1
|
Wade B, Rautenschlein S, Hao Van TT, Moore RJ. Campylobacter hepaticus and Spotty Liver Disease in Poultry. Avian Dis 2025; 68:481-489. [PMID: 40249589 DOI: 10.1637/aviandiseases-d-24-00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/16/2024] [Indexed: 04/19/2025]
Abstract
Spotty liver disease is an economically important, emerging disease that primarily impacts the cage-free poultry layer industry. While this disease remains understudied, several important findings have been reported in the last 5 yr that warrant an updated review of the field. These include updated cost estimates of disease, insights into the molecular biology of the causative agent, the identification of a second bacterium responsible for disease production, insights into disease epidemiology and interventions, and the generation of new molecular tools for further study.
Collapse
Affiliation(s)
- Ben Wade
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine, 30559 Hanover, Germany
| | - T T Hao Van
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia
| | - Robert J Moore
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia,
| |
Collapse
|
2
|
Mcdonald JB, Gan E, Cain J, Thoduka SG, Lee J, Wade B, Mauri M, Cuccui J, Wren BW, Packer NH, Londrigan SL, Fritzlar S, Mohotti S, Underwood GJ, Andrews DM, Van TTH, Moore RJ. Immunological and pathobiological characteristics of a novel live Salmonella Typhimurium-vectored Campylobacter vaccine candidate for layer chickens. Front Vet Sci 2025; 12:1518231. [PMID: 40191081 PMCID: PMC11969459 DOI: 10.3389/fvets.2025.1518231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Spotty liver disease (SLD) poses a significant economic and animal welfare threat to the global cage-free egg industry, primarily due to infection by the emerging pathogen Campylobacter hepaticus. SLD can lead to a significant decline in egg production and increased mortality rates. Antibiotics remain the most effective measure for controlling the disease. However, the rise of antibiotic resistance is a growing global concern for public health, promoting efforts to reduce antibiotic usage in animal production. Poultry vaccination offers an alternative approach to decreasing C. hepaticus levels. Although autogenous vaccines are in use in some countries with limited efficacy, no vaccine is currently licensed for widespread use. Methods This study developed and characterized a live Salmonella Typhimurium vector strain designed to deliver the conserved Campylobacter N-glycan heptasaccharide as a target antigen against C. hepaticus. Results The replacement of the S. Typhimurium aroA gene with the Campylobacter pgl locus attenuated the vaccine strain, allowing the conjugation of the heptasaccharide to S. Typhimurium endogenous lipopolysaccharide (LPS). Commercial layer hens vaccinated with the S. Typhimurium strain producing the Campylobacter heptasaccharide induced significantly higher IgY antibody titres specific to the Campylobacter heptasaccharide compared to the birds vaccinated with the vector strain not expressing the heptasaccharide. Modification of the S. Typhimurium endogenous LPS with the heptasaccharide had no significant impact on IgY antibody responses against S. Typhimurium. Discussion This study provides evidence that using S. Typhimurium to deliver Campylobacter heptasaccharide is a feasible approach to providing bi-valent immunogenicity against both S. Typhimurium and C. hepaticus.
Collapse
Affiliation(s)
| | - Emily Gan
- Bioproperties Pty Ltd, RMIT University, Bundoora, VIC, Australia
| | - Joel Cain
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Sapna G. Thoduka
- Bioproperties Pty Ltd, RMIT University, Bundoora, VIC, Australia
| | - Joseph Lee
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Ben Wade
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Marta Mauri
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nicolle H. Packer
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sameera Mohotti
- Bioproperties Pty Ltd, RMIT University, Bundoora, VIC, Australia
| | | | | | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
3
|
McDonald JB, Wade B, Andrews DM, Van TTH, Moore RJ. Development of tools for the genetic manipulation of Campylobacter and their application to the N-glycosylation system of Campylobacter hepaticus, an emerging pathogen of poultry. mBio 2024; 15:e0110124. [PMID: 39072641 PMCID: PMC11389370 DOI: 10.1128/mbio.01101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Various species of campylobacters cause significant disease problems in both humans and animals. The continuing development of tools and methods for genetic and molecular manipulation of campylobacters enables the detailed study of bacterial virulence and disease pathogenesis. Campylobacter hepaticus is an emerging pathogen that causes spotty liver disease (SLD) in poultry. SLD has a significant economic and animal welfare impact as the disease results in elevated mortalities and significant decreases in egg production. Although potential virulence genes of C. hepaticus have been identified, they have not been further studied and characterized, as appropriate genetic tools and methods to transform and perform mutagenesis studies in C. hepaticus have not been available. In this study, the genetic manipulation of C. hepaticus is reported, with the development of novel plasmid vectors, methods for transformation, site-specific mutagenesis, and mutant complementation. These tools were used to delete the pglB gene, an oligosaccharyltransferase, a central enzyme of the N-glycosylation pathway, by allelic exchange. In the mutant strain, N-glycosylation was completely abolished. The tools and methods developed in this study represent innovative approaches that can be applied to further explore important virulence factors of C. hepaticus and other closely related Campylobacter species. IMPORTANCE Spotty liver disease (SLD) of layer chickens, caused by infection with Campylobacter hepaticus, is a significant economic and animal welfare burden on an important food production industry. Currently, SLD is controlled using antibiotics; however, alternative intervention methods are needed due to increased concerns associated with environmental contamination with antibiotics, and the development of antimicrobial resistance in many bacterial pathogens of humans and animals. This study has developed methods that have enabled the genetic manipulation of C. hepaticus. To validate the methods, the pglB gene was inactivated by allelic exchange to produce a C. hepaticus strain that could no longer N-glycosylate proteins. Subsequently, the mutation was complemented by reintroduction of the gene in trans, on a plasmid vector, to demonstrate that the phenotypic changes noted were caused by the mutation of the targeted gene. The tools developed enable ongoing studies to understand other virulence mechanisms of this important emerging pathogen.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Ben Wade
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| |
Collapse
|
4
|
Myles M, Barnawi H, Mahmoudpour M, Shlimon S, Chang A, Zimmermann D, Choi C, Zebian N, Creuzenet C. Effect of the polysaccharide capsule and its heptose on the resistance of Campylobacter jejuni to innate immune defenses. Microbiologyopen 2024; 13:e1400. [PMID: 38375546 PMCID: PMC10877309 DOI: 10.1002/mbo3.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Campylobacter jejuni is a commensal in many animals but causes diarrhea in humans. Its polysaccharide capsule contributes to host colonization and virulence in a strain- and model-specific manner. We investigated if the capsule and its heptose are important for interactions of strain NCTC 11168 with various hosts and their innate immune defenses. We determined that they support bacterial survival in Drosophila melanogaster and enhance virulence in Galleria mellonella. We showed that the capsule had limited antiphagocytic activity in human and chicken macrophages, decreased adherence to chicken macrophages, and decreased intracellular survival in both macrophages. In contrast, the heptose increased uptake by chicken macrophages and supported adherence to human macrophages and survival within them. While the capsule triggered nitric oxide production in chicken macrophages, the heptose mitigated this and protected against nitrosative assault. Finally, the C. jejuni strain NCTC 11168 elicited strong cytokine production in both macrophages but quenched ROS production independently from capsule and heptose, and while the capsule and heptose did not protect against oxidative assault, they favored growth in biofilms under oxidative stress. This study shows that the wild-type capsule with its heptose is optimized to resist innate defenses in strain NCTC 11168 often via antagonistic effects of the capsule and its heptose.
Collapse
Affiliation(s)
- Matthew Myles
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Heba Barnawi
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Mahmoud Mahmoudpour
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Sargon Shlimon
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Adrienne Chang
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Daniel Zimmermann
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Chiwon Choi
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Najwa Zebian
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Carole Creuzenet
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
5
|
Dale AL, Man L, Cordwell SJ. Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding. J Proteome Res 2023; 22:3519-3533. [PMID: 37830485 DOI: 10.1021/acs.jproteome.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.
