1
|
Coetzee JL, Kriel NL, Loubser J, Dippenaar A, Sampson SL, Malherbe ST, Mouton JM. Assessing the propensity of TB clinical isolates to form viable but non-replicating subpopulations. Sci Rep 2024; 14:27686. [PMID: 39532967 PMCID: PMC11557868 DOI: 10.1038/s41598-024-79389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Current tuberculosis (TB) treatment is typically effective against drug-susceptible Mycobacterium tuberculosis, but can fail due to acquired drug resistance or phenotypic resistance. M. tuberculosis persisters, a subpopulation of viable but non-replicating (VBNR) antibiotic-tolerant bacteria, are thought to contribute to poor TB treatment outcomes. In this exploratory study, we investigated treatment-naïve drug-susceptible clinical isolates collected from people with TB, who subsequently had unsuccessful treatment outcomes. These were compared to isolates from cured individuals in terms of their ability to form VBNR subpopulations. Clinical isolates from individuals with unfavorable treatment outcomes form larger subpopulations of VBNR M. tuberculosis (2.67-13.71%) than clinical isolates from cured cases (0- 1.63%) following infection of THP-1 macrophages. All isolates were drug susceptible based on phenotypic and genotypic analysis. Whole genome sequencing identified 23 non-synonymous genomic variants shared by treatment failure clinical isolates, that were not present in isolates from cured cases. This exploratory study highlights the ability of treatment-naïve clinical isolates to form heterogeneous populations containing VBNR M. tuberculosis. We also demonstrate that clinical isolates from individuals with unsuccessful treatment outcomes form higher percentages of VBNR M. tuberculosis. The findings of this exploratory study suggest that an increased propensity to form VBNR subpopulations may impact TB treatment outcome.
Collapse
Affiliation(s)
- Julian L Coetzee
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Nastassja L Kriel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa.
| | - Johannes Loubser
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Anzaan Dippenaar
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Samantha L Sampson
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Stephanus T Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Jacoba M Mouton
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
2
|
Freddi L, de la Garza-García JA, Al Dahouk S, Occhialini A, Köhler S. Brucella spp. are facultative anaerobic bacteria under denitrifying conditions. Microbiol Spectr 2023; 11:e0276723. [PMID: 37882559 PMCID: PMC10714718 DOI: 10.1128/spectrum.02767-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Respiration is a fundamental and complex process that bacteria use to produce energy. Despite aerobic respiration being the most common, some bacteria make use of a mode of respiration in the absence of oxygen, called anaerobic respiration, which can yield advantages in adaptation to various environmental conditions. Denitrification is part of this respiratory process ensuring higher respiratory flexibility under oxygen depletion. Here, we report for the first time the evidence of anaerobic growth of Brucella spp. under denitrifying conditions, which implies that this genus should be reconsidered as facultative anaerobic. Our study further describes that efficient denitrification is not equally found within the Brucella genus, with atypical species showing a greater ability to denitrify, correlated with higher expression of the genes involved, as compared to classical species.
Collapse
Affiliation(s)
- Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Jorge A. de la Garza-García
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, Berlin, Germany
- German Environment Agency, Berlin, Germany
| | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
3
|
Sarmah DT, Parveen R, Kundu J, Chatterjee S. Latent tuberculosis and computational biology: A less-talked affair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:17-31. [PMID: 36781150 DOI: 10.1016/j.pbiomolbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Tuberculosis (TB) is a pervasive and devastating air-borne disease caused by the organisms belonging to the Mycobacterium tuberculosis (Mtb) complex. Currently, it is the global leader in infectious disease-related death in adults. The proclivity of TB to enter the latent state has become a significant impediment to the global effort to eradicate TB. Despite decades of research, latent tuberculosis (LTB) mechanisms remain poorly understood, making it difficult to develop efficient treatment methods. In this review, we seek to shed light on the current understanding of the mechanism of LTB, with an accentuation on the insights gained through computational biology. We have outlined various well-established computational biology components, such as omics, network-based techniques, mathematical modelling, artificial intelligence, and molecular docking, to disclose the crucial facets of LTB. Additionally, we highlighted important tools and software that may be used to conduct a variety of systems biology assessments. Finally, we conclude the article by addressing the possible future directions in this field, which might help a better understanding of LTB progression.
Collapse
Affiliation(s)
- Dipanka Tanu Sarmah
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rubi Parveen
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Jayendrajyoti Kundu
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
4
|
Zhang Y, Li D, Yan Q, Xu P, Chen W, Xin H, Wu D, Zhou M, Xu Y, Zhang A, Wei W, Jiang Z. Genome-wide analysis reveals the emergence of multidrug resistant Stenotrophomonas acidaminiphila strain SINDOREI isolated from a patient with sepsis. Front Microbiol 2022; 13:989259. [PMID: 36212813 PMCID: PMC9537462 DOI: 10.3389/fmicb.2022.989259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Stenotrophomonas acidaminiphila, the most recent reported species in genus Stenotrophomonas, is a relatively rare bacteria and is an aerobic, glucose non-fermentative, Gram-negative bacterium. However, little information of S. acidaminiphila is known to cause human infections. In this research, we firstly reported a multidrug-resistant strain S. acidaminiphila SINDOREI isolated from the blood of a patient with sepsis, who was dead of infection eventually. The whole genome of strain SINDOREI was sequenced, and genome comparisons were performed among six closely related S. acidaminiphila strains. The core genes (2,506 genes) and strain-specific genes were identified, respectively, to know about the strain-level diversity in six S. acidaminiphila stains. The presence of a unique gene (narG) and essential genes involved in biofilm formation in strain SINDOREI are important for the pathogenesis of infections. Strain SINDOREI was resistant to trimethoprim/sulfamethoxazole, ciprofloxacin, ofloxacin, cefepime, ceftazidime, and aztreonam. Several common and specific antibiotic resistance genes were identified in strain SINDOREI. The presence of two sul genes and exclusive determinants GES-1, aadA3, qacL, and cmlA5 is responsible for the resistance to multidrug. The virulence factors and resistance determinants can show the relationship between the phenotype and genotype and afford potential therapeutic strategies for infections.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Danhua Li
- Departmant of Scientific Affairs, Hugobiotech Co. Ltd., Beijing, China
| | - Qun Yan
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei Chen
- Department of Gastroenterology, Changsha Central Hospital, Changsha, China
| | - Hongya Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dengshu Wu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxiang Zhou
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjia Wei
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhiping Jiang,
| |
Collapse
|
5
|
Pseudomonas aeruginosa Initiates a Rapid and Specific Transcriptional Response during Surface Attachment. J Bacteriol 2022; 204:e0008622. [PMID: 35467391 PMCID: PMC9112911 DOI: 10.1128/jb.00086-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic biofilm infections by Pseudomonas aeruginosa are a major contributor to the morbidity and mortality of patients. The formation of multicellular bacterial aggregates, called biofilms, is associated with increased resistance to antimicrobials and immune clearance and the persistence of infections. Biofilm formation is dependent on bacterial cell attachment to surfaces, and therefore, attachment plays a key role in chronic infections. We hypothesized that bacteria sense various surfaces and initiate a rapid, specific response to increase adhesion and establish biofilms. RNA sequencing (RNA-Seq) analysis identified transcriptional changes of adherent cells during initial attachment, identifying the bacterial response to an abiotic surface over a 1-h period. Subsequent screens investigating the most highly regulated genes in surface attachment identified 4 genes, pfpI, phnA, leuD, and moaE, all of which have roles in both metabolism and biofilm formation. In addition, the transcriptional responses to several different medically relevant abiotic surfaces were compared after initial attachment. Surprisingly, there was a specific transcriptional response to each surface, with very few genes being regulated in response to surfaces in general. We identified a set of 20 genes that were differentially expressed across all three surfaces, many of which have metabolic functions, including molybdopterin cofactor biosynthesis and nitrogen metabolism. This study has advanced the understanding of the kinetics and specificity of bacterial transcriptional responses to surfaces and suggests that metabolic cues are important signals during the transition from a planktonic to a biofilm lifestyle. IMPORTANCE Bacterial biofilms are a significant concern in many aspects of life, including chronic infections of airways, wounds, and indwelling medical devices; biofouling of industrial surfaces relevant for food production and marine surfaces; and nosocomial infections. The effects of understanding surface adhesion could impact many areas of life. This study utilized emerging technology in a novel approach to address a key step in bacterial biofilm development. These findings have elucidated both conserved and surface-specific responses to several disease-relevant abiotic surfaces. Future work will expand on this report to identify mechanisms of biofilm initiation with the aim of identifying bacterial factors that could be targeted to prevent biofilms.
