Dickeya conserves the helix α6 in SSB-1 that is present in IgaA from Salmonella and Shigella. RcsF and RcsD, which interact directly with IgaA, failed to show structural features linked to specific IgaA variants. Altogether, our data provide new insights into IgaA by mapping residues selected differently during evolution and involved in function. Our data also infer contrasting lifestyles of Enterobacterales bacteria as source of variability in the IgaA-RcsD/IgaA-RcsF interactions.
Collapse
Affiliation(s)
- Leticia Rodríguez
- Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Marcos Peñalver
- Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Patricia Casino
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain
- CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Francisco García-del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
12
|
Ehrhardt K, Becker AL, Grassl GA. Determinants of persistent Salmonella infections. Curr Opin Immunol 2023; 82:102306. [PMID: 36989589 DOI: 10.1016/j.coi.2023.102306] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Persistent bacterial infections constitute an enormous challenge for public health. Amongst infections with other bacteria, infections with typhoidal and nontyphoidal Salmonella enterica serovars can result in long-term infections of the human and animal host. Persistent infections that are asymptomatic are difficult to identify and thus can serve as a silent reservoir for transmission. Symptomatic persistent infections are often difficult to treat as they harbor a combination of antibiotic-tolerant and antibiotic-resistant bacteria and boost the spread of genetic antibiotic resistance. In the last couple of years, the field has made some major progress in understanding the role of persisters, their reservoirs as well as their interplay with host factors in persistent Salmonella infections.
Collapse
|
13
|
Hu M, Zhang Y, Huang X, He M, Zhu J, Zhang Z, Cui Y, He S, Shi X. PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. mBio 2023:e0339522. [PMID: 37184399 DOI: 10.1128/mbio.03395-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyan Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhen Huang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mu He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyu Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Shoukui He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Harshaw NS, Meyer MD, Stella NA, Lehner KM, Kowalski RP, Shanks RMQ. The Short-chain Fatty Acid Propionic Acid Activates the Rcs Stress Response System Partially through Inhibition of d-Alanine Racemase. mSphere 2023; 8:e0043922. [PMID: 36645277 PMCID: PMC9942566 DOI: 10.1128/msphere.00439-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
The Enterobacterial Rcs stress response system reacts to envelope stresses through a complex two-component phosphorelay system to regulate a variety of environmental response genes, such as capsular polysaccharide and flagella biosynthesis genes. However, beyond Escherichia coli, the stresses that activate Rcs are not well-understood. In this study, we used a Rcs system-dependent luminescent transcriptional reporter to screen a library of over 240 antimicrobial compounds for those that activated the Rcs system in Serratia marcescens, a Yersiniaceae family bacterium. Using an isogenic rcsB mutant to establish specificity, both new and expected activators were identified, including the short-chain fatty acid propionic acid, which is found at millimolar levels in the human gut. Propionic acid did not reduce the bacterial intracellular pH, as was hypothesized for its antibacterial mechanism. Instead, data suggest that the Rcs-activation by propionic acid is due, in part, to an inactivation of alanine racemase. This enzyme is responsible for the biosynthesis of d-alanine, which is an amino-acid that is required for the generation of bacterial cell walls. Consistent with what was observed in S. marcescens, in E. coli, alanine racemase mutants demonstrated elevated expression of the Rcs-reporter in a d-alanine-dependent and RcsB-dependent manner. These results suggest that host gut short-chain fatty acids can influence bacterial behavior via the activation of the Rcs stress response system. IMPORTANCE The Rcs bacterial stress response system responds to envelope stresses by globally altering gene expression to profoundly impact host-pathogen interactions, virulence, and antibiotic tolerance. In this study, a luminescent Rcs-reporter plasmid was used to screen a library of compounds for activators of Rcs. Among the strongest inducers was the short-chain fatty acid propionic acid, which is found at high concentrations in the human gut. This study suggests that gut short-chain fatty acids can affect both bacterial virulence and antibiotic tolerance via the induction of the Rcs system.
Collapse
Affiliation(s)
- Nathaniel S. Harshaw
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mitchell D. Meyer
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kara M. Lehner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Regis P. Kowalski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
16
|
Stella NA, Romanowski EG, Brothers KM, Calvario RC, Shanks RMQ. IgaA Protein, GumB, Has a Global Impact on the Transcriptome and Surface Proteome of Serratia marcescens. Infect Immun 2022; 90:e0039922. [PMID: 36317876 PMCID: PMC9671016 DOI: 10.1128/iai.00399-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bacterial stress response signaling systems, like the Rcs system are triggered by membrane and cell wall damaging compounds, including antibiotics and immune system factors. These regulatory systems help bacteria survive envelope stress by altering the transcriptome resulting in protective phenotypic changes that may also influence the virulence of the bacterium. This study investigated the role of the Rcs stress response system using a clinical keratitis isolate of Serratia marcescens with a mutation in the gumB gene. GumB, an IgaA ortholog, inhibits activation of the Rcs system, such that mutants have overactive Rcs signaling. Transcriptomic analysis indicated that approximately 15% of all S. marcescens genes were significantly altered with 2-fold or greater changes in expression in the ΔgumB mutant compared to the wild type, indicating a global transcriptional regulatory role for GumB. We further investigated the phenotypic consequences of two classes of genes with altered expression in the ΔgumB mutant expected to contribute to infections: serralysin metalloproteases PrtS, SlpB, and SlpE, and type I pili coded by fimABCD. Secreted fractions from the ΔgumB mutant had reduced cytotoxicity to a corneal cell line, and could be complemented by induced expression of prtS, but not cytolysin shlBA, phospholipase phlAB, or flagellar master regulator flhDC operons. Proteomic analysis, qRT-PCR, and type I pili-dependent yeast agglutination indicated an inhibitory role for the Rcs system in adhesin production. Together these data demonstrate GumB has a global impact on S. marcescens gene expression that had measurable effects on bacterial cytotoxicity and surface adhesin production.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Eric G. Romanowski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Rachel C. Calvario
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| |
Collapse
|
17
|
López‐Escarpa D, Castanheira S, García‐del Portillo F. OmpR and Prc contribute to switch the Salmonella morphogenetic program in response to phagosome cues. Mol Microbiol 2022; 118:477-493. [PMID: 36115022 PMCID: PMC9827838 DOI: 10.1111/mmi.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Salmonella enterica serovar Typhimurium infects eukaryotic cells residing within membrane-bound phagosomes. In this compartment, the pathogen replaces the morphogenetic penicillin-binding proteins 2 and 3 (PBP2/PBP3) with PBP2SAL /PBP3SAL , two proteins absent in Escherichia coli. The basis for this switch is unknown. Here, we show that PBP3 protein levels drop drastically when S. Typhimurium senses acidity, high osmolarity and nutrient scarcity, cues that activate virulence functions required for intra-phagosomal survival and proliferation. The protease Prc and the transcriptional regulator OmpR contribute to lower PBP3 levels whereas OmpR stimulates PBP2SAL /PBP3SAL production. Surprisingly, despite being essential for division in E. coli, PBP3 levels also drop in non-pathogenic and pathogenic E. coli exposed to phagosome cues. Such exposure alters E. coli morphology resulting in very long bent and twisted filaments indicative of failure in the cell division and elongation machineries. None of these aberrant shapes are detected in S. Typhimurium. Expression of PBP3SAL restores cell division in E. coli exposed to phagosome cues although the cells retain elongation defects in the longitudinal axis. By switching the morphogenetic program, OmpR and Prc allow S. Typhimurium to properly divide and elongate inside acidic phagosomes maintaining its cellular dimensions and the rod shape.