Collapse
Affiliation(s)
- Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
6
|
Pinho SS, Alves I, Gaifem J, Rabinovich GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol 2023; 20:1101-1113. [PMID: 37582971 PMCID: PMC10541879 DOI: 10.1038/s41423-023-01074-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
The immune system is coordinated by an intricate network of stimulatory and inhibitory circuits that regulate host responses against endogenous and exogenous insults. Disruption of these safeguard and homeostatic mechanisms can lead to unpredictable inflammatory and autoimmune responses, whereas deficiency of immune stimulatory pathways may orchestrate immunosuppressive programs that contribute to perpetuate chronic infections, but also influence cancer development and progression. Glycans have emerged as essential components of homeostatic circuits, acting as fine-tuners of immunological responses and potential molecular targets for manipulation of immune tolerance and activation in a wide range of pathologic settings. Cell surface glycans, present in cells, tissues and the extracellular matrix, have been proposed to serve as "self-associated molecular patterns" that store structurally relevant biological data. The responsibility of deciphering this information relies on different families of glycan-binding proteins (including galectins, siglecs and C-type lectins) which, upon recognition of specific carbohydrate structures, can recalibrate the magnitude, nature and fate of immune responses. This process is tightly regulated by the diversity of glycan structures and the establishment of multivalent interactions on cell surface receptors and the extracellular matrix. Here we review the spatiotemporal regulation of selected glycan-modifying processes including mannosylation, complex N-glycan branching, core 2 O-glycan elongation, LacNAc extension, as well as terminal sialylation and fucosylation. Moreover, we illustrate examples that highlight the contribution of these processes to the control of immune responses and their integration with canonical tolerogenic pathways. Finally, we discuss the power of glycans and glycan-binding proteins as a source of immunomodulatory signals that could be leveraged for the treatment of autoimmune inflammation and chronic infection.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Reid A, Erickson KM, Hazel JM, Lukose V, Troutman JM. Chemoenzymatic Preparation of a Campylobacter jejuni Lipid-Linked Heptasaccharide on an Azide-Linked Polyisoprenoid. ACS OMEGA 2023; 8:15790-15798. [PMID: 37151508 PMCID: PMC10157688 DOI: 10.1021/acsomega.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
Complex poly- and oligosaccharides on the surface of bacteria provide a unique fingerprint to different strains of pathogenic and symbiotic microbes that could be exploited for therapeutics or sensors selective for specific glycans. To discover reagents that can selectively interact with specific bacterial glycans, a system for both the chemoenzymatic preparation and immobilization of these materials would be ideal. Bacterial glycans are typically synthesized in nature on the C55 polyisoprenoid bactoprenyl (or undecaprenyl) phosphate. However, this long-chain isoprenoid can be difficult to work with in vitro. Here, we describe the addition of a chemically functional benzylazide tag to polyisoprenoids. We have found that both the organic-soluble and water-soluble benzylazide isoprenoid can serve as a substrate for the well-characterized system responsible for Campylobacter jejuni N-linked heptasaccharide assembly. Using the organic-soluble analogue, we demonstrate the use of an N-acetyl-glucosamine epimerase that can be used to lower the cost of glycan assembly, and using the water-soluble analogue, we demonstrate the immobilization of the C. jejuni heptasaccharide on magnetic beads. These conjugated beads are then shown to interact with soybean agglutinin, a lectin known to interact with N-acetyl-galactosamine in the C. jejuni heptasaccharide. The methods provided could be used for a wide variety of applications including the discovery of new glycan-interacting partners.
Collapse
Affiliation(s)
- Amanda
J. Reid
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Katelyn M. Erickson
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Joseph M. Hazel
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
- Department
of Chemistry, The Ohio State University, 281 W Lane Avenue, Columbus, Ohio 43210, United States
| | - Vinita Lukose
- Departments
of Chemistry and Biology, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jerry M. Troutman
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| |
Collapse
|
8
|
Gupta A, Sahu N, Singh VK, Sinha RP. Evolutionary aspects of mutation in functional motif and post-translational modifications in SARS-CoV-2 3CLpro (Mpro): an in-silico study. JOURNAL OF PROTEINS AND PROTEOMICS 2023; 14:1-11. [PMID: 37361001 PMCID: PMC10099016 DOI: 10.1007/s42485-023-00105-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 06/28/2023]
Abstract
SARS CoV-2 is the virus that caused the COVID-19 pandemic. The main protease is one of the most prominent pharmacological targets for developing anti-COVID-19 therapeutic drugs (Mpro); SARS-CoV-2 replication is dependent on this component. SARS CoV-2's Mpro/cysteine protease is quite identical to SARS CoV-1's Mpro/cysteine protease. However, there is limited information on its structural and conformational properties. The present study aims to perform a complete in silico evaluation of Mpro protein's physicochemical properties. The motif prediction, post-translational modifications, effect of point mutation, and phylogenetic links were studied with other homologs to understand the molecular and evolutionary mechanisms of these proteins. The Mpro protein sequence was obtained in FASTA format from the RCSB Protein Data Bank. The structure of this protein was further characterized and analyzed using standard bioinformatics methods. According to Mpro's in-silico characterization, the protein is a basic, non-polar, and thermally stable globular protein. The outcomes of the phylogenetic and synteny study showed that the protein's functional domain amino acid sequence is substantially conserved. Furthermore, it has undergone many changes at the motif level over time from porcine epidemic diarrhoea virus to SARS-CoV 2, possibly to achieve various functions. Several post-translational modifications (PTMs) were also observed, and the possibilities of changes in Mpro protein exhibit additional orders of peptidase function regulation. During heatmap development, the effect of a point mutation on the Mpro protein was seen. This protein's structural characterization will aid in a better understanding of its function and mechanism of action. Supplementary Information The online version contains supplementary material available at 10.1007/s42485-023-00105-9.
Collapse
Affiliation(s)
- Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Niharika Sahu
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
- University Center for Research and Development (UCRD), Chandigarh University, Chandigarh, India
| |
Collapse
|
9
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
10
|
McDonald JB, Scott NE, Underwood GJ, Andrews DM, Van TTH, Moore RJ. Characterisation of N-linked protein glycosylation in the bacterial pathogen Campylobacter hepaticus. Sci Rep 2023; 13:227. [PMID: 36604449 PMCID: PMC9816155 DOI: 10.1038/s41598-022-26532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Campylobacter hepaticus is an important pathogen which causes Spotty Liver Disease (SLD) in layer chickens. SLD results in an increase in mortality and a significant decrease in egg production and therefore is an important economic concern of the global poultry industry. The human pathogen Campylobacter jejuni encodes an N-linked glycosylation system that plays fundamental roles in host colonization and pathogenicity. While N-linked glycosylation has been extensively studied in C. jejuni and is now known to occur in a range of Campylobacter species, little is known about C. hepaticus glycosylation. In this study glycoproteomic analysis was used to confirm the functionality of the C. hepaticus N-glycosylation system. It was shown that C. hepaticus HV10T modifies > 35 proteins with an N-linked heptasaccharide glycan. C. hepaticus shares highly conserved glycoproteins with C. jejuni that are involved in host colonisation and also possesses unique glycoproteins which may contribute to its ability to survive in challenging host environments. C. hepaticus N-glycosylation may function as an important virulence factor, providing an opportunity to investigate and develop a better understanding the system's role in poultry infection.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Greg J Underwood
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia.
| |
Collapse
|
11
|
Conjugation Mechanism for Pneumococcal Glycoconjugate Vaccines: Classic and Emerging Methods. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120774. [PMID: 36550980 PMCID: PMC9774679 DOI: 10.3390/bioengineering9120774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Licensed glycoconjugate vaccines are generally prepared using native or sized polysaccharides coupled to a carrier protein through random linkages along the polysaccharide chain. These polysaccharides must be chemically modified before covalent linking to a carrier protein in order to obtain a more defined polysaccharide structure that leads to a more rational design and safer vaccines. There are classic and new methods for site-selective glycopolysaccharide conjugation, either chemical or enzymatic modification of the polysaccharide length or of specific amino acid residues of the protein carrier. Here, we discuss the state of the art and the advancement of conjugation of S. pneumoniae glycoconjugate vaccines based on pneumococcal capsular polysaccharides to improve existing vaccines.
