1
|
Pastora AB, O’Toole GA. The regulator FleQ both transcriptionally and post-transcriptionally regulates the level of RTX adhesins of Pseudomonas fluorescens. J Bacteriol 2023; 205:e0015223. [PMID: 37655913 PMCID: PMC10521353 DOI: 10.1128/jb.00152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Biofilm formation by the Gram-negative, Gammaproteobacteria Pseudomonas fluorescens relies on the repeats-in-toxin adhesins LapA and MapA in the cytoplasm, secretion of these adhesins through their respective type 1 secretion systems, and retention at the cell surface. Published work has shown that retention of the adhesins occurs via a post-translational mechanism involving the cyclic-di-GMP receptor LapD and the protease LapG. However, little is known about the underlying mechanisms that regulate the level of these adhesins. Here, we demonstrate that the master regulator FleQ modulates biofilm formation by both transcriptionally and post-transcriptionally regulating LapA and MapA. We find that a ΔfleQ mutant has a biofilm formation defect compared to the wild-type (WT) strain, which is attributed in part to a decrease in LapA and MapA abundance in the cell, despite the ΔfleQ mutant having increased levels of lapA and mapA transcripts compared to the WT strain. Through transposon mutagenesis and subsequent genetic analysis, we found that overstimulation of the Gac/Rsm pathway partially rescues biofilm formation in the ΔfleQ mutant background. Collectively, these findings provide evidence that FleQ regulates biofilm formation by both transcriptionally regulating the expression of the lapA and mapA genes and post-transcriptionally regulating the abundance of LapA and MapA, and that activation of the Gac/Rsm pathway can post-transcriptionally enhance biofilm formation by P. fluorescens. IMPORTANCE Biofilm formation is a highly coordinated process that bacteria undergo to colonize a variety of surfaces. For Pseudomonas fluorescens, biofilm formation requires the production and localization of repeats-in-toxin adhesins to the cell surface. To date, little is known about the underlying mechanisms that regulate biofilm formation by P. fluorescens. Here, we identify FleQ as a key regulator of biofilm formation that modulates both gene expression and abundance of LapA and MapA through both a transcriptional and post-transcriptional mechanism. We provide further evidence implicating activation of the Gac/Rsm system in FleQ-dependent regulation of biofilm formation. Together, our findings uncover evidence for a dual mechanism of transcriptional and post-transcriptional regulation of the LapA and MapA adhesins.
Collapse
Affiliation(s)
- Alexander B. Pastora
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Pastora AB, O’Toole GA. The Regulator FleQ Post-Transcriptionally Regulates the Production of RTX Adhesins by Pseudomonas fluorescens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540025. [PMID: 37214974 PMCID: PMC10197612 DOI: 10.1101/2023.05.09.540025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biofilm formation by the Gram-negative gammaproteobacterium Pseudomonas fluorescens relies on the production of the repeat-in-toxin (RTX) adhesins LapA and MapA in the cytoplasm, secretion of these adhesins through their respective type 1 secretion systems, and retention at the cell surface. Published work has shown that retention of the adhesins occurs via a post-translational mechanism involving the cyclic-di-GMP receptor LapD and the protease LapG. However, little is known about the underlying mechanisms that regulate the production of these adhesins. Here, we demonstrate that the master regulator FleQ modulates biofilm formation by post-transcriptionally regulating the production of LapA and MapA. We find that a Δ fleQ mutant has a biofilm formation defect compared to the WT strain, which is attributed in part to a decrease in LapA and MapA production, despite the Δ fleQ mutant having increased levels of lapA and mapA transcripts compared to the WT strain. Through transposon mutagenesis and subsequent genetic analysis, we found that over-stimulation of the Gac/Rsm pathway partially rescues biofilm formation in the Δ fleQ mutant background. Collectively, these findings provide evidence that FleQ regulates biofilm formation by post-transcriptionally regulating the production of LapA and MapA, and that activation of the Gac/Rsm pathway can enhance biofilm formation by P. fluorescens . Importance Biofilm formation is a highly coordinated process that bacteria undergo to colonize a variety of surfaces. For Pseudomonas fluorescens , biofilm formation requires the production and localization of RTX adhesins to the cell surface. To date, little is known about the underlying mechanisms that regulate biofilm formation by P. fluorescens . Here, we identify FleQ as a key regulator of biofilm formation that modulates the production of LapA and MapA through a post-transcriptional mechanism. We provide further evidence implicating activation of the Gac/Rsm system in FleQ-dependent regulation of biofilm formation. Together, our findings uncover evidence for a mechanism of post-transcriptional regulation of the LapA/MapA adhesins.
Collapse
Affiliation(s)
- Alexander B. Pastora
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
4
|
Sánchez-Pérez S, Comas-Basté O, Duelo A, Veciana-Nogués MT, Berlanga M, Vidal-Carou MC, Latorre-Moratalla ML. The dietary treatment of histamine intolerance reduces the abundance of some histamine-secreting bacteria of the gut microbiota in histamine intolerant women. A pilot study. Front Nutr 2022; 9:1018463. [PMID: 36337620 PMCID: PMC9633985 DOI: 10.3389/fnut.2022.1018463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Restrictive diets for the treatment of different gastrointestinal disorders are reported to change the composition of intestinal microbiota. Recently, it has been proposed that individuals with histamine intolerance suffer from intestinal dysbiosis, having an overabundance of histamine-secreting bacteria, but how it is still unknown this state is affected by the usual dietary treatment of histamine intolerance [i.e., low-histamine diet and the supplementation with diamine oxidase (DAO) enzyme]. Thus, a preliminary study was carried out aiming to evaluate the potential changes on the composition of the intestinal microbiota in a group of five women diagnosed with histamine intolerance undergoing 9 months of the dietary treatment of histamine intolerance. After sequencing bacterial 16S rRNA genes (V3-V4 region) and analyzing the data using the EzBioCloud Database, we observed a reduction in certain histamine-secreting bacteria, including the genera Proteus and Raoultella and the specie Proteus mirabilis. Moreover, it was also observed an increase in Roseburia spp., a bacterial group frequently related to gut health. These changes could help to explain the clinical improvement experienced by histamine intolerant women underwent a dietary treatment.
Collapse
Affiliation(s)
- Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- *Correspondence: Oriol Comas-Basté,
| | - Adriana Duelo
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
| | - M. Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- M. Teresa Veciana-Nogués,
| | - Mercedes Berlanga
- Departament de Biologia, Sanitat i Mediambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- M. Carmen Vidal-Carou,
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA⋅UB), Universitat de Barcelona (UB), Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), Barcelona, Spain
- M. Luz Latorre-Moratalla,
| |
Collapse
|
5
|
Onisiforou A, Spyrou GM. Immunomodulatory effects of microbiota-derived metabolites at the crossroad of neurodegenerative diseases and viral infection: network-based bioinformatics insights. Front Immunol 2022; 13:843128. [PMID: 35928817 PMCID: PMC9344014 DOI: 10.3389/fimmu.2022.843128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bidirectional cross-talk between commensal microbiota and the immune system is essential for the regulation of immune responses and the formation of immunological memory. Perturbations of microbiome-immune system interactions can lead to dysregulated immune responses against invading pathogens and/or to the loss of self-tolerance, leading to systemic inflammation and genesis of several immune-mediated pathologies, including neurodegeneration. In this paper, we first investigated the contribution of the immunomodulatory effects of microbiota (bacteria and fungi) in shaping immune responses and influencing the formation of immunological memory cells using a network-based bioinformatics approach. In addition, we investigated the possible role of microbiota-host-immune system interactions and of microbiota-virus interactions in a group of neurodegenerative diseases (NDs): Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our analysis highlighted various aspects of the innate and adaptive immune response systems that can be modulated by microbiota, including the activation and maturation of microglia which are implicated in the development of NDs. It also led to the identification of specific microbiota components which might be able to influence immune system processes (ISPs) involved in the pathogenesis of NDs. In addition, it indicated that the impact of microbiota-derived metabolites in influencing disease-associated ISPs, is higher in MS disease, than in AD, PD and ALS suggesting a more important role of microbiota mediated-immune effects in MS.
Collapse
|
6
|
Elhag DA, Kumar M, Saadaoui M, Akobeng AK, Al-Mudahka F, Elawad M, Al Khodor S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int J Mol Sci 2022; 23:ijms23136966. [PMID: 35805965 PMCID: PMC9266456 DOI: 10.3390/ijms23136966] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated inflammation of the gastrointestinal tract with a highly heterogeneous presentation. It has a relapsing and remitting clinical course that necessitates lifelong monitoring and treatment. Although the availability of a variety of effective therapeutic options including immunomodulators and biologics (such as TNF, CAM inhibitors) has led to a paradigm shift in the treatment outcomes and clinical management of IBD patients, some patients still either fail to respond or lose their responsiveness to therapy over time. Therefore, according to the recent Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE-II) recommendations, continuous disease monitoring from symptomatic relief to endoscopic healing along with short- and long-term therapeutic responses are critical for providing IBD patients with a tailored therapy algorithm. Moreover, considering the high unmet need for novel therapeutic approaches for IBD patients, various new modulators of cytokine signaling events (for example, JAK/TYK inhibitors), inhibitors of cytokines (for example IL-12/IL-23, IL-22, IL-36, and IL-6 inhibitors), anti-adhesion and migration strategies (for example, β7 integrin, sphingosine 1-phosphate receptors, and stem cells), as well as microbial-based therapeutics to decolonize the bed buds (for example, fecal microbiota transplantation and bacterial inhibitors) are currently being evaluated in different phases of controlled clinical trials. This review aims to offer a comprehensive overview of available treatment options and emerging therapeutic approaches for IBD patients. Furthermore, predictive biomarkers for monitoring the therapeutic response to different IBD therapies are also discussed.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Marwa Saadaoui
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Anthony K. Akobeng
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Fatma Al-Mudahka
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Souhaila Al Khodor
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
- Correspondence:
| |
Collapse
|
7
|
Lazarević S, Đanic M, Al-Salami H, Mooranian A, Mikov M. Gut Microbiota Metabolism of Azathioprine: A New Hallmark for Personalized Drug-Targeted Therapy of Chronic Inflammatory Bowel Disease. Front Pharmacol 2022; 13:879170. [PMID: 35450035 PMCID: PMC9016117 DOI: 10.3389/fphar.2022.879170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the growing number of new drugs approved for the treatment of inflammatory bowel disease (IBD), the long-term clinical use of thiopurine therapy and the well-known properties of conventional drugs including azathioprine have made their place in IBD therapy extremely valuable. Despite the fact that thiopurine S-methyltransferase (TPMT) polymorphism has been recognized as a major cause of the interindividual variability in the azathioprine response, recent evidence suggests that there might be some yet unknown causes which complicate dosing strategies causing either failure of therapy or toxicity. Increasing evidence suggests that gut microbiota, with its ability to release microbial enzymes, affects the pharmacokinetics of numerous drugs and subsequently drastically alters clinical effectiveness. Azathioprine, as an orally administered drug which has a complex metabolic pathway, is the prime illustrative candidate for such microbial metabolism of drugs. Comprehensive databases on microbial drug-metabolizing enzymes have not yet been generated. This study provides insights into the current evidence on microbiota-mediated metabolism of azathioprine and systematically accumulates findings of bacteria that possess enzymes required for the azathioprine biotransformation. Additionally, it proposes concepts for the identification of gut bacteria species responsible for the metabolism of azathioprine that could aid in the prediction of dose-response effects, complementing pharmacogenetic approaches already applied in the optimization of thiopurine therapy of IBD. It would be of great importance to elucidate to what extent microbiota-mediated metabolism of azathioprine contributes to the drug outcomes in IBD patients which could facilitate the clinical implementation of novel tools for personalized thiopurine treatment of IBD.
