1
|
Rodríguez-González J, Gutiérrez-Kobeh L. Apoptosis and its pathways as targets for intracellular pathogens to persist in cells. Parasitol Res 2023; 123:60. [PMID: 38112844 PMCID: PMC10730641 DOI: 10.1007/s00436-023-08031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
Apoptosis is a finely programmed process of cell death in which cells silently dismantle and actively participate in several operations such as immune response, differentiation, and cell growth. It can be initiated by three main pathways: the extrinsic, the perforin granzyme, and the intrinsic that culminate in the activation of several proteins in charge of tearing down the cell. On the other hand, apoptosis represents an ordeal for pathogens that live inside cells and maintain a strong dependency with them; thus, they have evolved multiple strategies to manipulate host cell apoptosis on their behalf. It has been widely documented that diverse intracellular bacteria, fungi, and parasites can interfere with most steps of the host cell apoptotic machinery to inhibit or induce apoptosis. Indeed, the inhibition of apoptosis is considered a virulence property shared by many intracellular pathogens to ensure productive replication. Some pathogens intervene at an early stage by interfering with the sensing of extracellular signals or transduction pathways. Others sense cellular stress or target the apoptosis regulator proteins of the Bcl-2 family or caspases. In many cases, the exact molecular mechanisms leading to the interference with the host cell apoptotic cascade are still unknown. However, intense research has been conducted to elucidate the strategies employed by intracellular pathogens to modulate host cell death. In this review, we summarize the main routes of activation of apoptosis and present several processes used by different bacteria, fungi, and parasites to modulate the apoptosis of their host cells.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez,", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P. 14080, Ciudad de México, México
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez,", Juan Badiano No. 1, Col. Belisario Domínguez, Sección XVI, Delegación Tlalpan, C.P. 14080, Ciudad de México, México.
| |
Collapse
|
2
|
Subramanian A, Wang L, Moss T, Voorhies M, Sangwan S, Stevenson E, Pulido EH, Kwok S, Chalkley RJ, Li KH, Krogan NJ, Swaney DL, Burlingame AL, Floor SN, Sil A, Walter P, Mukherjee S. A Legionella toxin exhibits tRNA mimicry and glycosyl transferase activity to target the translation machinery and trigger a ribotoxic stress response. Nat Cell Biol 2023; 25:1600-1615. [PMID: 37857833 PMCID: PMC11005034 DOI: 10.1038/s41556-023-01248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate.
Collapse
Affiliation(s)
- Advait Subramanian
- G.W. Hooper Foundation, University of California at San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Lan Wang
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Tom Moss
- G.W. Hooper Foundation, University of California at San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Smriti Sangwan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ernst H Pulido
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
| | - Samentha Kwok
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Kathy H Li
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, J. Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.
- Bay Area Institute of Science, Altos Labs, Redwood City, CA, USA.
| | - Shaeri Mukherjee
- G.W. Hooper Foundation, University of California at San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Zhang Y, Guan J, Li C, Wang Z, Deng Z, Gasser RB, Song J, Ou HY. DeepSecE: A Deep-Learning-Based Framework for Multiclass Prediction of Secreted Proteins in Gram-Negative Bacteria. RESEARCH (WASHINGTON, D.C.) 2023; 6:0258. [PMID: 37886621 PMCID: PMC10599158 DOI: 10.34133/research.0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Proteins secreted by Gram-negative bacteria are tightly linked to the virulence and adaptability of these microbes to environmental changes. Accurate identification of such secreted proteins can facilitate the investigations of infections and diseases caused by these bacterial pathogens. However, current bioinformatic methods for predicting bacterial secreted substrate proteins have limited computational efficiency and application scope on a genome-wide scale. Here, we propose a novel deep-learning-based framework-DeepSecE-for the simultaneous inference of multiple distinct groups of secreted proteins produced by Gram-negative bacteria. DeepSecE remarkably improves their classification from nonsecreted proteins using a pretrained protein language model and transformer, achieving a macro-average accuracy of 0.883 on 5-fold cross-validation. Performance benchmarking suggests that DeepSecE achieves competitive performance with the state-of-the-art binary predictors specialized for individual types of secreted substrates. The attention mechanism corroborates salient patterns and motifs at the N or C termini of the protein sequences. Using this pipeline, we further investigate the genome-wide prediction of novel secreted proteins and their taxonomic distribution across ~1,000 Gram-negative bacterial genomes. The present analysis demonstrates that DeepSecE has major potential for the discovery of disease-associated secreted proteins in a diverse range of Gram-negative bacteria. An online web server of DeepSecE is also publicly available to predict and explore various secreted substrate proteins via the input of bacterial genome sequences.
Collapse
Affiliation(s)
- Yumeng Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute,
Monash University, Melbourne, VIC 3800, Australia
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science,
The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute,
Monash University, Melbourne, VIC 3800, Australia
- Melbourne Veterinary School, Faculty of Science,
The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Comparative Genomics of Legionella pneumophila Isolates from the West Bank and Germany Support Molecular Epidemiology of Legionnaires' Disease. Microorganisms 2023; 11:microorganisms11020449. [PMID: 36838414 PMCID: PMC9965269 DOI: 10.3390/microorganisms11020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium and clinical pathogen that causes many life-threating outbreaks of an atypical pneumonia called Legionnaires' disease (LD). Studies of this pathogen have focused mainly on Europe and the United States. A shortage in L. pneumophila data is clearly observed for developing countries. To reduce this knowledge gap, L. pneumophila isolates were studied in two widely different geographical areas, i.e., the West Bank and Germany. For this study, we sequenced and compared the whole genome of 38 clinical and environmental isolates of L. pneumophila covering different MLVA-8(12) genotypes in the two areas. Sequencing was conducted using the Illumina HiSeq 2500 platform. In addition, two isolates (A194 and H3) were sequenced using a Pacific Biosciences (PacBio) RSII platform to generate complete reference genomes from each of the geographical areas. Genome sequences from 55 L. pneumophila strains, including 17 reference strains, were aligned with the genome sequence of the closest strain (L. pneumophila strain Alcoy). A whole genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using the ParSNP software v 1.0. The reference genomes obtained for isolates A194 and H3 consisted of circular chromosomes of 3,467,904 bp and 3,691,263 bp, respectively. An average of 36,418 SNPs (min. 8569, max. 70,708 SNPs) against our reference strain L. pneumophila str. Alcoy, and 2367 core-genes were identified among the fifty-five strains. An analysis of the genomic population structure by SNP comparison divided the fifty-five L. pneumophila strains into six branches. Individual isolates in sub-lineages in these branches differed by less than 120 SNPs if they had the same MLVA genotype and were isolated from the same location. A bioinformatics analysis identified the genomic islands (GIs) for horizontal gene transfer and mobile genetic elements, demonstrating that L. pneumophila showed high genome plasticity. Four L. pneumophila isolates (H3, A29, A129 and L10-091) contained well-defined plasmids. On average, only about half of the plasmid genes could be matched to proteins in databases. In silico phage findings suggested that 43 strains contained at least one phage. However, none of them were found to be complete. BLASTp analysis of proteins from the type IV secretion Dot/Icm system showed those proteins highly conserved, with less than 25% structural differences in the new L. pneumophila isolates. Overall, we demonstrated that whole genome sequencing provides a molecular surveillance tool for L. pneumophila at the highest conceivable discriminatory level, i.e., two to eight SNPs were observed for isolates from the same location but several years apart.