Collapse
|
12
|
Kwack KH, Jang EY, Yang SB, Lee JH, Moon JH. Genomic and phenotypic comparison of Prevotella intermedia strains possessing different virulence in vivo. Virulence 2022; 13:1133-1145. [PMID: 35791444 PMCID: PMC9262359 DOI: 10.1080/21505594.2022.2095718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Prevotella intermedia readily colonizes healthy dental biofilm and is associated with periodontal diseases. The viscous exopolysaccharide (EPS)-producing capability is known as a major virulence factor of P. intermedia 17 (Pi17). However, the inter-strain difference in P. intermedia regarding virulence-associated phenotype is not well studied. We compared in vivo virulence and whole genome sequences using five wild-type strains: ATCC 49046 (Pi49046), ATCC 15032 (Pi15032), ATCC 15033 (Pi15033), ATCC 25611 (Pi25611), and Pi17. Non-EPS producing Pi25611 was the least virulent in insect and mammalian models. Unexpectedly, Pi49046 did not produce viscous EPS but was the most virulent, followed by Pi17. Genomes of the five strains were quite similar but revealed subtle differences such as copy number variations and single nucleotide polymorphisms. Variations between strains were found in genes encoding glycosyltransferases and genes involved in the acquisition of carbohydrates and iron/haem. Based on these genetic variations, further analyses were performed. Phylogenetic and structural analyses discovered phosphoglycosyltransferases of Pi49046 and Pi17 have evolved to contain additional loops that may confer substrate specificity. Pi17, Pi15032, and Pi15033 displayed increased growth by various carbohydrates. Meanwhile, Pi49046 exhibited the highest activities for haemolysis and haem accumulation, as well as co-aggregation with Porphyromonas gingivalis harbouring fimA type II, which is more tied to periodontitis than other fimA types. Collectively, subtle genetic differences related to glycosylation and acquisition of carbohydrates and iron/haem may contribute to the diversity of virulence and phenotypic traits among P. intermedia strains. These variations may also reflect versatile strategies for within-host adaptation of P. intermedia.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- a Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,b Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Young Jang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seok Bin Yang
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Teng KW, Hsieh KS, Hung JS, Wang CJ, Liao EC, Chen PC, Lin YH, Wu DC, Lin CH, Wang WC, Chan HL, Huang SK, Kao MC. Helicobacter pylori employs a general protein glycosylation system for the modification of outer membrane adhesins. Gut Microbes 2022; 14:2130650. [PMID: 36206406 PMCID: PMC9553153 DOI: 10.1080/19490976.2022.2130650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.
Collapse
Affiliation(s)
- Kai-Wen Teng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Siang Hsieh
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ji-Shiuan Hung
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Jen Wang
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Chun Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Hsuan Lin
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,CONTACT Mou-Chieh Kao Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
14
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
15
|
Pabst M, Grouzdev DS, Lawson CE, Kleikamp HBC, de Ram C, Louwen R, Lin YM, Lücker S, van Loosdrecht MCM, Laureni M. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. THE ISME JOURNAL 2022; 16:346-357. [PMID: 34341504 PMCID: PMC8776859 DOI: 10.1038/s41396-021-01073-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism-the anaerobic oxidation of ammonium-which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.
Collapse
Affiliation(s)
- Martin Pabst
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | | | - Christopher E. Lawson
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA
| | - Hugo B. C. Kleikamp
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Carol de Ram
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Rogier Louwen
- grid.5645.2000000040459992XDepartment of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yue Mei Lin
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Mark C. M. van Loosdrecht
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Michele Laureni
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| |
Collapse
|
16
|
Bunte MJM, Schots A, Kammenga JE, Wilbers RHP. Helminth Glycans at the Host-Parasite Interface and Their Potential for Developing Novel Therapeutics. Front Mol Biosci 2022; 8:807821. [PMID: 35083280 PMCID: PMC8784694 DOI: 10.3389/fmolb.2021.807821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Helminths are parasitic worms that have successfully co-evolved with their host immune system to sustain long-term infections. Their successful parasitism is mainly facilitated by modulation of the host immune system via the release of excretory-secretory (ES) products covered with glycan motifs such as Lewis X, fucosylated LDN, phosphorylcholine and tyvelose. Evidence is accumulating that these glycans play key roles in different aspects of helminth infection including interactions with immune cells for recognition and evasion of host defences. Moreover, antigenic properties of glycans can be exploited for improving the efficacy of anti-helminthic vaccines. Here, we illustrate that glycans have the potential to open new avenues for the development of novel biopharmaceuticals and effective vaccines based on helminth glycoproteins.
Collapse
|
17
|
Cain JA, Dale AL, Cordwell SJ. Exploiting pglB Oligosaccharyltransferase-Positive and -Negative Campylobacter jejuni and a Multiprotease Digestion Strategy to Identify Novel Sites Modified by N-Linked Protein Glycosylation. J Proteome Res 2021; 20:4995-5009. [PMID: 34677046 DOI: 10.1021/acs.jproteome.1c00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a bacterial pathogen encoding a unique N-linked glycosylation (pgl) system that mediates attachment of a heptasaccharide to N-sequon-containing membrane proteins by the PglB oligosaccharyltransferase (OST). Many targets of PglB are known, yet only a fraction of sequons are experimentally confirmed, and site occupancy remains elusive. We exploited pglB-positive (wild-type; WT) and -negative (ΔpglB) proteomes to identify potential glycosites. The nonglycosylated forms of known glycopeptides were typically increased in protein normalized abundance in ΔpglB relative to WT and restored by pglB reintroduction (ΔpglB::pglB). Sequon-containing peptide abundances were thus consistent with significant site occupancy in the presence of the OST. Peptides with novel sequons were either unaltered (likely not glycosylated) or showed abundance consistent with known glycopeptides. Topology analysis revealed that unaltered sequons often displayed cytoplasmic localization, despite originating from membrane proteins. Novel glycosites were confirmed using parallel multiprotease digestion, LC-MS/MS, and FAIMS-MS to define the glycoproteomes of WT and ΔpglB::pglB C. jejuni. We identified 142 glycosites, of which 32 were novel, and 83% of sites predicted by proteomics were validated. There are now 166 experimentally verified C. jejuni glycosites and evidence for occupancy or nonoccupancy of 31 additional sites. This study serves as a model for the use of OST-negative cells and proteomics for highlighting novel glycosites and determining occupancy in a range of organisms.
Collapse
Affiliation(s)
- Joel A Cain
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Ashleigh L Dale
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia.,Sydney Mass Spectrometry, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
18
|
Morgan BR, Massi F. The Role of Substrate Mediated Allostery in the Catalytic Competency of the Bacterial Oligosaccharyltransferase PglB. Front Mol Biosci 2021; 8:740904. [PMID: 34604309 PMCID: PMC8479172 DOI: 10.3389/fmolb.2021.740904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
The oligosaccharyltransferase of Campylobacter lari (PglB) catalyzes the glycosylation of asparagine in the consensus sequence N-X-S/T, where X is any residue except proline. Molecular dynamics simulations of PglB bound to two different substrates were used to characterize the differences in the structure and dynamics of the substrate-enzyme complexes that can explain the higher catalytic efficiency observed for substrates containing threonine at the +2 position rather than serine. We observed that a threonine-containing substrate is more tightly bound than a serine-containing substrate. Because serine lacks a methyl group relative to threonine, the serine-containing peptide cannot stably form simultaneous van der Waals interactions with T316 and I572 as the threonine-containing substrate can. As a result, the peptide-PglB interaction is destabilized and the allosteric communication between the periplasmic domain and external loop EL5 is disrupted. These changes ultimately lead to the reorientation of the periplasmic domain relative to the transmembrane domain such that the two domains are further apart compared to PglB bound to the threonine-containing peptide. The crystal structure of PglB bound to the peptide and a lipid-linked oligosaccharide analog shows a pronounced closing of the periplasmic domain over the transmembrane domain in comparison to structures of PglB with peptide only, indicating that a closed conformation of the domains is needed for catalysis. The results of our studies suggest that lower enzymatic activity observed for serine versus threonine results from a combination of less stable binding and structural changes in PglB that influence the ability to form a catalytically competent state. This study illustrates a mechanism for substrate specificity via modulation of dynamic allosteric pathways.
