1
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
2
|
Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia. mBio 2021; 12:e0063321. [PMID: 34060331 PMCID: PMC8262890 DOI: 10.1128/mbio.00633-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the Yersinia IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking iscR following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds in vivo to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated sufABCDSE Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in Yersinia through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection.
Collapse
|
3
|
Hooker-Romero D, Mettert E, Schwiesow L, Balderas D, Alvarez PA, Kicin A, Gonzalez AL, Plano GV, Kiley PJ, Auerbuch V. Iron availability and oxygen tension regulate the Yersinia Ysc type III secretion system to enable disseminated infection. PLoS Pathog 2019; 15:e1008001. [PMID: 31869388 PMCID: PMC6946166 DOI: 10.1371/journal.ppat.1008001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/07/2020] [Accepted: 11/10/2019] [Indexed: 11/21/2022] Open
Abstract
The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis. The Yersinia type III secretion system (T3SS) is an important virulence factor of the enteropathogen Yersinia pseudotuberculosis as well as Yersinia pestis, the causative agent of plague. Although the T3SS promotes Yersinia survival in the host, its activity is not compatible with bacterial growth. Therefore, Yersinia must control where and when to express the T3SS to optimize fitness within the mammalian host. Here we show that Yersinia sense iron availability and oxygen tension, which vary between the intestinal environment and deeper tissues. Importantly, we show that eliminating the ability of Y. pseudotuberculosis to control its T3SS in response to iron and oxygen does not affect colonization of the intestine, where the T3SS is dispensable for growth. However, loss of T3SS control by iron and oxygen severely decreases disseminated infection. We propose that Y. pseudotuberculosis senses iron availability and oxygen tension to detect crossing the intestinal epithelial barrier. As the mechanism by which iron and oxygen control the T3SS is completely conserved between Y. pseudotuberculosis and Y. pestis, yet Y. pestis is not transmitted through the intestinal route, we propose that Y. pestis has retained this T3SS regulatory mechanism to suit its new infection cycle.
Collapse
Affiliation(s)
- Diana Hooker-Romero
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - David Balderas
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Pablo A. Alvarez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Anadin Kicin
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Azuah L. Gonzalez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami, Miami, FL, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
- * E-mail:
| |
Collapse
|
4
|
Schwiesow L, Mettert E, Wei Y, Miller HK, Herrera NG, Balderas D, Kiley PJ, Auerbuch V. Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources. Front Cell Infect Microbiol 2018. [PMID: 29520342 PMCID: PMC5827684 DOI: 10.3389/fcimb.2018.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the mammalian host actively sequestering iron to limit pathogenicity, heme (or hemin when oxidized) and hemoproteins serve as important sources of iron for many bloodborne pathogens. The HmuRSTUV hemin uptake system allows Yersinia species to uptake and utilize hemin and hemoproteins as iron sources. HmuR is a TonB-dependent outer membrane receptor for hemin and hemoproteins. HmuTUV comprise a inner membrane ABC transporter that transports hemin and hemoproteins from the periplasmic space into the bacterial cytoplasm, where it is degraded by HmuS. Here we show that hmuSTUV but not hmuR are expressed under iron replete conditions, whereas hmuR as well as hmuSTUV are expressed under iron limiting conditions, suggesting complex transcriptional control. Indeed, expression of hmuSTUV in the presence of inorganic iron, but not in the presence of hemin, requires the global regulator IscR acting from a promoter in the intergenic region between hmuR and hmuS. This effect of IscR appears to be direct by binding a site mapped by DNaseI footprinting. In contrast, expression of hmuR under iron limiting conditions requires derepression of the ferric uptake regulator Fur acting from the hmuR promoter, as Fur binding upstream of hmuR was demonstrated biochemically. Differential expression by both Fur and IscR would facilitate maximal hemin uptake and utilization when iron and heme availability is low while maintaining the capacity for periplasmic removal and cytosolic detoxification of heme under a wider variety of conditions. We also demonstrate that a Y. pseudotuberculosis ΔiscR mutant has a survival defect when incubated in whole blood, in which iron is sequestered by heme-containing proteins. Surprisingly, this phenotype was independent of the Hmu system, the type III secretion system, complement, and the ability of Yersinia to replicate intracellularly. These results suggest that IscR regulates multiple virulence factors important for Yersinia survival and growth in mammalian tissues and reveal a surprising complexity of heme uptake expression and function under differing conditions of iron.
