1
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
2
|
The Complete Genome Sequence of the Emerging Pathogen Mycobacterium haemophilum Explains Its Unique Culture Requirements. mBio 2015; 6:e01313-15. [PMID: 26578674 PMCID: PMC4659460 DOI: 10.1128/mbio.01313-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Mycobacterium haemophilum is an emerging pathogen associated with a variety of clinical syndromes, most commonly skin infections in immunocompromised individuals. M. haemophilum exhibits a unique requirement for iron supplementation to support its growth in culture, but the basis for this property and how it may shape pathogenesis is unclear. Using a combination of Illumina, PacBio, and Sanger sequencing, the complete genome sequence of M. haemophilum was determined. Guided by this sequence, experiments were performed to define the basis for the unique growth requirements of M. haemophilum. We found that M. haemophilum, unlike many other mycobacteria, is unable to synthesize iron-binding siderophores known as mycobactins or to utilize ferri-mycobactins to support growth. These differences correlate with the absence of genes associated with mycobactin synthesis, secretion, and uptake. In agreement with the ability of heme to promote growth, we identified genes encoding heme uptake machinery. Consistent with its propensity to infect the skin, we show at the whole-genome level the genetic closeness of M. haemophilum with Mycobacterium leprae, an organism which cannot be cultivated in vitro, and we identify genes uniquely shared by these organisms. Finally, we identify means to express foreign genes in M. haemophilum. These data explain the unique culture requirements for this important pathogen, provide a foundation upon which the genome sequence can be exploited to improve diagnostics and therapeutics, and suggest use of M. haemophilum as a tool to elucidate functions of genes shared with M. leprae. IMPORTANCE Mycobacterium haemophilum is an emerging pathogen with an unknown natural reservoir that exhibits unique requirements for iron supplementation to grow in vitro. Understanding the basis for this iron requirement is important because it is fundamental to isolation of the organism from clinical samples and environmental sources. Defining the molecular basis for M. haemophilium's growth requirements will also shed new light on mycobacterial strategies to acquire iron and can be exploited to define how differences in such strategies influence pathogenesis. Here, through a combination of sequencing and experimental approaches, we explain the basis for the iron requirement. We further demonstrate the genetic closeness of M. haemophilum and Mycobacterium leprae, the causative agent of leprosy which cannot be cultured in vitro, and we demonstrate methods to genetically manipulate M. haemophilum. These findings pave the way for the use of M. haemophilum as a model to elucidate functions of genes shared with M. leprae.
Collapse
|
3
|
Pandey R, Russo R, Ghanny S, Huang X, Helmann J, Rodriguez GM. MntR(Rv2788): a transcriptional regulator that controls manganese homeostasis in Mycobacterium tuberculosis. Mol Microbiol 2015; 98:1168-83. [PMID: 26337157 DOI: 10.1111/mmi.13207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
Abstract
The pathogenic mycobacterium Mycobacterium tuberculosis encodes two members of the DtxR/MntR family of metalloregulators, IdeR and SirR. IdeR represses gene expression in response to ferrous iron, and we here demonstrate that SirR (Rv2788), although also annotated as an iron-dependent repressor, functions instead as a manganese-dependent transcriptional repressor and is therefore renamed MntR. MntR regulates transporters that promote manganese import and genes that respond to metal ion deficiency such as the esx3 system. Repression of manganese import by MntR is essential for survival of M. tuberculosis under conditions of high manganese availability, but mntR is dispensable during infection. In contrast, manganese import by MntH and MntABCD was found to be indispensable for replication of M. tuberculosis in macrophages. These results suggest that manganese is limiting in the host and that interfering with import of this essential metal may be an effective strategy to attenuate M. tuberculosis.
