1
|
Horowitz RI, Fallon J, Freeman PR. Combining Double-Dose and High-Dose Pulsed Dapsone Combination Therapy for Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome and Co-Infections, Including Bartonella: A Report of 3 Cases and a Literature Review. Microorganisms 2024; 12:909. [PMID: 38792737 PMCID: PMC11124288 DOI: 10.3390/microorganisms12050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Three patients with relapsing and remitting borreliosis, babesiosis, and bartonellosis, despite extended anti-infective therapy, were prescribed double-dose dapsone combination therapy (DDDCT) for 8 weeks, followed by one or several two-week courses of pulsed high-dose dapsone combination therapy (HDDCT). We discuss these patients' cases to illustrate three important variables required for long-term remission. First, diagnosing and treating active co-infections, including Babesia and Bartonella were important. Babesia required rotations of multiple anti-malarial drug combinations and herbal therapies, and Bartonella required one or several 6-day HDDCT pulses to achieve clinical remission. Second, all prior oral, intramuscular (IM), and/or intravenous (IV) antibiotics used for chronic Lyme disease (CLD)/post-treatment Lyme disease syndrome (PTLDS), irrespective of the length of administration, were inferior in efficacy to short-term pulsed biofilm/persister drug combination therapy i.e., dapsone, rifampin, methylene blue, and pyrazinamide, which improved resistant fatigue, pain, headaches, insomnia, and neuropsychiatric symptoms. Lastly, addressing multiple factors on the 16-point multiple systemic infectious disease syndrome (MSIDS) model was important in achieving remission. In conclusion, DDDCT with one or several 6-7-day pulses of HDDCT, while addressing abnormalities on the 16-point MSIDS map, could represent a novel effective clinical and anti-infective strategy in CLD/PTLDS and associated co-infections including Bartonella.
Collapse
Affiliation(s)
- Richard I. Horowitz
- New York State Department of Health Tick-Borne Working Group, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
2
|
Adams Y, Clausen AS, Jensen PØ, Lager M, Wilhelmsson P, Henningson AJ, Lindgren PE, Faurholt-Jepsen D, Mens H, Kraiczy P, Kragh KN, Bjarnsholt T, Kjaer A, Lebech AM, Jensen AR. 3D blood-brain barrier-organoids as a model for Lyme neuroborreliosis highlighting genospecies dependent organotropism. iScience 2023; 26:105838. [PMID: 36686395 PMCID: PMC9851883 DOI: 10.1016/j.isci.2022.105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Lyme neuroborreliosis (LNB), a tick-borne infection caused by spirochetes within the Borrelia burgdorferi sensu lato (s.L.) complex, is among the most prevalent bacterial central nervous system (CNS) infections in Europe and the US. Here we have screened a panel of low-passage B. burgdorferi s.l. isolates using a novel, human-derived 3D blood-brain barrier (BBB)-organoid model. We show that human-derived BBB-organoids support the entry of Borrelia spirochetes, leading to swelling of the organoids and a loss of their structural integrity. The use of the BBB-organoid model highlights the organotropism between B. burgdorferi s.l. genospecies and their ability to cross the BBB contributing to CNS infection.
Collapse
Affiliation(s)
- Yvonne Adams
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Biomedical Sciences, University of Copenhagen, University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malin Lager
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Wilhelmsson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna J. Henningson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per-Eric Lindgren
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Kasper Nørskov Kragh
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anja R. Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
3
|
A Live Cell Imaging Microfluidic Model for Studying Extravasation of Bloodborne Bacterial Pathogens. Cell Microbiol 2022. [DOI: 10.1155/2022/3130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria that migrate (extravasate) out of the bloodstream during vascular dissemination can cause secondary infections in many tissues and organs, including the brain, heart, liver, joints, and bone with clinically serious and sometimes fatal outcomes. The mechanisms by which bacteria extravasate through endothelial barriers in the face of blood flow-induced shear stress are poorly understood, in part because individual bacteria are rarely observed traversing endothelia in vivo, and in vitro model systems inadequately mimic the vascular environment. To enable the study of bacterial extravasation mechanisms, we developed a transmembrane microfluidics device mimicking human blood vessels. Fast, quantitative, three-dimensional live cell imaging in this system permitted single-cell resolution measurement of the Lyme disease bacterium Borrelia burgdorferi transmigrating through monolayers of primary human endothelial cells under physiological shear stress. This cost-effective, flexible method was 10,000 times more sensitive than conventional plate reader-based methods for measuring transendothelial migration. Validation studies confirmed that B. burgdorferi transmigrate actively and strikingly do so at similar rates under static and physiological flow conditions. This method has significant potential for future studies of B. burgdorferi extravasation mechanisms, as well as the transendothelial migration mechanisms of other disseminating bloodborne pathogens.