Collapse
Affiliation(s)
- Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Yahan Wei
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Natalia G Herrera
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David Balderas
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
5
|
Sahl JW, Sistrunk JR, Baby NI, Begum Y, Luo Q, Sheikh A, Qadri F, Fleckenstein JM, Rasko DA. Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology. Sci Rep 2017; 7:3402. [PMID: 28611468 PMCID: PMC5469772 DOI: 10.1038/s41598-017-03631-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 11/08/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause more than 500,000 deaths each year in the developing world and are characterized on a molecular level by the presence of genes that encode the heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as surface structures, known as colonization factors (CFs). Genome sequencing and comparative genomic analyses of 94 previously uncharacterized ETEC isolates demonstrated remarkable genomic diversity, with 28 distinct sequence types identified in three phylogenomic groups. Interestingly, there is a correlation between the genomic sequence type and virulence factor profiles based on prevalence of the isolate, suggesting that there is an optimal combination of genetic factors required for survival, virulence and transmission in the most successful clones. A large-scale BLAST score ratio (LS-BSR) analysis was further applied to identify ETEC-specific genomic regions when compared to non-ETEC genomes, as well as genes that are more associated with clinical presentations or other genotypic markers. Of the strains examined, 21 of 94 ETEC isolates lacked any previously identified CF. Homology searches with the structural subunits of known CFs identified 6 new putative CF variants. These studies provide a roadmap to exploit genomic analyses by directing investigations of pathogenesis, virulence regulation and vaccine development.
Collapse
Affiliation(s)
- Jason W Sahl
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, USA
| | - Jeticia R Sistrunk
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
| | - Nabilah Ibnat Baby
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Begum
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Qingwei Luo
- Department of Medicine, Division of Infectious Diseases, Washington, USA
| | - Alaullah Sheikh
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
| | - Firdausi Qadri
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington, USA
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
- Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, USA
| | - David A Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 2017; 105:68-78. [PMID: 27780750 PMCID: PMC5401654 DOI: 10.1016/j.freeradbiomed.2016.10.489] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Iron is an essential micronutrient for most life forms including the majority of resident bacteria of the microbiota and their mammalian hosts. Bacteria have evolved numerous mechanisms to competitively acquire iron within host environments, such as the secretion of small molecules known as siderophores that can solubilize iron for bacterial use. However, siderophore biosynthesis and acquisition is not a capability equally harbored by all resident bacteria. Moreover, the structural diversity of siderophores creates variability in the susceptibility to host mechanisms that serve to counteract siderophore-mediated iron acquisition and limit bacterial growth. As a result, the differential capabilities to acquire iron among members of a complex microbial community carry important implications for the growth and function of resident bacteria. Siderophores can also directly influence host function by modulating cellular iron homeostasis, further providing a mechanism by which resident bacteria may influence their local environment at the host-microbial interface. This review will explore the putative mechanisms by which siderophore production by resident bacteria in the intestines may influence microbial community dynamics and host-bacterial interactions with important implications for pathogen- and microbiota-driven diseases including infection, inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Kwon T, Jung YH, Lee S, Yun MR, Kim W, Kim DW. Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain. Gut Pathog 2016; 8:34. [PMID: 27408624 PMCID: PMC4940875 DOI: 10.1186/s13099-016-0117-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Background Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146. Results The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: blaOXA-1 and blaSHV-28 in the chromosome, blaNDM-1 in plasmid 1, and blaOXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain. Conclusions Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0117-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Young-Hee Jung
- Division of Antimicrobial Resistance, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Sanghyun Lee
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Mi-Ran Yun
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Dae-Won Kim
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
8
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
9
|
Taheri T, Saberi Nik H, Seyed N, Doustdari F, Etemadzadeh MH, Torkashvand F, Rafati S. Generation of stable L. major(+EGFP-LUC) and simultaneous comparison between EGFP and luciferase sensitivity. Exp Parasitol 2015; 150:44-55. [PMID: 25637784 DOI: 10.1016/j.exppara.2015.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/17/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
Because of the lack of an accurate and sensitive tool to evaluate the parasitemia level, treatment or prevention of leishmaniasis remains an important challenge worldwide. To monitor and track leishmanial infection by two parameters in real time, we generated stably transgenic Leishmania that express a bi-reporter protein as fused EGFP and firefly luciferase. Using two reporter genes (egfp-luc) simultaneously increases the experimental sensitivity for detection/diagnosis, and in vitro quantification of parasites as well as real-time infection in mice. Through different specific tools, EGFP and LUC signals from the parasite were detectable and measurable within a mammalian host and promastigotes. Here, the LUC protein provided a higher level of sensitivity than did EGFP, so that infection was detectable at an earlier stage of the disease in the footpad (injection site) and lymph nodes by bioluminescence. These results depicted that: (1) both quantitative reporter genes, EGFP and LUC, could be simultaneously used to detect parasitemia in vitro and in vivo and (2) sensitivity of firefly luciferase was 10-fold higher than that of EGFP in promastigotes.