Collapse
Affiliation(s)
- David López‐Escarpa
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Sónia Castanheira
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | | |
Collapse
|
18
|
Heating Rate during Shell Egg Thermal Treatment Elicits Stress Responses and Alters Virulence of Salmonella enterica Serovar Enteritidis; Implications for Shell Egg Pasteurization. Appl Environ Microbiol 2022; 88:e0114022. [PMID: 36197091 PMCID: PMC9599327 DOI: 10.1128/aem.01140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermal pasteurization of shell eggs, at various time-temperature combinations, has been proposed previously and implemented industrially. This study was conducted to determine if shell egg heating rate, which varies with different pasteurization implementations, alters the Salmonella enterica serovar Enteritidis response to different stresses or expression of virulence. Shell eggs, containing Salmonella Enteritidis in yolk, were subjected to a low (2.4°C/min) or a high (3.5°C/min) heating rate during treatments that mimicked the pasteurization temperature come-up stage. The low heating rate protected Salmonella from the following processes: (i) lethal heat at the holding stage, (ii) loss of viability during 8-h cooling after heating, and (iii) sequential antimicrobial ozone treatment. Transcriptional analysis using Salmonella reporter strains revealed that the heat stress response gene grpE was transcribed at 3-fold-higher levels (P = 0.0009) at the low than at the high heating rate. Slow heating also significantly increased the transcription of the Salmonella virulence-related genes sopB (P = 0.0012) and sseA (P = 0.0006) in comparison to fast heating. Salmonella virulence was determined experimentally as 50% lethal dose (LD50) values in an in vivo model. The slow heat treatment mildly increased Salmonella Enteritidis virulence in mice (LD50 of 3.3 log CFU), compared to that in nontreated yolk (LD50 of 3.9 log CFU). However, when ozone application followed the slow heat treatment, Salmonella virulence decreased (LD50 of 4.2 log CFU) compared to that for heat-treated or nontreated yolk. In conclusion, heating shell eggs at a low rate can trigger hazardous responses that may compromise the safety of the final pasteurized products but following the thermal treatment with ozone application may help alleviate these concerns. IMPORTANCE Pasteurization of shell eggs is an important technology designed to protect consumers against Salmonella Enteritidis that contaminates this commodity. A low heating rate is preferred over a high rate during shell egg thermal pasteurization due to product quality concern. However, it is not known whether raising the temperature at different rates, during pasteurizing, would potentially affect product safety determinants. The current study demonstrated that slow heating during the pasteurization come-up stage increased the following risks: (i) resistance of Salmonella to pasteurization holding stage or to subsequent ozone treatment, (ii) recovery of Salmonella during the cooling that followed pasteurization, and (iii) Salmonella's ability to cause disease (i.e., virulence). Our findings inform food processors about potential safety risks to consumers resulting from improper use of processing parameters during shell egg pasteurization. Additionally, treating shell eggs with ozone after heat treatment could alleviate these hazards and protect consumers from natural Salmonella Enteritidis contaminants in shell eggs.
Collapse
|
19
|
Liu Y, Zhu S, Wei L, Feng Y, Cai L, Dunn S, McNally A, Zong Z. Arm race among closely-related carbapenem-resistant Klebsiella pneumoniae clones. ISME COMMUNICATIONS 2022; 2:76. [PMID: 37938732 PMCID: PMC9723571 DOI: 10.1038/s43705-022-00163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2023]
Abstract
Multiple carbapenem-resistant Klebsiella pneumoniae (CRKP) clones typically co-exist in hospital wards, but often certain clones will dominate. The factors driving this dominance are largely unclear. This study began from a genomic epidemiology analysis and followed by multiple approaches to identify the potential mechanisms driving the successful spread of a dominant clone. 638 patients in a 50-bed ICU were screened. 171 (26.8%) and 21 had CRKP from swabs and clinical specimens, respectively. Many (39.8% of those with ≥7-day ICU stay) acquired CRKP. After removing 18 unable to recover, 174 CRKP isolates were genome sequenced and belonged to six sequence types, with ST11 being the most prevalent (n = 154, 88.5%) and most (n = 169, 97.1%) carrying blaKPC-2. The 154 ST11 isolates belonged to 7 clones, with one (clone 1, KL64 capsular type) being dominant (n = 130, 84.4%). Clone 1 and the second-most common clone (clone 2, KL64, n = 15, 9.7%) emerged simultaneously, which was also detected by genome-based dating. Clone 1 exhibited decreased biofilm formation, shorter environment survival, and attenuated virulence. In murine gut, clone 1 outcompeted clone 2. Transcriptomic analysis showed significant upregulation of the ethanolamine operon in clone 1 when competing with clone 2. Clone 1 exhibited increased utilization of ethanolamine as a nitrogen source. This highlights that reduced virulence and enhanced ability to utilize ethanolamine may promote the success of nosocomial multidrug-resistant clones.
Collapse
Affiliation(s)
- Ying Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shichao Zhu
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cai
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Steven Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Role of RpoS in Regulating Stationary Phase Salmonella Typhimurium Pathogenesis-Related Stress Responses under Physiological Low Fluid Shear Force Conditions. mSphere 2022; 7:e0021022. [PMID: 35913142 PMCID: PMC9429890 DOI: 10.1128/msphere.00210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The discovery that biomechanical forces regulate microbial virulence was established with the finding that physiological low fluid shear (LFS) forces altered gene expression, stress responses, and virulence of the enteric pathogen Salmonella enterica serovar Typhimurium during the log phase. These log phase LFS-induced phenotypes were independent of the master stress response regulator, RpoS (σS). Given the central importance of RpoS in regulating stationary-phase stress responses of S. Typhimurium cultured under conventional shake flask and static conditions, we examined its role in stationary-phase cultures grown under physiological LFS. We constructed an isogenic rpoS mutant derivative of wild-type S. Typhimurium and compared the ability of these strains to survive in vitro pathogenesis-related stresses that mimic those encountered in the infected host and environment. We also compared the ability of these strains to colonize (adhere, invade, and survive within) human intestinal epithelial cell cultures. Unexpectedly, LFS-induced resistance of stationary-phase S. Typhimurium cultures to acid and bile salts stresses did not rely on RpoS. Likewise, RpoS was dispensable for stationary-phase LFS cultures to adhere to and survive within intestinal epithelial cells. In contrast, the resistance of these cultures to challenges of oxidative and thermal stresses, and their invasion into intestinal epithelial cells was influenced by RpoS. These findings expand our mechanistic understanding of how physiological fluid shear forces modulate stationary-phase S. Typhimurium physiology in unexpected ways and provide clues into microbial mechanobiology and nuances of Salmonella responses to microenvironmental niches in the infected host. IMPORTANCE Bacterial pathogens respond dynamically to a variety of stresses in the infected host, including physical forces of fluid flow (fluid shear) across their surfaces. While pathogens experience wide fluctuations in fluid shear during infection, little is known about how these forces regulate microbial pathogenesis. This is especially important for stationary-phase bacterial growth, which is a critical period to understand microbial resistance, survival, and infection potential, and is regulated in many bacteria by the general stationary-phase stress response protein RpoS. Here, we showed that, unlike conventional culture conditions, several stationary-phase Salmonella pathogenic stress responses were not impacted by RpoS when bacteria were cultured under fluid shear conditions relevant to those encountered in the intestine of the infected host. These findings offer new insight into how physiological fluid shear forces encountered by Salmonella during infection might impact pathogenic responses in unexpected ways that are relevant to their disease-causing ability.