Collapse
|
4
|
Hyde JA. Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion. Front Immunol 2017; 8:114. [PMID: 28270812 PMCID: PMC5318424 DOI: 10.3389/fimmu.2017.00114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood-brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown degradation of host extracellular matrices by B. burgdorferi contributes to the invasive capabilities of the pathogen. Additionally, B. burgdorferi may use invasion of eukaryotic cells for immune evasion and protection against environmental stresses. This review provides an overview of B. burgdorferi mechanisms for dissemination and invasion in the mammalian host, which are essential for pathogenesis and the development of persistent infection.
Collapse
Affiliation(s)
- Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center , Bryan, TX , USA
| |
Collapse
|
5
|
Gautam A, Dixit S, Embers M, Gautam R, Philipp MT, Singh SR, Morici L, Dennis VA. Different patterns of expression and of IL-10 modulation of inflammatory mediators from macrophages of Lyme disease-resistant and -susceptible mice. PLoS One 2012; 7:e43860. [PMID: 23024745 PMCID: PMC3443101 DOI: 10.1371/journal.pone.0043860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 07/26/2012] [Indexed: 12/04/2022] Open
Abstract
C57BL/6J (C57) mice develop mild arthritis (Lyme disease-resistant) whereas C3H/HeN (C3H) mice develop severe arthritis (Lyme disease-susceptible) after infection with the spirochete Borrelia burgdorferi. We hypothesized that susceptibility and resistance to Lyme disease, as modeled in mice, is associated with early induction and regulation of inflammatory mediators by innate immune cells after their exposure to live B. burgdorferi spirochetes. Here, we employed multiplex ELISA and qRT-PCR to investigate quantitative differences in the levels of cytokines and chemokines produced by bone marrow-derived macrophages from C57 and C3H mice after these cells were exposed ex vivo to live spirochetes or spirochetal lipoprotein. Upon stimulation, the production of both cytokines and chemokines was up-regulated in macrophages from both mouse strains. Interestingly, however, our results uncovered two distinct patterns of spirochete- and lipoprotein-inducible inflammatory mediators displayed by mouse macrophages, such that the magnitude of the chemokine up-regulation was larger in C57 cells than it was in C3H cells, for most chemokines. Conversely, cytokine up-regulation was more intense in C3H cells. Gene transcript analyses showed that the displayed patterns of inflammatory mediators were associated with a TLR2/TLR1 transcript imbalance: C3H macrophages expressed higher TLR2 transcript levels as compared to those expressed by C57 macrophages. Exogenous IL-10 dampened production of inflammatory mediators, especially those elicited by lipoprotein stimulation. Neutralization of endogenously produced IL-10 increased production of inflammatory mediators, notably by macrophages of C57 mice, which also displayed more IL-10 than C3H macrophages. The distinct patterns of pro-inflammatory mediator production, along with TLR2/TLR1 expression, and regulation in macrophages from Lyme disease-resistant and -susceptible mice suggests itself as a blueprint to further investigate differential pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Aarti Gautam
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Saurabh Dixit
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Monica Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Mario T. Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Shree R. Singh
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Lisa Morici
- Department of Microbiology and Immunology, Tulane University, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vida A. Dennis
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| |
Collapse
|
6
|
Sabino GJ, Hwang SJ, McAllister SC, Mena P, Furie MB. Interferon-γ influences the composition of leukocytic infiltrates in murine lyme carditis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1917-28. [PMID: 21820995 DOI: 10.1016/j.ajpath.2011.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022]
Abstract
Interferon (IFN)-γ is present in lesions of patients with Lyme disease and positively correlates with the severity of manifestations. To investigate the role of IFNγ in the development of Lyme carditis, wild-type and IFNγ-deficient C57BL/6 mice were infected with the causative bacterium, Borrelia burgdorferi. Histological analysis revealed no change in the severity of carditis between wild-type and IFNγ-deficient mice at 14, 21, 25, and 28 days after infection. However, a distinct shift in the types of leukocytes within the hearts of IFNγ-deficient mice was observed at 25 days. In the absence of IFNγ, the number of neutrophils in the heart was increased, whereas the number of T lymphocytes was decreased. Bacterial loads within hearts were the same as in wild-type mice. Macrophages secrete chemokines that recruit immune cells, which could contribute to the accumulation of leukocytes in murine Lyme carditis. The ability of IFNγ and B. burgdorferi to activate murine macrophages was examined, and the two stimuli synergistically induced chemoattractants for mononuclear cells (ie, CXCL9, CXCL10, CXCL11, CXCL16, and CCL12) and decreased those for neutrophils (ie, CXCL1, CXCL2, and CXCL3). IFNγ and B. burgdorferi also synergistically enhanced secretion of CXCL9 and CXCL10 by murine cardiac endothelial cells. These results indicate that IFNγ influences the composition of inflammatory infiltrates in Lyme carditis by promoting the accumulation of leukocytes associated with chronic inflammation and suppressing that of cells that typify acute inflammation.