Collapse
|
6
|
Tkachenko O, Kozak N, Bilan M, Hlebeniuk V, Alekseeva N, Kovaleva L, Nedosekov V, Galatiuk O. The Effect of Long-Term Storage on Mycobacterium bovis. Pol J Microbiol 2021; 70:327-337. [PMID: 34584527 PMCID: PMC8459005 DOI: 10.33073/pjm-2021-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
It was established that when stored for many years (10–13 years) in low-temperature conditions (3°C), without sub-culture on a nutrient medium, Mycobacterium bovis grew as visible colonies along the line of inoculation. However, due to long-term storage in conditions of low temperature (3°C) morphology of mycobacteria differed significantly from initial cultures formed by rod-shaped bacteria. Some of them became pigment-forming and smooth on the surface. Unlike the initial strain of mycobacteria, a perennial bacteria stored under hard conditions did not cause the death of guinea pigs or their sensitization to a purified protein derivative for mammals. Morphological forms of the perennial mycobacteria had the following changes: pigment forming, L-forms of the vesicular type, non-acid-fast thread-like (filamentous) bacillary forms, and elementary bodies when compared to the initial strain. There were also some genetic changes in the target DNA due to the long-term storage of M. bovis. It may indicate a mutation in the pathogen’s DNA. These mycobacteria had altered biochemical activity during storage. The number of passages on the solid nutrient medium did not affect their fermentative activity. However, the low cultivation temperature increases mycobacterial catalase activity and the ability to hydrolyze Tween-80.
Collapse
Affiliation(s)
- Olexiy Tkachenko
- Dnipro State Agrarian and Economic University, Faculty of Veterinary Medicine, Dnipro, Ukraine
| | - Natali Kozak
- Dnipro State Agrarian and Economic University, Faculty of Veterinary Medicine, Dnipro, Ukraine
| | - Maryna Bilan
- Dnipro State Agrarian and Economic University, Faculty of Veterinary Medicine, Dnipro, Ukraine
| | - Volodymyr Hlebeniuk
- Dnipro State Agrarian and Economic University, Faculty of Veterinary Medicine, Dnipro, Ukraine
| | - Natalia Alekseeva
- Dnipro State Agrarian and Economic University, Faculty of Veterinary Medicine, Dnipro, Ukraine
| | - Liliya Kovaleva
- Dnipro State Agrarian and Economic University, Faculty of Veterinary Medicine, Dnipro, Ukraine
| | - Vitalii Nedosekov
- National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Kyiv, Ukraine
| | - Olexandr Galatiuk
- Polissya National University, Faculty of Veterinary Medicine, Zhytomyr, Ukraine
| |
Collapse
|
7
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
8
|
Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 2020; 10:589318. [PMID: 33330134 PMCID: PMC7719681 DOI: 10.3389/fcimb.2020.589318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Collapse
Affiliation(s)
- Sapna Bajeli
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Navin Baid
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Manjot Kaur
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
9
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Chlorate Specifically Targets Oxidant-Starved, Antibiotic-Tolerant Populations of Pseudomonas aeruginosa Biofilms. mBio 2018; 9:mBio.01400-18. [PMID: 30254119 PMCID: PMC6156191 DOI: 10.1128/mbio.01400-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The anaerobic growth and survival of bacteria are often correlated with physiological tolerance to conventional antibiotics, motivating the development of novel strategies targeting pathogens in anoxic environments. A key challenge is to identify drug targets that are specific to this metabolic state. Chlorate is a nontoxic compound that can be reduced to toxic chlorite by a widespread enzyme of anaerobic metabolism. We tested the antibacterial properties of chlorate against Pseudomonas aeruginosa, a pathogen that can inhabit hypoxic or anoxic microenvironments, including those that arise in human infection. Chlorate and the antibiotic tobramycin kill distinct metabolic populations in P. aeruginosa biofilms, where chlorate targets anaerobic cells that tolerate tobramycin. Chlorate is particularly effective against P. aeruginosalasR mutants, which are frequently isolated from human infections and more resistant to some antibiotics. This work suggests that chlorate may hold potential as an anaerobic prodrug. Nitrate respiration is a widespread mode of anaerobic energy generation used by many bacterial pathogens, and the respiratory nitrate reductase, Nar, has long been known to reduce chlorate to the toxic oxidizing agent chlorite. Here, we demonstrate the antibacterial activity of chlorate against Pseudomonas aeruginosa, a representative pathogen that can inhabit hypoxic or anoxic host microenvironments during infection. Aerobically grown P. aeruginosa cells are tobramycin sensitive but chlorate tolerant. In the absence of oxygen or an alternative electron acceptor, cells are tobramycin tolerant but chlorate sensitive via Nar-dependent reduction. The fact that chlorite, the product of chlorate reduction, is not detected in culture supernatants suggests that it may react rapidly and be retained intracellularly. Tobramycin and chlorate target distinct populations within metabolically stratified aggregate biofilms; tobramycin kills cells on the oxic periphery, whereas chlorate kills hypoxic and anoxic cells in the interior. In a matrix populated by multiple aggregates, tobramycin-mediated death of surface aggregates enables deeper oxygen penetration into the matrix, benefiting select aggregate populations by increasing survival and removing chlorate sensitivity. Finally, lasR mutants, which commonly arise in P. aeruginosa infections and are known to withstand conventional antibiotic treatment, are hypersensitive to chlorate. A lasR mutant shows a propensity to respire nitrate and reduce chlorate more rapidly than the wild type does, consistent with its heightened chlorate sensitivity. These findings illustrate chlorate’s potential to selectively target oxidant-starved pathogens, including physiological states and genotypes of P. aeruginosa that represent antibiotic-tolerant populations during infections.
Collapse
|
11
|
Bull NC, Kaveh DA, Garcia-Pelayo MC, Stylianou E, McShane H, Hogarth PJ. Induction and maintenance of a phenotypically heterogeneous lung tissue-resident CD4 + T cell population following BCG immunisation. Vaccine 2018; 36:5625-5635. [PMID: 30097220 PMCID: PMC6143486 DOI: 10.1016/j.vaccine.2018.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is the biggest cause of human mortality from an infectious disease. The only vaccine currently available, bacille Calmette-Guérin (BCG), demonstrates some protection against disseminated disease in childhood but very variable efficacy against pulmonary disease in adults. A greater understanding of protective host immune responses is required in order to aid the development of improved vaccines. Tissue-resident memory T cells (TRM) are a recently-identified subset of T cells which may represent an important component of protective immunity to TB. Here, we demonstrate that intradermal BCG vaccination induces a population of antigen-specific CD4+ T cells within the lung parenchyma which persist for >12 months post-vaccination. Comprehensive flow cytometric analysis reveals this population is phenotypically and functionally heterogeneous, and shares characteristics with lung vascular and splenic CD4+ T cells. This underlines the importance of utilising the intravascular staining technique for definitive identification of tissue-resident T cells, and also suggests that these anatomically distinct cellular subsets are not necessarily permanently resident within a particular tissue compartment but can migrate between compartments. This lung parenchymal population merits further investigation as a critical component of a protective immune response against Mycobacterium tuberculosis (M. tb).
Collapse
Affiliation(s)
- Naomi C Bull
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Daryan A Kaveh
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - M C Garcia-Pelayo
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Elena Stylianou
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Helen McShane
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Philip J Hogarth
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
12
|
Viana MVC, Figueiredo H, Ramos R, Guimarães LC, Pereira FL, Dorella FA, Selim SAK, Salaheldean M, Silva A, Wattam AR, Azevedo V. Comparative genomic analysis between Corynebacterium pseudotuberculosis strains isolated from buffalo. PLoS One 2017; 12:e0176347. [PMID: 28445543 PMCID: PMC5406005 DOI: 10.1371/journal.pone.0176347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, pleomorphic, facultative intracellular pathogen that causes Oedematous Skin Disease (OSD) in buffalo. To better understand the pathogenic mechanisms of OSD, we performed a comparative genomic analysis of 11 strains of C. pseudotuberculosis isolated from different buffalo found to be infected in Egypt during an outbreak that occurred in 2008. Sixteen previously described pathogenicity islands (PiCp) were present in all of the new buffalo strains, but one of them, PiCp12, had an insertion that contained both a corynephage and a diphtheria toxin gene, both of which may play a role in the adaptation of C. pseudotuberculosis to this new host. Synteny analysis showed variations in the site of insertion of the corynephage during the same outbreak. A gene functional comparison showed the presence of a nitrate reductase operon that included genes involved in molybdenum cofactor biosynthesis, which is necessary for a positive nitrate reductase phenotype and is a possible adaptation for intracellular survival. Genomes from the buffalo strains also had fusions in minor pilin genes in the spaA and spaD gene cluster (spaCX and spaYEF), which could suggest either an adaptation to this particular host, or mutation events in the immediate ancestor before this particular epidemic. A phylogenomic analysis confirmed a clear separation between the Ovis and Equi biovars, but also showed what appears to be a clustering by host species within the Equi strains.