Collapse
Affiliation(s)
- Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Maja Đanic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
8
|
Imakiire S, Takedatsu H, Mitsuyama K, Sakisaka H, Tsuruta K, Morita M, Kuno N, Abe K, Funakoshi S, Ishibashi H, Yoshioka S, Torimura T, Hirai F. Role of Serum Proteinase 3 Antineutrophil Cytoplasmic Antibodies in the Diagnosis, Evaluation of Disease Severity, and Clinical Course of Ulcerative Colitis. Gut Liver 2022; 16:92-100. [PMID: 35027509 PMCID: PMC8761930 DOI: 10.5009/gnl210211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Proteinase 3 antineutrophil cytoplasmic antibody (PR3-ANCA) is a serologic marker for granulomatosis with polyangiitis. However, recent studies have also shown their role as diagnostic markers for ulcerative colitis (UC). This study was performed to investigate the clinical roles of PR3-ANCAs in the disease severity, disease extension, and clinical course of UC. Methods Serum PR3-ANCAs were measured in 173 UC patients including 77 patients with new-onset patients UC diagnosed within 1 month, 110 patients with Crohn’s disease, 48 patients with other intestinal diseases, and 71 healthy controls. Associations between the PR3-ANCA titer and clinical data, such as disease severity, disease extension, and clinical course, were assessed. The clinical utility of PR3-ANCA measurement was evaluated by receiver operating characteristic (ROC) analysis. Results PR3-ANCA ≥3.5 U/mL demonstrated 44.5% sensitivity and 95.6% specificity for the diagnosis of UC in all patients. PR3-ANCA positivity was more prevalent in the 77 new-onset UC patients (58.4%). In this group, the disease severity and extension were more severe in PR3-ANCA positive patients than in PR3-ANCA negative group (p<0.001). After treatment, the partial Mayo scores were significantly decreased with the PR3-ANCA titers. The proportion of patients who required steroids for induction therapy was significantly higher among PR3-ANCA positive than negative group. ROC analysis revealed that PR3-ANCA ≥3.5 U/mL had 75% sensitivity and 69.0% specificity for steroid requirement in new-onset UC patients. Conclusions Our results indicate that PR3-ANCA measurement is useful not only for diagnosing UC but also for evaluating disease severity and extension and predicting the clinical course.
Collapse
Affiliation(s)
- So Imakiire
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Hidetoshi Takedatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Hideto Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Kozo Tsuruta
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Masaru Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Nobuaki Kuno
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Koichi Abe
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Sadahiro Funakoshi
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Hideki Ishibashi
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Shinichiro Yoshioka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Fumihito Hirai
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| |
Collapse
|
9
|
Mizuochi T, Arai K, Kudo T, Nambu R, Tajiri H, Aomatsu T, Abe N, Kakiuchi T, Hashimoto K, Sogo T, Takahashi M, Etani Y, Takaki Y, Konishi KI, Ishihara J, Obara H, Kakuma T, Kurei S, Yamashita Y, Mitsuyama K. Diagnostic accuracy of serum proteinase 3 antineutrophil cytoplasmic antibodies in children with ulcerative colitis. J Gastroenterol Hepatol 2021; 36:1538-1544. [PMID: 33047817 DOI: 10.1111/jgh.15296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Serologic markers such as myeloperoxidase (MPO) antineutrophil cytoplasmic antibodies (ANCA) (MPO-ANCA) have been used to screen patients for ulcerative colitis (UC). However, MPO-ANCA shows limited accuracy in Asians. Proteinase 3 ANCA (PR3-ANCA) has performed better at UC diagnosis in Japanese adults than MPO-ANCA. The present study aimed to evaluate usefulness of PR3-ANCA for diagnosis of UC in Japanese pediatric practice. METHODS Patients under 17 years old undergoing assessment at 12 Japanese pediatric centers between November 2016 and February 2018 were prospectively enrolled and divided into groups with UC, Crohn's disease (CD), intestinal disease control (IC), and healthy control (HC). Serum PR3-ANCA and MPO-ANCA were analyzed using chemiluminescence enzyme immunoassay kits. RESULTS Sera from 367 patients (148 with UC at a median age of 12 years; 120 with CD, 13 years; 56 with IC, 10.5 years; and 43 with HC, 10 years) were examined. Median PR3-ANCA values in UC (1.6 U/mL) were greater than in CD (0.2; P < 0.001), IC (0.15; P < 0.001), and HC (0.1; P < 0.001). In receiver operating characteristic curve analyses, the area under the curve for PR3-ANCA was 0.79, significantly greater than for MPO-ANCA (0.58; P < 0.001). Using a cut-off value of 0.8 U/mL determined from the receiver operating characteristic analyses, PR3-ANCA showed significantly greater sensitivity (64.9%) than MPO-ANCA (cut-off, 0.2 U/mL; sensitivity, 19.6%; P < 0.001) and good specificity (83.6%). CONCLUSIONS In Japanese children and adolescents, PR3-ANCA performed better as a serologic marker for diagnosis of UC than MPO-ANCA. To our knowledge, this is the first report of such a comparison.
Collapse
Affiliation(s)
- Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Katsuhiro Arai
- Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Takahiro Kudo
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan
| | - Hitoshi Tajiri
- Department of Pediatrics, Osaka General Medical Center, Osaka, Japan
| | - Tomoki Aomatsu
- Department of Pediatrics, Osaka Medical College, Osaka, Japan
| | - Naoki Abe
- Department of Infection and Immunology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Kunio Hashimoto
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Sogo
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Michiko Takahashi
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Yuri Etani
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yugo Takaki
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Ken-Ichiro Konishi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Jun Ishihara
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Hitoshi Obara
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuyuki Kakuma
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | | | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
10
|
Han JT, Li DY, Zhang MY, Yu XQ, Jia XX, Xu H, Yan X, Jia WJ, Niu S, Kempher ML, Tao X, He YX. EmhR is an indole-sensing transcriptional regulator responsible for the indole-induced antibiotic tolerance in Pseudomonas fluorescens. Environ Microbiol 2020; 23:2054-2069. [PMID: 33314494 DOI: 10.1111/1462-2920.15354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump. The expression of emhABC was regulated by a TetR-family transcription factor EmhR, which was demonstrated to be an indole-responsive regulator. Molecular dynamics simulation showed that indole allosterically affected the distance between the two DNA-recognizing helices within the EmhR dimer, leading to diminished EmhR-DNA interaction. It was further revealed the EmhR ortholog in Pseudomonas syringae was also responsible for indole-induced antibiotic tolerance, suggesting this EmhR-dependent, indole-induced antibiotic tolerance is likely to be conserved among Pseudomonas species. Taken together, our results elucidated the molecular mechanism of indole-induced antibiotic tolerance in Pseudomonas species and had important implications on how rhizobacteria sense and respond to indole in the rhizosphere.
Collapse
Affiliation(s)
- Jian-Ting Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Di-Yin Li
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, China
| | - Meng-Yuan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiang-Xue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hang Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Juan Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shaomin Niu
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, China
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Ok, USA
| | - Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Ok, USA
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
11
|
Antibodies to Crohn's disease peptide 353 as a diagnostic marker for pediatric Crohn's disease: a prospective multicenter study in Japan. J Gastroenterol 2020; 55:515-522. [PMID: 31980893 DOI: 10.1007/s00535-019-01661-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/29/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Various serologic markers such as anti-glycoprotein 2 antibodies and anti-Saccharomyces cerevisiae antibodies have been reported to be diagnostically useful in Crohn's disease. Mitsuyama et al. reported that antibodies to Crohn's disease peptide 353, a newly proposed serologic marker, were more useful in Japanese adults than anti-Saccharomyces. We addressed the same issue in Japanese children and adolescents. METHODS Prospectively enrolled subjects under 17 years old assessed and treated at 12 pediatric centers in Japan included groups with Crohn's disease, ulcerative colitis, other intestinal diseases, or good health. The 3 serum markers were analyzed by enzyme-linked immunosorbent assays. RESULTS Enrolled subjects, numbering 367, included 120 with Crohn's disease, 148 with ulcerative colitis, 56 with other intestinal diseases, and 43 healthy subjects. In Crohn's disease, anti-Crohn's disease peptide 353, anti-glycoprotein 2, and anti-Saccharomyces concentrations (median, 2.25, 3.0, and 8.9 U/mL) were significantly greater than in ulcerative colitis (1.1, 1.9, and 3.4; all P < 0.001), other intestinal diseases (1.1, 1.85, and 2.95; all P < 0.001), and healthy controls (1.1, 1.7, and 2.8; all P < 0.001), respectively. At 95% specificity, sensitivity of anti-Crohn's disease peptide (45.0%) was significantly higher than for anti-glycoprotein 2 (30.8%; P < 0.05) or anti-Saccharomyces (26.7%; P < 0.01). CONCLUSIONS Anti-Crohn's disease peptide 353 proved more useful for diagnosis of Crohn's disease in Japanese children than the other 2 markers. To our knowledge, this is the first pediatric report to that effect.