Collapse
Affiliation(s)
- Ruchi Pandey
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA
| | - Riccardo Russo
- New Jersey Medical School, Rutgers State University of New Jersey, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Saleena Ghanny
- Genomics Research Program, NJMS, Rutgers State University of New Jersey, 185 South Orange Avenue, Newark, NJ, USA
| | - Xiaojuan Huang
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - John Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - G Marcela Rodriguez
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
4
|
Shin JH, Wakeman CA, Goodson JR, Rodionov DA, Freedman BG, Senger RS, Winkler WC. Transport of magnesium by a bacterial Nramp-related gene. PLoS Genet 2014; 10:e1004429. [PMID: 24968120 PMCID: PMC4072509 DOI: 10.1371/journal.pgen.1004429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/24/2014] [Indexed: 12/29/2022] Open
Abstract
Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. Magnesium ions are essential for life, and, correspondingly, all organisms must encode for proteins to transport them. Three classes of bacterial proteins (CorA, MgtE and MgtA/B) have previously been identified for transport of the ion. This current study introduces a new route of magnesium import, which, moreover, is unexpectedly provided by proteins distantly related to Natural resistance-associated macrophage proteins (Nramp). Nramp metal transporters are widespread in the three domains of life; however, most are assumed to function as transporters of transition metals such as manganese or iron. None of the previously characterized Nramps have been shown to transport magnesium. In this study, we demonstrate that certain bacterial proteins, distantly related to Nramp homologues, exhibit transport of magnesium. We also find that these new magnesium transporters are genetically controlled by a magnesium-sensing regulatory element. Importantly, we find numerous additional examples of similar genes sharing this regulatory arrangement, suggesting that these genes may be a frequent occurrence in bacteria, and may represent a class of magnesium transporters. Therefore, our aggregate data discover a new and perhaps broadly important path of magnesium import in bacteria.
Collapse
Affiliation(s)
- Jung-Ho Shin
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Catherine A. Wakeman
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Dallas, Texas, United States of America
| | - Jonathan R. Goodson
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Dmitry A. Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Benjamin G. Freedman
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Ryan S. Senger
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Wade C. Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lamrabet O, Drancourt M. Genetic engineering of Mycobacterium tuberculosis: a review. Tuberculosis (Edinb) 2012; 92:365-76. [PMID: 22789498 DOI: 10.1016/j.tube.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023]
Abstract
Genetic engineering has been used for decades to mutate and delete genes in the Mycobacterium tuberculosis genome with the translational goal of producing attenuated mutants with conserved susceptibility to antituberculous antibiotics. The development of plasmids and mycobacteriophages that can transfer DNA into the M. tuberculosis chromosome has effectively overcome M. tuberculosis slow growth rate and the capsule and mycolic acid wall, which limit DNA uptake. The use of genetic engineering techniques has shed light on many aspects of pathogenesis mechanisms, including cellular growth, mycolic acid biosynthesis, metabolism, drug resistance and virulence. Moreover, such research gave clues to the development of new vaccines or new drugs for routine clinical practice. The use of genetic engineering tools is mainly based on the underlying concept that altering or reducing the M. tuberculosis genome could decrease its virulence. A contrario, recent post-genomic analyses indicated that reduced bacterial genomes are often associated with increased bacterial virulence and that M. tuberculosis acquired genes by lateral genetic exchange during its evolution. Therefore, ancestors utilizing genetic engineering to add genes to the M. tuberculosis genome may lead to new vaccines and the availability of M. tuberculosis isolates with increased susceptibility to antituberculous antibiotics.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, Méditerranée Infection, FRIDMM, Aix-Marseille Université, Marseille, France.