Collapse
|
21
|
Ferrous Iron Uptake Is Required for Salmonella to Persist within Vacuoles of Host Cells. Infect Immun 2022; 90:e0014922. [PMID: 35536027 DOI: 10.1128/iai.00149-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential oligoelement that incorporates into proteins as a biocatalyst or electron carrier. The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) takes iron as free reduced ferrous cation or as oxidized ferric cation complexed to siderophores or ferrichromes. Deficiencies in ferrous or ferric iron uptake attenuate S. Typhimurium virulence, but how the uptake systems are used in the intracellular environment remains poorly understood. Here, using S. Typhimurium mutants deficient in multiple iron uptake systems, we show that SitABCD and FeoABC, involved in ferrous iron uptake, are central for this pathogen to persist within vacuoles of fibroblasts. Assays at the protein level showed that components of these two uptake systems, SitD and FeoB, are produced at high levels by intravacuolar bacteria. Despite not being essential for viability inside the vacuole, intracellular bacteria also upregulate transporters involved in ferric iron uptake such as IroN, FepA, and CirA. In addition, an unprecedented cleavage at the N-terminal region of FepA was observed as a distinctive feature of nonproliferating intravacuolar bacteria. Collectively, our findings indicate that SitABCD and FeoABC contribute to S. Typhimurium virulence by promoting iron acquisition within the vacuolar compartment.
Collapse
|
22
|
Peptidoglycan editing in non-proliferating intracellular Salmonella as source of interference with immune signaling. PLoS Pathog 2022; 18:e1010241. [PMID: 35077524 PMCID: PMC8815878 DOI: 10.1371/journal.ppat.1010241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 01/01/2022] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells. The peptidoglycan, built as a giant polymer of glycan chains crosslinked with short peptides, is essential for cell shape and survival in most bacteria. Its unique chemistry is recognized by innate immune receptors, thereby enabling neutralization of invading microbes. A striking feature of the peptidoglycan is its constant remodeling by a plethora of endogenous enzymes. In addition, some bacterial pathogens introduce structural modifications that interfere with immune recognition. These modifications have been characterized in pathogens mostly in laboratory nutrient media. Whether facultative intracellular pathogens modify peptidoglycan structure inside host cells, was unknown. The work presented here shows that non-proliferating Salmonella enterica serovar Typhimurium remodels the peptidoglycan structure in response to intracellular cues and that some of these modifications involve unprecedented changes as the presence of an amino alcohol that hampers activation of the master immune regulator NF-κB. Peptidoglycan editing might therefore empower persistence of bacterial pathogens in the intracellular niche.
Collapse
|
23
|
Kim SI, Kim E, Yoon H. σ S-Mediated Stress Response Induced by Outer Membrane Perturbation Dampens Virulence in Salmonella enterica serovar Typhimurium. Front Microbiol 2021; 12:750940. [PMID: 34659184 PMCID: PMC8516096 DOI: 10.3389/fmicb.2021.750940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella alters cellular processes as a strategy to improve its intracellular fitness during host infection. Alternative σ factors are known to rewire cellular transcriptional regulation in response to environmental stressors. σs factor encoded by the rpoS gene is a key regulator required for eliciting the general stress response in many proteobacteria. In this study, Salmonella Typhimurium deprived of an outer membrane protein YcfR was attenuated in intracellular survival and exhibited downregulation in Salmonella pathogenicity island-2 (SPI-2) genes. This decreased SPI-2 expression caused by the outer membrane perturbation was abolished in the absence of rpoS. Interestingly, regardless of the defects in the outer membrane integrity, RpoS overproduction decreased transcription from the common promoter of ssrA and ssrB, which encode a two-component regulatory system for SPI-2. RpoS was found to compete with RpoD for binding to the PssrA region, and its binding activity with RNA polymerase (RNAP) to form Eσs holoenzyme was stimulated by the small regulatory protein Crl. This study demonstrates that Salmonella undergoing RpoS-associated stress responses due to impaired envelope integrity may reciprocally downregulate the expression of SPI-2 genes to reduce its virulence.
Collapse
Affiliation(s)
- Seul I Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
24
|
Bacteria-Cancer Interface: Awaiting the Perfect Storm. Pathogens 2021; 10:pathogens10101321. [PMID: 34684270 PMCID: PMC8540461 DOI: 10.3390/pathogens10101321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence reveal a very close association of malignancies with chronic inflammation as a result of persistent bacterial infection. Recently, more studies have provided experimental evidence for an etiological role of bacterial factors disposing infected tissue towards carcinoma. When healthy cells accumulate genomic insults resulting in DNA damage, they may sustain proliferative signalling, resist apoptotic signals, evade growth suppressors, enable replicative immortality, and induce angiogenesis, thus boosting active invasion and metastasis. Moreover, these cells must be able to deregulate cellular energetics and have the ability to evade immune destruction. How bacterial infection leads to mutations and enriches a tumour-promoting inflammatory response or micro-environment is still not clear. In this review we showcase well-studied bacteria and their virulence factors that are tightly associated with carcinoma and the various mechanisms and pathways that could have carcinogenic properties.
Collapse
|
25
|
Sayed M, Ozdemir O, Essa M, Olivier A, Karsi A, Lawrence ML, Abdelhamed H. Virulence and live vaccine potential of Edwardsiella piscicida phoP and phoQ mutants in catfish against edwardsiellosis. JOURNAL OF FISH DISEASES 2021; 44:1463-1474. [PMID: 34037985 DOI: 10.1111/jfd.13453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Edwardsiella piscicida is a Gram-negative facultative intracellular bacterium causing edwardsiellosis in catfish, the largest aquaculture industry in the United States. A safe and effective vaccine is an urgent need to avoid economic losses associated with E. piscicida outbreaks. PhoP/PhoQ is a two-component signal transduction system (TCS) that plays an important role in bacterial pathogenesis through sense and response to environmental and host stress signals. This study aimed to explore the contribution of PhoQ/PhoP in E. piscicida virulence and develop live attenuated vaccines against E. piscicida infection in channel catfish (Ictalurus punctatus) and hybrid catfish (channel catfish ♀ × blue catfish (I. furcatus) ♂). In the current study, two in-frame deletion mutants were constructed by deleting phoP (ETAC_09785) and phoQ (ETAC_09790) genes in E. piscicida strain C07-087, and the virulence and protection efficacy of the constructed strains were evaluated in catfish following intraperitoneal injection. Both EpΔphoP and EpΔphoQ strains had a delayed adaptation to oxidative stress (0.2% H2 O2 ) compared to E. piscicida wild type. The EpΔphoP and EpΔphoQ mutants produced significantly less biofilm compared to wild-type E. piscicida. Notably, EpΔphoP and EpΔphoQ mutants were significantly attenuated in channel catfish compared with wild-type E. piscicida (6.63% and 4.17% versus 49.16% mortalities), and channel catfish vaccinated with EpΔphoP and EpΔphoQ were significantly protected (95.65% and 97.92% survival) against E. piscicida infection at 21 days post-vaccination. In hybrid catfish, EpΔphoP was significantly more attenuated than EpΔphoQ, but EpΔphoQ provided significantly better protection than EpΔphoP. EpΔphoP and EpΔphoQ strains both induced specific antibodies in channel catfish against E. piscicida at 14 and 21 days post-vaccination. This result indicated that EpΔphoP and EpΔphoQ mutants were safe and protective in channel catfish fingerlings, while EpΔphoP was safe in hybrid catfish. Our findings show that PhoP and PhoQ are required for adaptation to oxidative stress and biofilm formation and may help E. piscicida face tough environmental challenges; thus, functional PhoP and PhoQ are critical for a successful infection.