Collapse
|
12
|
Characterization of Antimicrobial Effects of Plasma-Treated Water (PTW) Produced by Microwave-Induced Plasma (MidiPLexc) on Pseudomonas fluorescens Biofilms. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the decontamination of surfaces in the food production industry, plasma-generated compounds such as plasma-treated water or plasma-processed air offer many promising possibilities for future applications. Therefore, the antimicrobial effect of water treated with microwave-induced plasma (MidiPLexc) on Pseudomonas fluorescens biofilms was investigated. A total of 10 mL deionized water was treated with the MidiPLexc plasma source for 100, 300 and 900 s (pretreatment time) and the bacterial biofilms were exposed to the plasma-treated water for 1, 3 and 5 min (post-treatment time). To investigate the influence of plasma-treated water on P. fluorescens biofilms, microbiological assays (colony-forming units, fluorescence and XTT assay) and imaging techniques (fluorescence microscopy, confocal laser scanning microscopy, and atomic force microscopy) were used. The colony-forming units showed a maximum reduction of 6 log10 by using 300 s pretreated plasma water for 5 min. Additionally, a maximum reduction of 81% for the viability of the cells and a 92% reduction in the metabolic activity of the cells were achieved by using 900 s pretreated plasma water for 5 min. The microscopic images showed evident microbial inactivation within the biofilm even at the shortest pretreatment (100 s) and post-treatment (1 min) times. Moreover, reduction of the biofilm thickness and increased cluster formation within the biofilm was detected. Morphologically, the fusion of cell walls into a uniform dense cell mass was detectable. The findings correlated with a decrease in the pH value of the plasma-treated water, which forms the basis for the chemically active components of plasma-treated water and its antimicrobial effects. These results provide valuable insights into the mechanisms of inactivation of biofilms by plasma-generated compounds such as plasma-treated water and thus allow for further parameter adjustment for applications in food industry.
Collapse
|
13
|
Verdu EF, Schuppan D. The enemy within the gut: bacterial pathogens in celiac autoimmunity. Nat Struct Mol Biol 2020; 27:5-7. [PMID: 31873302 DOI: 10.1038/s41594-019-0360-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Detlef Schuppan
- Institute of Translation Immunology, University Medical Center, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Cao J, Zhang H, Yang Z, Zhao J, Ma H. Effect of dehydroepiandrosterone on the immune response and gut microbiota in dextran sulfate sodium-induced colitis mice. Mol Immunol 2019; 118:60-72. [PMID: 31855808 DOI: 10.1016/j.molimm.2019.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Dehydroepiandrosterone (DHEA) possess anti-inflammatory, anti-oxidant and immune-regulating function in animals and humans, but there is not enough information about the mechanisms underlying its beneficial effects. The present study investigated the effect and mechanism of DHEA in dextran sulfate sodium (DSS)-induced colitis mice. The findings showed that DHEA relieved the decreasing of body weight, the increasing of disease activity index, the enhancing of spleen weight, the shortening of colon length and the rising of myeloperoxidase activity; meanwhile, histopathological analysis showed that DHEA maintained a relatively intact structure of colon in DSS-induced colitis mice. DHEA decreased the malondialdehyde content, superoxide dismutase activity and inducible nitric oxide synthase protein level; meanwhile, DHEA also inhibited the secretion of tumor necrosis factor-α, interleukin-1β and interleukin-6 in DSS-induced colitis mice. Importantly, our results showed that DHEA blocked the activation of nuclear factor-kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) pathways; and it inhibited the Nod-like receptor protein 3 inflammasome activation in DSS-induced colitis mice. Furthermore, DHEA markedly promoted the intestinal barrier function by up-regulation zonula occludens-1 expression level. The 16S rDNA gene sequencing demonstrated that DHEA decreased the Pseudomonas abundance in DSS-induced colitis mice. In conclusion, our data demonstrated that DHEA reduces oxidative damage through regulating antioxidant enzyme activity; inhibits pro-inflammatory cytokines production by blocking the activation of p38 MAPK and NF-κB signal pathway; protects colon barrier integrity via increasing tight junction protein expression and modulating gut microbiota taxa; all that finally alleviates DSS-induced experimental colitis in mice.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlong Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Integrating omics for a better understanding of Inflammatory Bowel Disease: a step towards personalized medicine. J Transl Med 2019; 17:419. [PMID: 31836022 PMCID: PMC6909475 DOI: 10.1186/s12967-019-02174-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is a multifactorial chronic disease. Understanding only one aspect of IBD pathogenesis does not reflect the complex nature of IBD nor will it improve its clinical management. Therefore, it is vital to dissect the interactions between the different players in IBD pathogenesis in order to understand the biology of the disease and enhance its clinical outcomes. Aims To provide an overview of the available omics data used to assess the potential mechanisms through which various players are contributing to IBD pathogenesis and propose a precision medicine model to fill the current knowledge gap in IBD. Results Several studies have reported microbial dysbiosis, immune and metabolic dysregulation in IBD patients, however, this data is not sufficient to create signatures that can differentiate between the disease subtypes or between disease relapse and remission. Conclusions We summarized the current knowledge in the application of omics in IBD patients, and we showed that the current knowledge gap in IBD hinders the improvements of clinical decision for treatment as well as the prediction of disease relapse. We propose one way to fill this gap by implementing integrative analysis of various omics datasets generated from one patient at a single time point.
Collapse
|
16
|
Bannaga AS, Farrugia A, Arasaradnam RP. Diagnosing Inflammatory bowel disease using noninvasive applications of volatile organic compounds: a systematic review. Expert Rev Gastroenterol Hepatol 2019; 13:1113-1122. [PMID: 31657950 DOI: 10.1080/17474124.2019.1685873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a common disease with significant morbidity. Noninvasive diagnostic techniques are lacking in IBD. Currently, fecal calprotectin is a sensitive marker of gut inflammation however is not specific to Crohn's disease (CD) or ulcerative colitis (UC) alone. Volatile organic compounds (VOCs) were shown to have potential in IBD diagnosis.Areas covered: This systematic review aimed to examine the next-generation diagnosis of IBD in adults and children using VOCs. An in-depth literature-based search of current clinical studies of VOCs in the diagnosis of IBD was undertaken. Accuracy of IBD detection varied according to the technologies applied. Breath VOCs studies were pooled giving an overall sensitivity of 85% (95%CI: 79-89%) and specificity of 79% (95%CI 73-84%) whilst pooled fecal VOCs studies revealed a sensitivity of 87% (95%CI 77-93%) and specificity of 91% (95%CI 82-96%). Studies were limited by the variance of techniques applied in VOCs detection and the absence of well-designed longitudinal studies.Expert opinion: VOCs can be consistently and effectively detected in urine, breath, and stool in IBD patients. The sensitivity of breath VOCs in detecting IBD was comparable to feces. However, optimal VOCs detection methodology and biological sampling still need to be standardized..
Collapse
Affiliation(s)
- Ayman S Bannaga
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Alexia Farrugia
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Ramesh P Arasaradnam
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK.,Faculty of Health Science, University of Coventry, Coventry, UK.,Division of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
17
|
Jiang KF, Fan YH. Serological markers and inflammatory bowel disease: Prevalence of serum markers and their diagnostic value in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2018; 26:1487-1493. [DOI: 10.11569/wcjd.v26.i25.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic nonspecific disease of the digestive tract that is caused by genetic and environmental factors, including ulcerative colitis, Crohn's disease, and unclassified IBD. At present, the diagnosis of IBD depends mainly on clinical manifestations, imaging changes, colonoscopy, and pathological biopsy, but there exist some limitations. The advantages of serological markers in IBD diagnosis are prominent, and a large number of relevant studies have been reported. This paper reviews the diagnostic and therapeutic value of serological markers in IBD, with an aim to clarify their role in the diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Ke-Fang Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
18
|
Takedatsu H, Mitsuyama K, Fukunaga S, Yoshioka S, Yamauchi R, Mori A, Yamasaki H, Kuwaki K, Sakisaka H, Sakisaka S, Torimura T. Diagnostic and clinical role of serum proteinase 3 antineutrophil cytoplasmic antibodies in inflammatory bowel disease. J Gastroenterol Hepatol 2018; 33:1603-1607. [PMID: 29514409 DOI: 10.1111/jgh.14140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Proteinase 3 antineutrophil cytoplasmic antibodies (PR3-ANCAs) are well-known serological markers for granulomatosis with polyangiitis, but their role as serological markers for inflammatory bowel disease remains uncertain. The present study aimed to evaluate the diagnostic and clinical role of PR3-ANCAs as markers for inflammatory bowel disease. METHODS Using a new methodology with chemiluminescence enzyme immunoassay, serum PR3-ANCA titers were assessed in 102 patients with ulcerative colitis (UC), 67 patients with Crohn's disease (CD), 44 controls with other intestinal diseases, and 66 healthy controls. Associations with clinical data were investigated. The diagnostic role of PR3-ANCAs was evaluated by receiver operating characteristic analysis. RESULTS Proteinase 3 antineutrophil cytoplasmic antibody titers were significantly higher in patients with UC than in those with CD patients, patients with intestinal diseases (intestinal controls), and healthy controls (all P < 0.001). Receiver operating characteristic analysis demonstrated an area under the curve of 0.85 (95% confidence interval: 0.83-0.87) and showed that the manufacturer's cutoff value (3.5 U/mL) had a sensitivity of 39.2% and specificity of 96.6% for UC. There was a significant difference between PR3-ANCA-positive and PR3-ANCA-negative patients with regard to disease duration (P < 0.05) and disease severity (P < 0.01). CONCLUSIONS Proteinase 3 antineutrophil cytoplasmic antibodies were significantly more prevalent in patients with UC than in those with CD and controls. Our results suggested the role of PR3-ANCAs as serological markers for aiding in diagnosing UC and evaluating disease severity. Further prospective studies are needed across multiple populations of patients and ethnic groups.
