1
|
Cho KH. Molecular Targets in Streptococcus pyogenes for the Development of Anti-Virulence Agents. Genes (Basel) 2024; 15:1166. [PMID: 39336757 PMCID: PMC11430994 DOI: 10.3390/genes15091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus pyogenes, commonly known as Group A Streptococcus (GAS), is a significant human pathogen responsible for a wide range of diseases, from mild pharyngitis to severe conditions such as necrotizing fasciitis and toxic shock syndrome. The increasing antibiotic resistance, especially against macrolide antibiotics, poses a challenge to the effective treatment of these infections. This paper reviews the current state and mechanisms of antibiotic resistance in S. pyogenes. Furthermore, molecular targets for developing anti-virulence agents, which aim to attenuate virulence rather than killing it outright, are explored. This review specifically focuses on virulence regulators, proteins that coordinate the expression of multiple virulence factors in response to environmental signals, playing a crucial role in the pathogen's ability to cause disease. Key regulatory systems, such as RopB, Mga, CovRS, and the c-di-AMP signaling system, are discussed for their roles in modulating virulence gene expression. Additionally, potential molecular target sites for the development of anti-virulence agents are suggested. By concentrating on these regulatory pathways, it is proposed that anti-virulence strategies could enhance the effectiveness of existing antibiotics and reduce the selective pressure that drives the development of resistance.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, 600 Chestnut St. S224, Terre Haute, IN 47809, USA
| |
Collapse
|
2
|
Schiavolin L, Deneubourg G, Steinmetz J, Smeesters PR, Botteaux A. Group A Streptococcus adaptation to diverse niches: lessons from transcriptomic studies. Crit Rev Microbiol 2024; 50:241-265. [PMID: 38140809 DOI: 10.1080/1040841x.2023.2294905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.
Collapse
Affiliation(s)
- Lionel Schiavolin
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Geoffrey Deneubourg
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Jenny Steinmetz
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre R Smeesters
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
4
|
Identification of Group A Streptococcus Genes Directly Regulated by CsrRS and Novel Intermediate Regulators. mBio 2021; 12:e0164221. [PMID: 34253064 PMCID: PMC8406183 DOI: 10.1128/mbio.01642-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation of group A Streptococcus (GAS) to its human host is mediated by two-component systems that transduce external stimuli to regulate bacterial physiology. Among such systems, CsrRS (also known as CovRS) is the most extensively characterized for its role in regulating ∼10% of the GAS genome, including several virulence genes. Here, we show that extracellular magnesium and the human antimicrobial peptide LL-37 have opposing effects on the phosphorylation of the response regulator CsrR by the receptor kinase CsrS. Genetic inactivation of CsrS phosphatase or kinase activity, respectively, had similar but more pronounced effects on CsrR phosphorylation compared to growth in magnesium or LL-37. These changes in CsrR phosphorylation were correlated with the repression or activation of CsrR-regulated genes as assessed by NanoString analysis. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) revealed CsrR occupancy at CsrRS-regulated promoters and lower-affinity associations at many other locations on the GAS chromosome. Because ChIP-seq did not detect CsrR occupancy at promoters associated with some CsrR-regulated genes, we investigated whether these genes might be controlled indirectly by intermediate regulators whose expression is modulated by CsrR. Transcriptional profiling of mutant strains deficient in the expression of either of two previously uncharacterized transcription regulators in the CsrR regulon indicated that one or both proteins participated in the regulation of 22 of the 42 CsrR-regulated promoters for which no CsrR association was detected by ChIP-seq. Taken together, these results illuminate CsrRS-mediated regulation of GAS gene expression through modulation of CsrR phosphorylation, CsrR association with regulated promoters, and the control of intermediate transcription regulators. IMPORTANCE Group A Streptococcus (GAS) is an important public health threat as a cause of sore throat, skin infections, life-threatening invasive infections, and the postinfectious complications of acute rheumatic fever, a leading cause of acquired heart disease. This work characterizes CsrRS, a GAS system for the detection of environmental signals that enables adaptation of the bacteria for survival in the human throat by regulating the production of products that allow the bacteria to resist clearance by the human immune system. CsrRS consists of two proteins: CsrS, which is on the bacterial surface to detect specific stimuli, and CsrR, which receives signals from CsrS and, in response, represses or activates the expression of genes coding for proteins that enhance bacterial survival. Some of the genes regulated by CsrR encode proteins that are themselves regulators of gene expression, thereby creating a regulatory cascade.
Collapse
|
5
|
Gao NJ, Al-Bassam MM, Poudel S, Wozniak JM, Gonzalez DJ, Olson J, Zengler K, Nizet V, Valderrama JA. Functional and Proteomic Analysis of Streptococcus pyogenes Virulence Upon Loss of Its Native Cas9 Nuclease. Front Microbiol 2019; 10:1967. [PMID: 31507572 PMCID: PMC6714885 DOI: 10.3389/fmicb.2019.01967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 01/27/2023] Open
Abstract
The public health impact of Streptococcus pyogenes (group A Streptococcus, GAS) as a top 10 cause of infection-related mortality in humans contrasts with its benefit to biotechnology as the main natural source of Cas9 nuclease, the key component of the revolutionary CRISPR-Cas9 gene editing platform. Despite widespread knowledge acquired in the last decade on the molecular mechanisms by which GAS Cas9 achieves precise DNA targeting, the functions of Cas9 in the biology and pathogenesis of its native organism remain unknown. In this study, we generated an isogenic serotype M1 GAS mutant deficient in Cas9 protein and compared its behavior and phenotypes to the wild-type parent strain. Absence of Cas9 was linked to reduced GAS epithelial cell adherence, reduced growth in human whole blood ex vivo, and attenuation of virulence in a murine necrotizing skin infection model. Virulence defects of the GAS Δcas9 strain were explored through quantitative proteomic analysis, revealing a significant reduction in the abundance of key GAS virulence determinants. Similarly, deletion of cas9 affected the expression of several known virulence regulatory proteins, indicating that Cas9 impacts the global architecture of GAS gene regulation.
Collapse
Affiliation(s)
- Nina J Gao
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Mahmoud M Al-Bassam
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Saugat Poudel
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jacob M Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Olson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Karsten Zengler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - J Andrés Valderrama
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Zhi X, Abdullah IT, Gazioglu O, Manzoor I, Shafeeq S, Kuipers OP, Hiller NL, Andrew PW, Yesilkaya H. Rgg-Shp regulators are important for pneumococcal colonization and invasion through their effect on mannose utilization and capsule synthesis. Sci Rep 2018; 8:6369. [PMID: 29686372 PMCID: PMC5913232 DOI: 10.1038/s41598-018-24910-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/05/2018] [Indexed: 01/18/2023] Open
Abstract
Microbes communicate with each other by using quorum sensing (QS) systems and modulate their collective 'behavior' for in-host colonization and virulence, biofilm formation, and environmental adaptation. The recent increase in genome data availability reveals the presence of several putative QS sensing circuits in microbial pathogens, but many of these have not been functionally characterized yet, despite their possible utility as drug targets. To increase the repertoire of functionally characterized QS systems in bacteria, we studied Rgg144/Shp144 and Rgg939/Shp939, two putative QS systems in the important human pathogen Streptococcus pneumoniae. We find that both of these QS circuits are induced by short hydrophobic peptides (Shp) upon sensing sugars found in the respiratory tract, such as galactose and mannose. Microarray analyses using cultures grown on mannose and galactose revealed that the expression of a large number of genes is controlled by these QS systems, especially those encoding for essential physiological functions and virulence-related genes such as the capsular locus. Moreover, the array data revealed evidence for cross-talk between these systems. Finally, these Rgg systems play a key role in colonization and virulence, as deletion mutants of these QS systems are attenuated in the mouse models of colonization and pneumonia.