| | | |
Collapse
|
6
|
Lai JS, Cheng CW, Sung TY, Hsu WL. Computational comparative study of tuberculosis proteomes using a model learned from signal peptide structures. PLoS One 2012; 7:e35018. [PMID: 22496884 PMCID: PMC3322152 DOI: 10.1371/journal.pone.0035018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/08/2012] [Indexed: 12/19/2022] Open
Abstract
Secretome analysis is important in pathogen studies. A fundamental and convenient way to identify secreted proteins is to first predict signal peptides, which are essential for protein secretion. However, signal peptides are highly complex functional sequences that are easily confused with transmembrane domains. Such confusion would obviously affect the discovery of secreted proteins. Transmembrane proteins are important drug targets, but very few transmembrane protein structures have been determined experimentally; hence, prediction of the structures is essential. In the field of structure prediction, researchers do not make assumptions about organisms, so there is a need for a general signal peptide predictor.To improve signal peptide prediction without prior knowledge of the associated organisms, we present a machine-learning method, called SVMSignal, which uses biochemical properties as features, as well as features acquired from a novel encoding, to capture biochemical profile patterns for learning the structures of signal peptides directly.We tested SVMSignal and five popular methods on two benchmark datasets from the SPdb and UniProt/Swiss-Prot databases, respectively. Although SVMSignal was trained on an old dataset, it performed well, and the results demonstrate that learning the structures of signal peptides directly is a promising approach. We also utilized SVMSignal to analyze proteomes in the entire HAMAP microbial database. Finally, we conducted a comparative study of secretome analysis on seven tuberculosis-related strains selected from the HAMAP database. We identified ten potential secreted proteins, two of which are drug resistant and four are potential transmembrane proteins.SVMSignal is publicly available at http://bio-cluster.iis.sinica.edu.tw/SVMSignal. It provides user-friendly interfaces and visualizations, and the prediction results are available for download.
Collapse
Affiliation(s)
- Jhih-Siang Lai
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
7
|
Lin Z, Fernández-Robledo JA, Cellier MFM, Vasta GR. The natural resistance-associated macrophage protein from the protozoan parasite Perkinsus marinus mediates iron uptake. Biochemistry 2011; 50:6340-55. [PMID: 21661746 DOI: 10.1021/bi200343h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microbial pathogens succeed in acquiring essential metals such as iron and manganese despite their limited availability because of the host's immune response. The eukaryotic natural resistance-associated macrophage proteins mediate uptake of divalent metals and, during infection, may compete directly for metal acquisition with the pathogens' transporters. In this study, we characterize the Nramp gene family of Perkinsus marinus, an intracellular parasite of the eastern oyster, and through yeast complementation, we demonstrate for the first time for a protozoan parasite that Nramp imports environmental Fe. Three PmNramp isogenes differ in their exon-intron structures and encode transcripts that display a trans splicing leader at the 5' end. The protein sequences share conserved properties predicted for the Nramp/Solute carrier 11 (Slc11) family, such as 12-transmembrane segment (TMS) topology (N- and C-termini cytoplasmic) and preferential conservation of four TMS predicted to form a pseudosymmetric proton/metal symport pathway. Yeast fet3fet4 mutant complementation assays showed iron transport activity for PmNramp1 and a fusion chimera of the PmNramp3 hydrophobic core and PmNramp1 N- and C-termini. PmNramp1 site-directed mutagenesis demonstrated that Slc11 invariant and predicted pseudosymmetric motifs (TMS1 Asp-Pro-Gly and TMS6 Met-Pro-His) are key for transport function. PmNramp1 TMS1 mutants D76E, G78A, and D76E/G78A prevented membrane protein expression, while TMS6 M250A, H252Y, and M250A/H252Y specifically abrogated Fe uptake; the TMS6 H252Y mutation also correlates with divergence from Nramp specificity for divalent metals.