Collapse
Affiliation(s)
- Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Shuhei Fukunaga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Shinichiro Yoshioka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Ryosuke Yamauchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Atsushi Mori
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroshi Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Kotaro Kuwaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Hideto Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
19
|
Pandey N, Rajagopal R. Tissue damage induced midgut stem cell proliferation and microbial dysbiosis in Spodoptera litura. FEMS Microbiol Ecol 2017; 93:4443193. [DOI: 10.1093/femsec/fix132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
|
20
|
Abstract
炎症性肠病(inflammatory bowel disease, IBD)是一种病因不明的慢性非特异性肠道炎症性疾病, 包括溃疡性结肠炎(ulcerative colitis, UC)和克罗恩病(Crohn's disease, CD). 目前IBD的诊断及临床过程主要依据其临床表现、常规检验、影像学特征、内镜所见及组织病理综合判断, 但远未满足临床实践. 因此, 寻找一种简单、准确的诊断方法成为目前亟待解决的问题. 迄今, IBD相关血清学标志物的应用对IBD的诊断与鉴别诊断、疾病严重程度界定、疗效判断和预后评估均凸显出其临床优势. 本文就近年来IBD血清学标志物的研究及其临床应用前景作一述评.
Collapse
|
21
|
Kadin ME, Morgan J, Xu H, Glicksman CA. CD30+ T Cells in Late Seroma May Not Be Diagnostic of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Aesthet Surg J 2017; 37:771-775. [PMID: 28402493 DOI: 10.1093/asj/sjw286] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The objective was to analyze and discuss the implications of a nonmalignant CD30+ late seroma. Methods included collection of seroma fluid and peripheral blood from a patient with a late seroma 22 years after initial breast reconstruction. A panel of 24 monoclonal antibodies was used to detect T-cell receptor Vβ regions present on ~70% of normal human peripheral blood T lymphocytes. Flow cytometry gated on CD3+ and CD30+ activated T lymphocytes. Cytospins were used to inspect the morphology of the T lymphocytes. Results from the seroma fluid cytology revealed a spectrum of activated T lymphocytes as seen in the blood of patients with immune disorders such as infectious mononucleosis. Cells were judged to be nonmalignant by routine pathology. Flow cytometry revealed >23% of CD3+ T lymphocytes belonged to an expanded T-cell family expressing TCRVβ13.2. Most Vβ13.2 cells expressed T-cell activation antigen CD30 indicating that CD30 is not restricted to anaplastic large cell lymphoma (ALCL) in seroma fluids. A smaller expanded population of CD30+ T lymphocytes expressing TCRVβ 13.2 was detected in the blood. In conclusion, in this index case, an expanded population of CD30+ activated T lymphocytes was detected in seroma fluid surrounding a textured breast implant as well as in peripheral blood, consistent with a local and systemic immune response. The demonstration of an expanded CD30+ T-cell population in a polyclonal background suggests a possible role for bacterial superantigens as a pathogenic factor. These data further suggest that breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) may be the end stage of a CD30+ T-cell lymphoproliferative disorder. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- Marshall E Kadin
- Boston University School of Medicine, Boston, MA
- Roger Williams Medical Center, Providence, RI
| | - John Morgan
- Research Core Facility, Roger Williams Medical Center, Providence, RI
| | - Haiying Xu
- Roger Williams Medical Center, Providence, RI
| | | |
Collapse
|
22
|
Chiou TY, Suda W, Oshima K, Hattori M, Takahashi T. Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage. Biosci Biotechnol Biochem 2017; 81:403-410. [DOI: 10.1080/09168451.2016.1249449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days’ fermentation. UniFrac–Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.
Collapse
Affiliation(s)
- Tai-Ying Chiou
- Laboratory of Food Science and Technology, Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Japan
| | - Wataru Suda
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Tokyo, Japan
| | - Tomoya Takahashi
- ARSOA Research & Development Center, AOB Keioh Group Corporation, Hokuto, Japan
| |
Collapse
|
23
|
Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice. Gut Pathog 2017; 9:4. [PMID: 28115993 PMCID: PMC5241993 DOI: 10.1186/s13099-017-0154-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
Background The rising incidence of multidrug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa has become a serious issue in prevention of its spread particularly among hospitalized patients. It is, however, unclear whether distinct conditions such as acute intestinal inflammation facilitate P. aeruginosa infection of vertebrate hosts. Methods and results To address this, we analysed P. aeruginosa infection in human microbiota-associated (hma) mice with acute ileitis induced by peroral Toxoplasma gondii challenge. When perorally infected with P. aeruginosa at day 3 post ileitis induction, hma mice displayed higher intestinal P. aeruginosa loads as compared to hma mice without ileitis. However, the overall intestinal microbiota composition was not disturbed by P. aeruginosa (except for lowered bifidobacterial populations), and the infection did not further enhance ileal immune cell responses. Pro-inflammatory cytokines including IFN-γ and IL-12p70 were similarly increased in ileum and mesenteric lymph nodes of P. aeruginosa infected and uninfected hma mice with ileitis. The anti-inflammatory cytokine IL-10 increased multifold upon ileitis induction, but interestingly more distinctly in P. aeruginosa infected as compared to uninfected controls. Immune responses were not restricted to the intestines as indicated by elevated pro-inflammatory cytokine levels in liver and kidney upon ileitis induction. However, except for hepatic TNF-α levels, P. aeruginosa infection did not result in more distinct pro-inflammatory cytokine secretion in liver and kidney of hma mice with ileitis. Whereas viable intestinal bacteria were more frequently detected in systemic compartments such as spleen and cardiac blood of P. aeruginosa infected than uninfected mice at day 7 following ileitis induction, P. aeruginosa infection did not exacerbate systemic pro-inflammatory sequelae, but resulted in lower IL-10 serum levels. Conclusion Acute intestinal inflammation facilitates infection of the vertebrate host with MDR bacteria including P. aeruginosa and might also pose particularly hospitalized patients at risk for acquisition. Since acute T. gondii induced inflammation might mask immunopathology caused by P. aeruginosa, a subacute or chronic inflammation model might be better suited to investigate the potential role of P. aeruginosa infection in the aggravation of intestinal disease. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0154-4) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Gaeta NC, Lima SF, Teixeira AG, Ganda EK, Oikonomou G, Gregory L, Bicalho RC. Deciphering upper respiratory tract microbiota complexity in healthy calves and calves that develop respiratory disease using shotgun metagenomics. J Dairy Sci 2016; 100:1445-1458. [PMID: 27988122 DOI: 10.3168/jds.2016-11522] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
Abstract
Bovine respiratory disease (BRD) is a multifactorial disorder responsible for severe economic losses in dairy and feedlot herds. Advances in next-generation sequencing mean that microbial communities in clinical samples, including non-culturable bacteria, can be characterized. Our aim was to evaluate the microbiota of the upper respiratory tract of healthy calves and calves with BRD using whole-genome sequencing (shotgun metagenomics). We performed deep nasopharyngeal swabs on 16 Holstein heifer calves (10 healthy and 6 diagnosed with BRD during the study) at 14 and 28 d of life in 1 dairy herd near Ithaca, New York. Total DNA was extracted, and whole-genome sequencing was performed using the MiSeq Illumina platform (Illumina Inc., San Diego, CA). Samples included 5 predominant phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Tenericutes. At the genus level, we observed differences between groups for Pseudomonas spp. At the species level, Mannheimia haemolytica was the most abundant bacterium detected. We detected significant differences between groups of calves in the relative abundance of Pseudomonas fluorescens. Pasteurella multocida was among the 20 most abundant species, and Moraxella catarrhalis, commonly associated with pneumonia in humans, was detected in all groups. Analysis of resistance to antibiotics and compounds profiling revealed differences in cobalt-zinc-cadmium resistance. Further research to elucidate the role of Moraxella catarrhalis in BRD is warranted. Genes that were resistant to cobalt-zinc-cadmium, observed mostly in calves with BRD, might be associated with difficulties in antibiotic treatment.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Medical Clinic, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil 05508-270
| | - Svetlana F Lima
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY
| | - Andre G Teixeira
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY
| | - Erika K Ganda
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY
| | - Georgios Oikonomou
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY; Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston CH64 7TE, United Kingdom
| | - Lilian Gregory
- Department of Medical Clinic, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil 05508-270
| | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca 14853, NY.
| |
Collapse
|
25
|
Root-Bernstein R. Autoimmunity and the microbiome: T-cell receptor mimicry of "self" and microbial antigens mediates self tolerance in holobionts: The concepts of "holoimmunity" (TcR-mediated tolerance for the holobiont) and "holoautoimmunity" (loss of tolerance for the holobiont) are introduced. Bioessays 2016; 38:1068-1083. [PMID: 27594308 PMCID: PMC7161894 DOI: 10.1002/bies.201600083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
I propose a T-cell receptor (TcR)-based mechanism by which immunity mediates both "genetic self" and "microbial self" thereby, connecting microbiome disease with autoimmunity. The hypothesis is based on simple principles. First, TcR are selected to avoid strong cross-reactivity with "self," resulting in selection for a TcR repertoire mimicking "genetic self." Second, evolution has selected for a "microbial self" that mimics "genetic self" so as to share tolerance. In consequence, our TcR repertoire also mimics microbiome antigenicity, providing a novel mechanism for modulating tolerance to it. Also, the microbiome mimics the TcR repertoire, acting as a secondary immune system. I call this TcR-microbiome mimicry "holoimmunity" to denote immune tolerance to the "holobiont self." Logically, microbiome-host mimicry means that autoimmunity directed at host antigens will also attack components of the microbiome, and conversely, an immunological attack on the microbiome may cross-react with host antigens producing "holoautoimmunity."