Collapse
Affiliation(s)
- Xiangyun Zhi
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Iman Tajer Abdullah
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
- Department of Biology, College of Science, University of Kirkuk, Kirkuk, Iraq
| | - Ozcan Gazioglu
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Peter W Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
7
|
Chiang-Ni C, Chu TP, Wu JJ, Chiu CH. Repression of Rgg But Not Upregulation of LacD.1 in emm1-type covS Mutant Mediates the SpeB Repression in Group A Streptococcus. Front Microbiol 2016; 7:1935. [PMID: 27965655 PMCID: PMC5126071 DOI: 10.3389/fmicb.2016.01935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 01/02/2023] Open
Abstract
CovR/CovS is an important two-component regulatory system in human pathogen group A Streptococcus (GAS). Epidemiological studies have shown that inactivation of the sensor kinase CovS is correlated with invasive clinical manifestations. The phosphorylation level of response regulator CovR decreases dramatically in the absence of CovS, resulting in the derepression of virulence factor expression and an increase in bacterial invasiveness. Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease and is negatively regulated by CovR; however, the expression of SpeB is almost completely repressed in the covS mutant. The present study found that in the emm1-type A20 strain, non-phosphorylated CovR acts as a transcriptional repressor for SpeB-positive regulator Rgg. In addition, the expression of Rgg-negative regulator LacD.1 is upregulated in the covS mutant. These results suggest that inactivation of Rgg in the covS mutant would directly mediate speB repression. The current study showed that overexpression of rgg but not inactivation of lacD.1 in the covS mutant partially restores speB expression, indicating that only rgg repression, but not lacD.1 upregulation, contributes to the speB repression in the covS mutant.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung UniversityTao-yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTao-yuan, Taiwan
| | - Teng-Ping Chu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University Tao-yuan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming UniversityTaipei, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTao-yuan, Taiwan; Department of Pediatrics, Chang Gung Children's HospitalTao-yuan, Taiwan
| |
Collapse
|
8
|
Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes. mBio 2016; 7:mBio.00403-16. [PMID: 27247229 PMCID: PMC4895104 DOI: 10.1128/mbio.00403-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.
Collapse
|
9
|
Chang JC, Jimenez JC, Federle MJ. Induction of a quorum sensing pathway by environmental signals enhances group A streptococcal resistance to lysozyme. Mol Microbiol 2015; 97:1097-113. [PMID: 26062094 DOI: 10.1111/mmi.13088] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 01/29/2023]
Abstract
The human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) is responsible for wide-ranging pathologies at numerous sites in the body but has the proclivity to proliferate in individuals asymptomatically. The ability to survive in diverse tissues is undoubtedly benefited by sensory pathways that recognize environmental cues corresponding to stress and nutrient availability and thereby trigger adaptive responses. We investigated the impact that environmental signals contribute to cell-to-cell chemical communication [quorum sensing (QS)] by monitoring activity of the Rgg2/Rgg3 and SHP-pheromone system in GAS. We identified metal limitation and the alternate carbon source mannose as two environmental indicators likely to be encountered by GAS in the host that significantly induced the Rgg-SHP system. Disruption of the metal regulator MtsR partially accounted for the response to metal depletion, whereas ptsABCD was primarily responsible for QS induction due to mannose, but each sensory system induced Rgg-SHP signaling apparently by different mechanisms. Significantly, we found that induction of QS, regardless of the GAS serotype tested, led to enhanced resistance to the antimicrobial agent lysozyme. These results indicate the benefits for GAS to integrate environmental signals with intercellular communication pathways in protection from host defenses.
Collapse
Affiliation(s)
- Jennifer C Chang
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Juan Cristobal Jimenez
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
10
|
Rgg protein structure-function and inhibition by cyclic peptide compounds. Proc Natl Acad Sci U S A 2015; 112:5177-82. [PMID: 25847993 DOI: 10.1073/pnas.1500357112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Peptide pheromone cell-cell signaling (quorum sensing) regulates the expression of diverse developmental phenotypes (including virulence) in Firmicutes, which includes common human pathogens, e.g., Streptococcus pyogenes and Streptococcus pneumoniae. Cytoplasmic transcription factors known as "Rgg proteins" are peptide pheromone receptors ubiquitous in Firmicutes. Here we present X-ray crystal structures of a Streptococcus Rgg protein alone and in complex with a tight-binding signaling antagonist, the cyclic undecapeptide cyclosporin A. To our knowledge, these represent the first Rgg protein X-ray crystal structures. Based on the results of extensive structure-function analysis, we reveal the peptide pheromone-binding site and the mechanism by which cyclosporin A inhibits activation of the peptide pheromone receptor. Guided by the Rgg-cyclosporin A complex structure, we predicted that the nonimmunosuppressive cyclosporin A analog valspodar would inhibit Rgg activation. Indeed, we found that, like cyclosporin A, valspodar inhibits peptide pheromone activation of conserved Rgg proteins in medically relevant Streptococcus species. Finally, the crystal structures presented here revealed that the Rgg protein DNA-binding domains are covalently linked across their dimerization interface by a disulfide bond formed by a highly conserved cysteine. The DNA-binding domain dimerization interface observed in our structures is essentially identical to the interfaces previously described for other members of the XRE DNA-binding domain family, but the presence of an intermolecular disulfide bond buried in this interface appears to be unique. We hypothesize that this disulfide bond may, under the right conditions, affect Rgg monomer-dimer equilibrium, stabilize Rgg conformation, or serve as a redox-sensitive switch.
Collapse
|
11
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Jimenez JC, Federle MJ. Quorum sensing in group A Streptococcus. Front Cell Infect Microbiol 2014; 4:127. [PMID: 25309879 PMCID: PMC4162386 DOI: 10.3389/fcimb.2014.00127] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/26/2014] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies.
Collapse
Affiliation(s)
- Juan Cristobal Jimenez
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
13
|
Yestrepsky BD, Kretz CA, Xu Y, Holmes A, Sun H, Ginsburg D, Larsen SD. Development of tag-free photoprobes for studies aimed at identifying the target of novel Group A Streptococcus antivirulence agents. Bioorg Med Chem Lett 2014; 24:1538-44. [PMID: 24559768 DOI: 10.1016/j.bmcl.2014.01.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
We previously reported the identification and development of novel inhibitors of streptokinase (SK) expression by Group A Streptococcus (GAS), originating from a high throughput cell-based phenotypic screen. Although phenotypic screening is well-suited to identifying compounds that exert desired biological effects in potentially novel ways, it requires follow-up experiments to determine the macromolecular target(s) of active compounds. We therefore designed and synthesized several classes of chemical probes for target identification studies, guided by previously established structure-activity relationships. The probes were designed to first irreversibly photolabel target proteins in the intact bacteria, followed by cell lysis and click ligation with fluorescent tags to allow for visualization on SDS-PAGE gels. This stepwise, 'tag-free' approach allows for a significant reduction in molecular weight and polar surface area compared to full-length fluorescent or biotinylated probes, potentially enhancing membrane permeability and the maintenance of activity. Of the seven probes produced, the three most biologically active were employed in preliminary target identification trials. Despite the potent activity of these probes, specific labeling events were not conclusively observed due to a considerable degree of nonspecific protein binding. Nevertheless, the successful synthesis of potent biologically active probe molecules will serve as a starting point for initiating more sensitive methods of probe-based target identification.