Collapse
Affiliation(s)
- Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
19
|
The structure of an archaeal oligosaccharyltransferase provides insight into the strict exclusion of proline from the N-glycosylation sequon. Commun Biol 2021; 4:941. [PMID: 34354228 PMCID: PMC8342417 DOI: 10.1038/s42003-021-02473-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oligosaccharyltransferase (OST) catalyzes oligosaccharide transfer to the Asn residue in the N-glycosylation sequon, Asn-X-Ser/Thr, where Pro is strictly excluded at position X. Considering the unique structural properties of proline, this exclusion may not be surprising, but the structural basis for the rejection of Pro residues should be explained explicitly. Here we determined the crystal structure of an archaeal OST in a complex with a sequon-containing peptide and dolichol-phosphate to a 2.7 Å resolution. The sequon part in the peptide forms two inter-chain hydrogen bonds with a conserved amino acid motif, TIXE. We confirmed the essential role of the TIXE motif and the adjacent regions by extensive alanine-scanning of the external loop 5. A Ramachandran plot revealed that the ring structure of the Pro side chain is incompatible with the ϕ backbone dihedral angle around -150° in the rigid sequon-TIXE structure. The present structure clearly provides the structural basis for the exclusion of Pro residues from the N-glycosylation sequon.
Collapse
|
20
|
Cain JA, Dale AL, Sumer-Bayraktar Z, Solis N, Cordwell SJ. Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol Omics 2021; 16:287-304. [PMID: 32347268 DOI: 10.1039/d0mo00032a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis in humans that is primarily associated with the consumption of inadequately prepared poultry products, since the organism is generally thought to be asymptomatic in avian species. Unlike many other microorganisms, C. jejuni is capable of performing extensive post-translational modification (PTM) of proteins by N- and O-linked glycosylation, both of which are required for optimal chicken colonization and human virulence. The biosynthesis and attachment of N-glycans to C. jejuni proteins is encoded by the pgl (protein glycosylation) locus, with the PglB oligosaccharyltransferase (OST) enabling en bloc transfer of a heptasaccharide N-glycan from a lipid carrier in the inner membrane to proteins exposed within the periplasm. Seventy-eight C. jejuni glycoproteins (represented by 134 sites of experimentally verified N-glycosylation) have now been identified, and include inner and outer membrane proteins, periplasmic proteins and lipoproteins, which are generally of poorly defined or unknown function. Despite our extensive knowledge of the targets of this apparently widespread process, we still do not fully understand the role N-glycosylation plays biologically, although several phenotypes, including wild-type stress resistance, biofilm formation, motility and chemotaxis have been related to a functional pgl system. Recent work has described enzymatic processes (nitrate reductase NapAB) and antibiotic efflux (CmeABC) as major targets requiring N-glycan attachment for optimal function, and experimental evidence also points to roles in cell binding via glycan-glycan interactions, protein complex formation and protein stability by conferring protection against host and bacterial proteolytic activity. Here we examine the biochemistry of the N-linked glycosylation system, define its currently known protein targets and discuss evidence for the structural and functional roles of this PTM in individual proteins and globally in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia. and Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia and Sydney Mass Spectrometry, The University of Sydney, 2006, Australia
| |
Collapse
|
21
|
Disentangling the Impact of Sulfur Limitation on Exopolysaccharide and Functionality of Alr2882 by In Silico Approaches in Anabaena sp. PCC 7120. Appl Biochem Biotechnol 2021; 193:1447-1468. [PMID: 33484449 DOI: 10.1007/s12010-021-03501-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023]
Abstract
The wide applications, uniqueness, and high quality of cyanobacterial exopolysaccharides (EPSs) have attracted many biotechnologists. Despite it, the inducers and molecular determinants of EPS biosynthesis in cyanobacteria are lesser known. Although, studies revealed that environmental cues especially C/N ratio as the prime modulator, the factors like light, temperature, moisture, and nutrient availability, etc. have been overlooked. Due to this, the possibilities to modify cyanobacterial system for achieving higher quantity of EPS either by modifying growth medium or metabolic engineering are restricted to few optimisations. Therefore, the present work describes the impact of sulfate limitations on the EPS production and compositions in the cyanobacterium Anabaena sp. PCC 7120. Increased EPS production with enhanced expression of alr2882 was observed in lower sulfate supplementations; however, FTIR analysis depicted an altered composition of supramolecule. Furthermore, in silico analysis of Alr2882 depicted the presence of ExoD domain and three transmembrane regions, thereby indicating its membrane localisation and role in the EPS production. Additionally, the phylogeny and multiple sequence alignment showed vertical inheritance of exoD and conservation among cyanobacteria. The meta-threading template-based modelling and ab initio full atomic relaxation by LOMET and ModRefiner servers, respectively, also exhibited helical topology of Alr2882, with nine α-helices arranged antiparallel to the preceding one. Moreover, post-translational modifications predicted in Alr2882 indicated high order of molecular regulation underlining EPS production in Anabaena sp. PCC 7120. This study provides a foundation for understanding the EPS biosynthesis mechanism under sulfur limitation and the possible role of ExoD in cyanobacteria.
Collapse
|
22
|
Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance. mBio 2020; 11:mBio.02604-20. [PMID: 33203757 PMCID: PMC7683400 DOI: 10.1128/mbio.02604-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The substantial rise in multidrug-resistant bacterial infections is a current global imperative. Cumulative efforts to characterize antimicrobial resistance in bacteria has demonstrated the spread of six families of multidrug efflux pumps, of which resistance-nodulation-cell division (RND) is the major mechanism of multidrug resistance in Gram-negative bacteria. RND is composed of a tripartite protein assembly and confers resistance to a range of unrelated compounds. In the major enteric pathogen Campylobacter jejuni, the three protein components of RND are posttranslationally modified with N-linked glycans. The direct role of N-linked glycans in C. jejuni and other bacteria has long been elusive. Here, we present the first detailed account of the role of N-linked glycans and the link between N-glycosylation and antimicrobial resistance in C. jejuni We demonstrate the multifunctional role of N-linked glycans in enhancing protein thermostability, stabilizing protein complexes and the promotion of protein-protein interaction, thus mediating antimicrobial resistance via enhancing multidrug efflux pump activity. This affirms that glycosylation is critical for multidrug efflux pump assembly. We present a generalized strategy that could be used to investigate general glycosylation system in Campylobacter genus and a potential target to develop antimicrobials against multidrug-resistant pathogens.IMPORTANCE Nearly all bacterial species have at least a single glycosylation system, but the direct effects of these posttranslational protein modifications are unresolved. Glycoproteome-wide analysis of several bacterial pathogens has revealed general glycan modifications of virulence factors and protein assemblies. Using Campylobacter jejuni as a model organism, we have studied the role of general N-linked glycans in the multidrug efflux pump commonly found in Gram-negative bacteria. We show, for the first time, the direct link between N-linked glycans and multidrug efflux pump activity. At the protein level, we demonstrate that N-linked glycans play a role in enhancing protein thermostability and mediating the assembly of the multidrug efflux pump to promote antimicrobial resistance, highlighting the importance of this posttranslational modification in bacterial physiology. Similar roles for glycans are expected to be found in other Gram-negative pathogens that possess general protein glycosylation systems.