Collapse
|
6
|
Zayed AR, Bunk B, Jaber L, Abu-Teer H, Ali M, Steinert M, Höfle MG, Brettar I, Bitar DM. Whole-genome sequencing of the clinical isolate of Legionella pneumophila ALAW1 from the West Bank allows high-resolution typing and determination of pathogenicity mechanisms. Eur Clin Respir J 2023; 10:2168346. [PMID: 36698751 PMCID: PMC9869991 DOI: 10.1080/20018525.2023.2168346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Legionella pneumophila is water-based bacterium causing Legionnaires' disease (LD). We describe the first documented case of nosocomial LD caused by L. pneumophila sequence type (ST) 461 and serogroup 6. The etiology of LD was confirmed by culturing the bronchoalveolar lavage sample retrieving L. pneumophila strain ALAW1. A 7-days treatment of the LD patient with Azithromycin and Levofloxacin allowed complete recovery. Methods In details, we sequenced the whole genome of the L. pneumophila ALAW1 using Illumina HiSeq platform. The sequence of ALAW1 was aligned with the genome sequence from the closely related reference strain Alcoy 2300/99 and a whole-genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using Parsnp software. Also, the TYGS web-server was used in order to compare the genome with type strain. Results An analysis of the population structure by SNP and TYGS comparison clustered ALAW1 with the reference genome Alcoy 2300/99. Blastp analysis of the type IV secretion Dot/Icm system genes showed that these genes were highly conserved with (≤25%) structural differences at the protein level. Conclusions Overall, this study provides insights into detailed genome structure and demonstrated the value of whole-genome sequencing as the ultimate typing tool for Legionella.
Collapse
Affiliation(s)
- Ashraf R. Zayed
- CONTACT Ashraf R. Zayed Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P. O. Box. 7, Palestine;Microbiology Research laboratory Faculty of Medicine Al-Quds University Abu-Dies, East Jerusalem 9993100, Palestine Zayed
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hcp Proteins of the Type VI Secretion System Promote Avian Pathogenic E. coli DE205B (O2:K1) to Induce Meningitis in Rats. Life (Basel) 2022; 12:life12091353. [PMID: 36143390 PMCID: PMC9503490 DOI: 10.3390/life12091353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important extra-intestinal pathogenic E. coli (ExPEC), which often causes systemic infection in poultry and causes great economic loss to the breeding industry. In addition, as a major source of human ExPEC infection, the potential zoonotic risk of APEC has been an ongoing concern. Previous studies have pointed out that APEC is a potential zoonotic pathogen, which has high homology with human pathogenic E. coli such as uro-pathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), shares multiple virulence factors and can cause mammalian diseases. Previous studies have reported that O18 and O78 could cause different degrees of meningitis in neonatal rats, and different serotypes had different degrees of zoonotic risk. Here, we compared APEC DE205B (O2:K1) with NMEC RS218 (O18:K1:H7) by phylogenetic analysis and virulence gene identification to analyze the potential risk of DE205B in zoonotic diseases. We found that DE205B possessed a variety of virulence factors associated with meningitis and, through phylogenetic analysis, had high homology with RS218. DE205B could colonize the cerebrospinal fluid (CSF) of rats, and cause meningitis and nerve damage. Symptoms and pathological changes in the brain were similar to RS218. In addition, we found that DE205B had a complete T6SS, of which Hcp protein was its important structural protein. Hcp1 induced cytoskeleton rearrangement in human brain microvascular endothelial cells (HBMECs), and Hcp2 was mainly involved in the invasion of DE205B in vitro. In the meningitis model of rats, deletion of hcp2 gene reduced survival in the blood and the brain invasiveness of DE205B. Compared with WT group, Δhcp2 group induced lower inflammation and neutrophils infiltration in brain tissue, alleviating the process of meningitis. Together, these results suggested that APEC DE205B had close genetic similarities to NMEC RS218, and a similar mechanism in causing meningitis and being a risk for zoonosis. This APEC serotype provided a basis for zoonotic research.
Collapse
|
8
|
Legionella pneumophila Infection of Human Macrophages Retains Golgi Structure but Reduces O-Glycans. Pathogens 2022; 11:pathogens11080908. [PMID: 36015029 PMCID: PMC9415278 DOI: 10.3390/pathogens11080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Legionella pneumophila is an accidental pathogen that replicates intracellularly within the Legionella-containing vacuole (LCV) in macrophages. Within an hour of infection, L. pneumophila secretes effectors to manipulate Rab1 and intercept ER-derived vesicles to the LCV. The downstream consequences of interrupted ER trafficking on the Golgi of macrophages are not clear. We examined the Golgi structure and function in L. pneumophila-infected human U937 macrophages. Intriguingly, the size of the Golgi in infected macrophages remained similar to uninfected macrophages. Furthermore, TEM analysis also did not reveal any significant changes in the ultrastructure of the Golgi in L. pneumophila-infected cells. Drug-induced Golgi disruption impacted bacterial replication in human macrophages, suggesting that an intact organelle is important for bacteria growth. To probe for Golgi functionality after L. pneumophila infection, we assayed glycosylation levels using fluorescent lectins. Golgi O-glycosylation levels, visualized by the fluorescent cis-Golgi lectin, Helix pomatia agglutinin (HPA), significantly decreased over time as infection progressed, compared to control cells. N-glycosylation levels in the Golgi, as measured by L-PHA lectin staining, were not impacted by L. pneumophila infection. To understand the mechanism of reduced O-glycans in the Golgi we monitored UDP-GalNAc transporter levels in infected macrophages. The solute carrier family 35 membrane A2 (SLC35A2) protein levels were significantly reduced in L. pneumophila-infected U937 and HeLa cells and L. pneumophila growth in human macrophages benefitted from GalNAc supplementation. The pronounced reduction in Golgi HPA levels was dependent on the translocation apparatus DotA expression in bacteria and occurred in a ubiquitin-independent manner. Thus, L. pneumophila infection of human macrophages maintains and requires an intact host Golgi ultrastructure despite known interference of ER–Golgi trafficking. Finally, L. pneumophila infection blocks the formation of O-linked glycans and reduces SLC35A2 protein levels in infected human macrophages.
Collapse
|
9
|
Mraz AL, Weir MH. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Systematic Review Part II Growth within and Egress from a Host Cell. Microorganisms 2022; 10:141. [PMID: 35056590 PMCID: PMC8780890 DOI: 10.3390/microorganisms10010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern, due to its ability to cause a severe pneumonia, Legionnaires' Disease (LD), and the challenges in controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental stressors and to increase its growth rate, which increases the bacteria's infectivity to human host cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to human macrophages without replicating within a host protozoan cell, the replication within, and egress from, a protozoan host cell is an integral part of the bacteria's lifecycle. While there is a great deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This systematic review summarizes the information in the literature regarding L. pneumophila's growth within and egress from the host cell, summarizes the genes which affect these processes, and calculates how oxidative stress can downregulate those genes.