Collapse
Affiliation(s)
- Bryan D Yestrepsky
- Vahlteich Medicinal Chemistry Core, Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, United States
| | - Colin A Kretz
- Department of Human Genetics, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, United States
| | - Yuanxi Xu
- Department of Internal Medicine, School of Medicine, University of Missouri-Columbia, 1 Hospital Dr., DC043.00, Columbia, MO 65212, United States
| | - Autumn Holmes
- Department of Human Genetics, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, United States
| | - Hongmin Sun
- Department of Internal Medicine, School of Medicine, University of Missouri-Columbia, 1 Hospital Dr., DC043.00, Columbia, MO 65212, United States
| | - David Ginsburg
- Department of Human Genetics, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, United States
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Enterococcal Rgg-like regulator ElrR activates expression of the elrA operon. J Bacteriol 2013; 195:3073-83. [PMID: 23645602 DOI: 10.1128/jb.00121-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Enterococcus faecalis leucine-rich protein ElrA promotes virulence by stimulating bacterial persistence in macrophages and production of the interleukin-6 (IL-6) cytokine. The ElrA protein is encoded within an operon that is poorly expressed under laboratory conditions but induced in vivo. In this study, we identify ef2687 (renamed elrR), which encodes a member of the Rgg (regulator gene for glucosyltransferase) family of putative regulatory proteins. Using quantitative reverse transcription-PCR, translational lacZ fusions, and electrophoretic mobility shift assays, we demonstrate that ElrR positively regulates expression of elrA. These results correlate with the attenuated virulence of the ΔelrR strain in a mouse peritonitis model. Virulence of simple and double elrR and elrA deletion mutants also suggests a remaining ElrR-independent expression of elrA in vivo and additional virulence-related genes controlled by ElrR.
Collapse
|
15
|
Francius G, Henry R, Duval JFL, Bruneau E, Merlin J, Fahs A, Leblond-Bourget N. Thermo-regulated adhesion of the Streptococcus thermophilus Δrgg0182 strain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4847-4856. [PMID: 23530723 DOI: 10.1021/la4001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The physicochemical determinants governing the temperature-dependent adhesion of Streptococcus thermophilus to abiotic surfaces are identified under physiological condition for cells either lacking or not the Rgg0182 transcriptional regulator involved in their thermal adaptation. For that purpose, the wild type LMG18311 strain and Δrgg0182 mutant were imaged using highly resolved atomic force microscopy (AFM) at various cell growth temperatures (42 to 55 °C). The corresponding hydrophobic/hydrophilic balance of the cells was quantitatively addressed via the measurement by chemical force microcopy of their adhesion to a reference hydrophobic surface. Analysis of force-separation distance curves further allowed us to discriminate cell surfaces according to the presence or absence of biopolymers. These results were interpreted in relation to the measured adhesion of the Δrgg0182 mutant onto the hydrophobic wall of microwells in the temperature range from 46 to 52 °C. It is evidenced that the viscoelastic Δrgg0182 cell envelop behaves as a thermo-responsive film whose hydrophobicity increases with increasing temperature, thereby favoring cell attachment to hydrophobic surfaces. Regardless cell growth temperature, wild-type cells do not attach to hydrophobic surfaces and the presence of the Rgg0182 transcriptional regulator is associated with the synthesis of hydrophilic cell surface biopolymers. Throughout, the impact of electrostatics on bioadhesion is ruled out upon examination of electrohydrodynamic cell properties at 50 °C.
Collapse
Affiliation(s)
- Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy F-54600, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
UNLABELLED Recent studies have established the fact that multiple members of the Rgg family of transcriptional regulators serve as key components of quorum sensing (QS) pathways that utilize peptides as intercellular signaling molecules. We previously described a novel QS system in Streptococcus pyogenes which utilizes two Rgg-family regulators (Rgg2 and Rgg3) that respond to neighboring signaling peptides (SHP2 and SHP3) to control gene expression and biofilm formation. We have shown that Rgg2 is a transcriptional activator of target genes, whereas Rgg3 represses expression of these genes, and that SHPs function to activate the QS system. The mechanisms by which Rgg proteins regulate both QS-dependent and QS-independent processes remain poorly defined; thus, we sought to further elucidate how Rgg2 and Rgg3 mediate gene regulation. Here we provide evidence that S. pyogenes employs a unique mechanism of direct competition between the antagonistic, peptide-responsive proteins Rgg2 and Rgg3 for binding at target promoters. The highly conserved, shared binding sites for Rgg2 and Rgg3 are located proximal to the -35 nucleotide in the target promoters, and the direct competition between the two regulators results in concentration-dependent, exclusive occupation of the target promoters that can be skewed in favor of Rgg2 in vitro by the presence of SHP. These results suggest that exclusionary binding of target promoters by Rgg3 may prevent Rgg2 binding under SHP-limiting conditions, thereby preventing premature induction of the quorum sensing circuit. IMPORTANCE Rgg-family transcriptional regulators are widespread among low-G+C Gram-positive bacteria and in many cases contribute to bacterial physiology and virulence. Only recently was it discovered that several Rgg proteins function in cell-to-cell communication (quorum sensing [QS]) via direct interaction with signaling peptides. The mechanism(s) by which Rgg proteins mediate regulation is poorly understood, and further insight into Rgg function is anticipated to be of great importance for the understanding of both regulatory-network architecture and intercellular communication in Rgg-containing species. The results of this study on the Rgg2/3 QS circuit of S. pyogenes demonstrate that DNA binding of target promoters by the activator Rgg2 is directly inhibited by competitive binding by the repressor Rgg3, thereby preventing transcriptional activation of the target genes and premature induction of the QS circuit. This is a unique regulatory mechanism among Rgg proteins and other peptide-responsive QS regulators.
Collapse
|
17
|
Growth phase-dependent modulation of Rgg binding specificity in Streptococcus pyogenes. J Bacteriol 2012; 194:3961-71. [PMID: 22636768 DOI: 10.1128/jb.06709-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes Rgg is a transcriptional regulator that interacts with the cofactor LacD.1 to control growth phase-dependent expression of genes, including speB, which encodes a secreted cysteine protease. LacD.1 is thought to interact with Rgg when glycolytic intermediates are abundant in a manner that prevents Rgg-mediated activation of speB expression via binding to the promoter region. When the intermediates diminish, LacD.1 dissociates from Rgg and binds to the speB promoter to activate expression. The purpose of this study was to determine if Rgg bound to chromatin during the exponential phase of growth and, if so, to identify the binding sites. Rgg bound to 62 chromosomal sites, as determined by chromatin immunoprecipitation coupled with DNA microarrays. Thirty-eight were within noncoding DNA, including sites upstream of the genes encoding the M protein (M49), serum opacity factor (SOF), fibronectin-binding protein (SfbX49), and a prophage-encoded superantigen, SpeH. Each of these sites contained a promoter that was regulated by Rgg, as determined with transcriptional fusion assays. Purified Rgg also bound to the promoter regions of emm49, sof, and sfbX49 in vitro. Results obtained with a lacD.1 mutant showed that both LacD.1 and Rgg were necessary for the repression of emm49, sof, sfbX49, and speH expression. Overall, the results indicated that the DNA binding specificity of Rgg is responsive to environmental changes in a LacD.1-dependent manner and that Rgg and LacD.1 directly control virulence gene expression in the exponential phase of growth.
Collapse
|
18
|
Henry R, Bruneau E, Gardan R, Bertin S, Fleuchot B, Decaris B, Leblond-Bourget N. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation. BMC Microbiol 2011; 11:223. [PMID: 21981946 PMCID: PMC3199253 DOI: 10.1186/1471-2180-11-223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/07/2011] [Indexed: 01/02/2023] Open
Abstract
Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.
Collapse
Affiliation(s)
- Romain Henry
- INRA, UMR1128 Génétique et Microbiologie, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog 2011; 7:e1002190. [PMID: 21829369 PMCID: PMC3150281 DOI: 10.1371/journal.ppat.1002190] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the Firmicute phylum.