Collapse
Affiliation(s)
- Marcus Vinicius Canário Viana
- Departament of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Henrique Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rommel Ramos
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Luis Carlos Guimarães
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Felipe Luiz Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Alves Dorella
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mohammad Salaheldean
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Artur Silva
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Alice R. Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vasco Azevedo
- Departament of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
13
|
Alaridah N, Lutay N, Tenland E, Rönnholm A, Hallgren O, Puthia M, Westergren-Thorsson G, Godaly G. Mycobacteria Manipulate G-Protein-Coupled Receptors to Increase Mucosal Rac1 Expression in the Lungs. J Innate Immun 2016; 9:318-329. [PMID: 28013312 DOI: 10.1159/000453454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) is currently the only approved vaccine against tuberculosis (TB). BCG mimics M. tuberculosis (Mtb) in its persistence in the body and is used as a benchmark to compare new vaccine candidates. BCG was originally designed for mucosal vaccination, but comprehensive knowledge about its interaction with epithelium is currently lacking. We used primary airway epithelial cells (AECs) and a murine model to investigate the initial events of mucosal BCG interactions. Furthermore, we analysed the impact of the G-protein-coupled receptors (GPCRs), CXCR1 and CXCR2, in this process, as these receptors were previously shown to be important during TB infection. BCG infection of AECs induced GPCR-dependent Rac1 up-regulation, resulting in actin redistribution. The altered distribution of the actin cytoskeleton involved the MAPK signalling pathway. Blocking of the CXCR1 or CXCR2 prior to infection decreased Rac1 expression, and increased epithelial transcriptional activity and epithelial cytokine production. BCG infection did not result in epithelial cell death as measured by p53 phosphorylation and annexin. This study demonstrated that BCG infection of AECs manipulated the GPCRs to suppress epithelial signalling pathways. Future vaccine strategies could thus be improved by targeting GPCRs.
Collapse
Affiliation(s)
- Nader Alaridah
- Division of Laboratory Medicine, Department of MIG, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dhouib R, Othman DSMP, Lin V, Lai XJ, Wijesinghe HGS, Essilfie AT, Davis A, Nasreen M, Bernhardt PV, Hansbro PM, McEwan AG, Kappler U. A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of Haemophilus influenzae in an In vivo Model of Infection. Front Microbiol 2016; 7:1743. [PMID: 27933034 PMCID: PMC5122715 DOI: 10.3389/fmicb.2016.01743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ∼3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Dk. Seti Maimonah Pg Othman
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Victor Lin
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Xuanjie J. Lai
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Hewa G. S. Wijesinghe
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Amanda Davis
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
- Department of Chemistry and Biochemistry, The University of Arizona, TucsonAZ, USA
| | - Marufa Nasreen
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Paul V. Bernhardt
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Alastair G. McEwan
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| |
Collapse
|
15
|
Sawers RG, Falke D, Fischer M. Oxygen and Nitrate Respiration in Streptomyces coelicolor A3(2). Adv Microb Physiol 2016; 68:1-40. [PMID: 27134020 DOI: 10.1016/bs.ampbs.2016.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptomyces species belong to the phylum Actinobacteria and can only grow with oxygen as a terminal electron acceptor. Like other members of this phylum, such as corynebacteria and mycobacteria, the aerobic respiratory chain lacks a soluble cytochrome c. It is therefore implicit that direct electron transfer between the cytochrome bc1 and the cytochrome aa3 oxidase complexes occurs. The complex developmental cycle of streptomycetes manifests itself in the production of spores, which germinate in the presence of oxygen into a substrate mycelium that greatly facilitates acquisition of nutrients necessary to support their saprophytic lifestyle in soils. Due to the highly variable oxygen levels in soils, streptomycetes have developed means of surviving long periods of hypoxia or even anaerobiosis but they fail to grow under these conditions. Little to nothing is understood about how they maintain viability under conditions of oxygen limitation. It is assumed that they can utilise a number of different electron acceptors to help them maintain a membrane potential, one of which is nitrate. The model streptomycete remains Streptomyces coelicolor A3(2), and it synthesises three nonredundant respiratory nitrate reductases (Nar). These Nar enzymes are synthesised during different phases of the developmental cycle and they are functional only under oxygen-limiting (<5% oxygen in air) conditions. Nevertheless, the regulation of their synthesis does not appear to be responsive to nitrate and in the case of Nar1, it appears to be developmentally regulated. This review highlights some of the novel aspects of our current, but somewhat limited, knowledge of respiration in these fascinating bacteria.
Collapse
Affiliation(s)
- R G Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - D Falke
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - M Fischer
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
16
|
Hover BM, Lilla EA, Yokoyama K. Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue. Biochemistry 2015; 54:7229-36. [PMID: 26575208 DOI: 10.1021/acs.biochem.5b00857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During its biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate (cPMP) through the action of two enzymes, MoaA and MoaC. Recent studies revealed that MoaC catalyzes the majority of the transformation and produces cPMP from a unique cyclic nucleotide, 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP). However, the mechanism by which MoaC catalyzes this complex rearrangement is largely unexplored. Here, we report the mechanistic characterization of MoaC using an uncleavable substrate analogue, 3',8-cH2GMP[CH2]PP, as a probe to investigate the timing of cyclic phosphate formation. Using partially active MoaC variants, 3',8-cH2GMP[CH2]PP was found to be accepted by MoaC as a substrate and was converted to an analogue of the previously described MoaC reaction intermediate, suggesting that the early stage of catalysis proceeds without cyclic phosphate formation. In contrast, when it was incubated with wt-MoaC, 3',8-cH2GMP[CH2]PP caused mechanism-based inhibition. Detailed characterization of the inhibited MoaC suggested that 3',8-cH2GMP[CH2]PP is mainly converted to a molecule (compound Y) with an acid-labile triaminopyrimidinone base without an established pyranopterin structure. MS analysis of MoaC treated with 3',8-cH2GMP[CH2]PP provided strong evidence that compound Y forms a tight complex with MoaC likely through a covalent linkage. These observations are consistent with a mechanism in which cyclic phosphate ring formation proceeds in concert with the pterin ring formation. This mechanism would provide a thermodynamic driving force to complete the formation of the unique tetracyclic structure of cPMP.
Collapse
Affiliation(s)
- Bradley M Hover
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Edward A Lilla
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
17
|
Lenaerts A, Barry CE, Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 2015; 264:288-307. [PMID: 25703567 PMCID: PMC4368385 DOI: 10.1111/imr.12252] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) lesions are extremely complex and dynamic. Here, we review the multiple types and fates of pulmonary lesions that form following infection by Mycobacterium tuberculosis and the impact of this spatial and temporal heterogeneity on the bacteria they harbor. The diverse immunopathology of granulomas and cavities generates a plethora of microenvironments to which M. tuberculosis bacilli must adapt. This in turn affects the replication, metabolism, and relative density of bacterial subpopulations, and consequently their respective susceptibility to chemotherapy. We outline recent developments that support a paradigm shift in our understanding of lesion progression. The simple model according to which lesions within a single individual react similarly to the systemic immune response no longer prevails. Host-pathogen interactions within lesions are a dynamic process, driven by subtle and local differences in signaling pathways, resulting in diverging trajectories of lesions within a single host. The spectrum of TB lesions is a continuum with a large overlap in the lesion types found in latently infected and active TB patients. We hope this overview will guide TB researchers in the design, choice of read-outs, and interpretation of future studies in the search for predictive biomarkers and novel therapies.