Collapse
Affiliation(s)
- Alexis L. Mraz
- School of Nursing, Health, Exercise Science, The College of New Jersey, P.O. Box 7718, 2000 Pennington Rd., Ewing, NJ 08628, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Cytotoxicity, Intracellular Replication, and Contact-Dependent Pore Formation of Genotyped Environmental Legionella pneumophila Isolates from Hospital Water Systems in the West Bank, Palestine. Pathogens 2021; 10:pathogens10040417. [PMID: 33915921 PMCID: PMC8066006 DOI: 10.3390/pathogens10040417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires’ disease. Due to the hot climate and intermittent water supply, the West Bank, Palestine, can be considered a high-risk area for this often fatal atypical pneumonia. L. pneumophila occurs in biofilms of natural and man-made freshwater environments, where it infects and replicates intracellularly within protozoa. To correlate the genetic diversity of the bacteria in the environment with their virulence properties for protozoan and mammalian host cells, 60 genotyped isolates from hospital water systems in the West Bank were analyzed. The L. pneumophila isolates were previously genotyped by high resolution Multi Locus Variable Number of Tandem Repeat Analysis (MLVA-8(12)) and sorted according to their relationship in clonal complexes (VACC). Strains of relevant genotypes and VACCs were compared according to their capacity to infect Acanthamoeba castellanii and THP-1 macrophages, and to mediate pore-forming cytotoxicity in sheep red blood cells (sRBCs). Based on a previous detailed analysis of the biogeographic distribution and abundance of the MLVA-8(12)-genotypes, the focus of the study was on the most abundant L. pneumophila- genotypes Gt4(17), Gt6 (18) and Gt10(93) and the four relevant clonal complexes [VACC1, VACC2, VACC5 and VACC11]. The highly abundant genotypes Gt4(17) and Gt6(18) are affiliated with VACC1 and sequence type (ST)1 (comprising L. pneumophila str. Paris), and displayed seroroup (Sg)1. Isolates of these two genotypes exhibited significantly higher virulence potentials compared to other genotypes and clonal complexes in the West Bank. Endemic for the West Bank was the clonal complex VACC11 (affiliated with ST461) represented by three relevant genotypes that all displayed Sg6. These genotypes unique for the West Bank showed a lower infectivity and cytotoxicity compared to all other clonal complexes and their affiliated genotypes. Interestingly, the L. pneumophila serotypes ST1 and ST461 were previously identified by in situ-sequence based typing (SBT) as main causative agents of Legionnaires’ disease (LD) in the West Bank at a comparable level. Overall, this study demonstrates the site-specific regional diversity of L. pneumophila genotypes in the West Bank and suggests that a combination of MLVA, cellular infection assays and hierarchical agglomerative cluster analysis allows an improved genotype-based risk assessment.
Collapse
|
11
|
Abstract
Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires’ pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila-containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. Diversion of the Legionella pneumophila-containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires’ pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P78 and D64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.
Collapse
|
12
|
Henriquez FL, Mooney R, Bandel T, Giammarini E, Zeroual M, Fiori PL, Margarita V, Rappelli P, Dessì D. Paradigms of Protist/Bacteria Symbioses Affecting Human Health: Acanthamoeba species and Trichomonas vaginalis. Front Microbiol 2021; 11:616213. [PMID: 33488560 PMCID: PMC7817646 DOI: 10.3389/fmicb.2020.616213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Ever since the publication of the seminal paper by Lynn Margulis in 1967 proposing the theory of the endosymbiotic origin of organelles, the study of the symbiotic relationships between unicellular eukaryotes and prokaryotes has received ever-growing attention by microbiologists and evolutionists alike. While the evolutionary significance of the endosymbiotic associations within protists has emerged and is intensively studied, the impact of these relationships on human health has been seldom taken into account. Microbial endosymbioses involving human eukaryotic pathogens are not common, and the sexually transmitted obligate parasite Trichomonas vaginalis and the free-living opportunistic pathogen Acanthamoeba represent two unique cases in this regard, to date. The reasons of this peculiarity for T. vaginalis and Acanthamoeba may be due to their lifestyles, characterized by bacteria-rich environments. However, this characteristic does not fully explain the reason why no bacterial endosymbiont has yet been detected in unicellular eukaryotic human pathogens other than in T. vaginalis and Acanthamoeba, albeit sparse and poorly investigated examples of morphological identification of bacteria-like microorganisms associated with Giardia and Entamoeba were reported in the past. In this review article we will present the body of experimental evidences revealing the profound effects of these examples of protist/bacteria symbiosis on the pathogenesis of the microbial species involved, and ultimately their impact on human health.
Collapse
Affiliation(s)
- Fiona L Henriquez
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Ronnie Mooney
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Timothy Bandel
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Elisa Giammarini
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom
| | - Mohammed Zeroual
- School of Health and Life Sciences, University of West Scotland, Paisley, United Kingdom.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.,Mediterrenean Center for Disease Control, Sassari, Italy
| | - Valentina Margarita
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Paola Rappelli
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.,Mediterrenean Center for Disease Control, Sassari, Italy
| | - Daniele Dessì
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.,Mediterrenean Center for Disease Control, Sassari, Italy
| |
Collapse
|
13
|
Das S, Ray S, Arunima A, Sahu B, Suar M. A ROD9 island encoded gene in Salmonella Enteritidis plays an important role in acid tolerance response and helps in systemic infection in mice. Virulence 2020; 11:247-259. [PMID: 32116124 PMCID: PMC7051147 DOI: 10.1080/21505594.2020.1733203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/31/2022] Open
Abstract
Salmonella, like other pathogenic bacteria has undergone multiple genomic alterations to adapt itself into specific host environments executing varied degrees of virulence through evolution. Such variations in genome content have been assumed to lead the closely related non-typhoidal serovars, S. Enteritidis, and S. Typhimurium to exhibit Type Three Secretion System -2 (T3SS-2) based diverse colonization and inflammation kinetics. Mutually exclusive genes present in either of the serovars are recently being studied and in our currentwork, we focused on a particular island ROD9, present in S. Enteritidis but not in S. Typhimurium. Earlier reports have identified a few genes from this island to be responsible for virulence in vitro as well as in vivo. In this study, we have identified another gene, SEN1008 from the same island encoding a hypothetical protein to be a potential virulence determinant showing systemic attenuation upon mutation in C57BL/6 mice infection model. The isogenic mutant strain displayed reduced adhesion to epithelial cells in vitro as well as was highly immotile. It was also deficient in intracellular replication in vitro, with a highly suppressed SPI-2and failed to cause acute colitis at 72-h p.i.in vivo. Moreover, on acid exposure, SEN1008 showed 17 folds and 2 fold up-regulations during adaptation and challenge phases,respectively and ΔSEN1008 failed to survive during ATR assay, indicating its role under acid stress. Together, our findings suggested ΔSEN1008 to be significantly attenuated and we propose this gene to be a potent factor responsible for S. Enteritidis pathogenesis.
Collapse
Affiliation(s)
- Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Bikash Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
14
|
Mameri RM, Bodennec J, Bezin L, Demanèche S. Mitigation of Expression of Virulence Genes in Legionella pneumophila Internalized in the Free-Living Amoeba Willaertia magna C2c Maky. Pathogens 2020; 9:pathogens9060447. [PMID: 32517040 PMCID: PMC7350332 DOI: 10.3390/pathogens9060447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Legionella pneumophila is a human pathogen responsible for a severe form of pneumonia named Legionnaire disease. Its natural habitat is aquatic environments, being in a free state or intracellular parasites of free-living amoebae, such as Acanthamoeba castellanii. This pathogen is able to replicate within some amoebae. Willaertia magna C2c Maky, a non-pathogenic amoeba, was previously demonstrated to resist to L. pneumophila and even to be able to eliminate the L. pneumophila strains Philadelphia, Lens, and Paris. Here, we studied the induction of seven virulence genes of three L. pneumophila strains (Paris, Philadelphia, and Lens) within W. magna C2c Maky in comparison within A. castellanii and with the gene expression level of L. pneumophila strains alone used as controls. We defined a gene expression-based virulence index to compare easily and without bias the transcript levels in different conditions and demonstrated that W. magna C2c Maky did not increase the virulence of L. pneumophila strains in contrast to A. castellanii. These results confirmed the non-permissiveness of W. magna C2c Maky toward L. pneumophila strains.
Collapse
Affiliation(s)
| | - Jacques Bodennec
- Lyon Neuroscience Research Center CRNL UMR5292 U1028, University of Lyon, Univ Lyon 1, CNRS, Inserm, 69500 Bron, France; (J.B.); (L.B.)
| | - Laurent Bezin
- Lyon Neuroscience Research Center CRNL UMR5292 U1028, University of Lyon, Univ Lyon 1, CNRS, Inserm, 69500 Bron, France; (J.B.); (L.B.)
| | - Sandrine Demanèche
- R&D Department, Amoéba, 69680 Chassieu, France;
- Correspondence: ; Tel.: +33-(04)-2669-1600
| |
Collapse
|
15
|
Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol 2019; 431:4321-4344. [PMID: 31351897 DOI: 10.1016/j.jmb.2019.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome-lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.