Collapse
Affiliation(s)
- Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | - Hana Saberi Nik
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran; Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Negar Seyed
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Torkashvand
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Runyen-Janecky LJ. Role and regulation of heme iron acquisition in gram-negative pathogens. Front Cell Infect Microbiol 2013; 3:55. [PMID: 24116354 PMCID: PMC3792355 DOI: 10.3389/fcimb.2013.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
Bacteria that reside in animal tissues and/or cells must acquire iron from their host. However, almost all of the host iron is sequestered in iron-containing compounds and proteins, the majority of which is found within heme molecules. Thus, likely iron sources for bacterial pathogens (and non-pathogenic symbionts) are free heme and heme-containing proteins. Furthermore, the cellular location of the bacterial within the host (intra or extracellular) influences the amount and nature of the iron containing compounds available for transport. The low level of free iron in the host, coupled with the presence of numerous different heme sources, has resulted in a wide range of high-affinity iron acquisition strategies within bacteria. However, since excess iron and heme are toxic to bacteria, expression of these acquisition systems is highly regulated. Precise expression in the correct host environment at the appropriate times enables heme iron acquisitions systems to contribute to the growth of bacterial pathogens within the host. This mini-review will highlight some of the recent findings in these areas for gram-negative pathogens.
Collapse
|
11
|
Genetic characterization of Escherichia coli O104 isolates from different sources in the United States. Appl Environ Microbiol 2011; 78:1615-8. [PMID: 22210209 DOI: 10.1128/aem.07533-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli O104 isolates collected from different sources in the United States were examined for virulence genes typical of enterohemorrhagic E. coli and those identified in the O104:H4 isolate associated with the 2011 German outbreak. The unexpected presence of virulence markers in these isolates highlights the importance of screening unusual and potentially pathogenic Shiga toxin-producing E. coli serotypes.
Collapse
|
12
|
Perry RD, Fetherston JD. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect 2011; 13:808-17. [PMID: 21609780 PMCID: PMC3148425 DOI: 10.1016/j.micinf.2011.04.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Yersiniabactin (Ybt) is a siderophore-dependent iron uptake system encoded on a pathogenicity island that is widespread among pathogenic bacteria including the Yersiniae. While biosynthesis of the siderophore has been elucidated, the secretion mechanism and a few components of the uptake/utilization pathway are unidentified. ybt genes are transcriptionally repressed by Fur but activated by YbtA, likely in combination with the siderophore itself. The Ybt system is essential for the ability of Yersinia pestis to cause bubonic plague and important in pneumonic plague as well. However, the ability to cause fatal septicemic plague is independent of Ybt.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, MS415 Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
13
|
Contribution of BlaA and BlaB beta-lactamases to antibiotic susceptibility of Yersinia enterocolitica biovar 1B. Antimicrob Agents Chemother 2010; 54:4000-2. [PMID: 20547799 DOI: 10.1128/aac.01754-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic Yersinia enterocolitica biovar 1B produces two distinct beta-lactamases, BlaA and BlaB. Mutants of a representative biovar 1B isolate were constructed and evaluated to determine the extent of limitation of susceptibility to broad-spectrum beta-lactam antibiotics by BlaA and BlaB. The results demonstrated that BlaA, a class A enzyme, plays a significant role in limiting susceptibility to penicillins and cephalosporins. The contribution of BlaB, a class C enzyme, was less profound and was limited primarily to cephalosporin susceptibility.