Collapse
|
20
|
Carroll RK, Shelburne SA, Olsen RJ, Suber B, Sahasrabhojane P, Kumaraswami M, Beres SB, Shea PR, Flores AR, Musser JM. Naturally occurring single amino acid replacements in a regulatory protein alter streptococcal gene expression and virulence in mice. J Clin Invest 2011; 121:1956-68. [PMID: 21490401 DOI: 10.1172/jci45169] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/02/2011] [Indexed: 11/17/2022] Open
Abstract
Infection with different strains of the same species of bacteria often results in vastly different clinical outcomes. Despite extensive investigation, the genetic basis of microbial strain-specific virulence remains poorly understood. Recent whole-genome sequencing has revealed that SNPs are the most prevalent form of genetic diversity among different strains of the same species of bacteria. For invasive serotype M3 group A streptococci (GAS) strains, the gene encoding regulator of proteinase B (RopB) has the highest frequency of SNPs. Here, we have determined that ropB polymorphisms alter RopB function and modulate GAS host-pathogen interactions. Sequencing of ropB in 171 invasive serotype M3 GAS strains identified 19 distinct ropB alleles. Inactivation of the ropB gene in strains producing distinct RopB variants had dramatically divergent effects on GAS global gene expression. Additionally, generation of isoallelic GAS strains differing only by a single amino acid in RopB confirmed that variant proteins affected transcript levels of the gene encoding streptococcal proteinase B, a major RopB-regulated virulence factor. Comparison of parental, RopB-inactivated, and RopB isoallelic strains in mouse infection models demonstrated that ropB polymorphisms influence GAS virulence and disease manifestations. These data detail a paradigm in which unbiased, whole-genome sequence analysis of populations of clinical bacterial isolates creates new avenues of productive investigation into the pathogenesis of common human infections.
Collapse
Affiliation(s)
- Ronan K Carroll
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Laboratory Medicine, The Methodist Hospital, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bourget N, Monnet V, Gardan R. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol Microbiol 2011; 80:1102-19. [PMID: 21435032 DOI: 10.1111/j.1365-2958.2011.07633.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We identified a genetic context encoding a transcriptional regulator of the Rgg family and a small hydrophobic peptide (SHP) in nearly all streptococci and suggested that it may be involved in a new quorum-sensing mechanism, with SHP playing the role of a pheromone. Here, we provide further support for this hypothesis by constructing a phylogenetic tree of the Rgg and Rgg-like proteins from Gram-positive bacteria and by studying the shp/rgg1358 locus of Streptococcus thermophilus LMD-9. We identified the shp1358 gene as a target of Rgg1358, and used it to confirm the existence of the steps of a quorum-sensing mechanism including secretion, maturation and reimportation of the pheromone into the cell. We used surface plasmon resonance to demonstrate interaction between the pheromone and the regulatory protein and performed electrophoretic mobility shift assays to assess binding of the transcriptional regulator to the promoter regions of its target genes. The active form of the pheromone was identified by mass spectrometry. Our findings demonstrate that the shp/rgg1358 locus encodes two components of a novel quorum-sensing mechanism involving a transcriptional regulator of the Rgg family and a SHP pheromone that is detected and reimported into the cell by the Ami oligopeptide transporter.
Collapse
Affiliation(s)
- B Fleuchot
- INRA, UMR1319 MICALIS, F-78352 Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fiedler T, Sugareva V, Patenge N, Kreikemeyer B. Insights into Streptococcus pyogenes pathogenesis from transcriptome studies. Future Microbiol 2011; 5:1675-94. [PMID: 21133689 DOI: 10.2217/fmb.10.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal mucosal membrane, up to severe systemic and invasive diseases and autoimmune sequelae. The capability of GAS to cause this wide variety of infections is due to the expression of a large set of virulence factors, their concerted transcriptional regulation, and bacterial adaptation mechanisms to various host niches, which we are now beginning to understand on a molecular level. The addition of -omics technologies for GAS pathogenesis investigation, on top of traditional molecular methods, led to fast progress in understanding GAS pathogenesis mechanisms. This article focuses on differential transcriptional analysis performed on the bacterial side as well as on the host cell side. The microarray studies discussed provide new insight into the following five topics: gene-expression patterns under infection-relevant conditions, gene-expression patterns in mutant strains compared with wild-type strains, emergence of exceptionally fit GAS clones, gene-expression patterns of eukaryotic target and immune cells in response to GAS infection, and mechanisms underlying shifts from a pharyngeal to invasive GAS lifestyle.
Collapse
Affiliation(s)
- Tomas Fiedler
- Institute of Medical Microbiology, Virology & Hospital Hygiene, University Hospital Rostock, Schillingallee 70, Rostock, Germany
| | | | | | | |
Collapse
|
23
|
Ikebe T, Ato M, Matsumura T, Hasegawa H, Sata T, Kobayashi K, Watanabe H. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates. PLoS Pathog 2010; 6:e1000832. [PMID: 20368967 PMCID: PMC2848555 DOI: 10.1371/journal.ppat.1000832] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/23/2010] [Indexed: 01/04/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors. Group A streptococcus (GAS) causes life-threatening severe invasive diseases, including necrotizing fasciitis and streptococcal toxic shock-like syndrome. Although many studies have attempted to determine factors that are crucial for the onset of streptococcal toxic shock syndrome (STSS), bacterial factors responsible for it have not been clarified. By comparing genome sequences of clinical GAS isolates from STSS with those of non-invasive infections, we showed that mutations of negative regulator genes (csrS, csrR, rgg) were detected at a high frequency of more than 50% in STSS isolates, but at a low frequency of less than 2% in non-invasive isolates. These mutations of negative regulators were found in various emm-genotyped STSS isolates but not in a particular emm genotype. These mutants enhanced virulence in mouse models. Such results indicated that mutations of bacterial negative regulators are crucial for the pathogenesis of STSS due to the overproduction of multiple virulence factors under the de-repressed conditions.
Collapse
Affiliation(s)
- Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Olsen RJ, Musser JM. Molecular pathogenesis of necrotizing fasciitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:1-31. [PMID: 19737105 DOI: 10.1146/annurev-pathol-121808-102135] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Necrotizing fasciitis, also known as the flesh-eating disease, is a severe invasive infection associated with very high rates of human morbidity and mortality. It is most commonly caused by group A Streptococcus(GAS), a versatile human pathogen that causes diseases ranging in severity from uncomplicated pharyngitis (or strep throat) to life-threatening infections such as necrotizing fasciitis. Herein, we review recent discoveries bearing on the molecular pathogenesis of GAS necrotizing fasciitis. Importantly, the integration of new technologies and the development of human-relevant animal models have markedly expanded our understanding of the key pathogen-host interactions underlying GAS necrotizing fasciitis. For example, we now know that GAS organisms secrete a variety of proteases that disrupt host tissue and that these proteolytic enzymes are regulated by multiple transcriptional and posttranslational processes. This pathogenesis knowledge will be crucial to supporting downstream efforts that seek to develop novel vaccines and therapeutic agents for this serious human infection.
Collapse
Affiliation(s)
- Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Musser JM, Shelburne SA. A decade of molecular pathogenomic analysis of group A Streptococcus. J Clin Invest 2009; 119:2455-63. [PMID: 19729843 DOI: 10.1172/jci38095] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular pathogenomic analysis of the human bacterial pathogen group A Streptococcus has been conducted for a decade. Much has been learned as a consequence of the confluence of low-cost DNA sequencing, microarray technology, high-throughput proteomics, and enhanced bioinformatics. These technical advances, coupled with the availability of unique bacterial strain collections, have facilitated a systems biology investigative strategy designed to enhance and accelerate our understanding of disease processes. Here, we provide examples of the progress made by exploiting an integrated genome-wide research platform to gain new insight into molecular pathogenesis. The studies have provided many new avenues for basic and translational research.