Collapse
Affiliation(s)
- Zhuoer Lin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, IMET, 701 East Pratt Street, Suite 236, Baltimore, Maryland 21202-3101, USA
| | | | | | | |
Collapse
|
8
|
Mimicry of the pathogenic mycobacterium vacuole in vitro elicits the bacterial intracellular phenotype, including early-onset macrophage death. Infect Immun 2011; 79:2412-22. [PMID: 21444666 DOI: 10.1128/iai.01120-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium complex (MAC) within macrophages undergoes a phenotype change that allows for more efficient entry into surrounding host cells. We hypothesized that, by developing an in vitro system resembling the intravacuolar environment, one could generate insights into the mycobacterial intracellular phenotype. MAC was incubated in "elemental mixtures" that reproduce metal concentrations and pH in the vacuoles at different time points and then used to infect fresh macrophages. Incubation of MAC with the mixture corresponding to the vacuole environment 24 h postinfection infected macrophages at a significantly higher rate than bacteria that were incubated in Middlebrook 7H9 broth. Uptake occurred by macropinocytosis, similar to the uptake of bacteria passed through macrophages. Genes reported to be upregulated in intracellular bacteria, such as Mav1365, Mav2409, Mav4487, and Mav0996, were upregulated in MAC incubated in the 24-h elemental mixture. Like MAC obtained from macrophages, the vacuoles of bacteria from the 24-h elemental mixture were more likely to contain lysosome-associated membrane protein 1 (LAMP-1). A stepwise reduction scheme of the 24-h elemental mixture indicated that incubation in physiologically relevant concentrations of potassium chloride, calcium chloride, and manganese chloride was sufficient to induce characteristics of the intracellular phenotype. It was demonstrated that bacteria harboring the intracellular phenotype induced early-onset macrophage death more efficiently than bacteria grown in broth. This new trace elemental mixture mimicking the condition of the vacuole at different time points has the potential to become an effective laboratory tool for the study of the MAC and Mycobacterium tuberculosis disease process, increasing the understanding of the interaction with macrophages.
Collapse
|
9
|
Banerjee S, Farhana A, Ehtesham NZ, Hasnain SE. Iron acquisition, assimilation and regulation in mycobacteria. INFECTION GENETICS AND EVOLUTION 2011; 11:825-38. [PMID: 21414421 DOI: 10.1016/j.meegid.2011.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/28/2022]
Abstract
Iron is as crucial to the pathogen as it is to the host. The tuberculosis causing bacillus, Mycobacterium tuberculosis (M.tb), is an exceptionally efficient pathogen that has evolved proficient mechanisms to sequester iron from the host despite its thick mycolate-rich outer covering and a highly impermeable membrane of phagolysosome within which it persists inside an infected host macrophage. Further, both overindulgence and moderation of iron inside a host are a threat to mycobacterial persistence. While for removing iron from the host reservoirs, mycobacteria synthesize molecules that have several times higher affinity for iron than their host counterparts, they also synthesize molecules for efficient storage of excess iron. This is supported by tightly regulated iron dependent global gene expressions. In this review we discuss the various molecules and pathways evolved by mycobacteria for an efficient iron metabolism. We also discuss the less investigated players, like iron responsive proteins and iron responsive elements in mycobacteria, and highlight the lacunae in our current understanding of iron acquisition and utilization in mycobacteria with an ultimate aim to make iron metabolism as a possible anti-mycobacterial target.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
10
|
|
11
|
Waters WR, Palmer MV, Nonnecke BJ, Thacker TC, Scherer CFC, Estes DM, Hewinson RG, Vordermeier HM, Barnes SW, Federe GC, Walker JR, Glynne RJ, Hsu T, Weinrick B, Biermann K, Larsen MH, Jacobs WR. Efficacy and immunogenicity of Mycobacterium bovis DeltaRD1 against aerosol M. bovis infection in neonatal calves. Vaccine 2009; 27:1201-9. [PMID: 19135497 PMCID: PMC2750035 DOI: 10.1016/j.vaccine.2008.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
An attenuated Mycobacterium bovisRD1 deletion (DeltaRD1) mutant of the Ravenel strain was constructed, characterized, and sequenced. This M. bovis DeltaRD1 vaccine strain administered to calves at 2 weeks of age provided similar efficacy as M. bovis bacillus Calmette Guerin (BCG) against low dose, aerosol challenge with virulent M. bovis at 3.5 months of age. Approximately 4.5 months after challenge, both DeltaRD1- and BCG-vaccinates had reduced tuberculosis (TB)-associated pathology in lungs and lung-associated lymph nodes and M. bovis colonization of tracheobronchial lymph nodes as compared to non-vaccinates. Mean central memory responses elicited by either DeltaRD1 or BCG prior to challenge correlated with reduced pathology and bacterial colonization. Neither DeltaRD1 or BCG elicited IFN-gamma responses to rESAT-6:CFP-10 prior to challenge, an emerging tool for modern TB surveillance programs. The DeltaRD1 strain may prove useful for bovine TB vaccine programs, particularly if additional mutations are included to improve safety and immunogenicity.