Collapse
|
14
|
Wang L, Cherayil BJ. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun 2009; 1:455-64. [PMID: 20375603 PMCID: PMC3969595 DOI: 10.1159/000210016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Recent advances in our understanding of the molecular regulation of iron metabolism have shed new light on how alterations in iron homeostasis both contribute to and influence innate immunity. In this article, we review what is currently known about the role of iron in the response to infection.
Collapse
Affiliation(s)
- Lijian Wang
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Mass., USA
- Department of Nutrition, Harvard School of Public Health, Boston, Mass., USA
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Mass., USA
- Department of Pediatrics, Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
15
|
Unusual, virulence plasmid-dependent growth behavior of Yersinia enterocolitica in three-dimensional collagen gels. J Bacteriol 2008; 190:4111-20. [PMID: 18408033 DOI: 10.1128/jb.00156-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As a first approach to establishing a three-dimensional culture infection model, we studied the growth behavior of the extracellular pathogen Yersinia enterocolitica in three-dimensional collagen gels (3D-CoG). Surprisingly, we observed that plasmidless Y. enterocolitica was motile in the 3D-CoG in contrast to its growth in traditional motility agar at 37 degrees C. Motility at 37 degrees C was abrogated in the presence of the virulence plasmid pYV or the exclusive expression of the pYV-located Yersinia adhesion gene yadA. YadA-producing yersiniae formed densely packed (dp) microcolonies, whereas pYVDelta yadA-carrying yersiniae formed loosely packed microcolonies at 37 degrees C in 3D-CoG. Furthermore, we demonstrated that the packing density of the microcolonies was dependent on the head domain of YadA. Moreover, dp microcolony formation did not depend on the capacity of YadA to bind to collagen fibers, as demonstrated by the use of yersiniae producing collagen nonbinding YadA. By using a yopE-gfp reporter, we demonstrated Ca(2+)-dependent expression of this pYV-localized virulence gene by yersiniae in 3D-CoG. In conclusion, this study revealed unique plasmid-dependent growth behavior of yersiniae in a three-dimensional matrix environment that resembles the behavior of yersiniae (e.g., formation of microcolonies) in infected mouse tissue. Thus, this 3D-CoG model may be a first step to a more complex level of in vitro infection models that mimic living tissue, enabling us to study the dynamics of pathogen-host cell interactions.
Collapse
|
16
|
Tabatabai LB. Identification of Pasteurella multocida CHAPS-Soluble Outer Membrane Proteins. Avian Dis 2008; 52:147-9. [DOI: 10.1637/7892-012807-resnote] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Oellerich MF, Jacobi CA, Freund S, Niedung K, Bach A, Heesemann J, Trülzsch K. Yersinia enterocolitica infection of mice reveals clonal invasion and abscess formation. Infect Immun 2007; 75:3802-11. [PMID: 17562774 PMCID: PMC1951990 DOI: 10.1128/iai.00419-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/07/2007] [Accepted: 05/25/2007] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica is a common cause of food-borne gastrointestinal disease leading to self-limiting diarrhea and mesenteric lymphadenitis. Occasionally, focal abscess formation in the livers and spleens of certain predisposed patients (those with iron overload states such as hemochromatosis) is observed. In the mouse oral infection model, yersiniae produce a similar disease involving the replication of yersiniae in the small intestine, the invasion of Peyer's patches, and dissemination to the liver and spleen. In these tissues and organs, yersiniae are known to replicate predominantly extracellularly and to form microcolonies. By infecting mice orally with a mixture of equal amounts of green- and red-fluorescing yersiniae (yersiniae expressing green or red fluorescent protein), we were able to show for the first time that yersiniae produce exclusively monoclonal microcolonies in Peyer's patches, the liver, and the spleen, indicating that a single bacterium is sufficient to induce microcolony and microabscess formation in vivo. Furthermore, we present evidence for the clonal invasion of Peyer's patches from the small intestine. The finding that only very few yersiniae are required to establish microcolonies in Peyer's patches is due to both Yersinia-specific and host-specific factors. We demonstrate that yersiniae growing in the small intestinal lumen show strongly reduced levels of invasin, the most important factor for the early invasion of Peyer's patches. Furthermore, we show that the host severely restricts sequential microcolony formation in previously infected Peyer's patches.