Collapse
Affiliation(s)
- James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas 77030, USA.
| | | |
Collapse
|
26
|
Pyruvate formate lyase is required for pneumococcal fermentative metabolism and virulence. Infect Immun 2009; 77:5418-27. [PMID: 19752030 DOI: 10.1128/iai.00178-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the in vivo physiology and metabolism of Streptococcus pneumoniae is limited, even though pneumococci rely on efficient acquisition and metabolism of the host nutrients for growth and survival. Because the nutrient-limited, hypoxic host tissues favor mixed-acid fermentation, we studied the role of the pneumococcal pyruvate formate lyase (PFL), a key enzyme in mixed-acid fermentation, which is activated posttranslationally by PFL-activating enzyme (PFL-AE). Mutations were introduced to two putative pfl genes, SPD0235 and SPD0420, and two putative pflA genes, SPD0229 and SPD1774. End-product analysis showed that there was no formate, the main end product of the reaction catalyzed by PFL, produced by mutants defective in SPD0420 and SPD1774, indicating that SPD0420 codes for PFL and SPD1774 for putative PFL-AE. Expression of SPD0420 was elevated in galactose-containing medium in anaerobiosis compared to growth in glucose, and the mutation of SPD0420 resulted in the upregulation of fba and pyk, encoding, respectively, fructose 1,6-bisphosphate aldolase and pyruvate kinase, under the same conditions. In addition, an altered fatty acid composition was detected in SPD0420 and SPD1774 mutants. Mice infected intranasally with the SPD0420 and SPD1774 mutants survived significantly longer than the wild type-infected cohort, and bacteremia developed later in the mutant cohort than in the wild type-infected group. Furthermore, the numbers of CFU of the SPD0420 mutant were lower in the nasopharynx and the lungs after intranasal infection, and fewer numbers of mutant CFU than of wild-type CFU were recovered from blood specimens after intravenous infection. The results demonstrate that there is a direct link between pneumococcal fermentative metabolism and virulence.
Collapse
|
27
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
28
|
Inactivation of DltA modulates virulence factor expression in Streptococcus pyogenes. PLoS One 2009; 4:e5366. [PMID: 19401780 PMCID: PMC2671602 DOI: 10.1371/journal.pone.0005366] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND D-alanylated lipoteichoic acid is a virtually ubiquitous component of gram-positive cell walls. Mutations in the dltABCD operon of numerous species exhibit pleiotropic effects, including reduced virulence, which has been attributed to increased binding of cationic antimicrobial peptides to the more negatively charged cell surface. In this study, we have further investigated the effects that mutating dltA has on virulence factor expression in Streptococcus pyogenes. METHODOLOGY/PRINCIPAL FINDINGS Isogenic Delta dltA mutants had previously been created in two distinct M1T1 isolates of S. pyogenes. Immunoblots, flow cytometry, and immunofluorescence were used to quantitate M protein levels in these strains, as well as to assess their ability to bind complement. Bacteria were tested for their ability to interact with human PMN and to grow in whole human blood. Message levels for emm, sic, and various regulatory elements were assessed by quantitative RT-PCR. Cell walls of Delta dltA mutants contained much less M protein than cell walls of parent strains and this correlated with reduced levels of emm transcripts, increased deposition of complement, increased association of bacteria with polymorphonuclear leukocytes, and reduced bacterial growth in whole human blood. Transcription of at least one other gene of the mga regulon, sic, which encodes a protein that inactivates antimicrobial peptides, was also dramatically reduced in Delta dltA mutants. Concomitantly, ccpA and rofA were unaffected, while rgg and arcA were up-regulated. CONCLUSIONS/SIGNIFICANCE This study has identified a novel mechanism for the reduced virulence of dltA mutants of Streptococcus pyogenes in which gene regulatory networks somehow sense and respond to the loss of DltA and lack of D-alanine esterification of lipoteichoic acid. The mechanism remains to be determined, but the data indicate that the status of D-alanine-lipoteichoic acid can significantly influence the expression of at least some streptococcal virulence factors and provide further impetus to targeting the dlt operon of gram-positive pathogens in the search for novel antimicrobial compounds.
Collapse
|
29
|
vfr, a novel locus affecting cysteine protease production in Streptococcus pyogenes. J Bacteriol 2009; 191:3189-94. [PMID: 19270089 DOI: 10.1128/jb.01771-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene unique to Streptococcus pyogenes, called vfr, that negatively regulates speB, an important extracellular proteinase, has been identified. Disruption of vfr markedly increased SpeB production in a clinical strain of S. pyogenes and relieved its growth phase dependency. These findings may provide important insights into the pathogenesis of invasive S. pyogenes infections.
Collapse
|
30
|
Hollands A, Aziz RK, Kansal R, Kotb M, Nizet V, Walker MJ. A naturally occurring mutation in ropB suppresses SpeB expression and reduces M1T1 group A streptococcal systemic virulence. PLoS One 2008; 3:e4102. [PMID: 19116661 PMCID: PMC2605554 DOI: 10.1371/journal.pone.0004102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022] Open
Abstract
Epidemiological studies of group A streptococcus (GAS) have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC's, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS.
Collapse
Affiliation(s)
- Andrew Hollands
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- The Department of Molecular Genetics, Biochemistry and Microbiology, The University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rita Kansal
- The VA Hospital, Memphis, Tennessee, United States of America
| | - Malak Kotb
- The VA Hospital, Memphis, Tennessee, United States of America
- The Department of Molecular Genetics, Biochemistry and Microbiology, The University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Mark J. Walker
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- * E-mail:
| |
Collapse
|
31
|
McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, Jia H, Kenton S, Najar F, Wu H, Scott J, Roe BA, Savic DJ. Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. J Bacteriol 2008; 190:7773-85. [PMID: 18820018 PMCID: PMC2583620 DOI: 10.1128/jb.00672-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/17/2008] [Indexed: 11/20/2022] Open
Abstract
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, P.O. Box 26901, CPB307, Oklahoma City, OK, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ryan PA, Kirk BW, Euler CW, Schuch R, Fischetti VA. Novel algorithms reveal streptococcal transcriptomes and clues about undefined genes. PLoS Comput Biol 2008; 3:e132. [PMID: 17616984 PMCID: PMC1913099 DOI: 10.1371/journal.pcbi.0030132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/22/2007] [Indexed: 01/22/2023] Open
Abstract
Bacteria-host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence.
Collapse
Affiliation(s)
- Patricia A Ryan
- Department of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
33
|
Dmitriev AV, McDowell EJ, Chaussee MS. Inter- and intraserotypic variation in the Streptococcus pyogenes Rgg regulon. FEMS Microbiol Lett 2008; 284:43-51. [PMID: 18479433 DOI: 10.1111/j.1574-6968.2008.01171.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human isolates of Streptococcus pyogenes, a Gram-positive bacterium, are characterized by significant genetic and phenotypic variation. The rgg locus, also known as ropB, is a global transcriptional regulator of genes associated with metabolism, stress responses, and virulence in S. pyogenes strain NZ131 (serotype M49). To assess the breadth of the Rgg regulon, the rgg gene was inactivated in three additional strains representing serotypes M1 (strains SF370 and MGAS5005) and M49 (strain CS101). Changes in gene expression were identified in the postexponential phase of growth using Affymetrix NimbleExpress Arrays. The results identified an Rgg core-regulon consisting of speB and adjacent hypothetical protein gene, spy2040, and a variable and strain-specific subregulon, ranging in size from a single gene (spy1793) in strain MGAS5005 to 43 genes in strain SF370. Thus, both interserotypic and intraserotypic variation is characteristic of the Rgg regulon in S. pyogenes.