Collapse
Affiliation(s)
- Mohamed Sayed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ozan Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Manal Essa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
26
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
27
|
The Rcs Stress Response System Regulator GumB Modulates Serratia marcescens-Induced Inflammation and Bacterial Proliferation in a Rabbit Keratitis Model and Cytotoxicity In Vitro. Infect Immun 2021; 89:e0011121. [PMID: 33820815 DOI: 10.1128/iai.00111-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we tested the hypothesis that the conserved bacterial IgaA-family protein, GumB, mediates microbial pathogenesis associated with Serratia marcescens ocular infections through regulation of the Rcs stress response system. The role of the Rcs system and bacterial stress response systems for microbial keratitis is not known, and the role of IgaA proteins in mammalian pathogenesis models has only been tested with partial-function allele variants of Salmonella. Here, we observed that an Rcs-activated gumB mutant had a >50-fold reduction in proliferation compared to the wild type within rabbit corneas at 48 h and demonstrated a notable reduction in inflammation based on inflammatory signs, including the absence of hypopyons, and proinflammatory markers measured at the RNA and protein levels. The gumB mutant phenotypes could be complemented by wild-type gumB on a plasmid. We observed that bacteria with an inactivated Rcs stress response system induced high levels of ocular inflammation and restored corneal virulence to the gumB mutant. The high virulence of the ΔrcsB mutant was dependent upon the ShlA cytolysin transporter ShlB. Similar results were found for testing the cytotoxic effects of wild-type and mutant bacteria on a human corneal epithelial cell line in vitro. Together, these data indicate that GumB regulates virulence factor production through the Rcs system, and this overall stress response system is a key mediator of a bacterium's ability to induce vision-threatening keratitis.
Collapse
|
28
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
29
|
Meng J, Young G, Chen J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front Microbiol 2021; 12:627104. [PMID: 33658986 PMCID: PMC7917084 DOI: 10.3389/fmicb.2021.627104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction with the environment, and its integrity is regulated by various stress response systems. The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component regulatory system (TCS) found in many members of the Enterobacteriaceae family, is one of the envelope stress response pathways. The Rcs system can sense envelope damage or defects and regulate the transcriptome to counteract stress, which is particularly important for the survival and virulence of pathogenic bacteria. In this review, we summarize the roles of the Rcs system in envelope stress responses (ESRs) and virulence regulation. We discuss the environmental and intrinsic sources of envelope stress that cause activation of the Rcs system with an emphasis on the role of RcsF in detection of envelope stress and signal transduction. Finally, the different regulation mechanisms governing the Rcs system's control of virulence in several common pathogens are introduced. This review highlights the important role of the Rcs system in the environmental adaptation of bacteria and provides a theoretical basis for the development of new strategies for control, prevention, and treatment of bacterial infections.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Glenn Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
García-Del Portillo F. Building peptidoglycan inside eukaryotic cells: A view from symbiotic and pathogenic bacteria. Mol Microbiol 2020; 113:613-626. [PMID: 32185832 PMCID: PMC7154730 DOI: 10.1111/mmi.14452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/08/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The peptidoglycan (PG), as the exoskeleton of most prokaryotes, maintains a defined shape and ensures cell integrity against the high internal turgor pressure. These important roles have attracted researchers to target PG metabolism in order to control bacterial infections. Most studies, however, have been performed in bacteria grown under laboratory conditions, leading to only a partial view on how the PG is synthetized in natural environments. As a case in point, PG metabolism and its regulation remain poorly understood in symbiotic and pathogenic bacteria living inside eukaryotic cells. This review focuses on the PG metabolism of intracellular bacteria, emphasizing the necessity of more in vivo studies involving the analysis of enzymes produced in the intracellular niche and the isolation of PG from bacteria residing within eukaryotic cells. The review also points to persistent infections caused by some intracellular bacterial pathogens and the extent at which the PG could contribute to establish such physiological state. Based on recent evidences, I speculate on the idea that certain structural features of the PG may facilitate attenuation of intracellular growth. Lastly, I discuss recent findings in endosymbionts supporting a cooperation between host and bacterial enzymes to assemble a mature PG.
Collapse
|
31
|
Envelope Stress and Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System. J Bacteriol 2020; 202:JB.00272-20. [PMID: 32571967 DOI: 10.1128/jb.00272-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/19/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses a type three secretion system (T3SS) encoded on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. The SPI1 T3SS is regulated by numerous environmental and physiological signals, integrated to either activate or repress invasion. Transcription of hilA, encoding the transcriptional activator of the SPI1 structural genes, is activated by three AraC-like regulators, HilD, HilC, and RtsA, that act in a complex feed-forward loop. Deletion of bamB, encoding a component of the β-barrel assembly machinery, causes a dramatic repression of SPI1, but the mechanism was unknown. Here, we show that partially defective β-barrel assembly activates the RcsCDB regulon, leading to decreased hilA transcription. This regulation is independent of RpoE activation. Though Rcs has been previously shown to repress SPI1 when disulfide bond formation is impaired, we show that activation of Rcs in a bamB background is dependent on the sensor protein RcsF, whereas disulfide bond status is sensed independently. Rcs decreases transcription of the flagellar regulon, including fliZ, the product of which indirectly activates HilD protein activity. Rcs also represses hilD, hilC, and rtsA promoters by an unknown mechanism. Both dsbA and bamB mutants have motility defects, though this is simply regulatory in a bamB background; motility is restored in the absence of Rcs. Effector secretion assays show that repression of SPI1 in a bamB background is also regulatory; if expressed, the SPI1 T3SS is functional in a bamB background. This emphasizes the sensitivity of SPI1 regulation to overall envelope homeostasis.IMPORTANCE Salmonella causes worldwide foodborne illness, leading to massive disease burden and an estimated 600,000 deaths per year. Salmonella infects orally and invades intestinal epithelial cells using a type 3 secretion system that directly injects effector proteins into host cells. This first step in invasion is tightly regulated by a variety of inputs. In this work, we demonstrate that Salmonella senses the functionality of outer membrane assembly in determining regulation of invasion machinery, and we show that Salmonella uses distinct mechanisms to detect specific perturbations in envelope assembly.