Collapse
Affiliation(s)
- Mark F Oellerich
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximillians University, Pettenkoferstrasse 9a, 80336 Münich, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Lawlor MS, O'connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 2007; 75:1463-72. [PMID: 17220312 PMCID: PMC1828572 DOI: 10.1128/iai.00372-06] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron acquisition systems are essential for the in vivo growth of bacterial pathogens. Despite the epidemiological importance of Klebsiella pneumoniae, few experiments have examined the importance of siderophores in the pathogenesis of this species. A previously reported signature-tagged mutagenesis screen identified an attenuated strain that featured an insertional disruption in ybtQ, which encodes a transporter for the siderophore yersiniabactin. We used this finding as a starting point to evaluate the importance of siderophores in the physiology and pathogenesis of K. pneumoniae. Isogenic strains carrying in-frame deletions in genes required for the synthesis of either enterobactin or yersiniabactin were constructed, and the growth of these mutants was examined both in vitro and in vivo using an intranasal infection model. The results suggest divergent functions for each siderophore in different environments, with enterobactin being more important for growth in vitro under iron limitation than in vivo and the reverse being true for the yersiniabactin locus. These observations represent the first examination of isogenic mutants in iron acquisition systems for K. pneumoniae and may indicate that the acquisition of nonenterobactin siderophores is an important step in the evolution of virulent enterobacterial strains.
Collapse
Affiliation(s)
- Matthew S Lawlor
- Department of Molecular Microbiology, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
19
|
Antonenka U, Nölting C, Heesemann J, Rakin A. Independent acquisition of site-specific recombination factors by asn tRNA gene-targeting genomic islands. Int J Med Microbiol 2006; 296:341-52. [PMID: 16753337 DOI: 10.1016/j.ijmm.2006.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/21/2022] Open
Abstract
Two genomic islands, namely the high-pathogenicity island (HPI) and Ecoc54N target the same asn tRNA genes to integrate into the bacterial chromosome. The HPI encodes the siderophore yersiniabactin in the highly pathogenic Yersinia group (Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica 1B) whilst the Ecoc54N island possibly encodes a polyketide synthase with an unknown function in the uropathogenic Escherichia coli CFT073 strain. HPI encodes the recombinase that promotes site-specific recombination (both integrative and excisive) with its corresponding attachment targets. A recombinase orthologue is also present in Ecoc54N. In addition, the HPI(Yps) of the Y. pestis/Y. pseudotuberculosis evolutionary lineage encodes the excisionase (recombination directionality factor, Xis(HPI)) that facilitates excision of the island. However, no sequence resembling the excisionase gene could be found in Ecoc54N. The rate of the HPI(Yps) excision estimated by real-time PCR was 10(-6) in Y. pseudotuberculosis. The presence of the excisionase increased the efficiency of the excisive recombination only eight fold. However, the introduction of the xis(HPI) in E. coli CFT073 did not influence the excision of Ecoc54N. The Xis(HPI) is encoded by the variable AT-rich part of the HPI(Yps) and substantially differs from its cognate recombinase in A+T content and codon usage. Also the Xis(HPI)-protected region, defined in the HPI attachment site, has suffered several nucleotide substitutions in Ecoc54N that could influence interaction with the excisionase. We propose that the pathogenicity islands (PAIs) targeting asn tRNA genes (PAIs(asn tRNA)) might have acquired recombinase and excisionase (HPI) genes independently and sequentially.