Collapse
|
16
|
Wang S, Yan Q, Zhang M, Huang L, Mao L, Zhang M, Xu X, Chen L, Qin Y. The role and mechanism of icmF in Aeromonas hydrophila survival in fish macrophages. JOURNAL OF FISH DISEASES 2019; 42:895-904. [PMID: 30919989 DOI: 10.1111/jfd.12991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Survival in host macrophages is an effective strategy for pathogenic bacteria to spread. Aeromonas hydrophila has been found to survive in fish macrophages, but the mechanisms remain unknown. In this paper, the roles and possible mechanisms of IcmF in bacterial survival in fish macrophages were investigated. First, a stable silencing strain icmF-RNAi was constructed by shRNA and RT-qPCR confirmed the expression of icmF was down-regulated by 94.42%. The expression of Hcp, DotU and VgrG was also decreased in icmF-RNAi. The intracellular survival rate of the wild-type strain was 92.3%, while the survival rate of icmF-RNAi was only 20.58%. The escape rate of the wild-type strain was 20%, while that of the icmF-RNAi was only 7.5%. Further studies indicated that the expression of icmF can significantly affect the adhesion, biofilm formation, motility and acid resistance of A. hydrophila, but has no significant effect on the growth of A. hydrophila even under the stress of H2 O2 . The results indicated that IcmF of A. hydrophila not only acts as a structural protein which participates in virulence-related characteristics such as bacterial motility, adhesion and biofilm formation, but also acts as a key functional protein which participates in the interaction between bacteria and host macrophages.
Collapse
Affiliation(s)
- Suyun Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Meimei Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Leilei Mao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Liwei Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
17
|
Schroll C, Huang K, Ahmed S, Kristensen BM, Pors SE, Jelsbak L, Lemire S, Thomsen LE, Christensen JP, Jensen PR, Olsen JE. The SPI-19 encoded type-six secretion-systems (T6SS) of Salmonella enterica serovars Gallinarum and Dublin play different roles during infection. Vet Microbiol 2019; 230:23-31. [PMID: 30827393 DOI: 10.1016/j.vetmic.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
Salmonella Pathogenicity Islands 19 (SPI19) encodes a type VI secretion system (T6SS). SPI19 is only present in few serovars of S. enterica, including the host-adapted serovar S. Dublin and the host-specific serovar S. Gallinarum. The role of the SPI19 encoded T6SS in virulence in these serovar is not fully understood. Here we show that during infection of mice, a SPI19/T6SS deleted strain of S. Dublin 2229 was less virulent than the wild type strain after oral challenge, but not after IP challenge. The mutant strain also competed significantly poorer than the wild type strain when co-cultured with strains of E. coli, suggesting that this T6SS plays a role in pathogenicity by killing competing bacteria in the intestine. No significant difference was found between wild type S. Gallinarum G9 and its ΔSPI19/T6SS mutant in infection, whether chicken were challenged orally or by the IP route, and the S. Gallinarum G9 ΔSPI19/T6SS strain competed equally well as the wild type strain against strains of E. coli. However, contrary to what was observed with S. Dublin, the wild type G9 strains was significantly more cytotoxic to monocyte derived primary macrophages from hens than the mutant, suggesting that SPI19/T6SS in S. Gallinarum mediates killing of eukaryotic cells. The lack of significant importance of SPI19/T6SS after oral and systemic challenge of chicken was confirmed by knocking out SPI19 in a second strain, J91. Together the results suggest that the T6SS encoded from SPI19 have different roles in the two serovars and that it is a virulence-factor after oral challenge of mice in S. Dublin, while we cannot confirm previous results that SPI19/T6SS influence virulence significantly in S. Gallinarum.
Collapse
Affiliation(s)
- Casper Schroll
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bodil M Kristensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Denmark
| | | | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Peter Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter R Jensen
- Department of Food, Technical University of Denmark, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Complete Genome Sequence of Acetobacter tropicalis Oregon-R-modENCODE Strain BDGP1, an Acetic Acid Bacterium Found in the Drosophila melanogaster Gut. GENOME ANNOUNCEMENTS 2017; 5:5/46/e01020-17. [PMID: 29146844 PMCID: PMC5690321 DOI: 10.1128/genomea.01020-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetobacter tropicalis Oregon-R-modENCODE strain BDGP1 was isolated from Drosophila melanogaster for functional host-microbe interaction studies. The complete genome comprises a single chromosomal circle of 3,988,649 bp with a G+C content of 56% and a conjugative plasmid of 151,013 bp.
Collapse
|
19
|
Machuca A, Martinez V. Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism. PLoS One 2016; 11:e0168855. [PMID: 28033422 PMCID: PMC5199080 DOI: 10.1371/journal.pone.0168855] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
The intracellular facultative bacteria Piscirickettsia salmonis is one of the most important pathogens of the Chilean aquaculture. However, there is a lack of information regarding the whole genomic transcriptional response according to different extracellular environments. We used next generation sequencing (NGS) of RNA (RNA-seq) to study the whole transcriptome of an isolate of P. salmonis (FAVET-INBIOGEN) using a cell line culture and a modified cell-free liquid medium, with or without iron supplementation. This was done in order to obtain information about the factors there are involved in virulence and iron acquisition. First, the isolate was grown in the Sf21 cell line; then, the bacteria were cultured into a cell-free liquid medium supplemented or not with iron. We identified in the transcriptome, genes associated with type IV secretion systems, genes related to flagellar structure assembly, several proteases and sigma factors, and genes related to the development of drug resistance. Additionally, we identified for the first time several iron-metabolism associated genes including at least two iron uptake pathways (ferrous iron and ferric iron uptake) that are actually expressed in the different conditions analyzed. We further describe putative genes that are related with the use and storage of iron in the bacteria, which have not been previously described. Several sets of genes related to virulence were expressed in both the cell line and cell-free culture media (for example those related to flagellar structure; such as basal body, MS-ring, C-ring, proximal and distal rod, and filament), which may play roles in other basic processes rather than been restricted to virulence.
Collapse
Affiliation(s)
- Alvaro Machuca
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Victor Martinez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
20
|
Krause K, Amer AO. Caspase Exploitation by Legionella pneumophila. Front Microbiol 2016; 7:515. [PMID: 27148204 PMCID: PMC4829591 DOI: 10.3389/fmicb.2016.00515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022] Open
Abstract
Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular L. pneumophila via inflammasome components which initiate pro-inflammatory cytokine secretion, phagosomal maturation and pyroptotic cell death thereby leading to bacterial restriction. During this process flagellin-dependent and -independent signaling pathways trigger the canonical as well as the non-canonical inflammasome. This review describes the current knowledge about L. pneumophila-induced inflammasome pathways in permissive and restrictive host cells.
Collapse
Affiliation(s)
- Kathrin Krause
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA
| |
Collapse
|
21
|
Zhan XY, Hu CH, Zhu QY. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients. Arch Microbiol 2016; 198:241-50. [PMID: 26757724 DOI: 10.1007/s00203-015-1186-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022]
Abstract
Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China
| | - Chao-Hui Hu
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China
| | - Qing-Yi Zhu
- Guangzhou KingMed Center for Clinical Laboratory, No.10, Luoxuan 3 Road, Guangzhou International Bio-island, Guangzhou, 510300, China. .,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, China.
| |
Collapse
|
22
|
Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 2015; 79:193-224. [PMID: 25833324 PMCID: PMC4394879 DOI: 10.1128/mmbr.00052-14] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anastasia H Potts
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
23
|
Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, Berendsen R, Cornelis P. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PLoS One 2014; 9:e110038. [PMID: 25369289 PMCID: PMC4219678 DOI: 10.1371/journal.pone.0110038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.