Collapse
|
32
|
Wall EA, Majdalani N, Gottesman S. IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein. PLoS Genet 2020; 16:e1008610. [PMID: 32716926 PMCID: PMC7418988 DOI: 10.1371/journal.pgen.1008610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/11/2020] [Accepted: 06/10/2020] [Indexed: 01/13/2023] Open
Abstract
Two-component systems and phosphorelays play central roles in the ability of bacteria to rapidly respond to changing environments. In E. coli and related enterobacteria, the complex Rcs phosphorelay is a critical player in the bacterial response to antimicrobial peptides, beta-lactam antibiotics, and other disruptions at the cell surface. The Rcs system is unusual in that an inner membrane protein, IgaA, is essential due to its negative regulation of the RcsC/RcsD/RcsB phosphorelay. While it is known that IgaA transduces signals from the outer membrane lipoprotein RcsF, how it interacts with the phosphorelay has remained unknown. Here we performed in vivo interaction assays and genetic dissection of the critical proteins and found that IgaA interacts with the phosphorelay protein RcsD, and that this interaction is necessary for regulation. Interactions between IgaA and RcsD within their respective periplasmic domains of these two proteins anchor repression of signaling. However, the signaling response depends on a second interaction between cytoplasmic loop 1 of IgaA and a truncated Per-Arndt-Sim (PAS-like) domain in RcsD. A single point mutation in the PAS-like domain increased interactions between the two proteins and blocked induction of the phosphorelay. IgaA may regulate RcsC, the histidine kinase that initiates phosphotransfer through the phosphorelay, indirectly, via its contacts with RcsD. Unlike RcsD, and unlike many other histidine kinases, the periplasmic domain of RcsC is dispensable for the response to signals that induce the Rcs phosphorelay system. The multiple contacts between IgaA and RcsD constitute a poised sensing system, preventing potentially toxic over-activation of this phosphorelay while enabling it to rapidly and quantitatively respond to signals. The Rcs phosphorelay system plays a central role in allowing enterobacteria to sense and respond to antibiotics, host-produced antimicrobials, and interactions with surfaces. A unique negative regulator, IgaA, attenuates signaling from this pathway when it is not needed, but how IgaA controls the phosphorelay has been unclear. We define a set of critical interactions between IgaA and the phosphotransfer protein RcsD, including a periplasmic contact between IgaA and RcsD that mediates a necessary inhibition of Rcs signaling. Inhibition is further modulated by regulated interactions between the cytoplasmic domains of each protein, providing a sensitive regulatory switch.
Collapse
Affiliation(s)
- Erin A. Wall
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nadim Majdalani
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan Gottesman
- National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, AlHigaylan M, Lehner KL, Franks JM, Lathrop KL, Collins E, Schmitt DM, Horzempa J, Shanks RMQ. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathog 2019; 15:e1007825. [PMID: 31220184 PMCID: PMC6586354 DOI: 10.1371/journal.ppat.1007825] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.
Collapse
Affiliation(s)
- Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jake D. Callaghan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Julianna M. Bachinsky
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Mohammed AlHigaylan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Kara L. Lehner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jonathan M. Franks
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Deanna M. Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
- * E-mail:
| |
Collapse
|
34
|
Mutational and non mutational adaptation of Salmonella enterica to the gall bladder. Sci Rep 2019; 9:5203. [PMID: 30914708 PMCID: PMC6435676 DOI: 10.1038/s41598-019-41600-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
During systemic infection of susceptible hosts, Salmonella enterica colonizes the gall bladder, which contains lethal concentrations of bile salts. Recovery of Salmonella cells from the gall bladder of infected mice yields two types of isolates: (i) bile-resistant mutants; (ii) isolates that survive lethal selection without mutation. Bile-resistant mutants are recovered at frequencies high enough to suggest that increased mutation rates may occur in the gall bladder, thus providing a tentative example of stress-induced mutation in a natural environment. However, most bile-resistant mutants characterized in this study show defects in traits that are relevant for Salmonella colonization of the animal host. Mutation may thus permit short-term adaptation to the gall bladder at the expense of losing fitness for transmission to new hosts. In contrast, non mutational adaptation may have evolved as a fitness-preserving strategy. Failure of RpoS− mutants to colonize the gall bladder supports the involvement of the general stress response in non mutational adaptation.
Collapse
|
35
|
Passaris I, Cambré A, Govers SK, Aertsen A. Bimodal Expression of the Salmonella Typhimurium spv Operon. Genetics 2018; 210:621-635. [PMID: 30143595 PMCID: PMC6216589 DOI: 10.1534/genetics.118.300822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023] Open
Abstract
The well-studied spv operon of Salmonellatyphimurium is important for causing full virulence in mice and both the regulation and function of the Spv proteins have been characterized extensively over the past several decades. Using quantitative single-cell fluorescence microscopy, we demonstrate the spv regulon to display a bimodal expression pattern that originates in the bimodal expression of the SpvR activator. The spv expression pattern is influenced by growth conditions and the specific Styphimurium strain used, but does not require Salmonella-specific virulence regulators. By monitoring real-time promoter kinetics, we reveal that SpvA has the ability to impart negative feedback on spvABCD expression without affecting spvR expression. Together, our data suggest that the SpvA protein counteracts the positive feedback loop imposed by SpvR, and could thus be responsible for dampening spvABCD expression and coordinating virulence protein production in time. The results presented here yield new insights in the intriguing regulation of the spv operon and adds this operon to the growing list of virulence factors exhibiting marked expression heterogeneity in Styphimurium.
Collapse
Affiliation(s)
- Ioannis Passaris
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| |
Collapse
|
36
|
Abstract
RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of Escherichia coli commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.
Collapse
Affiliation(s)
- Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| |
Collapse
|
37
|
Hussein NA, Cho SH, Laloux G, Siam R, Collet JF. Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the Rcs phosphorelay across subcellular compartments. PLoS Genet 2018; 14:e1007398. [PMID: 29852010 PMCID: PMC5978795 DOI: 10.1371/journal.pgen.1007398] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
In enterobacteria, the Rcs system (Regulator of capsule synthesis) monitors envelope integrity and induces a stress response when damages occur in the outer membrane or in the peptidoglycan layer. Built around a two-component system, Rcs controls gene expression via a cascade of phosphoryl transfer reactions. Being particularly complex, Rcs also involves the outer membrane lipoprotein RcsF and the inner membrane essential protein IgaA (Intracellular growth attenuator). RcsF and IgaA, which are located upstream of the phosphorelay, are required for normal Rcs functioning. Here, we establish the stress-dependent formation of a complex between RcsF and the periplasmic domain of IgaA as the molecular signal triggering Rcs. Moreover, molecular dissection of IgaA reveals that its negative regulatory role on Rcs is mostly carried by its first N-terminal cytoplasmic domain. Altogether, our results support a model in which IgaA regulates Rcs activation by playing a direct role in the transfer of signals from the cell envelope to the cytoplasm. This remarkable feature further distinguishes Rcs from other envelope stress response systems. A thorough understanding of the mechanisms that allow bacteria to thrive in various environments is crucial to the development of new antibiotics, an urgent endeavor to combat antimicrobial resistance. A landmark feature of Gram-negative bacteria is the presence of a multi-layered envelope. Because this structure is essential, its integrity is constantly monitored to detect and respond to potential breaches in a fast and adequate manner. Here, we describe how IgaA, an essential protein present in the cytoplasmic membrane of enterobacteria, participates in the transfer of stress signals from the envelope to the cytoplasm. We provide evidence that IgaA works in concert with RcsF, a lipoprotein that is posted as a sentinel in the outermost envelope layer, to detect envelope stress: under stress conditions, RcsF forms a complex with the C-terminal, periplasmic domain of IgaA. As a result, cells turn on the Rcs response. We also discovered that the N-terminal, cytoplasmic domain of IgaA plays an important role in inhibiting Rcs in the absence of stress. Together, these findings reveal that distinct IgaA domains coordinate stress sensing and Rcs activation across the cytoplasmic membrane. They enhance our understanding of Rcs regulation and open new avenues for the development of new antibacterials.