Collapse
Affiliation(s)
- Anne Lenaerts
- Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, CO, USA
| | | | | |
Collapse
|
18
|
Nicholson WL, Park R. Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance. FEMS Microbiol Lett 2015; 362:fnv213. [PMID: 26538577 DOI: 10.1093/femsle/fnv213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2015] [Indexed: 11/14/2022] Open
Abstract
Spontaneous rifampicin-resistant (RFM(R)) mutants were isolated from Bacillus subtilis 168 cultivated in the presence or absence of oxygen. By DNA sequencing, the mutations were located within Cluster I of the rpoB gene encoding the β subunit of RNA polymerase. The spectrum of RFM(R) rpoB mutations isolated from B. subtilis cells grown anaerobically differed from aerobically grown cells, not only with respect to the location of mutations within Cluster I but also in the class of mutation observed (transition versus transversion). In the absence of RFM, RFM(R) mutants exhibited poorer growth under anaerobic conditions than did the wild-type strain, indicating their lower fitness in the absence of antibiotic selection.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, Space Life Sciences Laboratory, University of Florida, 505 Odyssey Way, Room 201-B, Exploration Park at Kennedy Space Center, Merritt Island, FL 32953, USA
| | - Roy Park
- Department of Microbiology and Cell Science, Space Life Sciences Laboratory, University of Florida, 505 Odyssey Way, Room 201-B, Exploration Park at Kennedy Space Center, Merritt Island, FL 32953, USA
| |
Collapse
|
19
|
Hongo JA, de Castro GM, Cintra LC, Zerlotini A, Lobo FP. POTION: an end-to-end pipeline for positive Darwinian selection detection in genome-scale data through phylogenetic comparison of protein-coding genes. BMC Genomics 2015; 16:567. [PMID: 26231214 PMCID: PMC4521464 DOI: 10.1186/s12864-015-1765-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 07/10/2015] [Indexed: 11/29/2022] Open
Abstract
Background Detection of genes evolving under positive Darwinian evolution in genome-scale data is nowadays a prevailing strategy in comparative genomics studies to identify genes potentially involved in adaptation processes. Despite the large number of studies aiming to detect and contextualize such gene sets, there is virtually no software available to perform this task in a general, automatic, large-scale and reliable manner. This certainly occurs due to the computational challenges involved in this task, such as the appropriate modeling of data under analysis, the computation time to perform several of the required steps when dealing with genome-scale data and the highly error-prone nature of the sequence and alignment data structures needed for genome-wide positive selection detection. Results We present POTION, an open source, modular and end-to-end software for genome-scale detection of positive Darwinian selection in groups of homologous coding sequences. Our software represents a key step towards genome-scale, automated detection of positive selection, from predicted coding sequences and their homology relationships to high-quality groups of positively selected genes. POTION reduces false positives through several sophisticated sequence and group filters based on numeric, phylogenetic, quality and conservation criteria to remove spurious data and through multiple hypothesis corrections, and considerably reduces computation time thanks to a parallelized design. Our software achieved a high classification performance when used to evaluate a curated dataset of Trypanosoma brucei paralogs previously surveyed for positive selection. When used to analyze predicted groups of homologous genes of 19 strains of Mycobacterium tuberculosis as a case study we demonstrated the filters implemented in POTION to remove sources of errors that commonly inflate errors in positive selection detection. A thorough literature review found no other software similar to POTION in terms of customization, scale and automation. Conclusion To the best of our knowledge, POTION is the first tool to allow users to construct and check hypotheses regarding the occurrence of site-based evidence of positive selection in non-curated, genome-scale data within a feasible time frame and with no human intervention after initial configuration. POTION is available at http://www.lmb.cnptia.embrapa.br/share/POTION/. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1765-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge A Hongo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Giovanni M de Castro
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Leandro C Cintra
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Adhemar Zerlotini
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Francisco P Lobo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| |
Collapse
|
20
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
21
|
Singh S, Kumar M, Singh P. Evolution of M. bovis BCG Vaccine: Is Niacin Production Still a Valid Biomarker? Tuberc Res Treat 2015; 2015:957519. [PMID: 25694828 PMCID: PMC4324913 DOI: 10.1155/2015/957519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023] Open
Abstract
BCG vaccine is usually considered to be safe though rarely serious complications have also been reported, often incriminating contamination of the seed strain with pathogenic Mycobacterium tuberculosis. In such circumstances, it becomes prudent to rule out the contamination of the vaccine seed. M. bovis BCG can be confirmed by the absence of nitrate reductase, negative niacin test, and resistance to pyrazinamide and cycloserine. Recently in India, some stocks were found to be niacin positive which led to a national controversy and closer of a vaccine production plant. This prompted us to write this review and the comparative biochemical and genotypic studies were carried out on the these contentious vaccine stocks at the Indian vaccine plant and other seeds and it was found that some BCG vaccine strains and even some strains of M. bovis with eugenic-growth characteristics mainly old laboratory strains may give a positive niacin reaction. Most probably, the repeated subcultures lead to undefined changes at the genetic level in these seed strains. These changing biological characteristics envisage reevaluation of biochemical characters of existing BCG vaccine seeds and framing of newer guidelines for manufacturing, production, safety, and effectiveness of BCG vaccine.
Collapse
Affiliation(s)
- Sarman Singh
- Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manoj Kumar
- Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pragati Singh
- National Polio Surveillance Project, Country Office for India, World Health Organization, Mathura 281001, India
| |
Collapse
|
22
|
bis-Molybdopterin guanine dinucleotide is required for persistence of Mycobacterium tuberculosis in guinea pigs. Infect Immun 2014; 83:544-50. [PMID: 25404027 DOI: 10.1128/iai.02722-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen.
Collapse
|
23
|
Vázquez CL, Lerner TR, Kasmapour B, Pei G, Gronow A, Bianco MV, Blanco FC, Bleck CKE, Geffers R, Bigi F, Abraham WR, Gutierrez MG. Experimental selection of long-term intracellular mycobacteria. Cell Microbiol 2014; 16:1425-40. [PMID: 24779357 PMCID: PMC4283733 DOI: 10.1111/cmi.12303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 11/30/2022]
Abstract
Some intracellular bacteria are known to cause long-term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long-term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and also with the specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments.
Collapse
Affiliation(s)
- Cristina L Vázquez
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lyu LD, Tang BK, Fan XY, Ma H, Zhao GP. Mycobacterial MazG safeguards genetic stability via housecleaning of 5-OH-dCTP. PLoS Pathog 2013; 9:e1003814. [PMID: 24339782 PMCID: PMC3855555 DOI: 10.1371/journal.ppat.1003814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023] Open
Abstract
Generation of reactive oxygen species and reactive nitrogen species in phagocytes is an important innate immune response mechanism to eliminate microbial pathogens. It is known that deoxynucleotides (dNTPs), the precursor nucleotides to DNA synthesis, are one group of the significant targets for these oxidants and incorporation of oxidized dNTPs into genomic DNA may cause mutations and even cell death. Here we show that the mycobacterial dNTP pyrophosphohydrolase MazG safeguards the bacilli genome by degrading 5-OH-dCTP, thereby, preventing it from incorporation into DNA. Deletion of the (d)NTP pyrophosphohydrolase-encoding mazG in mycobacteria leads to a mutator phenotype both under oxidative stress and in the stationary phase of growth, resulting in increased CG to TA mutations. Biochemical analyses demonstrate that mycobacterial MazG can efficiently hydrolyze 5-OH-dCTP, an oxidized nucleotide that induces CG to TA mutation upon incorporation by polymerase. Moreover, chemical genetic analyses show that direct incorporation of 5-OH-dCTP into mazG-null mutant strain of Mycobacterium smegmatis (Msm) leads to a dose-dependent mutagenesis phenotype, indicating that 5-OH-dCTP is a natural substrate of mycobacterial MazG. Furthermore, deletion of mazG in Mycobacterium tuberculosis (Mtb) leads to reduced survival in activated macrophages and in the spleen of infected mice. This study not only characterizes the mycobacterial MazG as a novel pyrimidine-specific housecleaning enzyme that prevents CG to TA mutation by degrading 5-OH-dCTP but also reveals a genome-safeguarding mechanism for survival of Mtb in vivo. The cellular nucleotide pool is a significant target for oxidation by reactive oxygen species and reactive nitrogen species. Misincorporation of these oxidized non-canonical nucleotides into DNA is known to cause mutations, and may be related to carcinogenesis, aging and neurodegeneration. Cells have evolved a group of bio-degradation housecleaning enzymes that may specifically eliminate certain non-canonical nucleotide from the nucleotide pool and thus prevent their incorporation into DNA. The most well-characterized housecleaning enzymes are the MutT-like proteins which specifically hydrolyze the oxidized purine nucleotides, such as 8-oxo-dGTP and 2-OH-dATP. Lack of MutT activity in cells leads to significant increase of AT-CG mutation and genetic instability. However, housecleaning enzymes specific for oxidized pyrimidine nucleotides are yet to be identified. Here we show that the dNTP pyrophosphohydrolase MazG from mycobacteria is a 5-OH-dCTP-specific housecleaning enzyme. Deletion of mazG in mycobacteria results in increased CG to TA mutation under oxidative stress and in the stationary phase of growth. Both biochemical and chemical genetic analyses demonstrate that 5-OH-dCTP is a natural substrate of mycobacterial MazG. Furthermore, deletion of mazG in Mtb leads to reduced survival in activated macrophages and in the spleen of infected mice. These results reveal a novel housecleaning pathway for mycobacteria to maintain genetic stability and survival in vivo.