Collapse
|
23
|
Dubb RK, Nothaft H, Beadle B, Richards MR, Szymanski CM. N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. Glycobiology 2020; 30:105-119. [PMID: 31588498 DOI: 10.1093/glycob/cwz082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a prevalent gastrointestinal pathogen associated with increasing rates of antimicrobial resistance development. It was also the first bacterium demonstrated to possess a general N-linked protein glycosylation pathway capable of modifying > 80 different proteins, including the primary Campylobacter multidrug efflux pump, CmeABC. Here we demonstrate that N-glycosylation is necessary for the function of the efflux pump and may, in part, explain the evolutionary pressure to maintain this protein modification system. Mutants of cmeA in two common wildtype (WT) strains are highly susceptible to erythromycin (EM), ciprofloxacin and bile salts when compared to the isogenic parental strains. Complementation of the cmeA mutants with the native cmeA allele restores the WT phenotype, whereas expression of a cmeA allele with point mutations in both N-glycosylation sites is comparable to the cmeA mutants. Moreover, loss of CmeA glycosylation leads to reduced chicken colonization levels similar to the cmeA knock-out strain, while complementation fully restores colonization. Reconstitution of C. jejuni CmeABC into Escherichia coli together with the C. jejuni N-glycosylation pathway increases the EM minimum inhibitory concentration and decreases ethidium bromide accumulation when compared to cells lacking the pathway. Molecular dynamics simulations reveal that the protein structures of the glycosylated and non-glycosylated CmeA models do not vary from one another, and in vitro studies show no change in CmeA multimerization or peptidoglycan association. Therefore, we conclude that N-glycosylation has a broader influence on CmeABC function most likely playing a role in complex stability.
Collapse
Affiliation(s)
- Rajinder K Dubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Bernadette Beadle
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michele R Richards
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
24
|
Zamora CY, Ward EM, Kester JC, Chen WLK, Velazquez JG, Griffith LG, Imperiali B. Application of a gut-immune co-culture system for the study of N-glycan-dependent host-pathogen interactions of Campylobacter jejuni. Glycobiology 2020; 30:374-381. [PMID: 31965157 PMCID: PMC7234929 DOI: 10.1093/glycob/cwz105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
An in vitro gut-immune co-culture model with apical and basal accessibility, designed to more closely resemble a human intestinal microenvironment, was employed to study the role of the N-linked protein glycosylation pathway in Campylobacter jejuni pathogenicity. The gut-immune co-culture (GIC) was developed to model important aspects of the human small intestine by the inclusion of mucin-producing goblet cells, human enterocytes and dendritic cells, bringing together a mucus-containing epithelial monolayer with elements of the innate immune system. The utility of the system was demonstrated by characterizing host-pathogen interactions facilitated by N-linked glycosylation, such as host epithelial barrier functions, bacterial invasion and immunogenicity. Changes in human intestinal barrier functions in the presence of 11168 C. jejuni (wildtype) strains were quantified using GICs. The glycosylation-impaired strain 11168 ΔpglE was 100-fold less capable of adhering to and invading this intestinal model in cell infectivity assays. Quantification of inflammatory signaling revealed that 11168ΔpglE differentially modulated inflammatory responses in different intestinal microenvironments, suppressive in some but activating in others. Virulence-associated outer membrane vesicles produced by wildtype and 11168ΔpglE C. jejuni were shown to have differential composition and function, with both leading to immune system activation when provided to the gut-immune co-culture model. This analysis of aspects of C. jejuni infectivity in the presence and absence of its N-linked glycome is enabled by application of the gut-immune model, and we anticipate that this system will be applicable to further studies of C. jejuni and other enteropathogens of interest.
Collapse
Affiliation(s)
- Cristina Y Zamora
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Elizabeth M Ward
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
| | - Jemila C Kester
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
| | - Jason G Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 33 Massachusetts Ave, Cambridge, 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020; 8:microorganisms8040531. [PMID: 32272707 PMCID: PMC7232156 DOI: 10.3390/microorganisms8040531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.
Collapse
|
26
|
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Microorganisms 2020; 8:microorganisms8030357. [PMID: 32131463 PMCID: PMC7142665 DOI: 10.3390/microorganisms8030357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023] Open
Abstract
Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.
Collapse
|
27
|
Harding CM, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology 2020; 29:519-529. [PMID: 30989179 DOI: 10.1093/glycob/cwz031] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The first, general glycosylation pathway in bacteria, the N-linked glycosylation system of Campylobacter jejuni, was discovered two decades ago. Since then, many diverse prokaryotic glycosylation systems have been characterized, including O-linked glycosylation systems that have no homologous counterparts in eukaryotic organisms. Shortly after these discoveries, glycosylation pathways were recombinantly introduced into E. coli creating the field of bacterial glycoengineering. Bacterial glycoengineering is an emerging biotechnological tool that harnesses prokaryotic glycosylation systems for the generation of recombinantly glycosylated proteins using E. coli as a host. Over the last decade, as our understanding of prokaryotic glycosylation systems has advanced, so too has the glycoengineering toolbox. Currently, glycoengineering utilizes two broad approaches to recombinantly glycosylate proteins, both of which can generate N- or O-linkages: oligosaccharyltransferase (OTase)-dependent and OTase-independent. This review discusses the applications of these bacterial glycoengineering techniques as they relate to the development of glycoconjugate vaccines, therapeutic proteins, and diagnostics.
Collapse
Affiliation(s)
| | - Mario F Feldman
- VaxNewMo, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Nothaft H, Szymanski CM. New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox. Curr Opin Chem Biol 2019; 53:16-24. [DOI: 10.1016/j.cbpa.2019.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
|
29
|
Abstract
Many important interactions between bacterial pathogens and their hosts are highly specific binding events that involve host or pathogen carbohydrate structures (glycans). Glycan interactions can mediate adhesion, invasion and immune evasion and can act as receptors for toxins. Several bacterial pathogens can also enzymatically alter host glycans to reveal binding targets, degrade the host cell glycans or alter the function of host glycoproteins. In recent years, high-throughput screening technologies, such as lectin, glycan and mucin microarrays, have transformed the field by identifying new bacterial-host glycointeractions, which are crucial for colonization, persistence and disease. In this Review, we discuss interactions involving both host and bacterial glycans that have a role in bacterial pathogenesis. We also highlight recent technological advances that have illuminated the glycoscience of microbial pathogenesis.
Collapse
|
30
|
Burnham PM, Hendrixson DR. Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 2019; 16:551-565. [PMID: 29892020 DOI: 10.1038/s41579-018-0037-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in many areas of the world. The high incidence of sporadic cases of disease in humans is largely due to its prevalence as a zoonotic agent in animals, both in agriculture and in the wild. Compared with many other enteric bacterial pathogens, C. jejuni has strict growth and nutritional requirements and lacks many virulence and colonization determinants that are typically used by bacterial pathogens to infect hosts. Instead, C. jejuni has a different collection of factors and pathways not typically associated together in enteric pathogens to establish commensalism in many animal hosts and to promote diarrhoeal disease in the human population. In this Review, we discuss the cellular architecture and structure of C. jejuni, intraspecies genotypic variation, the multiple roles of the flagellum, specific nutritional and environmental growth requirements and how these factors contribute to in vivo growth in human and avian hosts, persistent colonization and pathogenesis of diarrhoeal disease.