Collapse
Affiliation(s)
- Nahla A. Hussein
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, Cairo, Egypt
| | - Seung-Hyun Cho
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Géraldine Laloux
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Rania Siam
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, Cairo, Egypt
| | - Jean-François Collet
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
38
|
An IgaA/UmoB Family Protein from Serratia marcescens Regulates Motility, Capsular Polysaccharide Biosynthesis, and Secondary Metabolite Production. Appl Environ Microbiol 2018; 84:AEM.02575-17. [PMID: 29305504 DOI: 10.1128/aem.02575-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/23/2017] [Indexed: 12/28/2022] Open
Abstract
Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-microbe interactions. The bacterium Serratia marcescens is part of the Enterobacteriaceae family of eubacteria and produces a number of biologically active secondary metabolites. In this study, we screened for novel regulators of secondary metabolites synthesized by a clinical isolate of S. marcescens and found mutations in a gene for an uncharacterized UmoB/IgaA family member here named gumB Mutation of gumB conferred a severe loss of the secondary metabolites prodigiosin and serratamolide. The gumB mutation conferred pleiotropic phenotypes, including altered biofilm formation, highly increased capsular polysaccharide production, and loss of swimming and swarming motility. These phenotypes corresponded to transcriptional changes in fimA, wecA, and flhD Unlike other UmoB/IgaA family members, gumB was found to be not essential for growth in S. marcescens, yet igaA from Salmonella enterica, yrfF from Escherichia coli, and an uncharacterized predicted ortholog from Klebsiella pneumoniae complemented the gumB mutant secondary metabolite defects, suggesting highly conserved function. These data support the idea that UmoB/IgaA family proteins are functionally conserved and extend the known regulatory influence of UmoB/IgaA family proteins to the control of competition-associated secondary metabolites and biofilm formation.IMPORTANCE IgaA/UmoB family proteins are found in members of the Enterobacteriaceae family of bacteria, which are of environmental and public health importance. IgaA/UmoB family proteins are thought to be inner membrane proteins that report extracellular stresses to intracellular signaling pathways that respond to environmental challenge. This study introduces a new member of the IgaA/UmoB family and demonstrates a high degree of functional similarity between IgaA/UmoB family proteins. Moreover, this study extends the phenomena controlled by IgaA/UmoB family proteins to include the biosynthesis of antimicrobial secondary metabolites.
Collapse
|
39
|
Lin Z, Cai X, Chen M, Ye L, Wu Y, Wang X, Lv Z, Shang Y, Qu D. Virulence and Stress Responses of Shigella flexneri Regulated by PhoP/PhoQ. Front Microbiol 2018; 8:2689. [PMID: 29379483 PMCID: PMC5775216 DOI: 10.3389/fmicb.2017.02689] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
The two-component signal transduction system PhoP/PhoQ is an important regulator for stress responses and virulence in most Gram-negative bacteria, but characterization of PhoP/PhoQ in Shigella has not been thoroughly investigated. In the present study, we found that deletion of phoPQ (ΔphoPQ) from Shigella flexneri 2a 301 (Sf301) resulted in a significant decline (reduced by more than 15-fold) in invasion of HeLa cells and Caco-2 cells, and less inflammation (− or +) compared to Sf301 (+++) in the guinea pig Sereny test. In low Mg2+ (10 μM) medium or pH 5 medium, the ΔphoPQ strain exhibited a growth deficiency compared to Sf301. The ΔphoPQ strain was more sensitive than Sf301 to polymyxin B, an important antimicrobial agent for treating multi-resistant Gram-negative infections. By comparing the transcriptional profiles of ΔphoPQ and Sf301 using DNA microarrays, 117 differentially expressed genes (DEGs) were identified, which were involved in Mg2+ transport, lipopolysaccharide modification, acid resistance, bacterial virulence, respiratory, and energy metabolism. Based on the reported PhoP box motif [(T/G) GTTTA-5nt-(T/G) GTTTA], we screened 38 suspected PhoP target operons in S. flexneri, and 11 of them (phoPQ, mgtA, slyB, yoaE, yrbL, icsA, yhiWX, rstA, hdeAB, pagP, and shf–rfbU-virK-msbB2) were demonstrated to be PhoP-regulated genes based on electrophoretic mobility shift assays and β-galactosidase assays. One of these PhoP-regulated genes, icsA, is a well-known virulence factor in S. flexneri. In conclusion, our data suggest that the PhoP/PhoQ system modulates S. flexneri virulence (in an icsA-dependent manner) and stress responses of Mg2+, pH and antibacterial peptides.