Collapse
|
26
|
Zhou Y, Chen H, He H, Du Y, Hu J, Li Y, Li Y, Zhou Y, Wang H, Chen Y, Nie Y. Increased Enterococcus faecalis infection is associated with clinically active Crohn disease. Medicine (Baltimore) 2016; 95:e5019. [PMID: 27684872 PMCID: PMC5265965 DOI: 10.1097/md.0000000000005019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study was performed to investigate the relationship between the abundance of pathogenic gut microbes in Chinese patients with inflammatory bowel disease (IBD) and disease severity.We collected clinical data and fecal samples from 47 therapy-naive Chinese patients with ulcerative colitis (UC), 67 patients with Crohn disease (CD), and 48 healthy volunteers. Bacteria levels of Fusobacterium species (spp), enterotoxigenic Bacteroides fragilis (B fragilis), enteropathogenic Escherichia coli (E coli), and Enterococcus faecalis (E faecalis) were assessed by quantitative real-time PCR (qRT-PCR). Spearman correlation coefficients were calculated to test associations between bacterial content and clinical parameters.Compared to healthy controls, the levels of both Fusobacterium spp and E faecalis were significantly increased in the feces of patients with IBD (P < 0.01). B fragilis levels were higher (P < 0.05) and E faecalis levels lower (P < 0.05) in patients with CD compared to those with UC. Increased E faecalis colonization in CD associated positively with disease activity (P = 0.015), Crohn disease activity index (CDAI; R = 0.3118, P = 0.0108), and fecal calprotectin (P = 0.016).E faecalis and Fusobacterium spp are significantly enriched in patients with IBD, and increased E faecalis infection is associated with clinically active CD.
Collapse
Affiliation(s)
- Youlian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
| | - Huiting Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
| | - Hanchang He
- The First People's Foshan Hospital, Chancheng District, Foshan, Guangdong
| | - Yanlei Du
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
| | - Jiaqi Hu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University
| | - Yingfei Li
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
| | - Yuyuan Li
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
| | - Hong Wang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- Correspondence: Yuqiang Nie, Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1 Panfu Road, Guangzhou 510180, P. R. China (e-mail: ); Ye Chen, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China (e-mail: )
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou
- Correspondence: Yuqiang Nie, Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, No. 1 Panfu Road, Guangzhou 510180, P. R. China (e-mail: ); Ye Chen, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China (e-mail: )
| |
Collapse
|
27
|
Abstract
There is currently no single test available to confidently diagnose cases of inflammatory bowel disease (IBD). Physicians rely on a number of diagnostic tools, including clinical evaluation, serum testing, and imaging, which are used on conjunction with endoscopic evaluation. It is often difficult to determine whether patients with abdominal pain and change in bowel habit have functional bowel symptoms or whether they have a true diagnosis of IBD. Even once a diagnosis of IBD has been made, a significant proportion of patients are labeled with the term "indeterminate colitis" where histological sampling cannot confidently subclassify patients as either Crohn's or ulcerative colitis. Colonoscopy is an inconvenient and uncomfortable test for most patients. In addition, it is not without serious risks of perforation, as well as risks which can be associated with sedation and analgesia given during the procedure. The use of biomarkers to aid in the diagnosis, subclassification, and monitoring of IBD is an ever expanding area. In this review, we have concentrated on noninvasive biomarkers of IBD, because these are more acceptable to patients and easier to perform in everyday clinical practice. We will first touch on those biomarkers currently well established and in wide clinical use, such as C-reactive protein, erythrocyte sedimentation rate. Faecal calprotectin and their use in the diagnosis of IBD. Following on, we will review more novel biomarkers and their use in subclassification and monitoring of IBD, including a variety of antibodies, genetics, and microRNAs, as well as touching on metabolomics.
Collapse
|
28
|
Ud-Din AIMS, Roujeinikova A. Cloning, purification, crystallization and X-ray crystallographic analysis of the periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type A (CtaA). Biosci Trends 2016; 10:320-4. [PMID: 27251445 DOI: 10.5582/bst.2016.01059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotaxis towards nutrients plays a crucial role in root colonization by Pseudomonas fluorescens. The P. fluorescens chemotactic transducer of amino acids type A (CtaA) mediates movement towards amino acids present in root exudates. In this study, the periplasmic sensory domain of CtaA has been crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 1.9 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group I222 or I212121, with unit-cell parameters a = 67.2, b = 76.0, c = 113.3 Å. This is an important step towards elucidation of the structural basis of how CtaA recognizes its signal molecules and transduces the signal across the membrane.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia; Department of Microbiology, Monash University
| | | |
Collapse
|
29
|
Amcoff K, Joossens M, Pierik MJ, Jonkers D, Bohr J, Joossens S, Romberg-Camps M, Nyhlin N, Wickbom A, Rutgeerts PJ, Tysk C, Bodin L, Colombel JF, Vermeire S, Halfvarson J. Concordance in Anti-OmpC and Anti-I2 Indicate the Influence of Genetic Predisposition: Results of a European Study of Twins with Crohn's Disease. J Crohns Colitis 2016; 10:695-702. [PMID: 26818662 DOI: 10.1093/ecco-jcc/jjw021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/26/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS An adaptive immunological response to microbial antigens has been observed in Crohn's disease (CD). Intriguingly, this serological response precedes the diagnosis in some patients and has also been observed in healthy relatives. We aimed to determine whether genetic factors are implicated in this response in a CD twin cohort. METHODS In total, 82 twin pairs (Leuven n = 13, Maastricht n = 8, Örebro n = 61) took part: 81 pairs with CD (concordant monozygotic n = 16, discordant monozygotic n = 22, concordant dizygotic n = 3, discordant dizygotic n = 40) and 1 monozygotic pair with both CD and ulcerative colitis. Serology for Pseudomonas fluorescens-related protein (anti-I2), Escherichia coli outer membrane porin C (anti-OmpC), CBir1flagellin (anti-CBir1) and antibodies to oligomannan (anti-Saccharomyces cerevisiae antibody [ASCA]) was determined by standardized enzyme-linked immunoassay. RESULTS All markers were more often present in CD twins than in their healthy twin siblings. Using the intraclass correlation coefficient (ICC), agreements in concentrations of anti-OmpC and anti-I2 were observed in discordant monozygotic but not in discordant dizygotic twin pairs with CD (anti-OmpC, ICC 0.80 and -0.02, respectively) and (anti-I2, ICC 0.56 and 0.05, respectively). In contrast, no agreements were found in anti-CBir, immunoglobulin (Ig) G ASCA and ASCA IgA. CONCLUSIONS We show that anti-I2 and anti-CBir1 statuses have specificity for CD and confirm previous reported specificities for anti-OmpC and ASCA. Based on quantitative analyses and observed ICCs, genetics seems to predispose to the anti-OmpC and anti-I2 response but less to ASCA and anti-CBir1 responses.
Collapse
Affiliation(s)
- Karin Amcoff
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marie Joossens
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium VIB, Center for the Biology of Disease, Herestraat 49, B-3000 Leuven, Belgium Microbiology Unit, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Marie J Pierik
- Gastroenterology, University Hospital Maastricht, Maastricht, The Netherlands
| | - Daisy Jonkers
- Gastroenterology, University Hospital Maastricht, Maastricht, The Netherlands
| | - Johan Bohr
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sofie Joossens
- Gastroenterology, Catholic University of Leuven (KUL), Leuven, Belgium
| | - Mariëlle Romberg-Camps
- Department of Gastroenterology-Hepatology, Zuyderland Medical Center, Sittard, Netherlands
| | - Nils Nyhlin
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anna Wickbom
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paul J Rutgeerts
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Curt Tysk
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lennart Bodin
- Institute of Environmental Medicine, Unit of Intervention and Implementation Research, Karolinska Institute, Stockholm, Sweden
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Severine Vermeire
- Department of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
30
|
Forbes JD, Van Domselaar G, Sargent M, Green C, Springthorpe S, Krause DO, Bernstein CN. Microbiome profiling of drinking water in relation to incidence of inflammatory bowel disease. Can J Microbiol 2016; 62:781-93. [PMID: 27420183 DOI: 10.1139/cjm-2016-0219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The etiology of inflammatory bowel disease (IBD) is unknown; current research is focused on determining environmental factors. One consideration is drinking water: water systems harbour considerable microbial diversity, with bacterial concentrations estimated at 10(6)-10(8) cells/L. Perhaps differences in microbial ecology of water sources may impact differential incidence rates of IBD. Regions of Manitoba were geographically mapped according to incidence rates of IBD and identified as high (HIA) or low (LIA) incidence areas. Bulk water, filter material, and pipe wall samples were collected from public buildings in different jurisdictions and their population structure analyzed using 16S rDNA sequencing. At the phylum level, Proteobacteria were observed significantly less frequently (P = 0.02) in HIA versus LIA. The abundance of Proteobacteria was also found to vary according to water treatment distribution networks. Gammaproteobacteria was the most abundant class of bacteria and was observed more frequently (P = 0.006) in LIA. At the genus level, microbes found to associate with HIA include Bradyrhizobium (P = 0.02) and Pseudomonas (P = 0.02). Particular microbes were found to associate with LIA or HIA, based on sample location and (or) type. This work lays out a basis for further studies exploring water as a potential environmental source for IBD triggers.