Collapse
Affiliation(s)
- Peter M Burnham
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Immunogenicity and protective efficacy of mucosal delivery of recombinant hcp of Campylobacter jejuni Type VI secretion system (T6SS) in chickens. Mol Immunol 2019; 111:182-197. [PMID: 31078054 DOI: 10.1016/j.molimm.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
The type VI secretion system (T6SS) has recently emerged as a new pattern of protein secretions in Campylobacter jejuni (C. jejuni). Within the T6SS cluster, hemolysin co-regulated protein (hcp) is considered as a hallmark of functional T6SS and holds key role in bacterial virulence. As poultry is the primary reservoir of C. jejuni and the major sources for human infection, we evaluated the capacity of recombinant hcp (rhcp) immunization in blocking C. jejuni colonization in chickens with an aim to control bacterial transmission to humans via poultry food chain. Considering the mucosal route is the primary portal for C. jejuni entry and gut mucosa offers the apposite site for C. jejuni adherence, we investigated the immune-protective potential of intra-gastric administration of rhcp using chitosan-based nanoparticles. To achieve this goal, full length coding sequence of hcp gene from C. jejuni was cloned and expressed in E. coli. Purified rhcp was entrapped in chitosan-Sodium tripolyphosphate nanoparticles (CS-TPP NPs) and orally gavaged in chickens. Our results suggest that intra-gastric immunization of CS-TPP-rhcp induces consistent and steady increase in intestinal (sIgA) and systemic antibody (IgY) response against rhcp with significant reduction in cecal load of C. jejuni. The protection afforded by rhcp associated cellular responses with Th1 and Th17 profile in terms of increased expression of NFkB, IL-1β, IL-8, IL-6, IFN-γ and IL-17 A genes. Though systemic immunization of rhcp with IFA resulting in a robust systemic (IgY) and local (sIgA) antibody response, mucosal administration of rhcp loaded CS-TPP NPs was found to be superior in terms of bacterial clearance. Altogether, present study suggests that chitosan based intra-gastric delivery of rhcp have several advantages over the injectable composition and could be a promising vaccine approach to effectively control C. jejuni colonization in chickens.
Collapse
|
32
|
Abouelhadid S, North SJ, Hitchen P, Vohra P, Chintoan-Uta C, Stevens M, Dell A, Cuccui J, Wren BW. Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. mBio 2019; 10:e00297-19. [PMID: 31015322 PMCID: PMC6478998 DOI: 10.1128/mbio.00297-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen Campylobacter jejuni as a well-defined example. By using a quantitative proteomic strategy, we were able to monitor changes in the C. jejuni proteome when glycosylation is disrupted. We demonstrate that in C. jejuni, N-glycosylation is essential to maintain proteome stability and protein quality control. These findings guided us to investigate the role of N-glycosylation in modulating bacterial cellular activities. In glycosylation-deficient C. jejuni, the multidrug efflux pump and electron transport pathways were significantly impaired. We demonstrate that in vivo, fully glycosylation-deficient C. jejuni bacteria were unable to colonize its natural avian host. These results provide the first evidence of a link between proteome stability and complex functions via a bacterial general glycosylation system.IMPORTANCE Advances in genomics and mass spectrometry have revealed several types of glycosylation systems in bacteria. However, why bacterial proteins are modified remains poorly defined. Here, we investigated the role of general N-linked glycosylation in a major food poisoning bacterium, Campylobacter jejuni The aim of this study is to delineate the direct and indirect effects caused by disrupting this posttranslational modification. To achieve this, we employed a quantitative proteomic strategy to monitor alterations in the C. jejuni proteome. Our quantitative proteomic results linked general protein N-glycosylation to maintaining proteome stability. Functional analyses revealed novel roles for bacterial N-glycosylation in modulating multidrug efflux pump, enhancing nitrate reduction activity, and promoting host-microbe interaction. This work provides insights on the importance of general glycosylation in proteins in maintaining bacterial physiology, thus expanding our knowledge of the emergence of posttranslational modification in bacteria.
Collapse
Affiliation(s)
- Sherif Abouelhadid
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Simon J North
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul Hitchen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Prerna Vohra
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jon Cuccui
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W Wren
- Department of Pathogen Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
33
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
34
|
Mannion A, Shen Z, Fox JG. Comparative genomics analysis to differentiate metabolic and virulence gene potential in gastric versus enterohepatic Helicobacter species. BMC Genomics 2018; 19:830. [PMID: 30458713 PMCID: PMC6247508 DOI: 10.1186/s12864-018-5171-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background The genus Helicobacter are gram-negative, microaerobic, flagellated, mucus-inhabiting bacteria associated with gastrointestinal inflammation and classified as gastric or enterohepatic Helicobacter species (EHS) according to host species and colonization niche. While there are over 30 official species, little is known about the physiology and pathogenic mechanisms of EHS, which account for most in the genus, as well as what genetic factors differentiate gastric versus EHS, given they inhabit different hosts and colonization niches. The objective of this study was to perform a whole-genus comparative analysis of over 100 gastric versus EHS genomes in order to identify genetic determinants that distinguish these Helicobacter species and provide insights about their evolution/adaptation to different hosts, colonization niches, and mechanisms of virulence. Results Whole-genome phylogeny organized Helicobacter species according to their presumed gastric or EHS classification. Analysis of orthologs revealed substantial heterogeneity in physiological and virulence-related genes between gastric and EHS genomes. Metabolic reconstruction predicted that unlike gastric species, EHS appear asaccharolytic and dependent on amino/organic acids to fuel metabolism. Additionally, gastric species lack de novo biosynthetic pathways for several amino acids and purines found in EHS and instead rely on environmental uptake/salvage pathways. Comparison of virulence factor genes between gastric and EHS genomes identified overlapping yet distinct profiles and included canonical cytotoxins, outer membrane proteins, secretion systems, and survival factors. Conclusions The major differences in predicted metabolic function suggest gastric species and EHS may have evolved for survival in the nutrient-rich stomach versus the nutrient-devoid environments, respectively. Contrasting virulence factor gene profiles indicate gastric species and EHS may utilize different pathogenic mechanisms to chronically infect hosts and cause inflammation and tissue damage. The findings from this study provide new insights into the genetic differences underlying gastric versus EHS and support the need for future experimental studies to characterize these pathogens. Electronic supplementary material The online version of this article (10.1186/s12864-018-5171-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
35
|
Napiórkowska M, Boilevin J, Darbre T, Reymond JL, Locher KP. Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide. Sci Rep 2018; 8:16297. [PMID: 30389987 PMCID: PMC6215017 DOI: 10.1038/s41598-018-34534-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Oligosaccharyltransferase (OST) is a key enzyme of the N-glycosylation pathway, where it catalyzes the transfer of a glycan from a lipid-linked oligosaccharide (LLO) to an acceptor asparagine within the conserved sequon N-X-T/S. A previous structure of a ternary complex of bacterial single subunit OST, PglB, bound to a non-hydrolyzable LLO analog and a wild type acceptor peptide showed how both substrates bind and how an external loop (EL5) of the enzyme provided specific substrate-binding contacts. However, there was a relatively large separation of the substrates at the active site. Here we present the X-ray structure of PglB bound to a reactive LLO analog and an inhibitory peptide, revealing previously unobserved interactions in the active site. We found that the atoms forming the N-glycosidic bond (C-1 of the GlcNAc moiety of LLO and the –NH2 group of the peptide) are closer than in the previous structure, suggesting that we have captured a conformation closer to the transition state of the reaction. We find that the distance between the divalent metal ion and the glycosidic oxygen of LLO is now 4 Å, suggesting that the metal stabilizes the leaving group of the nucleophilic substitution reaction. Further, the carboxylate group of a conserved aspartate of PglB mediates an interaction network between the reducing-end sugar of the LLO, the asparagine side chain of the acceptor peptide, and a bound divalent metal ion. The interactions identified in this novel state are likely to be relevant in the catalytic mechanisms of all OSTs.
Collapse
Affiliation(s)
- Maja Napiórkowska
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Abstract
Background: Acute diarrheal disease caused by viral, bacterial and parasitic infections are a major global health problem with substantial mortality and morbidity in children under five years of age in lower and middle income countries. However, a number of these infections also impact large segments of populations in upper income countries, as well as individuals who travel overseas for work, business or pleasure. Campylobacter has been and continues to be a leading cause of disease burden globally across all income countries. Aims: The aim of this review is to describe recent understanding in burden of disease, consider the current landscape of Campylobacter vaccine development, and address the challenges that need to be overcome. Sources: Relevant data from the literature as well as clinical trials described in European and US registries were used to conduct this review. Content: Despite advances in population health, food security, improved sanitation, water quality and the reduction of poverty, Campylobacter infections continue to plague global populations. The emerging recognition of chronic health consequences attributed to this pathogen is changing the potential valuation of preventive interventions. Advancing development of new vaccines is a present opportunity and holds promise.