Collapse
Affiliation(s)
- Liang-Dong Lyu
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- * E-mail: (LDL); (GPZ)
| | - Bi-Kui Tang
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Anhui Key Laboratory of Infection and Immunity, Department of Life Science, Bengbu Medical College, Bengbu, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center Affiliated with Fudan University, Shanghai, China
| | - Hui Ma
- Shanghai Public Health Clinical Center Affiliated with Fudan University, Shanghai, China
| | - Guo-Ping Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Key Laboratory of Medical Molecular Virology affiliated with the Ministry of Education and Health, Shanghai Medical College, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory for Health and Disease Genomics, Chinese National Human Genome Center, Shanghai, China
- * E-mail: (LDL); (GPZ)
| |
Collapse
|
25
|
Andreae CA, Titball RW, Butler CS. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis. Res Microbiol 2013; 165:41-9. [PMID: 24239959 DOI: 10.1016/j.resmic.2013.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022]
Abstract
Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.
Collapse
Affiliation(s)
- Clio A Andreae
- College of Life and Environmental Science, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom.
| | - Richard W Titball
- College of Life and Environmental Science, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom.
| | - Clive S Butler
- College of Life and Environmental Science, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom.
| |
Collapse
|
26
|
Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 2013; 81:3198-209. [PMID: 23774601 PMCID: PMC3754229 DOI: 10.1128/iai.00611-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a diffusible radical gas produced from the activity of nitric oxide synthase (NOS). NOS activity in murine macrophages has a protective role against mycobacteria through generation of reactive nitrogen intermediates (RNIs). However, the production of NO by human macrophages has remained unclear due to the lack of sensitive reagents to detect NO directly. The purpose of this study was to investigate NO production and the consequence to mycobacteria in primary human macrophages. We found that Mycobacterium bovis BCG or Mycobacterium tuberculosis infection of human macrophages induced expression of NOS2 and NOS3 that resulted in detectable production of NO. Treatment with gamma interferon (IFN-γ), l-arginine, and tetrahydrobiopterin enhanced expression of NOS2 and NOS3 isoforms, as well as NO production. Both of these enzymes were shown to contribute to NO production. The maximal level of NO produced by human macrophages was not bactericidal or bacteriostatic to M. tuberculosis or BCG. The number of viable mycobacteria was increased in macrophages that produced NO, and this requires expression of nitrate reductase. An narG mutant of M. tuberculosis persisted but was unable to grow in human macrophages. Taken together, these data (i) enhance our understanding of primary human macrophage potential to produce NO, (ii) demonstrate that the level of RNIs produced in response to IFN-γ in vitro is not sufficient to limit intracellular mycobacterial growth, and (iii) suggest that mycobacteria may use RNIs to enhance their survival in human macrophages.
Collapse
Affiliation(s)
- Joo-Yong Jung
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| | | | | | - Jyothi Rengarajan
- Emory Vaccine Center
- Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Charles D. Sohaskey
- Tuberculosis Research Laboratory, Department of Veterans Affairs Medical Center, Long Beach, California, USA
| | | | - Cory M. Robinson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
27
|
Peñuelas-Urquides K, González-Escalante L, Villarreal-Treviño L, Silva-Ramírez B, Gutiérrez-Fuentes DJ, Mojica-Espinosa R, Rangel-Escareño C, Uribe-Figueroa L, Molina-Salinas GM, Dávila-Velderrain J, Castorena-Torres F, Bermúdez de León M, Said-Fernández S. Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis. Curr Microbiol 2013; 67:362-71. [PMID: 23649743 DOI: 10.1007/s00284-013-0376-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/28/2013] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.
Collapse
Affiliation(s)
- K Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril 501, Col. Independencia, 64720, Monterrey, Nuevo León, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rodríguez JE, Ramírez AS, Salas LP, Helguera-Repetto C, Gonzalez-y-Merchand J, Soto CY, Hernández-Pando R. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection. PLoS One 2013; 8:e58378. [PMID: 23472191 PMCID: PMC3589379 DOI: 10.1371/journal.pone.0058378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/04/2013] [Indexed: 01/10/2023] Open
Abstract
The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb) is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL) and diacyltrehalose/polyacyltrehalose (DAT/PAT) profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1) and anaerobiosis (NRP2) models of hypoxia (Wayne model), and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase) genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.
Collapse
Affiliation(s)
- Jimmy E. Rodríguez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ana S. Ramírez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laura P. Salas
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Cecilia Helguera-Repetto
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Jorge Gonzalez-y-Merchand
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Carlos Y. Soto
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, México D.F., México
- * E-mail:
| |
Collapse
|
29
|
Williams M, Mizrahi V, Kana BD. Molybdenum cofactor: a key component of Mycobacterium tuberculosis pathogenesis? Crit Rev Microbiol 2013; 40:18-29. [PMID: 23317461 DOI: 10.3109/1040841x.2012.749211] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) and other members of the Mtb complex possess an expanded complement of genes for the biosynthesis of molybdenum cofactor (MoCo), a tricyclic pterin molecule that is covalently attached to molybdate. This cofactor allows the redox properties of molybdenum to be harnessed by enzymes in order to catalyze redox reactions in carbon, nitrogen and sulfur metabolism. In this article, we summarize recent advances in elucidating the MoCo biosynthetic pathway in Mtb and highlight the evidence implicating the biosynthesis of this cofactor, as well as the enzymes that depend upon it for activity, in Mtb pathogenesis.
Collapse
Affiliation(s)
- Monique Williams
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Faculty of Health Sciences , University of Cape Town
| | | | | |
Collapse
|
30
|
Miotto P, Forti F, Ambrosi A, Pellin D, Veiga DF, Balazsi G, Gennaro ML, Di Serio C, Ghisotti D, Cirillo DM. Genome-wide discovery of small RNAs in Mycobacterium tuberculosis. PLoS One 2012; 7:e51950. [PMID: 23284830 PMCID: PMC3526491 DOI: 10.1371/journal.pone.0051950] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/06/2012] [Indexed: 01/29/2023] Open
Abstract
Only few small RNAs (sRNAs) have been characterized in Mycobacterium tuberculosis and their role in regulatory networks is still poorly understood. Here we report a genome-wide characterization of sRNAs in M. tuberculosis integrating experimental and computational analyses. Global RNA-seq analysis of exponentially growing cultures of M. tuberculosis H37Rv had previously identified 1373 sRNA species. In the present report we show that 258 (19%) of these were also identified by microarray expression. This set included 22 intergenic sRNAs, 84 sRNAs mapping within 5′/3′ UTRs, and 152 antisense sRNAs. Analysis of promoter and terminator consensus sequences identified sigma A promoter consensus sequences for 121 sRNAs (47%), terminator consensus motifs for 22 sRNAs (8.5%), and both motifs for 35 sRNAs (14%). Additionally, 20/23 candidates were visualized by Northern blot analysis and 5′ end mapping by primer extension confirmed the RNA-seq data. We also used a computational approach utilizing functional enrichment to identify the pathways targeted by sRNA regulation. We found that antisense sRNAs preferentially regulated transcription of membrane-bound proteins. Genes putatively regulated by novel cis-encoded sRNAs were enriched for two-component systems and for functional pathways involved in hydrogen transport on the membrane.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, S. Raffaele Scientific Institute, Milan, Italy
| | - Francesca Forti
- Dipartimento di BioScienze, University of Milan, Milan, Italy
| | - Alessandro Ambrosi
- University Statistical Center for Biomedical Sciences – Università Vita-Salute S. Raffaele, Milan, Italy
| | - Danilo Pellin
- University Statistical Center for Biomedical Sciences – Università Vita-Salute S. Raffaele, Milan, Italy
| | - Diogo F. Veiga
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gabor Balazsi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Maria L. Gennaro
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Clelia Di Serio
- University Statistical Center for Biomedical Sciences – Università Vita-Salute S. Raffaele, Milan, Italy
| | | | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, S. Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
31
|
Håkansson G, Lutay N, Andersson M, Hallgren O, Westergren-Thorsson G, Svensson M, Godaly G. Epithelial G protein-coupled receptor kinases regulate the initial inflammatory response during mycobacterial infection. Immunobiology 2012; 218:984-94. [PMID: 23312955 DOI: 10.1016/j.imbio.2012.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 01/04/2023]
Abstract
The interaction between mycobacteria and epithelium is unexplored, but may determine the outcome of the infection. We have analyzed the role of two G protein-coupled receptors, CXCR1 and CXCR2 that are important regulators of many pulmonary diseases. We found that mycobacteria significantly increased the expression of both CXCR1 and CXCR2 on alveolar epithelial cells and both receptors were found to be important for neutrophil diapedesis across primary endothelial cells towards infected mucosa. Mycobacteria, lipoarabinomannan or 19-kDa glycolipoprotein up-regulated the inhibitory G protein-coupled receptor kinase (GRK)2, while GRK3 was less affected. Mycobacteria-induced GRK2 up-regulation decreased chemokine transcription and secretion thereby affecting the neutrophil recruitment to infected mucosa. These events were completely abolished by blocking these receptors prior to infection as the blocking increased epithelial immune responses. We have identified novel interactions occurring in the initial phase of mycobacterial infections by which mycobacterial manipulate epithelial inflammatory responses.