Collapse
Affiliation(s)
- Jessica D Forbes
- a Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,b National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gary Van Domselaar
- a Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,b National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael Sargent
- c Department of Internal Medicine and the University of Manitoba IBD Clinical and Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Chris Green
- d Department of Community Health Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Susan Springthorpe
- e Centre for Research on Environmental Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Denis O Krause
- a Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles N Bernstein
- c Department of Internal Medicine and the University of Manitoba IBD Clinical and Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
31
|
Hetemäki I, Jarva H, Kluger N, Baldauf HM, Laakso S, Bratland E, Husebye ES, Kisand K, Ranki A, Peterson P, Arstila TP. Anticommensal Responses Are Associated with Regulatory T Cell Defect in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Patients. THE JOURNAL OF IMMUNOLOGY 2016; 196:2955-64. [PMID: 26903483 DOI: 10.4049/jimmunol.1500301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease caused by mutations in the AIRE gene. Although mainly an endocrine disease, a substantial fraction of patients have gastrointestinal manifestations. In this study, we have examined the role of anticommensal responses and their regulation. APECED patients had increased levels of Abs against Saccharomyces cerevisiae (p < 0.0001) and against several species of commensal gut bacteria, but not against species predominantly associated with other locations. The anticommensal Ab levels did not correlate with gastrointestinal autoantibodies, neutralizing anti-IL-17 or -IL-22 Abs, or gastrointestinal symptoms, although scarcity of the available clinical data suggests that further study is required. However, the anti-S. cerevisiae Ab levels showed a significant inverse correlation with FOXP3 expression levels in regulatory T cells (Treg), previously shown to be dysfunctional in APECED. The correlation was strongest in the activated CD45RO(+) population (ρ = -0.706; p < 0.01). APECED patients also had decreased numbers of FOXP3(+) cells in gut biopsies. These results show that APECED patients develop early and sustained responses to gut microbial Ags in a pattern reminiscent of Crohn's disease. This abnormal immune recognition of gut commensals is linked to a systemic Treg defect, which is also reflected as a local decrease of gut-associated Treg. To our knowledge, these data are the first to show dysregulated responses to non-self commensal Ags in APECED and indicate that AIRE contributes to the regulation of gut homeostasis, at least indirectly. The data also raise the possibility of persistent microbial stimulation as a contributing factor in the pathogenesis of APECED.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki, Finland; Research Programs Unit, Immunobiology Research Program, University of Helsinki, 00014 Helsinki, Finland;
| | - Hanna Jarva
- Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki, Finland; Research Programs Unit, Immunobiology Research Program, University of Helsinki, 00014 Helsinki, Finland; HUSLAB, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Nicolas Kluger
- Department of Skin and Allergic Diseases, Skin and Allergy Hospital, Helsinki University Central Hospital, 00250 Helsinki, Finland
| | - Hanna-Mari Baldauf
- Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki, Finland
| | - Sini Laakso
- Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki, Finland
| | - Eirik Bratland
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; and
| | - Eystein S Husebye
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; and
| | - Kai Kisand
- Institute of General and Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Annamari Ranki
- Department of Skin and Allergic Diseases, Skin and Allergy Hospital, Helsinki University Central Hospital, 00250 Helsinki, Finland
| | - Pärt Peterson
- Institute of General and Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - T Petteri Arstila
- Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki, Finland; Research Programs Unit, Immunobiology Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Soubières AA, Poullis A. Emerging role of novel biomarkers in the diagnosis of inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2016; 7:41-50. [PMID: 26855811 PMCID: PMC4734953 DOI: 10.4292/wjgpt.v7.i1.41] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
There is currently no gold standard test for the diagnosis of inflammatory bowel disease (IBD). Physicians must rely on a number of diagnostic tools including clinical and endoscopic evaluation as well as histologic, serologic and radiologic assessment. The real difficulty for physicians in both primary and secondary care is differentiating between patients suffering from functional symptoms and those with true underlying IBD. Alongside this, there is always concern regarding the possibility of a missed, or delayed diagnosis of ulcerative colitis (UC) or Crohn’s disease. Even once the diagnosis of IBD has been made, there is often uncertainty in distinguishing between cases of UC or Crohn’s. As a consequence, in cases of incorrect diagnosis, optimal treatment and management may be adversely affected. Endoscopic evaluation can be uncomfortable and inconvenient for patients. It carries significant risks including perforation and in terms of monetary cost, is expensive. The use of biomarkers to help in the diagnosis and differentiation of IBD has been increasing over time. However, there is not yet one biomarker, which is sensitive of specific enough to be used alone in diagnosing IBD. Current serum testing includes C-reactive protein and erythrocyte sedimentation rate, which are cheap, reliable but non-specific and thus not ideal. Stool based testing such as faecal calprotectin is a much more specific tool and is currently in widespread clinical use. Non-invasive sampling is of the greatest clinical value and with the recent advances in metabolomics, genetics and proteomics, there are now more tools available to develop sensitive and specific biomarkers to diagnose and differentiate between IBD. Many of these new advances are only in early stages of development but show great promise for future clinical use.
Collapse
|
33
|
Hansen JJ. Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases. Curr Allergy Asthma Rep 2015; 15:61. [PMID: 26306907 DOI: 10.1007/s11882-015-0562-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are characterized by chronic, T-cell-mediated inflammation of the gastrointestinal tract that can cause significant, lifelong morbidity. Data from both human and animal studies indicate that IBDs are likely caused by dysregulated immune responses to resident intestinal microbes. Certain products from mycobacteria, fungi, and Clostridia stimulate increased effector T cell responses during intestinal inflammation, whereas other bacterial products from Clostridia and Bacteroides promote anti-inflammatory regulatory T cell responses. Antibody responses to bacterial and fungal components may help predict the severity of IBDs. While most currently approved treatments for IBDs generally suppress the patient's immune system, our growing understanding of microbial influences in IBDs will likely lead to the development of new diagnostic tools and therapies that target the intestinal microbiota.
Collapse
Affiliation(s)
- Jonathan J Hansen
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, CB 7032, Chapel Hill, NC, 27599-7032, USA,
| |
Collapse
|
34
|
Scales BS, Erb-Downward JR, Huffnagle IM, LiPuma JJ, Huffnagle GB. Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics 2015; 16:1032. [PMID: 26644001 PMCID: PMC4672498 DOI: 10.1186/s12864-015-2261-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Background While the taxonomy and genomics of environmental strains from the P. fluorescens species-complex has been reported, little is known about P. fluorescens strains from clinical samples. In this report, we provide the first genomic analysis of P. fluorescens strains in which human vs. environmental isolates are compared. Results Seven P. fluorescens strains were isolated from respiratory samples from cystic fibrosis (CF) patients. The clinical strains could grow at a higher temperature (>34 °C) than has been reported for environmental strains. Draft genomes were generated for all of the clinical strains, and multi-locus sequence analysis placed them within subclade III of the P. fluorescens species-complex. All strains encoded type- II, −III, −IV, and -VI secretion systems, as well as the widespread colonization island (WCI). This is the first description of a WCI in P. fluorescens strains. All strains also encoded a complete I2/PfiT locus and showed evidence of horizontal gene transfer. The clinical strains were found to differ from the environmental strains in the number of genes involved in metal resistance, which may be a possible adaptation to chronic antibiotic exposure in the CF lung. Conclusions This is the largest comparative genomics analysis of P. fluorescens subclade III strains to date and includes the first clinical isolates. At a global level, the clinical P. fluorescens subclade III strains were largely indistinguishable from environmental P. fluorescens subclade III strains, supporting the idea that identifying strains as ‘environmental’ vs ‘clinical’ is not a phenotypic trait. Rather, strains within P. fluorescens subclade III will colonize and persist in any niche that provides the requirements necessary for growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2261-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brittan S Scales
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ian M Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Clark C, Turner J. Diagnostic Modalities for Inflammatory Bowel Disease: Serologic Markers and Endoscopy. Surg Clin North Am 2015; 95:1123-41, v. [PMID: 26596918 DOI: 10.1016/j.suc.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The evaluation, diagnosis, and monitoring of inflammatory bowel disease (IBD) has improved significantly over the past few decades. However, differentiation and management of the subtypes of IBD (Crohn's disease, ulcerative colitis, and indeterminate colitis) can still be challenging. The evolution of serologic markers has improved our understanding of the pathogenesis and natural history of IBD. In addition, advancements in endoscopy and endoscopic scoring systems have improved the accuracy of diagnosis and the efficacy of surveillance of IBD patients. This article reviews the recent literature on serologic markers, endoscopy, and endoscopy scoring systems.
Collapse
Affiliation(s)
- Clarence Clark
- Department of Surgery, Division of Colon and Rectal Surgery, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA
| | - Jacquelyn Turner
- Department of Surgery, Division of Colon and Rectal Surgery, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA.
| |
Collapse
|
36
|
Biaggini K, Barbey C, Borrel V, Feuilloley M, Déchelotte P, Connil N. The pathogenic potential of Pseudomonas fluorescens MFN1032 on enterocytes can be modulated by serotonin, substance P and epinephrine. Arch Microbiol 2015; 197:983-90. [PMID: 26175088 DOI: 10.1007/s00203-015-1135-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/23/2015] [Accepted: 07/04/2015] [Indexed: 01/28/2023]
Abstract
Pseudomonas fluorescens is a commensal bacterium present at low level in the human digestive tract that has also been reported in many clinical samples (blood, urinary tract, skin, lung, etc.) and sometimes associated with acute opportunistic infections. It has recently been found that the human β-defensin-2 can enhance the pathogenic potential of P. fluorescens. In this study, we evaluated the effect of other intestinal molecules (5HT, SP and Epi) on growth and virulence of the clinical strain P. fluorescens MFN1032. We found that P. fluorescens MFN1032 growth was not mainly affected by these factors, but several modifications in the virulence behavior of this bacterium were observed. 5HT, SP and Epi were able to modulate the motility of P. fluorescens MFN1032. 5HT and SP had an effect on pyoverdin production and IL-8 secretion, respectively. Infection of Caco-2/TC7 cells with P. fluorescens MFN1032 pretreated by SP or Epi enhanced the permeability of the monolayers and led to a partial delocalization of F-actin to the cytoplasm. These findings show that some intestinal molecules can modulate the pathogenic potential of P. fluorescens MFN1032. We can hypothesize that this dialogue between the host and the human gut microbiota may participate in health and disease.
Collapse
Affiliation(s)
- Kelly Biaggini
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA4312, Université de Rouen, Évreux, France,
| | | | | | | | | | | |
Collapse
|
37
|
Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin Microbiol Rev 2015; 27:927-48. [PMID: 25278578 DOI: 10.1128/cmr.00044-14] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas fluorescens is not generally considered a bacterial pathogen in humans; however, multiple culture-based and culture-independent studies have identified it at low levels in the indigenous microbiota of various body sites. With recent advances in comparative genomics, many isolates originally identified as the "species" P. fluorescens are now being reclassified as novel Pseudomonas species within the P. fluorescens "species complex." Although most widely studied for its role in the soil and the rhizosphere, P. fluorescens possesses a number of functional traits that provide it with the capability to grow and thrive in mammalian hosts. While significantly less virulent than P. aeruginosa, P. fluorescens can cause bacteremia in humans, with most reported cases being attributable either to transfusion of contaminated blood products or to use of contaminated equipment associated with intravenous infusions. Although not suspected of being an etiologic agent of pulmonary disease, there are a number of reports identifying it in respiratory samples. There is also an intriguing association between P. fluorescens and human disease, in that approximately 50% of Crohn's disease patients develop serum antibodies to P. fluorescens. Altogether, these reports are beginning to highlight a far more common, intriguing, and potentially complex association between humans and P. fluorescens during health and disease.