Collapse
Affiliation(s)
- Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Mingliang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
40
|
Pucciarelli MG, Rodríguez L, García-Del Portillo F. A Disulfide Bond in the Membrane Protein IgaA Is Essential for Repression of the RcsCDB System. Front Microbiol 2017; 8:2605. [PMID: 29312270 PMCID: PMC5744062 DOI: 10.3389/fmicb.2017.02605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/14/2017] [Indexed: 11/26/2022] Open
Abstract
IgaA is an integral inner membrane protein that was discovered as repressor of the RcsCDB phosphorelay system in the intracellular pathogen Salmonella enterica serovar Typhimurium. The RcsCDB system, conserved in many members of the family Enterobacteriaceae, regulates expression of varied processes including motility, biofilm formation, virulence and response to envelope stress. IgaA is an essential protein to which, in response to envelope perturbation, the outer membrane lipoprotein RcsF has been proposed to bind in order to activate the RcsCDB phosphorelay. Envelope stress has also been reported to be sensed by a surface exposed domain of RcsF. These observations support a tight control of the RcsCDB system by RcsF and IgaA via mechanisms that, however, remain unknown. Interestingly, RcsF and IgaA have four conserved cysteine residues in loops exposed to the periplasmic space. Two non-consecutive disulfide bonds were shown to be required for RcsF function. Here, we report mutagenesis studies supporting the presence of one disulfide bond (C404-C425) in the major periplasmic loop of IgaA that is essential for repression of the RcsCDB phosphorelay. Our data therefore suggest that the redox state of the periplasm may be critical for the control of the RcsCDB system by its two upstream regulators, RcsF and IgaA.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratorio de Patógenos Bacterianos Intracelulares, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa-Consejo Superior de Investigaciones Científicas (CBMSO-CSIC), Madrid, Spain
| | - Leticia Rodríguez
- Laboratorio de Patógenos Bacterianos Intracelulares, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratorio de Patógenos Bacterianos Intracelulares, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
41
|
Fang SB, Huang CJ, Huang CH, Wang KC, Chang NW, Pan HY, Fang HW, Huang MT, Chen CK. speG Is Required for Intracellular Replication of Salmonella in Various Human Cells and Affects Its Polyamine Metabolism and Global Transcriptomes. Front Microbiol 2017; 8:2245. [PMID: 29187844 PMCID: PMC5694781 DOI: 10.3389/fmicb.2017.02245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
The speG gene has been reported to regulate polyamine metabolism in Escherichia coli and Shigella, but its role in Salmonella remains unknown. Our preliminary studies have revealed that speG widely affects the transcriptomes of infected in vitro M and Caco-2 cells and that it is required for the intracellular replication of Salmonella enterica serovar Typhimurium (S. Typhimurium) in HeLa cells. In this study, we demonstrated that speG plays a time-dependent and cell type-independent role in the intracellular replication of S. Typhimurium. Moreover, high-performance liquid chromatography (HPLC) of four major polyamines demonstrated putrescine, spermine, and cadaverine as the leading polyamines in S. Typhimurium. The deletion of speG significantly increased the levels of the three polyamines in intracellular S. Typhimurium, suggesting the inhibitory effect of speG on the biosynthesis of these polyamines. The deletion of speG was associated with elevated levels of these polyamines in the attenuated intracellular replication of S. Typhimurium in host cells. This result was subsequently validated by the dose-dependent suppression of intracellular proliferation after the addition of the polyamines. Furthermore, our RNA transcriptome analysis of S. Typhimurium SL1344 and its speG mutant outside and inside Caco-2 cells revealed that speG regulates the genes associated with flagellar biosynthesis, fimbrial expression, and functions of types III and I secretion systems. speG also affects the expression of genes that have been rarely reported to correlate with polyamine metabolism in Salmonella, including those associated with the periplasmic nitrate reductase system, glucarate metabolism, the phosphotransferase system, cytochromes, and the succinate reductase complex in S. Typhimurium in the mid-log growth phase, as well as those in the ilv-leu and histidine biosynthesis operons of intracellular S. Typhimurium after invasion in Caco-2 cells. In the present study, we characterized the phenotypes and transcriptome effects of speG in S. Typhimurium and reviewed the relevant literature to facilitate a more comprehensive understanding of the potential role of speG in the polyamine metabolism and virulence regulation of Salmonella.
Collapse
Affiliation(s)
- Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Jou Huang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan.,Graduate Institution of Engineering Technology-Doctoral, National Taipei University of Technology, Taipei, Taiwan
| | - Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nai-Wen Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hung-Yin Pan
- Graduate Institution of Engineering Technology-Doctoral, National Taipei University of Technology, Taipei, Taiwan
| | - Hsu-Wei Fang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Te Huang
- Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Kuo Chen
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
42
|
Sato T, Takano A, Hori N, Izawa T, Eda T, Sato K, Umekawa M, Miyagawa H, Matsumoto K, Muramatsu-Fujishiro A, Matsumoto K, Matsuoka S, Hara H. Role of the inner-membrane histidine kinase RcsC and outer-membrane lipoprotein RcsF in the activation of the Rcs phosphorelay signal transduction system in Escherichia coli. Microbiology (Reading) 2017; 163:1071-1080. [DOI: 10.1099/mic.0.000483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Takatsugu Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Akira Takano
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Nanako Hori
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Tomoko Izawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Takayoshi Eda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
- Present address: Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Kota Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Mitsuru Umekawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Hiroyoshi Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Kenji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Ayako Muramatsu-Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| |
Collapse
|
43
|
Pucciarelli MG, García-Del Portillo F. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0009-2016. [PMID: 28730976 PMCID: PMC11687531 DOI: 10.1128/microbiolspec.mtbp-0009-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella-containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
44
|
Dawoud TM, Davis ML, Park SH, Kim SA, Kwon YM, Jarvis N, O’Bryan CA, Shi Z, Crandall PG, Ricke SC. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review. Front Vet Sci 2017; 4:93. [PMID: 28660201 PMCID: PMC5469892 DOI: 10.3389/fvets.2017.00093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal) stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.
Collapse
Affiliation(s)
- Turki M. Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Morgan L. Davis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nathan Jarvis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Corliss A. O’Bryan
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Zhaohao Shi
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Philip G. Crandall
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
45
|
Ramos-Marquès E, Zambrano S, Tiérrez A, Bianchi ME, Agresti A, García-Del Portillo F. Single-cell analyses reveal an attenuated NF-κB response in the Salmonella-infected fibroblast. Virulence 2016; 8:719-740. [PMID: 27575017 DOI: 10.1080/21505594.2016.1229727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic transcriptional regulator Nuclear Factor kappa B (NF-κB) plays a central role in the defense to pathogens. Despite this, few studies have analyzed NF-κB activity in single cells during infection. Here, we investigated at the single cell level how NF-κB nuclear localization - a proxy for NF-κB activity - oscillates in infected and uninfected fibroblasts co-existing in cultures exposed to Salmonella enterica serovar Typhimurium. Fibroblasts were used due to the capacity of S. Typhimurium to persist in this cell type. Real-time dynamics of NF-κB was examined in microfluidics, which prevents cytokine accumulation. In this condition, infected (ST+) cells translocate NF-κB to the nucleus at higher rate than the uninfected (ST-) cells. Surprisingly, in non-flow (static) culture conditions, ST- fibroblasts exhibited higher NF-κB nuclear translocation than the ST+ population, with these latter cells turning refractory to external stimuli such as TNF-α or a second infection. Sorting of ST+ and ST- cell populations confirmed enhanced expression of NF-κB target genes such as IL1B, NFKBIA, TNFAIP3, and TRAF1 in uninfected (ST-) fibroblasts. These observations proved that S. Typhimurium dampens the NF-κB response in the infected fibroblast. Higher expression of SOCS3, encoding a "suppressor of cytokine signaling," was also observed in the ST+ population. Intracellular S. Typhimurium subverts NF-κB activity using protein effectors translocated by the secretion systems encoded by pathogenicity islands 1 (T1) and 2 (T2). T1 is required for regulating expression of SOCS3 and all NF-κB target genes analyzed whereas T2 displayed no role in the control of SOCS3 and IL1B expression. Collectively, these data demonstrate that S. Typhimurium attenuates NF-κB signaling in fibroblasts, an effect only perceptible when ST+ and ST- populations are analyzed separately. This tune-down in a central host defense might be instrumental for S. Typhimurium to establish intracellular persistent infections.