Collapse
Affiliation(s)
- Uladzimir Antonenka
- Max von Pettenkofer-Institute of Hygiene and Medical Microbiology, Pettenkofer Str. 9a, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
20
|
Mouriño S, Osorio CR, Lemos ML, Crosa JH. Transcriptional organization and regulation of the Vibrio anguillarum heme uptake gene cluster. Gene 2006; 374:68-76. [PMID: 16515846 DOI: 10.1016/j.gene.2006.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/17/2006] [Accepted: 01/19/2006] [Indexed: 11/19/2022]
Abstract
Vibrio anguillarum can utilize heme and hemoglobin as iron sources. Nine genes, huvA, huvZ, huvX, tonB1, exbB1, exbD1, huvB, huvC, huvD, encoding the proteins involved in heme transport and utilization, are clustered in a 10-kb region of chromosomal DNA. Reverse Transcriptase-PCR analysis demonstrated that the gene cluster is arranged into three transcriptional units: (1) huvA, (2) huvXZ, and (3) tonB1exbB1D1-huvBCD. Transcriptional start sites for each huvA, huvX, and tonB1 promoters were identified by primer extension analysis, and their respective -10 and -35 regions were shown to exhibit similarity to those of sigma70-recognized promoters. Expression from the three promoters, as analyzed by transcriptional fusions to a promoter less lacZ gene, was regulated by the iron concentration. Furthermore, analysis of the beta-galactosidase activities of these fusions in a V. anguillarum fur mutant demonstrated that the ferric uptake regulator repressor protein (Fur) is directly involved in the negative iron-mediated regulation of the heme uptake cluster.
Collapse
Affiliation(s)
- Susana Mouriño
- Department of Microbiology and Parasitology, Institute of Aquaculture and Faculty of Biology, University of Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | | | | | | |
Collapse
|
21
|
Antonenka U, Nölting C, Heesemann J, Rakin A. Horizontal transfer of Yersinia high-pathogenicity island by the conjugative RP4 attB target-presenting shuttle plasmid. Mol Microbiol 2005; 57:727-34. [PMID: 16045617 DOI: 10.1111/j.1365-2958.2005.04722.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The high-pathogenicity island (HPI) encodes a highly efficient yersiniabactin system of iron acquisition responsible for mouse lethality in Yersinia. Although the HPI is widely disseminated among Enterobacteriaceae it lacks functions necessary for its replication and transmission. Therefore, the mechanism of its horizontal transfer and circulation is completely obscure. On the other hand, the HPI is a genetically active island in the bacterial cell. It encodes a functional recombinase and is able to transpose to new targets on the chromosome. Here we report on a possible mechanism of the HPI dissemination based on site-specific recombination of the excised HPI with the attB-presenting (asn tRNA gene) RP4 promiscuous conjugative shuttle plasmid. The resulting cointegrate can be transferred by conjugation to a new host, where it dissociates, and the released HPI integrates into any unoccupied asn tRNA gene target in the genome. This mechanism has been proven both with the 'mini' island carrying only the attP recognition site and genes coding for recombination enzymes and with the complete HPI labelled with an antibiotic resistance marker. After acquisition of the mobilized complete form of the HPI, the ability of the HPI-cured Yersinia enterocolitica WA-TH(-) strain to produce yersiniabactin has been restored. Such 'trapping' of pathogenicity islands and subsequent shuffling to new hosts by a conjugative replicon carrying a suitable attB site could be applied to other functional integrative elements and explain wide dissemination of PAIs.
Collapse
|
22
|
Schubert S, Rakin A, Heesemann J. The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol 2005; 294:83-94. [PMID: 15493818 DOI: 10.1016/j.ijmm.2004.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The high-pathogenicity island (HPI) is a genomic island essential for the mouse-virulence phenotype in Yersinia and indispensable for pathogenicity of Yersinia and certain pathotypes of Escherichia coli. In contrast to most genomic islands, the HPI is a functional island widely disseminated among members of the family of Enterobacteriaceae. The HPI-encoded phage P4-like integrase together with excisionase and recombination sites make up the genetic mobility module of the island, while the siderophore yersiniabactin biosynthesis and uptake system comprises its functional part with respect to fitness and pathogenicity. The HPI-integrase promotes integration of the island into attB sites represented by three to four asn tDNAs in Yersinia pestis and E. coli. An additional enzyme, excisionase, is essential for efficient excision of the HPI from the initial site of integration. Furthermore a unique type of HPI has been characterized in the E. coli strain ECOR31 carrying a functional conjugative mating pair formation (Mpf) and a DNA-processing system, both of which are characteristic of integrative and conjugative elements (ICE). A model of conjugative transfer for the dissemination of HPIs is proposed in which the excised HPI is mobilized to a new recipient either trapped by a transmissive asn tDNA-carrying plasmid or autonomously as an ICE named ICEEcl.