Collapse
|
38
|
Xu B, Xu W, Li J, Dai L, Xiong C, Tang X, Yang Y, Mu Y, Zhou J, Ding J, Wu Q, Huang Z. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genomics 2015; 16:174. [PMID: 25887697 PMCID: PMC4369366 DOI: 10.1186/s12864-015-1378-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 02/21/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host and the diet adopted by the host. Although the importance of gut microbiota of humans has been well demonstrated, there is a paucity of research regarding non-human primates (NHPs), especially herbivorous NHPs. RESULTS In this study, an analysis of 97,942 pyrosequencing reads generated from Rhinopithecus bieti fecal DNA extracts was performed to help better understanding of the microbial diversity and functional capacity of the R. bieti gut microbiome. The taxonomic analysis of the metagenomic reads indicated that R. bieti fecal microbiomes were dominated by Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria phyla. The comparative analysis of taxonomic classification revealed that the metagenome of R. bieti was characterized by an overrepresentation of bacteria of phylum Fibrobacteres and Spirochaetes as compared with other animals. Primary functional categories were associated mainly with protein, carbohydrates, amino acids, DNA and RNA metabolism, cofactors, cell wall and capsule and membrane transport. Comparing glycoside hydrolase profiles of R. bieti with those of other animal revealed that the R. bieti microbiome was most closely related to cow rumen. CONCLUSIONS Metagenomic and functional analysis demonstrated that R. bieti possesses a broad diversity of bacteria and numerous glycoside hydrolases responsible for lignocellulosic biomass degradation which might reflect the adaptations associated with a diet rich in fibrous matter. These results would contribute to the limited body of NHPs metagenome studies and provide a unique genetic resource of plant cell wall degrading microbial enzymes. However, future studies on the metagenome sequencing of R. bieti regarding the effects of age, genetics, diet and environment on the composition and activity of the metagenomes are required.
Collapse
Affiliation(s)
- Bo Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Weijiang Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Junjun Li
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Liming Dai
- School of Life Science, Yunnan Normal University, Kunming, 650500, China.
| | - Caiyun Xiong
- School of Life Science, Yunnan Normal University, Kunming, 650500, China.
| | - Xianghua Tang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Yunjuan Yang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Yuelin Mu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Junpei Zhou
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Junmei Ding
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
39
|
Cioffi M, Rosa AD, Serao R, Picone I, Vietri MT. Laboratory markers in ulcerative colitis: Current insights and future advances. World J Gastrointest Pathophysiol 2015; 6:13-22. [PMID: 25685607 PMCID: PMC4325297 DOI: 10.4291/wjgp.v6.i1.13] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/04/2014] [Accepted: 12/31/2014] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) and Crohn’s disease (CD) are the major forms of inflammatory bowel diseases (IBD) in man. Despite some common features, these forms can be distinguished by different genetic predisposition, risk factors and clinical, endoscopic and histological characteristics. The aetiology of both CD and UC remains unknown, but several evidences suggest that CD and perhaps UC are due to an excessive immune response directed against normal constituents of the intestinal bacterial flora. Tests sometimes invasive are routine for the diagnosis and care of patients with IBD. Diagnosis of UC is based on clinical symptoms combined with radiological and endoscopic investigations. The employment of non-invasive biomarkers is needed. These biomarkers have the potential to avoid invasive diagnostic tests that may result in discomfort and potential complications. The ability to determine the type, severity, prognosis and response to therapy of UC, using biomarkers has long been a goal of clinical researchers. We describe the biomarkers assessed in UC, with special reference to acute-phase proteins and serologic markers and thereafter, we describe the new biological markers and the biological markers could be developed in the future: (1) serum markers of acute phase response: The laboratory tests most used to measure the acute-phase proteins in clinical practice are the serum concentration of C-reactive protein and the erythrocyte sedimentation rate. Other biomarkers of inflammation in UC include platelet count, leukocyte count, and serum albumin and serum orosomucoid concentrations; (2) serologic markers/antibodies: In the last decades serological and immunologic biomarkers have been studied extensively in immunology and have been used in clinical practice to detect specific pathologies. In UC, the presence of these antibodies can aid as surrogate markers for the aberrant host immune response; and (3) future biomarkers: The development of biomarkers in UC will be very important in the future. The progress of molecular biology tools (microarrays, proteomics and nanotechnology) have revolutionised the field of the biomarker discovery. The advances in bioinformatics coupled with cross-disciplinary collaborations have greatly enhanced our ability to retrieve, characterize and analyse large amounts of data generated by the technological advances. The techniques available for biomarkers development are genomics (single nucleotide polymorphism genotyping, pharmacogenetics and gene expression analyses) and proteomics. In the future, the addition of new serological markers will add significant benefit. Correlating serologic markers with genotypes and clinical phenotypes should enhance our understanding of pathophysiology of UC.
Collapse
|
40
|
Systematic review: new serological markers (anti-glycan, anti-GP2, anti-GM-CSF Ab) in the prediction of IBD patient outcomes. Autoimmun Rev 2014; 14:231-45. [PMID: 25462578 DOI: 10.1016/j.autrev.2014.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/08/2014] [Indexed: 12/20/2022]
Abstract
Traditionally, IBD diagnosis is based on clinical, radiological, endoscopic, and histological criteria. Biomarkers are needed in cases of uncertain diagnosis, or to predict disease course and therapeutic response. No guideline recommends the detection of antibodies (including ASCA and ANCA) for diagnosis or prognosis of IBD to date. However, many recent data suggest the potential role of new serological markers (anti-glycan (ACCA, ALCA, AMCA, anti-L and anti-C), anti-GP2 and anti-GM-CSF Ab). This review focuses on clinical utility of these new serological markers in diagnosis, prognosis and therapeutic monitoring of IBD. Literature review of anti-glycan, anti-GP2 and anti-GM-CSF Ab and their impact on diagnosis, prognosis and prediction of therapeutic response was performed in PubMed/MEDLINE up to June 2014. Anti-glycan, anti-GP2 and anti-GM-CSF Ab are especially associated with CD and seem to be correlated with complicated disease phenotypes even if results differ between studies. Although anti-glycan Ab and anti-GP2 Ab have low sensitivity in diagnosis of IBD, they could identify a small number of CD patients not detected by other tests such as ASCA. Anti-glycan Abs are associated with a progression to a more severe disease course and a higher risk for IBD-related surgery. Anti-GP2 Ab could particularly contribute to better stratify cases of pouchitis. Anti-GM-CSF Ab seems to be correlated with disease activity and could help predict relapses. These new promising biomarkers could particularly be useful in stratification of patients according to disease phenotype and risk of complications. They could be a valuable aid in prediction of disease course and therapeutic response but more prospective studies are needed.
Collapse
|
41
|
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38:996-1047. [PMID: 24861948 PMCID: PMC4262072 DOI: 10.1111/1574-6976.12075] [Citation(s) in RCA: 764] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/29/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023] Open
Abstract
The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact.
Collapse
Affiliation(s)
- Mirjana Rajilić-Stojanović
- Department for Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of BelgradeBelgrade, Serbia
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, The Netherlands
- Departments of Bacteriology and Immunology, and Veterinary Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
42
|
Abstract
OBJECTIVES This meta-analysis evaluated the stratification powers of four well-studied serum antibodies to microbial antigens [ASCA (anti-Saccharomyces cerevisiae), anti-OmpC (anti-outer-membrane protein C), anti-I2 (anti-Pseudomonas fluorescens-associated sequence I2), and anti-CBir1 (anti-bacterial flagellin)] in characterizing progression of Crohn's disease (CD). METHODS Pooled sensitivity, specificity, and diagnostic odds ratio (DOR) with 95% confidence intervals (CI) for individual antibodies and antibody combination were used to evaluate and compare their stratification powers for CD-related complications and the need for surgery. RESULTS Eleven studies were included in this meta-analysis. In terms of the outcomes for CD complication and surgery, ASCA had the highest sensitivities at 0.66 (CI 0.63-0.69) for complications and 0.66 (CI 0.63-0.68) for surgery, whereas anti-OmpC had the highest specificities at 0.83 (CI 0.80-0.85) for complications and 0.81 (CI 0.79-0.83) for surgery. Anti-OmpC had the highest DORs at 2.61 (CI 2.16-3.15) for complications and 2.93 (CI 2.48-3.47) for surgery, and a combination of at least two antibodies presented pooled DORs at 2.93 (CI 2.42-3.56) for complications and 3.39 (CI 2.73-4.20) for surgery, superior to any single antibody. CONCLUSION Anti-OmpC had the highest stratification power among the four antibodies screened for the risk of both complications and surgery in CD patients, and the power became stronger when antibodies were assessed in combination.