Collapse
Affiliation(s)
- Gisela Håkansson
- Department of MIG, Division of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 2012; 53:1625-41. [PMID: 22921590 DOI: 10.1016/j.freeradbiomed.2012.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/25/2022]
Abstract
Tuberculosis epidemics have defied constraint despite the availability of effective treatment for the past half-century. Mycobacterium tuberculosis, the causative agent of TB, is continually exposed to a number of redox stressors during its pathogenic cycle. The mechanisms used by Mtb to sense redox stress and to maintain redox homeostasis are central to the success of Mtb as a pathogen. Careful analysis of the Mtb genome has revealed that Mtb lacks classical redox sensors such as FNR, FixL, and OxyR. Recent studies, however, have established that Mtb is equipped with various sophisticated redox sensors that can detect diverse types of redox stress, including hypoxia, nitric oxide, carbon monoxide, and the intracellular redox environment. Some of these sensors, such as heme-based DosS and DosT, are unique to mycobacteria, whereas others, such as the WhiB proteins and anti-σ factor RsrA, are unique to actinobacteria. This article provides a comprehensive review of the literature on these redox-sensory modules in the context of TB pathogenesis.
Collapse
Affiliation(s)
- Shabir Ahmad Bhat
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
33
|
Giffin MM, Raab RW, Morganstern M, Sohaskey CD. Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS One 2012; 7:e45459. [PMID: 23029022 PMCID: PMC3445494 DOI: 10.1371/journal.pone.0045459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis induces nitrate reductase activity in response to decreasing oxygen levels. This is due to regulation of both the transcription and the activity of the nitrate transporter NarK2. A model of NarK2 structure is proposed containing 12 membrane spanning regions consistent with other members of the major facilitator superfamily. The role of the proton gradient was determined by exposing M. tuberculosis to uncouplers. Nitrite production decreased indicating that the importation of nitrate involved an H+/nitrate symporter. The addition of nitrite before nitrate had no effect, suggesting no role for a nitrate/nitrite antiporter. In addition the NarK2 knockout mutant showed no defect in nitrite export. NarK2 is proposed to be a Type I H+/nitrate symporter. Site directed mutagenesis was performed changing 23 amino acids of NarK2. This allowed the identification of important regions and amino acids of this transporter. Five of these mutants were inactive for nitrate transport, seven produced reduced activity and eleven mutants retained wild type activity. NarK2 is inactivated in the presence of oxygen by an unknown mechanism. However none of the mutants, including those with mutated cysteines, were altered in their response to oxygen levels. The assimilatory nitrate transporter NasA of Bacillus subtilis was expressed in the M. tuberculosis NarK2 mutant. It remained active during aerobic incubation showing that the point of oxygen control is NarK2.
Collapse
|
34
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
35
|
Khan A, Sarkar D. Nitrate reduction pathways in mycobacteria and their implications during latency. MICROBIOLOGY-SGM 2011; 158:301-307. [PMID: 22174380 DOI: 10.1099/mic.0.054759-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mycobacterial persistence has gained a lot of attention with respect to developing novel antitubercular drugs, which could drastically reduce the duration of tuberculosis (TB) therapy. A better understanding of the physiology of Mycobacterium tuberculosis, and of the metabolic state of the bacillus during the latent period, is a primary need in finding drug targets against persistent TB. Recent biochemical and genetic studies of nitrate reduction in mycobacteria have revealed the roles of distinct proteins and enzymes involved in the pathway. The differential degree of nitrate reduction among pathogenic and non-pathogenic mycobacterial species, and its regulation during oxygen and nutrient limitation, suggest a link between nitrate reduction pathways and latency. The respiratory and assimilatory reduction of nitrate in mycobacteria may be interconnected to facilitate rapid adaptation to changing oxygen and/or nitrogen conditions, increasing metabolic flexibility for survival in the hostile host environment. This review summarizes the nitrate metabolic pathways operative in mycobacteria to provide an insight into the mechanisms that M. tuberculosis has evolved to adapt successfully to the host environment.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas, Health Science Center at Houston, Medical School, Houston, TX 77030, USA
| | - Dhiman Sarkar
- Combi Chem-Bio Resource Center, National Chemical Laboratory, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
36
|
Abstract
When intracelluar pathogens enter the host macrophages where in addition to oxidative and antibiotic mechanisms of antimicrobial activity, nutrients are deprived. Human pathogen Mycobacterium tuberculosis is one of macrophage parasitisms, which can replicate and persist for decades in dormancy state in virulent environments. It is very successful in escaping the killing mechanisms of macrophage. Molybdenum (Mo) enzymes involve in the global carbon, sulfur, and nitrogen cycles by catalyzing important redox reactions. There are several Mo enzymes in mycobacteria and they exert several important physiological functions, such as dormancy regulation, the metabolism of energy sources, and nitrogen source. Pterin-based Mo cofactor (Moco) is the common cofactor of the Mo enzymes in mycobacteria but the cofactor biosynthesis is nearly an untapped area. The present article discusses the physiological function of Mo enzymes and the structural feature of the genes coding for Moco biosynthesis enzymes in mycobacteria.
Collapse
Affiliation(s)
- Tingyu Shi
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | | |
Collapse
|
37
|
Bonde BK, Beste DJV, Laing E, Kierzek AM, McFadden J. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis. PLoS Comput Biol 2011; 7:e1002060. [PMID: 21738454 PMCID: PMC3127818 DOI: 10.1371/journal.pcbi.1002060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 04/02/2011] [Indexed: 11/27/2022] Open
Abstract
A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for extracting metabolic signals from other “-omics” data. Mycobacterium tuberculosis causes tuberculosis, leading to millions of deaths each year. Treatment takes 6 months or more, leading to lack of patient compliance and emergence of drug resistance. The pathogen takes so long to kill because it is able to enter a state of dormancy/latency/persistence where it is insensitive to drugs. There is an urgent unmet need to develop new antibiotics that target dormant/persistent/latent organisms. Most antibiotics target metabolic processes but it is difficult to examine the metabolism of the pathogen directly inside the host or host cells. It is of course possible to identify which genes are active by transcriptomics but there are no established and validated methods to use transcriptome data to predict metabolism. We here describe the development of such a method, called DPA. We validate the method with E. coli data and then use DPA to predict the metabolism of the TB pathogen growing inside host cells and from TB sputum samples. DPA demonstrates that the TB bacillus remodels its cells in response to the host environment, possibly to increase the pathogen's defenses against the host immune system. Discovering the metabolic details of this remodeling may identify vulnerable metabolic reactions that may be targeted with new TB drugs.