Collapse
Affiliation(s)
- Sören Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Lehrstuhl für Bakteriologie, Pettenkoferstr 9a, D-80336 München, Germany
| | | | | |
Collapse
|
23
|
Forde CE, Rocco JM, Fitch JP, McCutchen-Maloney SL. Real-time characterization of virulence factor expression in Yersinia pestis using a GFP reporter system. Biochem Biophys Res Commun 2004; 324:795-800. [PMID: 15474497 DOI: 10.1016/j.bbrc.2004.08.236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Indexed: 11/26/2022]
Abstract
A real-time reporter system was developed to monitor the thermal induction of virulence factors in Yersinia pestis, the etiological agent of plague. The reporter system consists of a plasmid in Y. pestis in which the expression of green fluorescent protein (GFP) is under the control of the promoters for six virulence factors, yopE, sycE, yopK, yopT, yscN, and lcrE yopN, which are all components of the Type III secretion virulence mechanism of Y. pestis. Induction of the expression of these genes in vivo was determined by the increase in fluorescence intensity of GFP in real time, in 96-well format. Different basal levels of expression at 26 degrees C were observed for the Y. pestis promoters. Expressed as percentages of the level measured for the lac promoter (positive control), the basal expression levels before temperature shift were: yopE (15%), sycE (15%), yopK (13%), yopT (4%), lcrE (3.3%), and yscN (0.8%). Following the shift in temperature from 26 to 37 degrees C, the rates of expression of these genes increased with the yopE reporter showing the strongest degree of induction. The rates of induction of the other virulence factors after the temperature, expressed as percentages of yopE induction, were: yopK (57%), sycE (9%), yscN (3%), lcrE (3%), and yopT (2%). The thermal induction of each of these promoter fusions was repressed by calcium, and the ratios of the initial rates of thermal induction without calcium supplementation compared to the rate with calcium supplementation were: yopE (11-fold), yscN (7-fold), yopK (6-fold), lcrE (3-fold), yopT (2-fold), and sycE (1-fold). This work demonstrates a novel approach to quantify gene induction and provides a method to rapidly determine the effects of external stimuli on expression of Y. pestis virulence factors in real time, in living cells, as a means to characterize virulence determinants.
Collapse
Affiliation(s)
- Cameron E Forde
- Biodefense Division, Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | | | | | | |
Collapse
|
24
|
Jacobi CA, Bach A, Eberl L, Steidle A, Heesemann J. Detection of N-(3-oxohexanoyl)-L-homoserine lactone in mice infected with Yersinia enterocolitica serotype O8. Infect Immun 2003; 71:6624-6. [PMID: 14573686 PMCID: PMC219576 DOI: 10.1128/iai.71.11.6624-6626.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica synthesizes N-acyl-L-homoserine lactone (AHL) signal molecules via the LuxR-LuxI homologues YenR-YenI. In this study we checked two prototypes of mouse-virulent Y. enterocolitica serotype O8 strains WA-314 and 8081 for AHL production in vitro and in vivo (mouse infection model). We used thin-layer chromatography in combination with the Escherichia coli AHL biosensor to identify the AHL species produced. We detected only OHHL [N-(3-oxohexanoyl)-L-homoserine lactone] and not HHL (N-hexanoyl-L-homoserine lactone) produced by Y. enterocolitica O8 in culture supernatant or infected mouse tissue. This is the first report demonstrating AHL production by yersiniae during infection.
Collapse
Affiliation(s)
- Christoph A Jacobi
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximillian University Munich, D-80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
25
|
Oelschlaeger TA, Zhang D, Schubert S, Carniel E, Rabsch W, Karch H, Hacker J. The high-pathogenicity island is absent in human pathogens of Salmonella enterica subspecies I but present in isolates of subspecies III and VI. J Bacteriol 2003; 185:1107-11. [PMID: 12533488 PMCID: PMC142805 DOI: 10.1128/jb.185.3.1107-1111.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we tested 74 Salmonella strains of all eight Salmonella groups and were able to demonstrate the presence of two high-pathogenicity island types in strains of Salmonella groups IIIa, IIIb, and VI. Most high-pathogenicity island-positive isolates produced yersiniabactin under iron-limited conditions and were positive for the high-molecular-weight proteins HMWP1 and HMWP2.
Collapse
Affiliation(s)
- T A Oelschlaeger
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Roentgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|