Collapse
Affiliation(s)
- W Ray Waters
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Deshayes C, Perrodou E, Euphrasie D, Frapy E, Poch O, Bifani P, Lecompte O, Reyrat JM. Detecting the molecular scars of evolution in the Mycobacterium tuberculosis complex by analyzing interrupted coding sequences. BMC Evol Biol 2008; 8:78. [PMID: 18325090 PMCID: PMC2277376 DOI: 10.1186/1471-2148-8-78] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 03/06/2008] [Indexed: 11/30/2022] Open
Abstract
Background Computer-assisted analyses have shown that all bacterial genomes contain a small percentage of open reading frames with a frameshift or in-frame stop codon We report here a comparative analysis of these interrupted coding sequences (ICDSs) in six isolates of M. tuberculosis, two of M. bovis and one of M. africanum and question their phenotypic impact and evolutionary significance. Results ICDSs were classified as "common to all strains" or "strain-specific". Common ICDSs are believed to result from mutations acquired before the divergence of the species, whereas strain-specific ICDSs were acquired after this divergence. Comparative analyses of these ICDSs therefore define the molecular signature of a particular strain, phylogenetic lineage or species, which may be useful for inferring phenotypic traits such as virulence and molecular relationships. For instance, in silico analysis of the W-Beijing lineage of M. tuberculosis, an emergent family involved in several outbreaks, is readily distinguishable from other phyla by its smaller number of common ICDSs, including at least one known to be associated with virulence. Our observation was confirmed through the sequencing analysis of ICDSs in a panel of 21 clinical M. tuberculosis strains. This analysis further illustrates the divergence of the W-Beijing lineage from other phyla in terms of the number of full-length ORFs not containing a frameshift. We further show that ICDS formation is not associated with the presence of a mutated promoter, and suggest that promoter extinction is not the main cause of pseudogene formation. Conclusion The correlation between ICDSs, function and phenotypes could have important evolutionary implications. This study provides population geneticists with a list of targets, which could undergo selective pressure and thus alters relationships between the various lineages of M. tuberculosis strains and their host. This approach could be applied to any closely related bacterial strains or species for which several genome sequences are available.
Collapse
Affiliation(s)
- Caroline Deshayes
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris Cedex 15, F-75730, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Xiang Z, Tian Y, He Y. PHIDIAS: a pathogen-host interaction data integration and analysis system. Genome Biol 2008; 8:R150. [PMID: 17663773 PMCID: PMC2323235 DOI: 10.1186/gb-2007-8-7-r150] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/08/2007] [Accepted: 07/30/2007] [Indexed: 01/03/2023] Open
Abstract
PHIDIAS is a web-based database system serving as a centralized source to search, compare and analyse integrated genome sequences, conserved domains and transcriptional data related to pathogen-host interactions. The Pathogen-Host Interaction Data Integration and Analysis System (PHIDIAS) is a web-based database system that serves as a centralized source to search, compare, and analyze integrated genome sequences, conserved domains, and gene expression data related to pathogen-host interactions (PHIs) for pathogen species designated as high priority agents for public health and biological security. In addition, PHIDIAS allows submission, search and analysis of PHI genes and molecular networks curated from peer-reviewed literature. PHIDIAS is publicly available at .
Collapse
Affiliation(s)
- Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | - Yuying Tian
- Medical School Information Services, University of Michigan, 535 W. William St., Ann Arbor, MI, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Dr., Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Huynh C, Andrews NW. Iron acquisition within host cells and the pathogenicity of Leishmania. Cell Microbiol 2007; 10:293-300. [PMID: 18070118 DOI: 10.1111/j.1462-5822.2007.01095.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe(2+) and Mn(2+) ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania, indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens. Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe(2+) transporter that is required for intracellular growth and virulence.