Collapse
Affiliation(s)
- Lumeng Ye
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
| | - Falk Hildebrand
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
| | - Jozef Dingemans
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
| | - Steven Ballet
- Chemistry Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - George Laus
- Chemistry Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sandra Matthijs
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, Brussels, Belgium
| | - Roeland Berendsen
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
- * E-mail:
| |
Collapse
|
24
|
Pei J, Kahl-McDonagh M, Ficht TA. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front Cell Infect Microbiol 2014; 4:23. [PMID: 24634889 PMCID: PMC3942807 DOI: 10.3389/fcimb.2014.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022] Open
Abstract
It has long been observed that smooth Brucella can dissociate into rough mutants that are cytotoxic to macrophages. However, the in vivo biological significance and/or mechanistic details of Brucella dissociation and cytotoxicity remain incomplete. In the current report, a plaque assay was developed using Brucella strains exhibiting varying degrees of cytotoxicity. Infected monolayers were observed daily using phase contrast microscopy for plaque formation while Brucella uptake and replication were monitored using an immunofluorescence assay (IFA). Visible plaques were detected at 4-5 days post infection (p.i.) with cytotoxic Brucella 16MΔmanBA at an MOI of 0.1. IFA staining demonstrated that the plaques consisted of macrophages with replicating Brucella. Visible plaques were not detected in monolayers infected with non-cytotoxic 16MΔmanBAΔvirB2 at an MOI of 0.1. However, IFA staining did reveal small groups of macrophages (foci) with replicating Brucella in the monolayers infected with 16MΔmanBAΔvirB2. The size of the foci observed in macrophage monolayers infected with rough Brucella correlated directly with cytotoxicity measured in liquid culture, suggesting that cytotoxicity was essential for Brucella egress and dissemination. In monolayers infected with 16M, small and large foci were observed. Double antibody staining revealed spontaneous rough mutants within the large, but not the small foci in 16M infected monolayers. Furthermore, plaque formation was observed in the large foci derived from 16M infections. Finally, the addition of gentamicin to the culture medium inhibited plaque formation, suggesting that cell-to-cell spread occurred only following release of the organisms from the cells. Taken together, these results demonstrate that Brucella-induced cytotoxicity is critical for Brucella egress and dissemination.
Collapse
Affiliation(s)
| | | | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University and Texas Agricultural Experiment StationCollege Station, TX, USA
| |
Collapse
|
25
|
Cunha LD, Zamboni DS. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:76. [PMID: 24324933 PMCID: PMC3840304 DOI: 10.3389/fcimb.2013.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP) Ribeirão Preto, Brazil
| | | |
Collapse
|
26
|
Secreted pyomelanin of Legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions. Infect Immun 2013; 81:4182-91. [PMID: 23980114 DOI: 10.1128/iai.00858-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Iron acquisition is critical to the growth and virulence of Legionella pneumophila. Previously, we found that L. pneumophila uses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted by L. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability of L. pneumophila and other species of Legionella to take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing of L. pneumophila culture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis of L. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.
Collapse
|
27
|
Gómez FA, Tobar JA, Henríquez V, Sola M, Altamirano C, Marshall SH. Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis. PLoS One 2013; 8:e54934. [PMID: 23383004 PMCID: PMC3557282 DOI: 10.1371/journal.pone.0054934] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/18/2012] [Indexed: 12/02/2022] Open
Abstract
Piscirickettsia salmonis is a fish bacterial pathogen that has severely challenged the sustainability of the Chilean salmon industry since its appearance in 1989. As this Gram-negative bacterium has been poorly characterized, relevant aspects of its life cycle, virulence and pathogenesis must be identified in order to properly design prophylactic procedures. This report provides evidence of the functional presence in P. salmonis of four genes homologous to those described for Dot/Icm Type IV Secretion Systems. The Dot/Icm System, the major virulence mechanism of phylogenetically related pathogens Legionella pneumophila and Coxiella burnetii, is responsible for their intracellular survival and multiplication, conditions that may also apply to P. salmonis. Our results demonstrate that the four P. salmonis dot/icm homologues (dotB, dotA, icmK and icmE) are expressed both during in vitro tissue culture cells infection and growing in cell-free media, suggestive of their putative constitutive expression. Additionally, as it happens in other referential bacterial systems, temporal acidification of cell-free media results in over expression of all four P. salmonis genes, a well-known strategy by which SSTIV-containing bacteria inhibit phagosome-lysosome fusion to survive. These findings are very important to understand the virulence mechanisms of P. salmonis in order to design new prophylactic alternatives to control the disease.
Collapse
Affiliation(s)
- Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Type II secretion (T2S) is one of six systems that can occur in Gram-negative bacteria for the purpose of secreting proteins into the extracellular milieu and/or into host cells. This chapter will describe the T2S system of Legionella pneumophila. Topics to be covered include the genetic basis of T2S in L. pneumophila, the numbers (>25), types, and novelties of Legionella proteins that are secreted via T2S, and the many ways in which T2S and its substrates promote L. pneumophila physiology, ecology, and virulence. Within the aquatic environment, T2S plays a major role in L. pneumophila intracellular infection of multiple types of (Acanthamoeba, Hartmannella, and Naegleria) amoebae. Within the mammalian host, T2S promotes bacterial persistence in lungs, intracellular infection of both macrophages and epithelial cells, and a dampening of the host innate immune response. In this context, T2S may represent a potential target for both industrial and biomedical application.
Collapse
|
29
|
Metagenomic analyses of drinking water receiving different disinfection treatments. Appl Environ Microbiol 2012; 78:6095-102. [PMID: 22729545 DOI: 10.1128/aem.01018-12] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities.
Collapse
|
30
|
The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci U S A 2012; 109:3481-6. [PMID: 22308473 DOI: 10.1073/pnas.1121286109] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Legionella pneumophila directs the formation of a specialized vacuole within host cells, dependent on protein substrates of the Icm/Dot translocation system. Survival of the host cell is essential for intracellular replication of L. pneumophila. Strains lacking the translocated substrate SdhA are defective for intracellular replication and activate host cell death pathways in primary macrophages. To understand how SdhA promotes evasion of death pathways, we performed a mutant hunt to identify bacterial suppressors of the ΔsdhA growth defect. We identified the secreted phospholipase PlaA as key to activation of death pathways by the ΔsdhA strain. Based on homology between PlaA and SseJ, a Salmonella protein associated with vacuole degradation, we determined the roles of SdhA and PlaA in controlling vacuole integrity. In the absence of sdhA, the Legionella-containing vacuole was unstable, resulting in access to the host cytosol. Both vacuole disruption and host cell death were largely dependent on PlaA. Consistent with these observations, the ΔsdhA strain colocalized with galectin-3, a marker of vacuole rupture, in a PlaA-dependent process. Access of ΔsdhA strains to the macrophage cytosol triggered multiple responses in the host cell, including degradation of bacteria, induction of the type I IFN response, and activation of inflammasomes. Therefore, we have demonstrated that the Legionella-containing vacuole is actively stabilized by the SdhA protein during intracellular replication. This vacuolar niche affords the bacterium protection from cytosolic host factors that degrade bacteria and initiate immune responses.
Collapse
|
31
|
de Pace F, Boldrin de Paiva J, Nakazato G, Lancellotti M, Sircili MP, Guedes Stehling E, Dias da Silveira W, Sperandio V. Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. MICROBIOLOGY (READING, ENGLAND) 2011. [PMID: 21778203 DOI: 10.1099/mic.0.050005–0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intracellular multiplication factor (IcmF) protein is a component of the recently described type VI secretion system (T6SS). IcmF has been shown to be required for intra-macrophage replication and inhibition of phagosome-lysosome fusion in Legionella pneumophila. In Vibrio cholerae it is involved in motility, adherence and conjugation. Given that we previously reported that two T6SS genes (hcp and clpV) contribute to the pathogenesis of a septicaemic strain (SEPT362) of avian pathogenic Escherichia coli (APEC), we investigated the function of IcmF in this strain. Further elucidation of the virulence mechanisms of APEC is important because this pathogen is responsible for financial losses in the poultry industry, and is closely related to human extraintestinal pathogenic E. coli (ExPEC) strains, representing a potential zoonotic risk, as well as serving as a reservoir of virulence genes. Here we show that an APEC icmF mutant has decreased adherence to and invasion of epithelial cells, as well as decreased intra-macrophage survival. The icmF mutant is also defective for biofilm formation on abiotic surfaces. Additionally, expression of the flagella operon is decreased in the icmF mutant, leading to decreased motility. The combination of these phenotypes culminates in this mutant being altered for infection in chicks. These results suggest that IcmF in APEC may play a role in disease, and potentially also in the epidemiological spread of this pathogen through enhancement of biofilm formation.