Collapse
Affiliation(s)
- Gregory J Sabino
- Graduate Program in Molecular and Cellular Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | | | | | |
Collapse
|
7
|
Gandhi G, Londoño D, Whetstine CR, Sethi N, Kim KS, Zückert WR, Cadavid D. Interaction of variable bacterial outer membrane lipoproteins with brain endothelium. PLoS One 2010; 5:e13257. [PMID: 21063459 PMCID: PMC2962627 DOI: 10.1371/journal.pone.0013257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/07/2010] [Indexed: 11/29/2022] Open
Abstract
Background Previously we reported that the variable outer membrane lipoprotein Vsp1 from the relapsing fever spirochete Borrelia turicatae disseminates from blood to brain better than the closely related Vsp2 [1]. Here we studied the interaction between Vsp1 and Vsp2 with brain endothelium in more detail. Methodology/Principal Findings We compared Vsp1 to Vsp2 using human brain microvascular endothelial cell (HBMEC) association assays with aminoacid radiolabeled Vsp-expressing clones of recombinant Borrelia burgdorferi and lanthanide-labeled purified lipidated Vsp1 (LVsp1) and Vsp2 (LVsp2) and inoculations of the lanthanide-labeled proteins into mice. The results showed that heterologous expression of LVsp1 or LVsp2 in B. burgdorferi increased its association with HBMEC to a similar degree. Purified lanthanide-labeled lipidated Vsp1 (LVsp1) and LVsp2 by themselves were capable of associating with HBMEC. The association of LVsp1 with brain endothelium was time-dependent, saturable, and required the lipidation. The association of Vsp1 with HBMEC was inhibited by incubation at lower temperature or with excess unlabeled LVsp1 or LVsp2 but not with excess rVsp1 or mouse albumin or an anti Vsp1 monoclonal antibody. The association of LVsp2 with HBMEC and its movement from blood to brain parenchyma significantly increased in the presence of LVsp1. Conclusions/Significance Variable bacterial outer membrane lipoproteins interact with brain endothelium differently; the lipidation and variable features at the protein dome region are key modulators of this interaction.
Collapse
Affiliation(s)
- Gaurav Gandhi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Diana Londoño
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Christine R. Whetstine
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Nilay Sethi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kwang S. Kim
- Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Diego Cadavid
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
8
|
Spent culture medium from virulent Borrelia burgdorferi increases permeability of individually perfused microvessels of rat mesentery. PLoS One 2008; 3:e4101. [PMID: 19116656 PMCID: PMC2605548 DOI: 10.1371/journal.pone.0004101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022] Open
Abstract
Background Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells. Methodology/Principal Findings The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca2+]i, were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca2+]i, a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca2+]i. Within 2–5 min, the mean peak Lp increased to 5.6±0.9 times the control, and endothelial [Ca2+]i increased from 113±11 nM to a mean peak value of 324±35 nM. In contrast, neither endothelial [Ca2+]i nor Lp was altered by B31-A spent medium. Conclusions/Significance A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A.