Collapse
Affiliation(s)
- Frédéric Poly
- a Enteric Diseases Department , Naval Medical Research Center , Silver Spring , MD , USA
| | - Alexander J Noll
- a Enteric Diseases Department , Naval Medical Research Center , Silver Spring , MD , USA
| | - Mark S Riddle
- b F. Edward Hébert School of Medicine , Uniformed Services University , Bethesda , MD , USA
| | - Chad K Porter
- a Enteric Diseases Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
37
|
Madec AGE, Schocker NS, Sanchini S, Myratgeldiyev G, Das D, Imperiali B. Facile Solid-Phase Synthesis and Assessment of Nucleoside Analogs as Inhibitors of Bacterial UDP-Sugar Processing Enzymes. ACS Chem Biol 2018; 13:2542-2550. [PMID: 30080379 DOI: 10.1021/acschembio.8b00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The privileged uptake of nucleosides into cells has generated interest in the development of nucleoside-analog libraries for mining new inhibitors. Of particular interest are applications in the discovery of substrate mimetic inhibitors for the growing number of identified glycan-processing enzymes in bacterial pathogens. However, the high polarity and the need for appropriate protecting group strategies for nucleosides challenges the development of synthetic approaches. Here, we report an accessible, user-friendly synthesis that branches from a common solid phase-immobilized uridinyl-amine intermediate, which can be used as a starting point for diversity-oriented synthesis. We demonstrate the generation of five series of uridinyl nucleoside analogs for investigating inhibitor structure-activity relationships. This library was screened for inhibition of representative enzymes from three functional families including a phosphoglycosyl transferase, a UDP-aminosugar acetyltransferase, and a glycosyltransferase. These candidates were taken from the Gram-negative bacteria Campylobacter concisus and Campylobacter jejuni and the Gram-positive bacterium Clostridium difficile, respectively. Inhibition studies show that specific compound series preferentially inhibit selected enzymes, with IC50 values ranging from 35 ± 7 μM to 174 ± 21 μM. Insights from the screen provide a strong foundation for further structural elaboration, to improve potency, which will be enabled by the same synthetic strategy. The solid-phase strategy was also used to synthesize pseudouridine analogs of lead compounds. Finally, the compounds were found to be nontoxic to mammalian cells, further supporting the opportunities for future development.
Collapse
Affiliation(s)
- Amaël G. E. Madec
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nathaniel S. Schocker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Silvano Sanchini
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gadam Myratgeldiyev
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Debasis Das
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Behera A, Kulkarni SS. Chemical Synthesis of Rare, Deoxy-Amino Sugars Containing Bacterial Glycoconjugates as Potential Vaccine Candidates. Molecules 2018; 23:molecules23081997. [PMID: 30103434 PMCID: PMC6222762 DOI: 10.3390/molecules23081997] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteria often contain rare deoxy amino sugars which are absent in the host cells. This structural difference can be harnessed for the development of vaccines. Over the last fifteen years, remarkable progress has been made toward the development of novel and efficient protocols for obtaining the rare sugar building blocks and their stereoselective assembly to construct conjugation ready bacterial glycans. In this review, we discuss the total synthesis of a variety of rare sugar containing bacterial glycoconjugates which are potential vaccine candidates.
Collapse
Affiliation(s)
- Archanamayee Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
39
|
Eichler J, Imperiali B. Biogenesis of Asparagine-Linked Glycoproteins Across Domains of Life-Similarities and Differences. ACS Chem Biol 2018; 13:833-837. [PMID: 29481041 DOI: 10.1021/acschembio.8b00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
40
|
Russell J, Kim SK, Duma J, Nothaft H, Himmel ME, Bomble YJ, Szymanski CM, Westpheling J. Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:259. [PMID: 30258493 PMCID: PMC6151902 DOI: 10.1186/s13068-018-1266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/19/2018] [Indexed: 05/21/2023]
Abstract
Protein glycosylation pathways have been identified in a variety of bacteria and are best understood in pathogens and commensals in which the glycosylation targets are cell surface proteins, such as S layers, pili, and flagella. In contrast, very little is known about the glycosylation of bacterial enzymes, especially those secreted by cellulolytic bacteria. Caldicellulosiruptor bescii secretes several unique synergistic multifunctional biomass-degrading enzymes, notably cellulase A which is largely responsible for this organism's ability to grow on lignocellulosic biomass without the conventional pretreatment. It was recently discovered that extracellular CelA is heavily glycosylated. In this work, we identified an O-glycosyltransferase in the C. bescii chromosome and targeted it for deletion. The resulting mutant was unable to grow on crystalline cellulose and showed no detectable protein glycosylation. Multifunctional biomass-degrading enzymes in this strain were rapidly degraded. With the genetic tools available in C. bescii, this system represents a unique opportunity to study the role of bacterial enzyme glycosylation as well an investigation of the pathway for protein glycosylation in a non-pathogen.
Collapse
Affiliation(s)
- Jordan Russell
- Microbiology Department, University of Georgia, Athens, GA USA
- Genetics Department, University of Georgia, Athens, GA USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Sun-Ki Kim
- Genetics Department, University of Georgia, Athens, GA USA
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546 Republic of Korea
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Justin Duma
- Microbiology Department, University of Georgia, Athens, GA USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| | - Christine M. Szymanski
- Microbiology Department, University of Georgia, Athens, GA USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Janet Westpheling
- Genetics Department, University of Georgia, Athens, GA USA
- The BioEnergy Science Center and The Center for Bioenergy Innovation U.S. Department of Energy Office of Science, Oak Ridge, Tennessee USA
| |
Collapse
|
41
|
Gao B, Vorwerk H, Huber C, Lara-Tejero M, Mohr J, Goodman AL, Eisenreich W, Galán JE, Hofreuter D. Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biol 2017; 15:e2001390. [PMID: 28542173 PMCID: PMC5438104 DOI: 10.1371/journal.pbio.2001390] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/24/2017] [Indexed: 01/07/2023] Open
Abstract
Campylobacter jejuni is one of the leading infectious causes of food-borne illness around the world. Its ability to persistently colonize the intestinal tract of a broad range of hosts, including food-producing animals, is central to its epidemiology since most infections are due to the consumption of contaminated food products. Using a highly saturated transposon insertion library combined with next-generation sequencing and a mouse model of infection, we have carried out a comprehensive genome-wide analysis of the fitness determinants for growth in vitro and in vivo of a highly pathogenic strain of C. jejuni. A comparison of the C. jejuni requirements to colonize the mouse intestine with those necessary to grow in different culture media in vitro, combined with isotopologue profiling and metabolic flow analysis, allowed us to identify its metabolic requirements to establish infection, including the ability to acquire certain nutrients, metabolize specific substrates, or maintain intracellular ion homeostasis. This comprehensive analysis has identified metabolic pathways that could provide the basis for the development of novel strategies to prevent C. jejuni colonization of food-producing animals or to treat human infections.