Collapse
Affiliation(s)
- Estel Ramos-Marquès
- a Laboratory of Intracellular Bacterial Pathogens , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | | | - Alberto Tiérrez
- a Laboratory of Intracellular Bacterial Pathogens , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Marco E Bianchi
- c Genetics and Cell Biology Division , San Raffaele Scientific Institute , Milan , Italy
| | - Alessandra Agresti
- c Genetics and Cell Biology Division , San Raffaele Scientific Institute , Milan , Italy
| | - Francisco García-Del Portillo
- a Laboratory of Intracellular Bacterial Pathogens , Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| |
Collapse
|
46
|
López-Montero N, Ramos-Marquès E, Risco C, García-Del Portillo F. Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections. Autophagy 2016; 12:1886-1901. [PMID: 27485662 DOI: 10.1080/15548627.2016.1208888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Xenophagy has been studied in epithelial cells infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). Distinct autophagy receptors target this pathogen to degradation after interacting with ubiquitin on the surface of cytosolic bacteria, and the phagophore- and autophagosome-associated protein MAP1LC3/LC3. Glycans exposed in damaged phagosomal membranes and diacylglycerol accumulation in the phagosomal membrane also trigger S. Typhimurium xenophagy. How these responses control intraphagosomal and cytosolic bacteria remains poorly understood. Here, we examined S. Typhimurium interaction with autophagy in fibroblasts, in which the pathogen displays limited growth and does not escape into the cytosol. Live-cell imaging microscopy revealed that S. Typhimurium recruits late endosomal or lysosomal compartments that evolve into a membranous aggregate connected to the phagosome. Active dynamics and integrity of the phagosomal membrane are requisite to induce such aggregates. This membranous structure increases over time to become an aggresome that engages autophagy machinery at late infection times (> 6 h postentry). The newly formed autophagosome harbors LC3 and the autophagy receptor SQSTM1/p62 but is devoid of ubiquitin and the receptor CALCOCO2/NDP52. Live-cell imaging showed that this autophagosome captures and digests within the same vacuole the aggresome and some apposed intraphagosomal bacteria. Other phagosomes move away from the aggresome and avoid destruction. Thus, host endomembrane accumulation resulting from activity of intracellular S. Typhimurium stimulates a novel type of aggrephagy that acts independently of ubiquitin and CALCOCO2, and destroys only a few bacteria. Such selective degradation might allow the pathogen to reduce its progeny and, as a consequence, to establish persistent infections.
Collapse
Affiliation(s)
- Noelia López-Montero
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Estel Ramos-Marquès
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Cristina Risco
- b Cell Structure Laboratory, Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| | - Francisco García-Del Portillo
- a Laboratory of Intracellular Bacterial Pathogens, Department of Microbial Biotechnology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC) , Madrid , Spain
| |
Collapse
|
47
|
Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 2016; 40:592-609. [PMID: 27476076 DOI: 10.1093/femsre/fuw022] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial virulence relies on a delicate balance of signals interchanged between the invading microbe and the host. This communication has been extensively perceived as a battle involving harmful molecules produced by the pathogen and host defenses. In this review, we focus on a largely unexplored element of this dialogue, as are toxin-antitoxin (TA) systems of the pathogen. TA systems are reported to respond to stresses that are also found in the host and, as a consequence, could modulate the physiology of the intruder microbe. This view is consistent with recent studies that demonstrate a contribution of distinct TA systems to virulence since their absence alters the course of the infection. TA loci are stress response modules that, therefore, could readjust pathogen metabolism to favor the generation of slow-growing or quiescent cells 'before' host defenses irreversibly block essential pathogen activities. Some toxins of these TA modules have been proposed as potential weapons used by the pathogen to act on host targets. We discuss all these aspects based on studies that support some TA modules as important regulators in the pathogen-host interface.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco García-Del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
48
|
Rico-Pérez G, Pezza A, Pucciarelli MG, de Pedro MA, Soncini FC, García-del Portillo F. A novel peptidoglycan D,L-endopeptidase induced by Salmonella inside eukaryotic cells contributes to virulence. Mol Microbiol 2015; 99:546-56. [PMID: 26462856 DOI: 10.1111/mmi.13248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/25/2022]
Abstract
Bacteria remodel peptidoglycan structure in response to environmental changes. Many enzymes are involved in peptidoglycan metabolism; however, little is known about their responsiveness in a defined environment or the modes they assist bacteria to adapt to new niches. Here, we focused in peptidoglycan enzymes that intracellular bacterial pathogens use inside eukaryotic cells. We identified a peptidoglycan enzyme induced by Salmonella enterica serovar Typhimurium in fibroblasts and epithelial cells. This enzyme, which shows γ-D-glutamyl-meso-diaminopimelic acid D,L-endopeptidase activity, is also produced by the pathogen in media with limited nutrients and in resting conditions. The enzyme, termed EcgA for endopeptidase responding to cessation of growth', is encoded in a S. Typhimurium genomic island absent in Escherichia coli. EcgA production is strictly dependent on the virulence regulator PhoP in extra- and intracellular environments. Consistent to this regulation, a mutant lacking EcgA is attenuated in the mouse typhoid model. These findings suggest that specialised peptidoglycan enzymes, such as EcgA, might facilitate Salmonella adaptation to the intracellular lifestyle. Moreover, they indicate that readjustment of peptidoglycan metabolism inside the eukaryotic cell is essential for host colonisation.
Collapse
Affiliation(s)
- Gadea Rico-Pérez
- Laboratory of Intracellular Bacterial Pathogens, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Alejandro Pezza
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.,Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A de Pedro
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Francisco García-del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
49
|
Abstract
A clear etiological link has been established between infection with several gram-negative enteric pathogens, including Salmonella spp., and the incidence of reactive arthritis (ReA), an autoimmune disease that largely affects the joints. ReA is sometimes referred to as Reiter's syndrome, particularly when accompanied by uveitis and urethritis. This review reviews the evidence etiologically linking Salmonella infection with autoimmune disease and addresses the roles that bacterial and host elements play in controlling disease outcome. ReA is an autoimmune disease that largely consists of painful joint inflammation but also can include inflammation of the eye, gastrointestinal tract, and skin. ReA is a member of a broad spectrum of chronic inflammatory disorders termed the seronegative spondyloarthropathies (SNSpAs) that includes ankylosing spondylitis (AS), psoriatic arthritis, and enteropathic arthritis. Salmonella species, as well as other enteric pathogens associated with postgastroenteritis ReA, are facultative intracellular gram-negative bacteria. Many studies have analyzed the association of the HLA class I molecule, HLA-B27, with SNSpAs. Whereas B27 has been shown to be present in 90 to 95% of cases of AS, the association of the B27 haplotype with other SNSpAs is more tenuous. The clear association between ReA and infection with Salmonella or other gram-negative enteric pathogens has led to the suggestion that the adaptive immune response to infection has an autoimmune component. In addition to various Salmonella species, other gram-negative enteric pathogens have been linked to the development of ReA. Given their close relationship to Salmonella, this review considers the involvement of Shigella species in ReA.
Collapse
|
50
|
Szmolka A, Wiener Z, Matulova ME, Varmuzova K, Rychlik I. Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection. PLoS One 2015; 10:e0127708. [PMID: 26046914 PMCID: PMC4457728 DOI: 10.1371/journal.pone.0127708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022] Open
Abstract
The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only ’non-immune’ genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria.
Collapse
Affiliation(s)
- Ama Szmolka
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|