Collapse
|
9
|
The Important and Diverse Roles of Antibodies in the Host Response to Borrelia Infections. Curr Top Microbiol Immunol 2008; 319:63-103. [DOI: 10.1007/978-3-540-73900-5_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Dame TM, Orenzoff BL, Palmer LE, Furie MB. IFN-γ Alters the Response ofBorrelia burgdorferi-Activated Endothelium to Favor Chronic Inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 178:1172-9. [PMID: 17202382 DOI: 10.4049/jimmunol.178.2.1172] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Borrelia burgdorferi, the agent of Lyme disease, promotes proinflammatory changes in the endothelium that lead to the recruitment of leukocytes. The host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. Therefore, the effect of IFN-gamma on the gene expression profile of primary human endothelial cells exposed to B. burgdorferi was determined. B. burgdorferi and IFN-gamma synergistically augmented the expression of 34 genes, 7 of which encode chemokines. Six of these (CCL7, CCL8, CX3CL1, CXCL9, CXCL10, and CXCL11) attract T lymphocytes, and one (CXCL2) is specific for neutrophils. Synergistic production of the attractants for T cells was confirmed at the protein level. IL-1beta, TNF-alpha, and LPS also cooperated with IFN-gamma to induce synergistic production of CXCL10 by the endothelium, indicating that IFN-gamma potentiates inflammation in concert with a variety of mediators. An in vitro model of the blood vessel wall revealed that an increased number of human T lymphocytes traversed the endothelium exposed to B. burgdorferi and IFN-gamma, as compared with unstimulated endothelial monolayers. In contrast, addition of IFN-gamma diminished the migration of neutrophils across the B. burgdorferi-activated endothelium. IFN-gamma thus alters gene expression by endothelia exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils. This modulation may facilitate the development of chronic inflammatory lesions in Lyme disease.
Collapse
Affiliation(s)
- Tarah M Dame
- Graduate Program in Genetics, Center for Infectious Diseases, School of Medicine, Stone Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
11
|
Dennis VA, Jefferson A, Singh SR, Ganapamo F, Philipp MT. Interleukin-10 anti-inflammatory response to Borrelia burgdorferi, the agent of Lyme disease: a possible role for suppressors of cytokine signaling 1 and 3. Infect Immun 2006; 74:5780-9. [PMID: 16988256 PMCID: PMC1594918 DOI: 10.1128/iai.00678-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been established that interleukin-10 (IL-10) inhibits inflammatory cytokines produced by macrophages in response to Borrelia burgdorferi or its lipoproteins. The mechanism by which IL-10 exerts this anti-inflammatory effect is still unknown. Recent findings indicate that suppressors of cytokine signaling (SOCS) proteins are induced by cytokines and Toll-like receptor (TLR)-mediated stimuli, and in turn they can down-regulate cytokine and TLR signaling in macrophages. Because it is known that SOCS are induced by IL-10 and that B. burgdorferi and its lipoproteins most likely interact via TLR2 or the heterodimers TLR2/1 and/or TLR2/6, we hypothesized that SOCS are induced by IL-10 and B. burgdorferi and its lipoproteins in macrophages and that SOCS may mediate the inhibition by IL-10 of concomitantly elicited cytokines. We report here that mouse J774 macrophages incubated with IL-10 and added B. burgdorferi spirochetes (freeze-thawed, live, or sonicated) or lipidated outer surface protein A (L-OspA) augmented their SOCS1/SOCS3 mRNA and protein expression, with SOCS3 being more abundant. Pam(3)Cys, a synthetic lipopeptide, also induced SOCS1/SOCS3 expression under these conditions, but unlipidated OspA was ineffective. Neither endogenous IL-10 nor the translation inhibitor cycloheximide blocked SOCS1/SOCS3 induction by B. burgdorferi and its lipoproteins, indicating that the expression of other genes is not required. This temporally correlated with the IL-10-mediated inhibition of the inflammatory cytokines IL-1beta, IL-6, IL-12p40, IL-18, and tumor necrosis factor alpha. Our data are evidence to suggest that expression of SOCS is part of the mechanism of IL-10-mediated inhibition of inflammatory cytokines elicited by B. burgdorferi and its lipoproteins.
Collapse
Affiliation(s)
- Vida A Dennis
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA.