Collapse
Affiliation(s)
- Beile Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Garching, Germany
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Juliane Mohr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (JEG); (DH)
| | - Dirk Hofreuter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail: (JEG); (DH)
| |
Collapse
|
42
|
Eichler J, Koomey M. Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol 2017; 25:662-672. [PMID: 28341406 DOI: 10.1016/j.tim.2017.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/19/2017] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
Long-held to be a post-translational modification unique to Eukarya, it is now clear that both Bacteria and Archaea also perform protein glycosylation, namely the covalent attachment of mono- to polysaccharides to specific protein targets. At the same time, many of the roles assigned to this protein-processing event in eukaryotes, such as guiding protein folding/quality control, intracellular trafficking, dictating cellular recognition events and others, do not apply or are even irrelevant to prokaryotes. As such, protein glycosylation must serve novel functions in Bacteria and Archaea. Recent efforts have begun to elucidate some of these prokaryote-specific roles, which are addressed in this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Michael Koomey
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
43
|
De Schutter JW, Morrison JP, Morrison MJ, Ciulli A, Imperiali B. Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from Campylobacter jejuni. J Med Chem 2017; 60:2099-2118. [PMID: 28182413 DOI: 10.1021/acs.jmedchem.6b01869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The glycoproteins of selected microbial pathogens often include highly modified carbohydrates such as 2,4-diacetamidobacillosamine (diNAcBac). These glycoconjugates are involved in host-cell interactions and may be associated with the virulence of medically significant Gram-negative bacteria. In light of genetic studies demonstrating the attenuated virulence of bacterial strains in which modified carbohydrate biosynthesis enzymes have been knocked out, we are developing small molecule inhibitors of selected enzymes as tools to evaluate whether such compounds modulate virulence. We performed fragment-based and high-throughput screens against an amino-sugar acetyltransferase enzyme, PglD, involved in biosynthesis of UDP-diNAcBac in Campylobacter jejuni. Herein we report optimization of the hits into potent small molecule inhibitors (IC50 < 300 nM). Biophysical characterization shows that the best inhibitors are competitive with acetyl coenzyme A and an X-ray cocrystal structure reveals that binding is biased toward occupation of the adenine subpocket of the AcCoA binding site by an aromatic ring.
Collapse
Affiliation(s)
- Joris W De Schutter
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James P Morrison
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael J Morrison
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , DD1 5EH Dundee, Scotland
| | - Barbara Imperiali
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Briard B, Muszkieta L, Latgé JP, Fontaine T. Galactosaminogalactan ofAspergillus fumigatus, a bioactive fungal polymer. Mycologia 2017; 108:572-80. [DOI: 10.3852/15-312] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022]
|
45
|
Abstract
The glycosylation systems of Campylobacter jejuni (C. jejuni) are considered archetypal examples of both N- and O-linked glycosylations in the field of bacterial glycosylation. The discovery and characterization of these systems both have revealed important biological insight into C. jejuni and have led to the refinement and enhancement of methodologies to characterize bacterial glycosylation. In general, mass spectrometry-based characterization has become the preferred methodology for the study of C. jejuni glycosylation because of its speed, sensitivity, and ability to enable both qualitative and quantitative assessments of glycosylation events. In these experiments the generation of insightful data requires the careful selection of experimental approaches and mass spectrometry (MS) instrumentation. As such, it is essential to have a deep understanding of the technologies and approaches used for characterization of glycosylation events. Here we describe protocols for the initial characterization of C. jejuni glycoproteins using protein-/peptide-centric approaches and discuss considerations that can enhance the generation of insightful data.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, 792 Elizabeth St., Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
46
|
Bouché L, Panico M, Hitchen P, Binet D, Sastre F, Faulds-Pain A, Valiente E, Vinogradov E, Aubry A, Fulton K, Twine S, Logan SM, Wren BW, Dell A, Morris HR. The Type B Flagellin of Hypervirulent Clostridium difficile Is Modified with Novel Sulfonated Peptidylamido-glycans. J Biol Chem 2016; 291:25439-25449. [PMID: 27758867 PMCID: PMC5207245 DOI: 10.1074/jbc.m116.749481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile. We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr. Detailed analysis of a LLDGSSTEIR glycopeptide released by tryptic digestion, which carried two variant structures, revealed that the glycopeptide contained, in addition to carbohydrate moieties, a novel structural entity. A variety of electrospray-MS strategies using Q-TOF technology were used to define this entity, including positive and negative ion collisionally activated decomposition MS/MS, which produced unique fragmentation patterns, and high resolution accurate mass measurement to allow derivation of atomic compositions, leading to the suggestion of a taurine-containing peptidylamido-glycan structure. Finally, NMR analysis of flagellin glycopeptides provided complementary information. The glycan portion of the modification was assigned as α-Fuc3N-(1→3)-α-Rha-(1→2)-α-Rha3OMe-(1→3)-β-GlcNAc-(1→)Ser, and the novel capping moiety was shown to be comprised of taurine, alanine, and glycine. This is the first report of a novel O-linked sulfonated peptidylamido-glycan moiety decorating a flagellin protein.
Collapse
Affiliation(s)
- Laura Bouché
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul Hitchen
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Daniel Binet
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| | - Federico Sastre
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alexandra Faulds-Pain
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Esmeralda Valiente
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Annie Aubry
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Kelly Fulton
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan Twine
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Brendan W Wren
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom,
| | - Howard R Morris
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| |
Collapse
|
47
|
Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:564-571. [PMID: 27428387 DOI: 10.1111/1758-2229.12443] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Highly divergent strains of the major human opportunistic pathogen Pseudomonas aeruginosa have been isolated around the world by different research laboratories. They came from patients with various types of infectious diseases or from the environment. These strains are devoid of the major virulence factor used by classical strains, the Type III secretion system, but possess additional putative virulence factors, including a novel two-partner secretion system, ExlBA, responsible for the hypervirulent behavior of some clinical isolates. Here, we review the genetic and phenotypic characteristics of these recently-discovered P. aeruginosa outliers.
Collapse
Affiliation(s)
- Philippe Huber
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Pauline Basso
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Emeline Reboud
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Ina Attrée
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| |
Collapse
|
48
|
Silverman JM, Imperiali B. Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons. J Biol Chem 2016; 291:22001-22010. [PMID: 27573243 DOI: 10.1074/jbc.m116.747121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Site selectivity of protein N-linked glycosylation is dependent on many factors, including accessibility of the modification site, amino acid composition of the glycosylation consensus sequence, and cellular localization of target proteins. Previous studies have shown that the bacterial oligosaccharyltransferase, PglB, of Campylobacter jejuni favors acceptor proteins with consensus sequences ((D/E)X1NX2(S/T), where X1,2 ≠ proline) in flexible, solvent-exposed motifs; however, several native glycoproteins are known to harbor consensus sequences within structured regions of the acceptor protein, suggesting that unfolding or partial unfolding is required for efficient N-linked glycosylation in the native environment. To derive insight into these observations, we generated structural homology models of the N-linked glycoproteome of C. jejuni This evaluation highlights the potential diversity of secondary structural conformations of previously identified N-linked glycosylation sequons. Detailed assessment of PglB activity with a structurally characterized acceptor protein, PEB3, demonstrated that this natively folded substrate protein is not efficiently glycosylated in vitro, whereas structural destabilization increases glycosylation efficiency. Furthermore, in vivo glycosylation studies in both glyco-competent Escherichia coli and the native system, C. jejuni, revealed that efficient glycosylation of glycoproteins, AcrA and PEB3, depends on translocation to the periplasmic space via the general secretory pathway. Our studies provide quantitative evidence that many acceptor proteins are likely to be N-linked-glycosylated before complete folding and suggest that PglB activity is coupled to general secretion-mediated translocation to the periplasm. This work extends our understanding of the molecular mechanisms underlying N-linked glycosylation in bacteria.
Collapse
Affiliation(s)
- Julie Michelle Silverman
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Barbara Imperiali
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
49
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
50
|
Nothaft H, Davis B, Lock YY, Perez-Munoz ME, Vinogradov E, Walter J, Coros C, Szymanski CM. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Sci Rep 2016; 6:26511. [PMID: 27221144 PMCID: PMC4879521 DOI: 10.1038/srep26511] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Alberta Glycomics Centre, University of Alberta, Edmonton, Canada
| | | | | | - Maria Elisa Perez-Munoz
- Department of Agricultural, Food &Nutritional Science, University of Alberta, Edmonton, Canada
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council, Ottawa, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food &Nutritional Science, University of Alberta, Edmonton, Canada
| | | | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Alberta Glycomics Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|