Collapse
|
43
|
Dickson RP, Erb-Downward JR, Freeman CM, Walker N, Scales BS, Beck JM, Martinez FJ, Curtis JL, Lama VN, Huffnagle GB. Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations. PLoS One 2014; 9:e97214. [PMID: 24831685 PMCID: PMC4022512 DOI: 10.1371/journal.pone.0097214] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/16/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple independent culture-based studies have identified the presence of Pseudomonas aeruginosa in respiratory samples as a positive risk factor for bronchiolitis obliterans syndrome (BOS). Yet, culture-independent microbiological techniques have identified a negative association between Pseudomonas species and BOS. Our objective was to investigate whether there may be a unifying explanation for these apparently dichotomous results. METHODS We performed bronchoscopies with bronchoalveolar lavage (BAL) on lung transplant recipients (46 procedures in 33 patients) and 26 non-transplant control subjects. We analyzed bacterial communities in the BAL fluid using qPCR and pyrosequencing of 16S rRNA gene amplicons and compared the culture-independent data with the clinical metadata and culture results from these subjects. FINDINGS Route of bronchoscopy (via nose or via mouth) was not associated with changes in BAL microbiota (p = 0.90). Among the subjects with positive Pseudomonas bacterial culture, P. aeruginosa was also identified by culture-independent methods. In contrast, a distinct Pseudomonas species, P. fluorescens, was often identified in asymptomatic transplant subjects by pyrosequencing but not detected via standard bacterial culture. The subject populations harboring these two distinct pseudomonads differed significantly with respect to associated symptoms, BAL neutrophilia, bacterial DNA burden and microbial diversity. Despite notable differences in culturability, a global database search of UM Hospital Clinical Microbiology Laboratory records indicated that P. fluorescens is commonly isolated from respiratory specimens. INTERPRETATION We have reported for the first time that two prominent and distinct Pseudomonas species (P. fluorescens and P. aeruginosa) exist within the post-transplant lung microbiome, each with unique genomic and microbiologic features and widely divergent clinical associations, including presence during acute infection.
Collapse
Affiliation(s)
- Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - John R. Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christine M. Freeman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Research Service, Department of Veterans Affairs Health Care System, Ann Arbor, Michigan, United States of America
| | - Natalie Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brittan S. Scales
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - James M. Beck
- Department of Medicine, University of Colorado Denver, Aurora, Colorado and Medicine Service, Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, United States of America
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Pulmonary & Critical Care Medicine Section, Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Vibha N. Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
44
|
Possible diagnostic role of antibodies to Crohn's disease peptide (ACP): results of a multicenter study in a Japanese cohort. J Gastroenterol 2014; 49:683-91. [PMID: 24297319 DOI: 10.1007/s00535-013-0916-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 11/19/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Various noninvasive tests have been studied to screen for patients with Crohn's disease (CD), and were found to have limited accuracy and sensitivity, particularly in Asian populations. The aim of our study was to explore the possible diagnostic utility of antibodies to the CD peptide (ACP) in patients with CD. METHODS In a multicenter study using enzyme-linked immunosorbent assay, serum ACP levels were determined in 196 patients with CD, 210 with ulcerative colitis, 98 with other intestinal diseases, 132 with other inflammatory diseases, and 183 healthy controls. and then examined for correlation to clinical variables. The diagnostic utility of ACP was evaluated by receiver operating characteristics analysis and compared with anti-Saccharomyces cerevisiae antibodies (ASCA). RESULTS ACP levels were significantly elevated in the CD patients, but not in the other groups that included UC, other intestinal diseases, other inflammatory diseases and the healthy controls. Among these other groups, ACP levels were not significantly different. In the CD patients, ACP had a higher sensitivity and specificity (63.3 and 91.0 %, respectively) than ASCA (47.4 and 90.4 %). ACP levels were negatively associated with disease duration, but not with CDAI, disease location, or medical treatment. CONCLUSIONS ACP, a newly proposed serologic marker, was significantly associated with CD and was highly diagnostic. Further investigation is needed across multiple populations of patients and ethnic groups, and more importantly, in prospective studies.
Collapse
|
45
|
van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ. The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 2014; 5:104. [PMID: 24688484 PMCID: PMC3960585 DOI: 10.3389/fmicb.2014.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joop van Doorn
- Applied Plant Research, Wageningen University and Research Centre Lisse, Netherlands
| | - Jan H Wichers
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Herman J W van Roermund
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| | - Peter T J Willemsen
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| |
Collapse
|
46
|
Barreau F, Hugot JP. Intestinal barrier dysfunction triggered by invasive bacteria. Curr Opin Microbiol 2014; 17:91-8. [PMID: 24440560 DOI: 10.1016/j.mib.2013.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
The ability to control uptake across the mucosa and to protect the gut from harmful substances present in the lumen is defined as intestinal barrier function. Two routes are usually distinguished for transepithelial transport. The paracellular route allows the passage of ions and small molecules and is mainly regulated by tight junctions (TJ). The transcellular route concerns large molecules or small particles (including bacteria) and is mediated by cell endocytosis and intracellular vesicular traffic. Enteropathogenic bacteria increase the transcellular permeability, especially in the follicle-associated epithelium. They also modulate TJ opening via the redistribution of TJ proteins and the activation of the myosin light chain kinase (MLCK). This review focuses on the molecular mechanisms involved in the bacteria-induced barrier defect and briefly discusses their consequences in human diseases.
Collapse
Affiliation(s)
- F Barreau
- Université Paris-Diderot Sorbonne Paris-Cité, UMR 843, F-75018 Paris, France; INSERM, UMR 843, F-75018 Paris, France; Labex inflamex, F-75018 Paris, France; INSERM, UMR 1043, Centre de Physiopathologie de Toulouse, Université de Toulouse, France.
| | - J P Hugot
- Université Paris-Diderot Sorbonne Paris-Cité, UMR 843, F-75018 Paris, France; INSERM, UMR 843, F-75018 Paris, France; Labex inflamex, F-75018 Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, F-75019 Paris, France.
| |
Collapse
|
47
|
Muise A, Rotin D. Apical junction complex proteins and ulcerative colitis: a focus on thePTPRSgene. Expert Rev Mol Diagn 2014; 8:465-77. [DOI: 10.1586/14737159.8.4.465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Abstract
Inflammatory bowel disease (IBD) is an intestinal inflammatory disease of unknown etiology with two main distinguishable entities, Crohn's disease (CD) and ulcerative colitis (UC). Current diagnosis of IBD relies on the clinical, endoscopic, radiological, histological and biochemical features, but these approaches have shortcomings, especially in cases of overlapping symptoms of CD and UC. The detection of serological markers can improve the diagnosis of IBD, because an aberrant immune response against microbial or endogenous antigens in a genetically susceptible host seems to be implicated in IBD pathogenesis. Current evidence suggests that the detection of serum immunology markers is useful in differential diagnosis of CD versus UC and can be a valuable aid in stratifying patients according to disease phenotype and risk of complications.
Collapse
|
49
|
Liu L, Chen H, Brecher MB, Li Z, Wei B, Nandi B, Zhang J, Ling H, Winslow G, Braun J, Li H. Pfit is a structurally novel Crohn's disease-associated superantigen. PLoS Pathog 2013; 9:e1003837. [PMID: 24385909 PMCID: PMC3873459 DOI: 10.1371/journal.ppat.1003837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 11/02/2013] [Indexed: 01/07/2023] Open
Abstract
T cell responses to enteric bacteria are important in inflammatory bowel disease. I2, encoded by the pfiT gene of Pseudomonas fluorescens, is a T-cell superantigen associated with human Crohn's disease. Here we report the crystal structure of pfiT at 1.7Å resolution and provide a functional analysis of the interaction of pfiT and its homolog, PA2885, with human class II MHC. Both pfiT and PA2885 bound to mammalian cells and stimulated the proliferation of human lymphocytes. This binding was greatly inhibited by anti-class II MHC HLA-DR antibodies, and to a lesser extent, by anti HLA-DQ and DP antibodies, indicating that the binding was class II MHC-specific. GST-pfiT efficiently precipitated both endogenous and in vitro purified recombinant HLA-DR1 molecules, indicating that pfiT directly interacted with HLA-DR1. Competition studies revealed that pfiT and the superantigen Mycoplasma arthritidis mitogen (MAM) competed for binding to HLA-DR, indicating that their binding sites overlap. Structural analyses established that pfiT belongs to the TetR-family of DNA-binding transcription regulators. The distinct structure of pfiT indicates that it represents a new family of T cell superantigens. Human inflammatory bowel disease (IBD) is a family of chronic inflammatory disorders of the gastrointestinal tract which affect genetically susceptible individuals. IBD is a lifelong disease involving mostly young people, often severely. Crohn's disease (CD) and ulcerative colitis are the two major forms of IBD. Although the exact cause of these diseases remains unknown, both genetic and environmental factors together play significant roles in the disease pathogenesis. Several lines of evidence implicate commensal bacteria as an important pathogenic element in clinical disease, particularly in CD. We recently identified a novel microbial gene, I2, encoded by Pseudomonas fluorescens, a gram-negative commensal, which may be involved in the pathogenesis of CD. Both molecular and immunological approaches were used to identify the human receptor for the microbial antigen encoded by I2, to characterize the ligand-receptor interactions, and to determine the three-dimensional structure of the microbial gene product. In particular, we show that the pfiT is a T cell superantigen, which may help to explain how microbial flora can trigger immune activation in IBD, and may provide the groundwork for novel therapies to treat CD.
Collapse
Affiliation(s)
- Lihui Liu
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Hui Chen
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Matthew B. Brecher
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Bo Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Bisweswar Nandi
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Hua Ling
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Gary Winslow
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Menezes-Costa A, Machado-Ferreira E, Voloch CM, Bonvicino CR, Seuánez HN, Leoncini O, Soares CAG. Identification of bacterial infection in neotropical primates. MICROBIAL ECOLOGY 2013; 66:471-478. [PMID: 23797292 DOI: 10.1007/s00248-013-0257-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Emerging infectious diseases usually arise from wild animal populations. In the present work, we performed a screening for bacterial infection in natural populations of New World primates. The blood cell bulk DNAs from 181 individuals of four Platyrrhini genera were PCR screened for eubacterial 16S rRNA genes. Bacteria were detected and identified in 13 distinct individuals of Alouatta belzebul, Alouatta caraya, and Cebus apella monkeys from geographically distant regions in the states of Mato Grosso and Pará, Brazil. Sequence analyses showed that these Platyrrhini bacteria are closely related not only to human pathogens Pseudomonas spp. but also to Pseudomonas simiae and sheep-Acari infecting Pseudomonas spp. The identified Pseudomonas possibly represents a group of bacteria circulating in natural monkey populations.
Collapse
Affiliation(s)
- Andre Menezes-Costa
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco A, Lab. A2-120, Rio de Janeiro, RJ, CEP 21944-970, Brazil
| | | | | | | | | | | | | |
Collapse
|