Collapse
Affiliation(s)
- Alexander V Dmitriev
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069-2390, USA
| | | | | |
Collapse
|
34
|
Abstract
The biofilm-forming Streptococcus mutans is a gram-positive bacterium that resides in the human oral cavity and is considered to be the primary etiological agent in the formation of dental caries. The global response regulator CovR, which lacks a cognate sensor kinase, is essential for the pathogenesis and biofilm formation of this bacterium, but it is not clear how covR expression is regulated in S. mutans. In this communication, we present the results of our studies examining various factors that regulate the expression of covR in S. mutans UA159. The results of Southern hybridization and PCR analysis indicated that CovR is an orphan response regulator in various isolates of S. mutans. The transcriptional start site for covR was found to be 221 base pairs upstream of the ATG start codon, and site-directed mutagenesis of the upstream TATAAT box confirmed our findings. The expression of covR is growth phase dependent, with maximal expression observed during exponential-growth phase. While changes to the growth temperature did not significantly affect the expression of covR, increasing the pH or the concentration of Mg(2+) in the growth medium leads to an increase in covR expression. The results of semiquantitative reverse transcriptase PCR analysis and in vivo transcriptional-fusion reporter assays indicated that CovR autoregulates its own expression; this was verified by the results of electrophoretic mobility shift assays and DNase I protection assays, which demonstrated direct binding of CovR to the promoter region. Apparently, regulation by Mg(2+) and the autoregulation of covR are not linked. A detailed analysis of the regulation of CovR may lead to a better understanding of the pathogenesis of S. mutans, as well as providing further insight into the prevention of dental caries.
Collapse
|
35
|
Deficiency of the Rgg regulator promotes H2O2 resistance, AhpCF-mediated H2O2 decomposition, and virulence in Streptococcus pyogenes. J Bacteriol 2008; 190:3225-35. [PMID: 18310340 DOI: 10.1128/jb.01843-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]), a catalase-negative gram-positive bacterium, is aerotolerant and survives H2O2 exposures that kill many catalase-positive bacteria. The molecular basis of the H2O2 resistance is poorly known. Here, we demonstrate that serotype M49 GAS lacking the Rgg regulator is more resistant to H2O2 and also decomposes more H2O2 than the parental strain. Subgenomic transcriptional profiling and genome-integrated green fluorescent protein reporters showed that a bicistronic operon, a homolog of the Streptococcus mutans ahpCF operon, is transcriptionally up-regulated in the absence of Rgg. Phenotypic assays with ahpCF operon knockouts demonstrated that the gene products decompose H2O2 and protect GAS against peroxide stress. In a murine intraperitoneal-infection model, Rgg deficiency increased the virulence of GAS, although in an ahpCF-independent manner. Rgg-mediated repression of H2O2 resistance is divergent from the previously characterized peroxide resistance repressor PerR. Moreover, Rgg-mediated repression of H2O2 resistance is inducible by cellular stresses of diverse natures--ethanol, organic hydroperoxide, and H2O2. Rgg is thus identified as a novel sensoregulator of streptococcal H2O2 resistance with potential implications for the virulence of the catalase-negative GAS.
Collapse
|
36
|
|
37
|
Barnett TC, Bugrysheva JV, Scott JR. Role of mRNA stability in growth phase regulation of gene expression in the group A streptococcus. J Bacteriol 2006; 189:1866-73. [PMID: 17189377 PMCID: PMC1855745 DOI: 10.1128/jb.01658-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impressive disease spectrum of Streptococcus pyogenes (the group A streptococcus [GAS]) is believed to be determined by its ability to modify gene expression in response to environmental stimuli. Virulence gene expression is controlled tightly by several different transcriptional regulators in this organism. In addition, expression of most, if not all, GAS genes is determined by a global mechanism dependent on growth phase. To begin an analysis of growth-phase regulation, we compared the transcriptome 2 h into stationary phase to that in late exponential phase of a serotype M3 GAS strain. We identified the arc transcript as more abundant in stationary phase in addition to the sag and sda transcripts that had been previously identified. We found that in stationary phase, the stability of sagA, sda, and arcT transcripts increased dramatically. We found that polynucleotide phosphorylase (PNPase [encoded by pnpA]) is rate limiting for decay of sagA and sda transcripts in late exponential phase, since the stability of these mRNAs was greater in a pnpA mutant, while stability of control mRNAs was unaffected by this mutation. Complementation restored the wild-type decay rate. Furthermore, in a pnpA mutant, the sagA mRNA appeared to be full length, as determined by Northern hybridization. It seems likely that mRNAs abundant in stationary phase are insensitive to the normal decay enzyme(s) and instead require PNPase for this process. It is possible that PNPase activity is limited in stationary phase, allowing persistence of these important virulence factor transcripts at this phase of growth.
Collapse
Affiliation(s)
- Timothy C Barnett
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
38
|
Banas JA, Fountain TL, Mazurkiewicz JE, Sun K, Vickerman MM. Streptococcus mutans glucan-binding protein-A affects Streptococcus gordonii biofilm architecture. FEMS Microbiol Lett 2006; 267:80-8. [PMID: 17166223 PMCID: PMC1780135 DOI: 10.1111/j.1574-6968.2006.00557.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The glucan-binding protein-A (GbpA) of Streptococcus mutans has been shown to contribute to the architecture of glucan-dependent biofilms formed by this species and influence virulence in a rat model. As S. mutans synthesizes multiple glucosyltransferases and nonglucosyltransferase glucan-binding proteins (GBPs), it is possible that there is functional redundancy that overshadows the full extent of GbpA contributions to S. mutans biology. Glucan-associated properties such as adhesion, aggregation, and biofilm formation were examined independently of other S. mutans GBPs by cloning the gbpA gene into a heterologous host, Streptococcus gordonii, and derivatives with altered or diminished glucosyltransferase activity. The presence of GbpA did not alter dextran-dependent aggregation nor the initial sucrose-dependent adhesion of S. gordonii. However, expression of GbpA altered the biofilm formed by wild-type S. gordonii as well as the biofilm formed by strain CH107 that produced primarily alpha-1,6-linked glucan. Expression of gbpA did not alter the biofilm formed by strain DS512, which produced significantly lower quantities of parental glucan. These data are consistent with a role for GbpA in facilitating the development of biofilms that harbor taller microcolonies via binding to alpha-1,6-linkages within glucan. The magnitude of the GbpA effect appears to be dependent on the quantity and linkage of available glucan.
Collapse
Affiliation(s)
- Jeffrey A Banas
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| | | | | | | | | |
Collapse
|
39
|
Samen UM, Eikmanns BJ, Reinscheid DJ. The transcriptional regulator RovS controls the attachment of Streptococcus agalactiae to human epithelial cells and the expression of virulence genes. Infect Immun 2006; 74:5625-35. [PMID: 16988238 PMCID: PMC1594887 DOI: 10.1128/iai.00667-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae is part of the normal flora of the human gastrointestinal tract and also the leading cause of bacterial infections in human newborns and immunocompromised adults. The colonization and infection of different regions within the human host require a regulatory network in S. agalactiae that senses environmental stimuli and controls the formation of specific virulence factors. In the present study, we characterized an Rgg-like transcriptional regulator, designated RovS (regulator of virulence in Streptococcus agalactiae). Deletion of the rovS gene in the genome of S. agalactiae resulted in strain 6313 DeltarovS, which exhibited an increased attachment to immobilized fibrinogen and a significant increase in adherence to the eukaryotic lung epithelial cell line A549. Quantification of expression levels of known and putative S. agalactiae virulence genes by real-time PCR revealed that RovS influences the expression of fbsA, gbs0230, sodA, rogB, and the cyl operon. The altered gene expression in mutant 6313 DeltarovS was restored by plasmid-mediated expression of rovS, confirming the RovS deficiency as the cause for the observed changes in virulence gene expression in S. agalactiae. DNA electrophoretic mobility shift assays showed that RovS specifically binds to the promoter regions of fbsA, gbs0230, sodA, and the cyl operon, indicating that RovS directly regulates their expression. Deletion and mutation studies in the promoter region of fbsA, encoding the main fibrinogen receptor in S. agalactiae, identified a RovS DNA motif. Similar motifs were also found in the promoter regions of gbs0230, sodA, and the cyl operon, and alignments allowed us to propose a consensus sequence for the DNA-binding site of RovS.