| | | | | | | | | |
Collapse
|
12
|
Arlian LG, Morgan MS, Paul CC. Evidence that scabies mites (Acari: Sarcoptidae) influence production of interleukin-10 and the function of T-regulatory cells (Tr1) in humans. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:283-7. [PMID: 16619612 DOI: 10.1603/0022-2585(2006)043[0283:etsmas]2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We performed experiments to determine whether an extract of Sarcoptes scabiei (De Geer) influenced cytokine expression by human T-lymphocytes. Peripheral blood mononuclear cells from five sensitized donors and four donors without sensitization to scabies mites were challenged with a T-cell mitogen alone, with scabies extract (SS) alone, or with mitogen and SS together. Supernatants were analyzed for the cytokines interferon-gamma (IFNgamma), interleukin (IL)-2, IL-4, and IL-10. No IL-2 or IL-4 was produced in response to scabies extract. Cells from both naive and sensitized donors produced large amounts of IFNgamma and IL-10. The lack of IL-4 but high levels of IL-10 suggests that IL-10 was likely secreted by type 1 T-regulatory cells, which were activated by something in the scabies extract. IL-10 has anti-inflammatory and immune-suppressive effects. It may play a key role in depressing the inflammatory and immune responses in humans so that clinical symptoms are not seen until 4-6 wk after a person becomes infested with scabies mites.
Collapse
Affiliation(s)
- Larry G Arlian
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
13
|
McDonald C, Vanscoy S, Hearing P, Reich NC. Induction of genes involved in cell cycle progression by interleukin-4. J Interferon Cytokine Res 2005; 24:729-38. [PMID: 15684740 DOI: 10.1089/jir.2004.24.729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interleukin-4 (IL-4) can elicit diverse cellular responses, including differentiation, fusion, and proliferation, and these are all critical to establishment of an effective immune response. In this report, we provide evidence that IL-4 induces the proliferation of T lymphocytes with the coordinate transcriptional induction of the cell cycle regulatory genes encoding Cdc25A and the minichromosome maintenance (MCM) family. This specific gene induction appears to be due to activation of the signal transducer and activator of transcription, Stat6, and in part to phosphatidylinositol 3-kinase (PI3K). The function of another family of transcription factors, E2F, is known to induce cell cycle-regulated gene expression by binding to specific DNA target sites. We demonstrate that IL-4-activated Stat6 dimers can bind to a subset of E2F target sites and stimulate gene expression by binding to these DNA elements. Our results support a role for the Stat6 signal pathway in regulating a subset of E2F-responsive genes. In addition, activation of PI3K may play a complementary role in the induction of cell cycle-regulated genes in response to IL-4.
Collapse
Affiliation(s)
- Christine McDonald
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
14
|
Enarsson K, Brisslert M, Backert S, Quiding-Järbrink M. Helicobacter pylori induces transendothelial migration of activated memory T cells. Infect Immun 2005; 73:761-9. [PMID: 15664914 PMCID: PMC546998 DOI: 10.1128/iai.73.2.761-769.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori infection is associated with pronounced infiltration of granulocytes and lymphocytes into the gastric mucosa, resulting in active chronic gastritis that may develop into duodenal ulcer disease or gastric adenocarcinoma. Infiltrating T cells play a major role in the pathology of these diseases, but the signals involved in recruitment of T cells from blood to H. pylori-infected tissues are not well understood. We therefore examined H. pylori-induced T-cell transendothelial migration (TEM). The Transwell system, employing a monolayer of human umbilical vein endothelial cells, was used as a model to study TEM. H. pylori induced a significant T-cell migration, compared to spontaneous migration. CD4+ and CD8+ T cells migrated to the same extent in response to H. pylori, whereas there was significantly larger transmigration of memory T cells compared to naive T cells. Both H. pylori culture filtrate and urease induced migration, and the presence of the H. pylori cag pathogenicity island increased TEM. T-cell TEM was mediated by LFA-1-ICAM-1 interactions in accordance with an increased ICAM-1 expression on the endothelial cells after contact with H. pylori. Migrating T cells had increased expression of activation marker CD69 and chemokine receptors CXCR3, CCR4, and CCR9. Furthermore, T cells migrating in response to H. pylori secreted Th1 but not Th2 cytokines upon stimulation. In conclusion, our data indicate that live H. pylori and its secreted products contribute to T-cell recruitment to the gastric mucosa and that the responding T cells have an activated memory Th1 phenotype.