Collapse
Affiliation(s)
- Bhushan K. Bonde
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Dany J. V. Beste
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Emma Laing
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Andrzej M. Kierzek
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Johnjoe McFadden
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis. SCIENCE CHINA-LIFE SCIENCES 2011; 54:300-10. [PMID: 21267668 DOI: 10.1007/s11427-011-4134-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/06/2010] [Indexed: 10/18/2022]
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis, is one of the most successful of human pathogens. It can evade the host immune response and establish a persistent infection or enter a dormant state within the host which can be reactivated if the host becomes immuno-compromised. Both of these features are major obstacles to tuberculosis eradication. Dormancy and reactivation of M. tuberculosis are tightly coordinated dynamic processes involving numerous genes and their products. Molecular mechanisms underlying M. tuberculosis persistence may provide an opportunity for the discovery of effective drug targets for tuberculosis control. Here, we review the genes required for M. tuberculosis persistence and propose a regulatory network for the action of these genes using text mining. This should provide fresh insights into the persistence mechanisms of M. tuberculosis and suggest candidates for new drug targets and immune intervention.
Collapse
|
39
|
Functional analysis of molybdopterin biosynthesis in mycobacteria identifies a fused molybdopterin synthase in Mycobacterium tuberculosis. J Bacteriol 2010; 193:98-106. [PMID: 20971904 DOI: 10.1128/jb.00774-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Most mycobacterial species possess a full complement of genes for the biosynthesis of molybdenum cofactor (MoCo). However, a distinguishing feature of members of the Mycobacterium tuberculosis complex is their possession of multiple homologs associated with the first two steps of the MoCo biosynthetic pathway. A mutant of M. tuberculosis lacking the moaA1-moaD1 gene cluster and a derivative in which moaD2 was also deleted were significantly impaired for growth in media containing nitrate as a sole nitrogen source, indicating a reduced availability of MoCo to support the assimilatory function of the MoCo-dependent nitrate reductase, NarGHI. However, the double mutant displayed residual respiratory nitrate reductase activity, suggesting that it retains the capacity to produce MoCo. The M. tuberculosis moaD and moaE homologs were further analyzed by expressing these genes in mutant strains of M. smegmatis that lacked one or both of the sole molybdopterin (MPT) synthase-encoding genes, moaD2 and moaE2, and were unable to grow on nitrate, presumably as a result of the loss of MoCo-dependent nitrate assimilatory activity. Expression of M. tuberculosis moaD2 in the M. smegmatis moaD2 mutant and of M. tuberculosis moaE1 or moaE2 in the M. smegmatis moaE2 mutant restored nitrate assimilation, confirming the functionality of these genes in MPT synthesis. Expression of M. tuberculosis moaX also restored MoCo biosynthesis in M. smegmatis mutants lacking moaD2, moaE2, or both, thus identifying MoaX as a fused MPT synthase. By implicating multiple synthase-encoding homologs in MoCo biosynthesis, these results suggest that important cellular functions may be served by their expansion in M. tuberculosis.
Collapse
|
40
|
Nishimura T, Teramoto H, Toyoda K, Inui M, Yukawa H. Regulation of the nitrate reductase operon narKGHJI by the cAMP-dependent regulator GlxR in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2010; 157:21-28. [PMID: 20864477 DOI: 10.1099/mic.0.044552-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Corynebacterium glutamicum anaerobic nitrate reductase operon narKGHJI is repressed by a transcriptional regulator, ArnR, under aerobic conditions. A consensus binding site of the cAMP receptor protein (CRP)-type regulator, GlxR, was recently found upstream of the ArnR binding site in the narK promoter region. Here we investigated the involvement of GlxR and cAMP in expression of the narKGHJI operon in vivo. Electrophoretic mobility shift assays showed that the putative GlxR binding motif in the narK promoter region is essential for the cAMP-dependent binding of GlxR. Promoter-reporter assays showed that mutation in the GlxR binding site resulted in significant reduction of narK promoter activity. Furthermore, a deletion mutant of the adenylate cyclase gene cyaB, which is involved in cAMP synthesis, exhibited a decrease in both narK promoter activity and nitrate reductase activity. These results demonstrated that C. glutamicum GlxR positively regulates narKGHJI expression in a cAMP-dependent manner.
Collapse
Affiliation(s)
- Taku Nishimura
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Koichi Toyoda
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| |
Collapse
|
41
|
Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 2010; 6:e1000988. [PMID: 20628579 PMCID: PMC2900310 DOI: 10.1371/journal.ppat.1000988] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 06/04/2010] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis exerts a tremendous burden on global health, with approximately 9 million new infections and approximately 2 million deaths annually. The Mycobacterium tuberculosis complex (MTC) was initially regarded as a highly homogeneous population; however, recent data suggest the causative agents of tuberculosis are more genetically and functionally diverse than appreciated previously. The impact of this natural variation on the virulence and clinical manifestations of the pathogen remains largely unknown. This report examines the effect of genetic diversity among MTC clinical isolates on global gene expression and survival within macrophages. We discovered lineage-specific transcription patterns in vitro and distinct intracellular growth profiles associated with specific responses to host-derived environmental cues. Strain comparisons also facilitated delineation of a core intracellular transcriptome, including genes with highly conserved regulation across the global panel of clinical isolates. This study affords new insights into the genetic information that M. tuberculosis has conserved under selective pressure during its long-term interactions with its human host.
Collapse
|
42
|
Lone AG, Deslandes V, Nash JHE, Jacques M, MacInnes JI. Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid. PLoS One 2009; 4:e6139. [PMID: 19578537 PMCID: PMC2700959 DOI: 10.1371/journal.pone.0006139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/08/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to cause disease. To better understand this process, the objective of this study was to identify genes that are differentially expressed in a medium that mimics the lung environment early in the infection process. METHODS AND PRINCIPAL FINDINGS Since bronchoalveolar lavage fluid (BALF) contains innate immune and other components found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been reported to be either expressed in vivo and/or involved in virulence. CONCLUSIONS The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful medium for the discovery of novel vaccine or therapeutic targets.
Collapse
Affiliation(s)
- Abdul G. Lone
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vincent Deslandes
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada
- Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - John H. E. Nash
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada
- Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Janet I. MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Buettner FFR, Bendalla IM, Bossé JT, Meens J, Nash JHE, Härtig E, Langford PR, Gerlach GF. Analysis of the Actinobacillus pleuropneumoniae HlyX (FNR) regulon and identification of iron-regulated protein B as an essential virulence factor. Proteomics 2009; 9:2383-98. [PMID: 19343711 DOI: 10.1002/pmic.200800439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Indexed: 11/09/2022]
Abstract
The Gram-negative rod Actinobacillus pleuropneumoniae is a facultative anaerobic pathogen of the porcine respiratory tract, and HlyX, the A. pleuropneumoniae homologue of fumarate and nitrate reduction regulator (FNR), has been shown to be important for persistence. An A. pleuropneumoniae hlyX deletion mutant has a decreased generation time but highly prolonged survival in comparison to its wild type parent strain when grown anaerobically in glucose-supplemented medium. Applying a combination of proteomic and transcriptomic approaches as well as in silico analyses, we identified 23 different proteins and 418 genes to be modulated by HlyX (> or = twofold up- or down-regulated). A putative HlyX-box was identified upstream of 54 of these genes implying direct control by HlyX. Consistent with its role as a strong positive regulator, HlyX induced the expression of genes for anaerobic metabolism encoding alternative terminal reductases and hydrogenases. In addition, expression of virulence-associated genes encoding iron uptake systems, a putative DNA adenine modification system, and an autotransporter serine protease were induced by HlyX under anaerobic growth conditions. With respect to virulence-associated genes, we focused on the iron-regulated protein B (FrpB) as it is the outer membrane protein most strongly up-regulated by HlyX. An frpB deletion mutant of A. pleuropneumoniae had the same growth characteristics as wild type grown aerobically and anaerobically. In contrast, A. pleuropneumoniae DeltafrpB did not cause any disease and could not be re-isolated from experimentally infected pigs, thereby identifying FrpB as a previously unknown virulence factor.