Collapse
Affiliation(s)
- Ulrike M Samen
- Department of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
40
|
Kwinn LA, Khosravi A, Aziz RK, Timmer AM, Doran KS, Kotb M, Nizet V. Genetic characterization and virulence role of the RALP3/LSA locus upstream of the streptolysin s operon in invasive M1T1 Group A Streptococcus. J Bacteriol 2006; 189:1322-9. [PMID: 17114267 PMCID: PMC1797346 DOI: 10.1128/jb.01256-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is a leading human pathogen associated with a wide spectrum of mucosal and invasive infections. GAS expresses a large number of virulence determinants whose expression is under the control of several transcriptional regulatory networks. Here we performed the first mutational analysis of a genetic locus immediately upstream of the streptolysin S biosynthetic operon in several GAS genome sequences, including that of the M1T1 serotype, the leading isolates associated with serious invasive disease. The locus consists of a predicted RofA-like stand-alone transcriptional regulator (RALP3) and the largest open reading frame in the GAS genome, encoding a predicted LPXSG motif cell wall-anchored protein we have named LSA (for "large surface-anchored" protein). Comparative reverse transcription-PCR analysis of wild-type M1T1 GAS and an isogenic RALP3-deficient mutant identifies RALP3 as a global transcriptional regulator affecting expression of numerous virulence factor genes, including those for strong repression of the hyaluronic acid capsule and cysteine protease production. RALP3 contributed to GAS epithelial cell invasion and bloodstream survival. LSA was found to be under negative regulation by RALP3 and to influence GAS-epithelial cell interactions and GAS antimicrobial peptide sensitivity. Isogenic M1T1 GAS mutants lacking either RALP3 or LSA were attenuated in a murine model of systemic infection, indicating that this locus plays a role in the virulence potential of the organism.
Collapse
Affiliation(s)
- Laura A Kwinn
- Department of Pediatrics, Division of Pharmacology & Drug Discovery, University of California, San Diego School of Medicine, Cellular & Molecular Medicine East, La Jolla, CA 92093-0687, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Sawai J, Hasegawa T, Kamimura T, Okamoto A, Ohmori D, Nosaka N, Yamada K, Torii K, Ohta M. Growth phase-dependent effect of clindamycin on production of exoproteins by Streptococcus pyogenes. Antimicrob Agents Chemother 2006; 51:461-7. [PMID: 17101685 PMCID: PMC1797754 DOI: 10.1128/aac.00539-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The administration of high-dose clindamycin plus benzylpenicillin has been recommended for the treatment of streptococcal toxic shock-like syndrome caused by Streptococcus pyogenes, and clindamycin has been found to be more effective than beta-lactams in retrospective analyses of human cases. Although therapeutic doses of clindamycin have also been shown to be effective against experimental infections and clindamycin has great efficacy against the production of bacterial exoproteins, we recently reported that the level of production of some exoproteins was unchanged or even increased by a subinhibitory dose of clindamycin when it is added upon the initiation of bacterial culture and the treated cultures were analyzed by two-dimensional gel electrophoresis. In this study we further examined the effect of clindamycin on the production of exoproteins by adding it to Streptococcus pyogenes cultures during various growth phases. We found that the levels of production of some proteins, NAD+ glycohydrolase, streptolysin O, and streptococcal inhibitor of complement, were increased when clindamycin was added at early-log-phase growth, which was the result that was seen when clindamycin was added at the beginning of culture. However, clindamycin inhibited the production of most types of proteins when it was administered to Streptococcus pyogenes cultures at mid-log-phase growth. In csrS- or mga-knockout bacterial strains, the increase in exoproteins seen in parental strains was considerably inhibited. Our study indicates that the in vitro effect of clindamycin on the production of exoproteins greatly depends on the growth phase of bacteria and some regulatory factors of Streptococcus pyogenes that are involved in this phenomenon.
Collapse
Affiliation(s)
- Jun Sawai
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Loughman JA, Caparon MG. Contribution of invariant residues to the function of Rgg family transcription regulators. J Bacteriol 2006; 189:650-5. [PMID: 17098902 PMCID: PMC1797381 DOI: 10.1128/jb.01437-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rgg family of transcription regulators is widely distributed among gram-positive bacteria, yet how these proteins control transcription is poorly understood. Using Streptococcus pyogenes RopB as a model, we demonstrated that residues invariant among Rgg-like regulators are critical for function and obtained evidence for a mechanism involving protein complex formation.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
43
|
Dmitriev AV, McDowell EJ, Kappeler KV, Chaussee MA, Rieck LD, Chaussee MS. The Rgg regulator of Streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. J Bacteriol 2006; 188:7230-41. [PMID: 17015662 PMCID: PMC1636216 DOI: 10.1128/jb.00877-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of many virulence-associated genes in Streptococcus pyogenes is controlled in a growth phase-dependent manner. Unlike the model organisms Escherichia coli and Bacillus subtilis, such regulation is apparently not dependent upon alternative sigma factors but appears to rely on complex interactions among several transcriptional regulators, including Rgg. The purpose of this study was to identify changes in gene expression associated with inactivation of the rgg gene in S. pyogenes strain NZ131 (serotype M49). To this end, the transcriptomes of wild-type and rgg mutant strains were analyzed during both the exponential and postexponential phases of growth using Affymetrix NimbleExpress gene chips. Genomewide differences in transcript levels were identified in both phases of growth. Inactivation of rgg disrupted coordinate expression of genes associated with the metabolism of nonglucose carbon sources, such as fructose, mannose, and sucrose. The changes were associated with an inability of the mutant strain to grow using these compounds as the primary carbon source. Bacteriophage transcript levels were also altered in the mutant strain and were associated with decreased induction of at least one prophage. Finally, transcripts encoding virulence factors involved in cytolysin-mediated translocation of NAD-glycohydrolase, including the immunity factor IFS and the cytolysin (streptolysin O [SLO]), were more abundant in the mutant strain, which correlated with the amount of NADase and SLO activities in culture supernatant fluids. The results provide further evidence that Rgg contributes to growth phase-dependent gene regulation in strain NZ131.
Collapse
Affiliation(s)
- Alexander V Dmitriev
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Lee Medical Building, 414 East Clark Street, Vermillion, SD 57069-2390, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ribardo DA, McIver KS. Defining the Mga regulon: comparative transcriptome analysis reveals both direct and indirect regulation by Mga in the group A streptococcus. Mol Microbiol 2006; 62:491-508. [PMID: 16965517 DOI: 10.1111/j.1365-2958.2006.05381.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The regulator Mga in the group A streptococcus (GAS) is known to directly activate several virulence genes important for colonization and immune evasion. Transcriptome analysis comparing two mga-1 serotypes (M1 SF370, M6 JRS4) and one mga-2 serotype (M4 GA40634) against their isogenic mga-inactivated strains uncovered a broader Mga regulon profile containing both activated and repressed genes with predicted functions primarily related to sugar metabolism. This was reflected in the altered abilities of M1 and M4 Mga mutants to grow in chemically defined media with a single sugar source compared with their wild-type counterparts. Although the M1 and M4 Mga profiles were similar, the M6 JRS4 was clearly distinct, even from other M6 strains. Real-time RT-PCR and Northern blots confirmed that established core Mga regulon genes directly activated by Mga (emm, scpA, sof, fba) exhibited the highest activation levels across all strains tested. Spy2036 encoding a cytosolic hypothetical protein was highly activated in all three serotypes and was called gene regulated by Mga (grm). Mga bound directly to Pgrm, which overlaps the Mga-regulated Psof in OF+ strains, suggesting that grm is part of the core Mga regulon and Mga is able to activate divergently transcribed genes from a single site. Furthermore, Mga activated speB when detectable in the wild-type strain, although direct binding of Mga to PspeB could not be demonstrated. Thus, Mga is able to both directly and indirectly regulate genes shown to be important for virulence and the metabolic homeostasis of GAS.