Collapse
Affiliation(s)
- Fernanda de Pace
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Jacqueline Boldrin de Paiva
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Marcelo Lancellotti
- Department of Biochemistry, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Eliana Guedes Stehling
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Vanessa Sperandio
- University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| |
Collapse
|
32
|
de Pace F, Boldrin de Paiva J, Nakazato G, Lancellotti M, Sircili MP, Guedes Stehling E, Dias da Silveira W, Sperandio V. Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. MICROBIOLOGY-SGM 2011; 157:2954-2962. [PMID: 21778203 DOI: 10.1099/mic.0.050005-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The intracellular multiplication factor (IcmF) protein is a component of the recently described type VI secretion system (T6SS). IcmF has been shown to be required for intra-macrophage replication and inhibition of phagosome-lysosome fusion in Legionella pneumophila. In Vibrio cholerae it is involved in motility, adherence and conjugation. Given that we previously reported that two T6SS genes (hcp and clpV) contribute to the pathogenesis of a septicaemic strain (SEPT362) of avian pathogenic Escherichia coli (APEC), we investigated the function of IcmF in this strain. Further elucidation of the virulence mechanisms of APEC is important because this pathogen is responsible for financial losses in the poultry industry, and is closely related to human extraintestinal pathogenic E. coli (ExPEC) strains, representing a potential zoonotic risk, as well as serving as a reservoir of virulence genes. Here we show that an APEC icmF mutant has decreased adherence to and invasion of epithelial cells, as well as decreased intra-macrophage survival. The icmF mutant is also defective for biofilm formation on abiotic surfaces. Additionally, expression of the flagella operon is decreased in the icmF mutant, leading to decreased motility. The combination of these phenotypes culminates in this mutant being altered for infection in chicks. These results suggest that IcmF in APEC may play a role in disease, and potentially also in the epidemiological spread of this pathogen through enhancement of biofilm formation.
Collapse
Affiliation(s)
- Fernanda de Pace
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Jacqueline Boldrin de Paiva
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Marcelo Lancellotti
- Department of Biochemistry, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Eliana Guedes Stehling
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Vanessa Sperandio
- University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| |
Collapse
|
33
|
Maeda T, Kimura S, Matsumoto T, Tanabe Y, Gejyo F, Yamaguchi K. Hyperoxia accelerates Fas-mediated signaling and apoptosis in the lungs of Legionella pneumophila pneumonia. BMC Res Notes 2011; 4:107. [PMID: 21470397 PMCID: PMC3083350 DOI: 10.1186/1756-0500-4-107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 04/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Oxygen supplementation is commonly given to the patients with severe pneumonia including Legionella disease. Recent data suggested that apoptosis may play an important role, not only in the pathogenesis of Legionella pneumonia, but also in oxygen-induced tissue damage. In the present study, the lethal sensitivity to Legionella pneumonia were compared in the setting of hyperoxia between wild-type and Fas-deficient mice. Findings C57BL/6 mice and B6.MRL-Faslpr mice characterized with Fas-deficiency were used in this study. After intratracheal administration of L. pneumophila, mice were kept in hyperoxic conditions (85-90% O2 conc.) in an airtight chamber for 3 days. Bone-marrow derived macrophages infected with L. pneumophila were also kept in hyperoxic conditions. Caspase activity and cytokine production were determined by using commercially available kits. Smaller increases of several apoptosis markers, such as caspase-3 and -8, were demonstrated in Fas-deficient mice, even though the bacterial burdens in Fas-deficient and wild type mice were similar. Bone-marrow derived macrophages from Fas-deficient mice were shown to be more resistant to Legionella-induced cytotoxicity than those from wild-type mice under hyperoxia. Conclusions These results demonstrated that Fas-mediated signaling and apoptosis may be a crucial factor in the pathogenesis of Legionella pneumonia in the setting of hyperoxia.
Collapse
Affiliation(s)
- Tsuneharu Maeda
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, Tokyo 143-8540, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Global Identification of Protein Prenyltransferase Substrates. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-381339-8.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
|
35
|
Khweek AA, Amer A. Replication of Legionella Pneumophila in Human Cells: Why are We Susceptible? Front Microbiol 2010; 1:133. [PMID: 21687775 PMCID: PMC3109522 DOI: 10.3389/fmicb.2010.00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/16/2010] [Indexed: 11/13/2022] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires’ disease, a serious and often fatal form of pneumonia. The susceptibility to L. pneumophila arises from the ability of this intracellular pathogen to multiply in human alveolar macrophages and monocytes. L. pneumophila also replicates in several professional and non-professional phagocytic human-derived cell lines. With the exception of the A/J mouse strain, most mice strains are restrictive, thus they do not support L. pneumophila replication. Mice lacking the NOD-like receptor Nlrc4 or caspase-1 are also susceptible to L. pneumophila. On the other hand, in the susceptible human hosts, L. pneumophila utilizes several strategies to ensure intracellular replication and protect itself against the host immune system. Most of these strategies converge to prevent the fusion of the L. pneumophila phagosome with the lysosome, inhibiting host cell apoptosis, activating survival pathways, and sequestering essential nutrients for replication and pathogenesis. In this review, we summarize survival mechanisms employed by L. pneumophila to maintain its replication in human cells. In addition, we highlight different human-derived cell lines that support the multiplication of this intracellular bacterium. Therefore, these in vitro models can be applicable and are reproducible when investigating L. pneumophila/phagocyte interactions at the molecular and cellular levels in the human host.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University Columbus, OH, USA
| | | |
Collapse
|
36
|
Coscollá M, Comas I, González-Candelas F. Quantifying Nonvertical Inheritance in the Evolution of Legionella pneumophila. Mol Biol Evol 2010; 28:985-1001. [PMID: 20961962 DOI: 10.1093/molbev/msq278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Mireia Coscollá
- Unidad Mixta de Investigación Genómica y Salud CSISP-UV/Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Valencia, Spain
| | | | | |
Collapse
|
37
|
Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect Immun 2010; 78:4773-8. [PMID: 20823215 DOI: 10.1128/iai.00567-10] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterially induced cell death in human lymphocytes is an important virulence factor for pathogenic bacteria. Previously discovered mechanisms of bacterially induced cell death are predominantly based on the transfer of bacterial proteins to the target host cell, such as the toxins secreted through type I, II, and VI secretion systems or effector proteins injected through type III, IV, and Vb secretion systems. Here, we report a mechanism employed by the Gram-negative oral pathogen Fusobacterium nucleatum for cell death induction of human lymphocytes via two outer membrane proteins (OMPs), Fap2 and RadD, which share regions homologous to autotransporter secretion systems (type Va secretion systems). Genetic and physiological studies established that inactivation of the two OMPs led to significantly reduced ability to trigger cell death in Jurkat cells, while the corresponding double mutant was almost completely attenuated. Additional biochemical and molecular analyses demonstrated that cell-free F. nucleatum membranes are sufficient to induce cell death in Jurkat cells, suggesting that no active process or effector protein transfer was necessary to induce eukaryotic cell death.