Collapse
Affiliation(s)
- Karin Enarsson
- Department of Medical Microbiology and Immunology, Göteborg University, Box 435, 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
15
|
Gergel EI, Furie MB. Populations of human T lymphocytes that traverse the vascular endothelium stimulated by Borrelia burgdorferi are enriched with cells that secrete gamma interferon. Infect Immun 2004; 72:1530-6. [PMID: 14977959 PMCID: PMC356023 DOI: 10.1128/iai.72.3.1530-1536.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some diseases are characterized by prevalence in the affected tissues of type 1 T lymphocytes, which secrete gamma interferon (IFN-gamma) and other proinflammatory cytokines. For example, type 1 T cells predominate in the lesions of patients with Lyme disease, which is caused by the bacterium Borrelia burgdorferi. We used an in vitro model of the blood vessel wall to test the premise that the vascular endothelium actively recruits circulating type 1 T cells to such lesions. When T lymphocytes isolated from human peripheral blood were examined, the populations that traversed monolayers of resting human umbilical vein endothelial cells (HUVEC) or HUVEC stimulated by interleukin-1beta or B. burgdorferi were markedly enriched for T cells that produced IFN-gamma compared to the initially added population of T cells. No enrichment was seen for cells that produced interleukin-4, a marker for type 2 T lymphocytes. Very late antigen-4 and CD11/CD18 integrins mediated passage of the T cells across both resting and stimulated HUVEC, and the endothelium-derived chemokine CCL2 (monocyte chemoattractant protein 1) was responsible for the enhanced migration of T cells across stimulated HUVEC. These results suggest that the vascular endothelium may contribute to the selective accumulation of type 1 T cells in certain pathological lesions, including those of Lyme disease.
Collapse
Affiliation(s)
- Edna I Gergel
- Center for Infectious Diseases and Department of Pathology, Stony Brook University, Stony Brook, New York 11794-5120, USA
| | | |
Collapse
|
16
|
Holub M, Klucková Z, Beran O, Aster V, Lobovská A. Lymphocyte subset numbers in cerebrospinal fluid: comparison of tick-borne encephalitis and neuroborreliosis. Acta Neurol Scand 2002; 106:302-8. [PMID: 12371925 DOI: 10.1034/j.1600-0404.2002.01314.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study was to analyze lymphocyte subset numbers in cerebrospinal fluid (CSF) from patients with tick-borne encephalitis (TBE) and acute neuroborreliosis. METHODS CSF lymphocyte subsets were enumerated in 42 TBE and nine neuroborreliosis patients using flow cytometry. RESULTS The CSF numbers of CD4+, CD8+, HLA-DR+ and total-T lymphocytes, B lymphocytes, and NK cells were all greater in neuroborreliosis patients than in TBE patients. Neuroborreliosis patients showed positive correlation of CSF protein levels with the numbers of CD4+, HLA-DR+ and total-T lymphocytes. Also, the numbers of CSF B lymphocytes correlated positively with intrathecal Borrelia burgdorferi-specific IgG antibodies. Conversely, TBE patients demonstrated intrathecal protein levels that correlated positively with all investigated CSF lymphocyte subsets. CONCLUSION These results suggest an intensive recruitment of lymphocyte subsets into the central nervous system (CNS) during acute neuroborreliosis, whereas TBE is characterized by a lower accumulation of lymphocyte subsets in the CSF.
Collapse
Affiliation(s)
- M Holub
- Charles University, Prague, First Faculty of Medicine, 3rd Department of Infectious and Tropical Diseases, Czech Republic.
| | | | | | | | | |
Collapse
|
17
|
Lisinski TJ, Furie MB. Interleukin‐10 inhibits proinflammatory activation of endothelium in response to
Borrelia burgdorferi
or lipopolysaccharide but not interleukin‐1β or tumor necrosis factor α. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tracy J. Lisinski
- Center for Infectious Diseases and Department of Pathology, State University of New York at Stony Brook
| | - Martha B. Furie
- Center for Infectious Diseases and Department of Pathology, State University of New York at Stony Brook
| |
Collapse
|
18
|
Abstract
Treatment-resistant Lyme arthritis (TRLA) develops in 10% of Lyme arthritis patients and is characterized by continuous joint inflammation that does not resolve with antibiotic therapy. TRLA is associated with HLA-DRB1*0401 and related alleles, as well as with an immune response to the Borrelia burgdorferi (Bb) outer surface protein A (OspA). The immunodominant epitope of OspA in the context of HLA-DRB1*0401 corresponds to amino acids 165-173 (OspA165-173). The human Lymphocyte Function Antigen-1 (hLFA1alpha) contains a peptide with homology to OspA165-173. Treatment-resistant Lyme arthritis patients' T cells, cloned based on their ability to bind OspA165-173-loaded HLA-DRB1*0401 tetramers, respond to OspA and hLFA1alpha with a different cytokine profile, suggesting that hLFA1alpha acts as a partial agonist with a potential role in the perpetuation of joint inflammation.
Collapse
|