Collapse
Affiliation(s)
- Falk F R Buettner
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Brittle W, Marais BJ, Hesseling AC, Schaaf HS, Kidd M, Wasserman E, Botha T. Improvement in mycobacterial yield and reduced time to detection in pediatric samples by use of a nutrient broth growth supplement. J Clin Microbiol 2009; 47:1287-9. [PMID: 19279173 PMCID: PMC2681879 DOI: 10.1128/jcm.02320-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/05/2009] [Accepted: 03/04/2009] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need to improve the methods used for the bacteriological diagnosis of childhood mycobacterial disease. This study compared the mycobacterial yields and the times to detection (in days) of mycobacteria in pediatric clinical specimens by using Mycobacterial Growth Indicator Tubes (MGITs) and solid Löwenstein-Jensen (LJ) slants with and without a nutrient broth supplement. A total of 801 specimens from 493 patients were processed: 82.8% were gastric aspirate specimens, 15.6% were sputum specimens, and 1.6% were fine-needle-aspiration biopsy specimens. The mycobacterial yield obtained with MGITs (with and without nutrient broth) was 11.0%, and that obtained with LJ slants was 1.6% (P < 0.001). Of the 88 positive cultures, 62 were detected in MGITs and 73 were detected in MGITs supplemented with nutrient broth (P = 0.11). The mean time to detection in MGITs (without nutrient broth) was 18.5 days, whereas it was 12.4 days in MGITs with nutrient broth (P < 0.001). Supplementation of standard MGITs improved the mycobacterial yield and significantly reduced the time to detection of mycobacteria in pediatric samples.
Collapse
Affiliation(s)
- W Brittle
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Desmond Tutu TB Centre, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sohaskey CD, Modesti L. Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2. FEMS Microbiol Lett 2008; 290:129-34. [DOI: 10.1111/j.1574-6968.2008.01424.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
46
|
Mycobacterium bovis BCG vaccine strains lack narK2 and narX induction and exhibit altered phenotypes during dormancy. Infect Immun 2008; 76:2587-93. [PMID: 18362135 DOI: 10.1128/iai.01235-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, a disease that affects one-third of the world's population. The sole extant vaccine for tuberculosis is the live attenuated Mycobacterium bovis bacillus Calmette-Guerin (BCG). We examined 13 representative BCG strains from around the world to ascertain their ability to express DosR-regulated dormancy antigens. These are known to be recognized by T cells of M. tuberculosis-infected individuals, especially those harboring latent infections. Differences in the expression of these antigens could be valuable for use as diagnostic markers to distinguish BCG vaccination from latent tuberculosis. We determined that all BCG strains were defective for the induction of two dormancy genes: narK2 (Rv1737c) and narX (Rv1736c). NarK2 is known to be necessary for nitrate respiration during anaerobic dormancy. Analysis of the narK2/X promoter region revealed a base substitution mutation in all tested BCG strains and M. bovis in comparison to the M. tuberculosis sequence. We also show that nitrate reduction by BCG strains during dormancy was greatly reduced compared to M. tuberculosis and varied between tested strains. Several dormancy regulon transcriptional differences were also identified among the strains, as well as variation in their growth and survival. These findings demonstrate defects in DosR regulon expression during dormancy and phenotypic variation between commonly used BCG vaccine strains.
Collapse
|
47
|
Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 2008; 190:2981-6. [PMID: 18296525 DOI: 10.1128/jb.01857-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
When oxygen is slowly depleted from growing cultures of Mycobacterium tuberculosis, they enter a state of nonreplicating persistence that resembles the dormant state seen with latent tuberculosis. In this hypoxic state, nitrate reductase activity is strongly induced. Nitrate in the medium had no effect on long-term persistence during gradual oxygen depletion (Wayne model) for up to 46 days, but significantly enhanced survival during sudden anaerobiosis. This enhancement required a functional nitrate reductase. Thioridazine is a member of the class of phenothiazines that act, in part, by inhibiting respiration. Thioridazine was toxic to both actively growing and nonreplicating cultures of M. tuberculosis. At a sublethal concentration of thioridazine, nitrate in the medium improved the growth. At lethal concentrations of thioridazine, nitrate increased survival during aerobic incubation as well as in microaerobic cultures that had just entered nonreplicating persistence (NRP-1). In contrast, the survival of anaerobic persistent (NRP-2) cultures exposed to thioridazine was not increased by the addition of nitrate. Nitrate reduction is proposed to play a role during the sudden interruption of aerobic respiration due to causes such as hypoxia, thioridazine, or nitric oxide.
Collapse
|
48
|
Khan A, Sarkar D. A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active tubercle bacilli. J Microbiol Methods 2008; 73:62-8. [PMID: 18328582 DOI: 10.1016/j.mimet.2008.01.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
This study aimed at developing a whole cell based high throughput screening protocol to identify inhibitors against both active and dormant tubercle bacilli. A respiratory type of nitrate reductase (NarGHJI), which was induced during dormancy, could reflect the viability of dormant bacilli of Mycobacterium bovis BCG in microplate adopted model of in vitro dormancy. Correlation between reduction in viability and nitrate reductase activity was seen clearly when dormant stage inhibitor metronidazole and itaconic anhydride were applied in this in vitro microplate model. Active replicating stage could also be monitored in the same assay by measuring the A(620) of the culture. MIC values of 0.08, 0.075, 0.3 and 3.0 microg/ml, determined through monitoring A(620) in this assay for rifampin, isoniazid, streptomycin and ethambutol respectively, were well in agreement with previously reported by BACTEC and Bio-Siv assays. S/N ratio and Z' factor for the assay were 8.5 and 0.81 respectively which indicated the robustness of the protocol. Altogether the assay provides an easy, inexpensive, rapid, robust and high content screening tool to search novel antitubercular molecules against both active and dormant bacilli.
Collapse
Affiliation(s)
- Arshad Khan
- CombiChem Bio Resource Center, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | | |
Collapse
|
49
|
Srivastava V, Jain A, Srivastava BS, Srivastava R. Selection of genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice. Tuberculosis (Edinb) 2007; 88:171-7. [PMID: 18054522 DOI: 10.1016/j.tube.2007.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/26/2007] [Accepted: 10/23/2007] [Indexed: 11/30/2022]
Abstract
In sequel to previous report [Srivastava V, Rouanet C, Srivastava R, Ramalingam B, Locht C, Srivastava BS. Macrophage-specific Mycobacterium tuberculosis genes: identification by green fluorescent protein and kanamycin resistance selection. Microbiology 2007;153:659-66], the genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice were identified in an in vivo expression system based on kanamycin resistance. A promoter library of M. tuberculosis was constructed in a promoter trap shuttle vector pLL192 containing an artificial bicistronic operon composed of promoterless green fluorescent protein gene followed by kanamycin resistance gene. The library was introduced in M. bovis BCG and then infected in mice by intravenous route. Mice were treated twice daily with 40 mg/kg dose of kanamycin by intramuscular route for 21 days. Recombinant BCG recovered from the lungs were reinfected in mice to enrich clones surviving kanamycin treatment in the lung but sensitive to killing by kanamycin in vitro. After nucleotide sequencing of inserts from these clones, 20 genes belonging to fatty acids metabolism, membrane transport, nitric oxide defence and PE_PGRS/PPE family were identified. Real-time PCR analysis using RNA isolated from M. tuberculosis grown in vitro and from the lungs, confirmed upregulation of genes from 2 to 20-fold in vivo compared to growth in vitro. Several of these select 20 genes were also found upregulated ex vivo in macrophage-like cell line J774A.1, thus, suggesting a correlation in mycobacterial gene expression between ex vivo and in vivo conditions.
Collapse
Affiliation(s)
- Vikas Srivastava
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India.
| | | | | | | |
Collapse
|
50
|
Smith PA, Romesberg FE. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol 2007; 3:549-56. [PMID: 17710101 DOI: 10.1038/nchembio.2007.27] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotics have revolutionized the treatment of infectious disease but have also rapidly selected for the emergence of resistant pathogens. Traditional methods of antibiotic discovery have failed to keep pace with the evolution of this resistance, which suggests that new strategies to combat bacterial infections may be required. An improved understanding of bacterial stress responses and evolution suggests that in some circumstances, the ability of bacteria to survive antibiotic therapy either by transiently tolerating antibiotics or by evolving resistance requires specific biochemical processes that may themselves be subject to intervention. Inhibiting these processes may prolong the efficacy of current antibiotics and provide an alternative to escalating the current arms race between antibiotics and bacterial resistance. Though these approaches are not clinically validated and will certainly face their own set of challenges, their potential to protect our ever-shrinking arsenal of antibiotics merits their investigation. This Review summarizes the early efforts toward this goal.
Collapse
Affiliation(s)
- Peter A Smith
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|