Collapse
|
38
|
Habyarimana F, Price CT, Santic M, Al-Khodor S, Kwaik YA. Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun 2010; 78:1123-34. [PMID: 20028808 PMCID: PMC2825944 DOI: 10.1128/iai.00913-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/30/2009] [Accepted: 11/24/2009] [Indexed: 12/28/2022] Open
Abstract
Although most Dot/Icm-translocated effectors of Legionella pneumophila are not required for intracellular proliferation, the eukaryotic-like ankyrin effectors, AnkH and AnkJ are required for intracellular proliferation. In this report, we show that the IcmSW chaperones are essential for translocation of AnkJ but not AnkH. The 10 C-terminal residues and the ANK domains of AnkH and AnkJ are required for translocation. Our data indicate that the two ANK domains of AnkH are critical domains required for the function of the effector in intracellular replication of L. pneumophila. The ankH and ankJ mutants are severely defective in intrapulmonary proliferation in mice. Expression of AnkH and AnkJ fusions within HEK293 cells show a punctuate distribution in the cytosol but no association with endocytic vesicles, the Golgi apparatus or the endoplasmic reticulum. Interestingly, the defect in intracellular proliferation of the ankH or ankJ mutants is rescued in HEK293 cells expressing the respective protein. We conclude that AnkH and AnkJ are effectors translocated by the Dot/Icm system by distinct mechanisms and modulate distinct cytosolic processes in the host cell.
Collapse
Affiliation(s)
- Fabien Habyarimana
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Chris T. Price
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Marina Santic
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Souhaila Al-Khodor
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
39
|
Amer AO. Modulation of caspases and their non-apoptotic functions byLegionella pneumophila. Cell Microbiol 2010; 12:140-7. [DOI: 10.1111/j.1462-5822.2009.01401.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Molmeret M, Jones S, Santic M, Habyarimana F, Esteban MTG, Kwaik YA. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ Microbiol 2009; 12:704-15. [PMID: 19958381 DOI: 10.1111/j.1462-2920.2009.02114.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two-component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two-component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, Room MS-410, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Type IV secretion (T4S) systems are versatile machines involved in many processes relevant to bacterial virulence, such as horizontal DNA transfer and effector translocation into human cells. A recent workshop organized by the International University of Andalousia in Baeza, Spain, covered most aspects of bacterial T4S relevant to human disease, ranging from the structural and mechanistic analysis of the T4S systems to the physiological roles of the translocated effector proteins in subverting cellular functions in infected humans. This review reports the highlights from this workshop, which include the first visualization of a T4S system core complex spanning both membranes of Gram-negative bacteria, the identification of the first host receptors for T4S systems, the identification and characterization of novel T4S effector proteins, the analysis of the molecular function of effector proteins in subverting human cellular functions and an analysis of the role of T4S systems in the evolution of pathogenic bacteria. Our increasing knowledge of the biology of T4S systems improves our ability to exploit them as biotechnological tools or to use them as novel targets for a new generation of antimicrobials.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
42
|
Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J, Marsh CB, Wewers MD, Tridandapani S, Kanneganti TD, Amer AO. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 2009; 5:e1000361. [PMID: 19343209 PMCID: PMC2657210 DOI: 10.1371/journal.ppat.1000361] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 03/02/2009] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila (L. pneumophila), the causative agent of a severe form of pneumonia called Legionnaires' disease, replicates in human monocytes and macrophages. Most inbred mouse strains are restrictive to L. pneumophila infection except for the A/J, Nlrc4−/− (Ipaf−/−), and caspase-1−/− derived macrophages. Particularly, caspase-1 activation is detected during L. pneumophila infection of murine macrophages while absent in human cells. Recent in vitro experiments demonstrate that caspase-7 is cleaved by caspase-1. However, the biological role for caspase-7 activation downstream of caspase-1 is not known. Furthermore, whether this reaction is pertinent to the apoptosis or to the inflammation pathway or whether it mediates a yet unidentified effect is unclear. Using the intracellular pathogen L. pneumophila, we show that, upon infection of murine macrophages, caspase-7 was activated downstream of the Nlrc4 inflammasome and required caspase-1 activation. Such activation of caspase-7 was mediated by flagellin and required a functional Naip5. Remarkably, mice lacking caspase-7 and its macrophages allowed substantial L. pneumophila replication. Permissiveness of caspase-7−/− macrophages to the intracellular pathogen was due to defective delivery of the organism to the lysosome and to delayed cell death during early stages of infection. These results reveal a new mechanism for caspase-7 activation downstream of the Nlrc4 inflammasome and present a novel biological role for caspase-7 in host defense against an intracellular bacterium. Legionella pneumophila causes a severe form of pneumonia called Legionnaires' disease. In human macrophages, L. pneumophila establishes special vacuoles that do not fuse with the lysosome and grows intracellularly. However, in mouse macrophages, the bacteria are efficiently delivered to the lysosome for degradation. Importantly, caspase-1 is activated when L. pneumophila infects mouse macrophages, but not when it infects human cells. Caspase-1 activation promotes the fusion of the L. pneumophila vacuole with the lysosome and macrophage death. However, the caspase-1 substrate mediating such effects is unknown. Experiments performed in vitro demonstrate that caspase-7 is a substrate of caspase-1. Yet, it is not known if the reaction takes place within the macrophage, and it is unclear if it has any biological effect. In this study we show that, in mouse macrophages, caspase-7 is activated by L. pneumophila downstream of caspase-1 and requires the host receptors Nlrc4 and Naip5. Remarkably, caspase-7 activation during L. pneumophila infection restricts growth by promoting early macrophage death and efficient delivery of the organism to the lysosome. Consequently, L. pneumophila grows in the macrophages and the lungs of caspase-7−/− mice. Therefore, we demonstrate a novel caspase-7 activation pathway that contributes to the restriction of L. pneumophila infection.
Collapse
Affiliation(s)
- Anwari Akhter
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Mikhail A. Gavrilin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Laura Frantz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Songcerae Washington
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Cameron Ditty
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Dominique Limoli
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Colby Day
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Christie Newland
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan Butchar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (TDK); (AOA)
| | - Amal O. Amer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDK); (AOA)
| |
Collapse
|
43
|
Ensminger AW, Isberg RR. Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 2009; 12:67-73. [PMID: 19157961 DOI: 10.1016/j.mib.2008.12.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/05/2008] [Accepted: 12/09/2008] [Indexed: 12/15/2022]
Abstract
Legionella pneumophila is an intracellular pathogen of freshwater amoeba and of alveolar macrophages in human hosts. After phagocytosis, L. pneumophila establishes a unique intracellular vacuolar niche that avoids entry into the lysosomal network. Critical for L. pneumophila intracellular growth is the Dot/Icm type IVB translocation system. Although over 80 substrates of the Dot/Icm apparatus have been identified, individual substrates are often genetically redundant, complicating their analysis. Deletion of critical Dot/Icm translocation system components causes a variety of defects during intracellular growth. Many of these effects on the host cell likely result from the actions of one or more Dot/Icm translocated substrates. Loss of single substrates never generates the profound effects observed in strains lacking translocation system components.
Collapse
Affiliation(s)
- Alexander W Ensminger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
44
|
Chou PJJ, Newton CA, Perkins I, Friedman H, Klein TW. Suppression of dendritic cell activation by anthrax lethal toxin and edema toxin depends on multiple factors including cell source, stimulus used, and function tested. DNA Cell Biol 2009; 27:637-48. [PMID: 18821847 DOI: 10.1089/dna.2008.0760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus anthracis produces lethal toxin (LT) and edema toxin (ET), and they suppress the function of LPS-stimulated dendritic cells (DCs). Because DCs respond differently to various microbial stimuli, we compared toxin effects in bone marrow DCs stimulated with either LPS or Legionella pneumophila (Lp). LT, not ET, was more toxic for cells from BALB/c than from C57BL/6 (B6) as measured by 7-AAD uptake; however, ET suppressed CD11c expression. LT suppressed IL-12, IL-6, and TNF-alpha in cells from BALB/c and B6 mice but increased IL-1beta in LPS-stimulated cultures. ET also suppressed IL-12 and TNF-alpha, but increased IL-6 and IL-1beta in Lp-stimulated cells from B6. Regarding maturation marker expression, LT increased MHCII and CD86 while suppressing CD40 and CD80; ET generally decreased marker expression across all groups. We conclude that the suppression of cytokine production by anthrax toxins is dependent on variables, including the source of the DCs, the type of stimulus and cytokine measured, and the individual toxin tested. However, LT and ET enhancement or suppression of maturation marker expression is more related to the marker studied than the stimuli or cell source. Anthrax toxins are not uniformly suppressive of DC function but instead can increase function under defined conditions.