Collapse
Affiliation(s)
- Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center Dallas, TX 75390-9048, USA
| | | |
Collapse
|
45
|
Fernandez A, Borges F, Gintz B, Decaris B, Leblond-Bourget N. The rggC locus, with a frameshift mutation, is involved in oxidative stress response by Streptococcus thermophilus. Arch Microbiol 2006; 186:161-9. [PMID: 16847652 DOI: 10.1007/s00203-006-0130-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/22/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
In Streptococcus thermophilus, the locus rggC contains a frameshift mutation and thus consists of two open reading frames (ORFs), rggC (1) and rggC (2), which encode proteins exhibiting similarity with the Rgg transcriptional regulator family. In this work, mutants showing a partial deletion of rggC (1) and rggC (2 )were constructed and their response to menadione, a superoxide-generating compound, was analysed. These mutants exhibited different behaviour to this oxidative stress compared with the wild-type strain. Analysis of this locus among 21 strains of S. thermophilus showed a polythymine tract length variability and a strain-dependant adenine residue could be found upstream of this repeat. This interstrain polymorphism supports evidence for the hypothesis that the rggC locus is phase variable.
Collapse
Affiliation(s)
- Annabelle Fernandez
- Laboratoire de Génétique et Microbiologie, UMR INRA 1128, IFR 110, Faculté des Sciences et Techniques de l'Université Henri Poincaré, Campus de Grignard, BP239, 54506 Vanoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|
46
|
Ikebe T, Watanabe H. Increased expression of ska gene in emm49-genotyped strains of Streptococcus pyogenes isolated from patients of severe invasive group A streptococcus infections. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ics.2005.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Marrer E, Satoh AT, Johnson MM, Piddock LJV, Page MGP. Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 2006; 50:269-78. [PMID: 16377697 PMCID: PMC1346767 DOI: 10.1128/aac.50.1.269-278.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae M22 is a multidrug-resistant mutant selected after exposure of capsulated wild-type S. pneumoniae NCTC 7465 (strain M4) to ciprofloxacin. DNA microarray analysis comparing the gene expression profiles of strain M22 with those of strain M4 showed that strain M22 constitutively expressed 22 genes at levels higher than those observed in strain M4 under all conditions studied. These included the genes encoding the enzymes involved in branched-chain amino acid biosynthesis and two genes (patA and patB) with sequences suggestive of ABC transporter proteins. Expression of the patA and patB genes was induced by ciprofloxacin in both strains, but in strain M4 it only reached the levels observed in strain M22 after long incubation with high concentrations of ciprofloxacin. The altered expression profile observed with strain M22 suggested that the mutation or mutations acquired during resistance selection bring the cell into a state in which the expression of critical genes is preemptively altered to correct for the potential effects of ciprofloxacin on gene expression in the parent strain.
Collapse
Affiliation(s)
- Estelle Marrer
- The University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
48
|
Malke H, Steiner K, McShan WM, Ferretti JJ. Linking the nutritional status of Streptococcus pyogenes to alteration of transcriptional gene expression: the action of CodY and RelA. Int J Med Microbiol 2006; 296:259-75. [PMID: 16531115 DOI: 10.1016/j.ijmm.2005.11.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 11/18/2005] [Accepted: 11/25/2005] [Indexed: 11/28/2022] Open
Abstract
In this investigation, we identify the CodY protein from Streptococcus pyogenes as a pleiotropic transcription regulator with global features. The notion that acquisition of nutrients by this polyauxotrophic organism is the primary event occurring during the establishment of infection and that virulence expression is a result of this quest, led us to study the action of codY and relA genes on transcriptional gene expression under different nutritional conditions using complex and chemically defined media. Real-time reverse transcription PCR was used to determine the extent to which inactivation of codY and relA affects the mRNA levels of selected transcription factors, virulence genes, transporters, and genes encoding metabolic enzymes. The results show that CodY and RelA did not affect the expression of each other but that both exhibited strong negative autoregulatory properties. Genes negatively controlled by the relA-directed stringent response to amino acid starvation included, besides relA itself, transporters, metabolic enzymes, and at least two virulence genes (graB and speH). The expression of many genes of all four groups studied proved to be subject to direct or indirect control by CodY, often in a nutritional status-dependent fashion. One of the most important results implicates CodY in growth phase-dependent positive transcriptional regulation of pel/sagA and mga, loci that themselves positively affect the expression of numerous virulence factors. Increasing the cellular activity of nicotinamidase in both a codY mutant and wild-type background induced extensive transcriptional reprogramming, altering, among others, the growth phase-dependent transcription pattern of the genes for cysteine protease (speB) and several transporters. Inasmuch as CodY influenced the expression of other regulators (pel/sagA, mga, covRS, ropB, pyrR), its action is amplified and expands the complex regulatory network that governs gene expression in S. pyogenes.
Collapse
Affiliation(s)
- Horst Malke
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | |
Collapse
|
49
|
Young MH, Aronoff DM, Engleberg NC. Necrotizing fasciitis: pathogenesis and treatment. Expert Rev Anti Infect Ther 2006; 3:279-94. [PMID: 15918785 DOI: 10.1586/14787210.3.2.279] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Necrotizing fasciitis is a rapidly progressive, life-threatening infection and a true infectious disease emergency. Despite much clinical experience, the management of this disease remains suboptimal, with mortality rates remaining approximately 30%. Necrotizing fasciitis rarely presents with obvious signs and symptoms and delays in diagnosis enhance mortality. Therefore, successful patient care depends on the physician's acumen and index of suspicion. Prompt surgical debridement, intravenous antibiotics, fluid and electrolyte management, and analgesia are mainstays of therapy. Adjunctive clindamycin, hyperbaric oxygen therapy and intravenous immunoglobulin are frequently employed in the treatment of necrotizing fasciitis, but their efficacy has not been rigorously established. Improved understanding of the pathogenesis of necrotizing fasciitis has revealed new targets for rationally designed therapies to improve morbidity and mortality.
Collapse
Affiliation(s)
- Michael H Young
- Ann Arbor Veterans Affairs Hospital, Division of Infectious Diseases, Department of Internal Medicine, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
50
|
Hytönen J, Haataja S, Finne J. Use of flow cytometry for the adhesion analysis of Streptococcus pyogenes mutant strains to epithelial cells: investigation of the possible role of surface pullulanase and cysteine protease, and the transcriptional regulator Rgg. BMC Microbiol 2006; 6:18. [PMID: 16504124 PMCID: PMC1397840 DOI: 10.1186/1471-2180-6-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 02/24/2006] [Indexed: 11/12/2022] Open
Abstract
Background Flow cytometry based adherence assay is a potentially powerful but little used method in the study of bacterial binding to host structures. We have previously characterized a glycoprotein-binding activity in Streptococcus pyogenes called 'strepadhesin' binding to thyroglobulin, submaxillar mucin, fetuin and asialofetuin. We have identified surface-associated pullulanase (PulA) and cysteine protease (SpeB) as carriers of strepadhesin activity. In the present paper, we investigated the use of flow cytometry as a method to study the binding of Rgg, SpeB and PulA knock-out strains to cultured human epithelial cells. Results Streptococcal mutants were readily labelled with CFDA-SE and their binding to epithelial cells could be effectively studied by flow cytometry. A strain deficient in Rgg expression showed increased binding to the analyzed epithelial cell lines of various origin. Inactivation of SpeB had no effect on the adhesion, while PulA knock-out strains displayed decreased binding to the cell lines. Conclusion These results suggest that the flow cytometric assay is a valuable tool in the analysis of S. pyogenes adherence to host cells. It appears to be an efficient and sensitive tool for the characterization of interactions between the bacteria and the host at the molecular level. The results also suggest a role for Rgg regulated surface molecules, like PulA, in the adhesion of S. pyogenes to host cells.
Collapse
Affiliation(s)
- Jukka Hytönen
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Sauli Haataja
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jukka Finne
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|