Collapse
Affiliation(s)
- Ping-Jen Joe Chou
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| | | | | | | | | |
Collapse
|
45
|
Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol 2008; 191:1537-46. [PMID: 19114479 DOI: 10.1128/jb.01531-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila exhibits surface translocation when it is grown on a buffered charcoal yeast extract (BCYE) containing 0.5 to 1.0% agar. After 7 to 22 days of incubation, spreading legionellae appear in an amorphous, lobed pattern that is most manifest at 25 to 30 degrees C. All nine L. pneumophila strains examined displayed the phenotype. Surface translocation was also exhibited by some, but not all, other Legionella species examined. L. pneumophila mutants that were lacking flagella and/or type IV pili behaved as the wild type did when plated on low-percentage agar, indicating that the surface translocation is not swarming or twitching motility. A translucent film was visible atop the BCYE agar, advancing ahead of the spreading legionellae. Based on its abilities to disperse water droplets and to promote the spreading of heterologous bacteria, the film appeared to manipulate surface tension and, as such, acted like a surfactant. Indeed, a sample obtained from the film rapidly dispersed when it was spotted onto a plastic surface. L. pneumophila type II secretion (Lsp) mutants, but not their complemented derivatives, were defective for both surface translocation and film production. In contrast, mutants defective for type IV secretion exhibited normal surface translocation. When lsp mutants were spotted onto film produced by the wild type, they were able to spread, suggesting that type II secretion promotes the elaboration of the Legionella surfactant. Together, these data indicate that L. pneumophila exhibits a form of surface translocation that is most akin to "sliding motility" and uniquely dependent upon type II secretion.
Collapse
|
46
|
Shin S, Roy CR. Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 2008; 10:1209-20. [PMID: 18363881 DOI: 10.1111/j.1462-5822.2008.01145.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.
Collapse
Affiliation(s)
- Sunny Shin
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, Room 345, New Haven, CT 06536, USA.
| | | |
Collapse
|
47
|
Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA. Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 2008; 10:1460-74. [PMID: 18279343 DOI: 10.1111/j.1462-2920.2007.01560.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with approximately 30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the DeltaankH and DeltaankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.
Collapse
Affiliation(s)
- Fabien Habyarimana
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
D'Auria G, Jiménez N, Peris-Bondia F, Pelaz C, Latorre A, Moya A. Virulence factor rtx in Legionella pneumophila, evidence suggesting it is a modular multifunctional protein. BMC Genomics 2008; 9:14. [PMID: 18194518 PMCID: PMC2257941 DOI: 10.1186/1471-2164-9-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 01/14/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The repeats in toxin (Rtx) are an important pathogenicity factor involved in host cells invasion of Legionella pneumophila and other pathogenic bacteria. Its role in escaping the host immune system and cytotoxic activity is well known. Its repeated motives and modularity make Rtx a multifunctional factor in pathogenicity. RESULTS The comparative analysis of rtx gene among 6 strains of L. pneumophila showed modularity in their structures. Among compared genomes, the N-terminal region of the protein presents highly dissimilar repeats with functionally similar domains. On the contrary, the C-terminal region is maintained with a fashionable modular configuration, which gives support to its proposed role in adhesion and pore formation. Despite the variability of rtx among the considered strains, the flanking genes are maintained in synteny and similarity. CONCLUSION In contrast to the extracellular bacteria Vibrio cholerae, in which the rtx gene is highly conserved and flanking genes have lost synteny and similarity, the gene region coding for the Rtx toxin in the intracellular pathogen L. pneumophila shows a rapid evolution. Changes in the rtx could play a role in pathogenicity. The interplay of the Rtx toxin with host membranes might lead to the evolution of new variants that are able to escape host cell defences.
Collapse
Affiliation(s)
- Giuseppe D'Auria
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Núria Jiménez
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Francesc Peris-Bondia
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
| | - Carmen Pelaz
- National Centre of Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Amparo Latorre
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Andrés Moya
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
49
|
Conover GM, Martinez-Morales F, Heidtman MI, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR. Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 2007; 10:514-28. [PMID: 17979985 DOI: 10.1111/j.1462-5822.2007.01066.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The function of phosphatidylcholine (PC) in the bacterial cell envelope remains cryptic. We show here that productive interaction of the respiratory pathogen Legionella pneumophila with host cells requires bacterial PC. Synthesis of the lipid in L. pneumophila was shown to occur via either phospholipid N-methyltransferase (PmtA) or phosphatidylcholine synthase (PcsA), but the latter pathway was demonstrated to be of predominant importance. Loss of PC from the cell envelope caused lowered yields of L. pneumophila within macrophages as well as loss of high multiplicity cytotoxicity, while mutants defective in PC synthesis could be complemented either by reintroduction of PcsA or by overproduction of PmtA. The lowered yields and reduced cytotoxicity in mutants with defective PC biosynthesis were due to three related defects. First, there was a poorly functioning Dot/Icm apparatus, which delivers substrates required for intracellular growth into the cytosol of infected cells. Second, there was reduced bacterial binding to macrophages, possibly due to loss of PC or a PC derivative on the bacterium that is recognized by the host cell. Finally, strains lacking PC had low steady-state levels of flagellin protein, a deficit that had been previously associated with the phenotypes of lowered cytotoxicity and poor cellular adhesion.
Collapse
Affiliation(s)
- Gloria M Conover
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cytotoxicity in macrophages infected with rough Brucella mutants is type IV secretion system dependent. Infect Immun 2007; 76:30-7. [PMID: 17938217 DOI: 10.1128/iai.00379-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Smooth Brucella spp. inhibit macrophage apoptosis, whereas rough Brucella mutants induce macrophage oncotic and necrotic cell death. However, the mechanisms and genes responsible for Brucella cytotoxicity have not been identified. In the current study, a random mutagenesis approach was used to create a mutant bank consisting of 11,354 mutants by mariner transposon mutagenesis using Brucella melitensis rough mutant 16M delta manBA as the parental strain. Subsequent screening identified 56 mutants (0.49% of the mutant bank) that failed to cause macrophage cell death (release of 10% or less of the lactate dehydrogenase). The absence of cytotoxicity during infection with these mutants was independent of demonstrable defects in in vitro bacterial growth or uptake and survival in macrophages. Interrupted genes in 51 mutants were identified by DNA sequence analysis, and the mutations included interruptions in virB encoding the type IV secretion system (T4SS) (n = 36) and in vjbR encoding a LuxR-like regulatory element previously shown to be required for virB expression (n = 3), as well as additional mutations (n = 12), one of which also has predicted roles in virB expression. These results suggest that the T4SS is associated with Brucella cytotoxicity in macrophages. To verify this, deletion mutants were constructed in B. melitensis 16M by removing genes encoding phosphomannomutase/phosphomannoisomerase (delta manBA) and the T4SS (delta virB). As predicted, deletion of virB from 16M delta manBA and 16M resulted in a complete loss of cytotoxicity in rough strains, as well as the low level cytotoxicity observed with smooth strains at extreme multiplicities of infection (>1,000). Taken together, these results demonstrate that Brucella cytotoxicity in macrophages is T4SS dependent.
Collapse
|