Collapse
Affiliation(s)
- Chau Huynh
- Section of Microbial Pathogenesis, School of Medicine, Yale University, 295 Congress avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
15
|
Courville P, Chaloupka R, Cellier MFM. Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol 2007; 84:960-78. [PMID: 17215883 DOI: 10.1139/o06-193] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The natural resistance-associated macrophage protein (Nramp) homologs form a family of proton-coupled transporters that facilitate the cellular absorption of divalent metal ions (Me2+, including Mn2+, Fe2+, Co2+, and Cd2+). The Nramp, or solute carrier 11 (SLC11), family is conserved in eukaryotes and bacteria. Humans and rodents express 2 parologous genes that are associated with iron disorders and immune diseases. The NRAMP1 (SLC11A1) protein is specific to professional phagocytes and extrudes Me2+ from the phagosome to defend against ingested microbes; polymorphisms in the NRAMP1 gene are associated with various immune diseases. Several isoforms of NRAMP2 (SLC11A2, DMT1, DCT1) are expressed ubiquitously in recycling endosomes or specifically at the apical membrane of epithelial cells in intestine and kidneys, and can contribute to iron overload, whereas mutations impairing NRAMP2 function cause a form of congenital microcytic hypochromic anemia. Structure-function studies, using various experimental models, and mutagenesis approaches have begun to reveal the overall transmembrane organization of Nramp, some of the transmembrane segments (TMS) that are functionally important, and an unusual mechanism coupling Me2+ and proton H+ transport. The approaches used include functional complementation of yeast knockout strains, electrophysiology analyses in Xenopus oocytes, and transport assays that use mammalian and bacterial cells and direct and indirect measurements of SLC11 transporter properties. These complementary studies enabled the identification of TMS1 and 6 as crucial structural segments for Me2+ and H+ symport, and will help develop a deeper understanding of the Nramp transport mechanism and its contribution to Me2+ homeostasis in human health and diseases.
Collapse
Affiliation(s)
- P Courville
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531, Bd. des prairies, Laval, QC H7V 1B7, Canada
| | | | | |
Collapse
|
16
|
Abstract
Two areas of research have recently converged to highlight important roles for Mn(2+) in pathogenesis: the recognition that both bacterial Nramp homologs and members of LraI family of proteins are Mn(2+) transporters. Their mutation is associated with decreased virulence of various bacterial species. Thus, Mn(2+) appears to be essential for bacterial virulence. This review describes what is currently known about Mn(2+) transport in prokaryotes and how prokaryotic Mn(2+) transport is regulated. Some of the phenotypes that arise when microorganisms lack Mn(2+) are then discussed, with an emphasis on those phenotypes involving pathogenesis. The concluding section describes possible enzymatic roles for Mn(2+) that might help explain why Mn(2+) is necessary for virulence.
Collapse
|
17
|
Wagner D, Maser J, Moric I, Vogt S, Kern WV, Bermudez LE. Elemental analysis of the Mycobacterium avium phagosome in Balb/c mouse macrophages. Biochem Biophys Res Commun 2006; 344:1346-51. [PMID: 16650826 DOI: 10.1016/j.bbrc.2006.04.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 04/11/2006] [Indexed: 11/18/2022]
Abstract
Using a hard X-ray microprobe, we showed recently that in unstimulated peritoneal macrophages from C57BL/6 mice, the phagosome of pathogenic mycobacteria (Mycobacterium tuberculosis and Mycobacterium avium) can accumulate iron. We expanded our studies to the M. avium infection of peritoneal macrophages of Balb/c mice that show a similar degree of M. tuberculosis and M. avium-related chronic disease, but a higher susceptibility towards other intracellular pathogens such as Listeria monocytogenes, Leishmania major, or Brucella abortus as compared to C57BL/6 mice. Similar to C57BL/6 macrophages, the iron concentration in Balb/c macrophages increased significantly after 24 h of infection. A significant increase of the chlorine and potassium concentrations was observed in the Balb/c phagosomes between 1 and 24 h, in contrast with macrophages from C57BL/6 mice. The absolute elemental concentrations of calcium and zinc were higher in the mycobacterial phagosomes of Balb/c mice. We hypothesize that a potassium channel is abundant in the phagosome in macrophages that may be related to microbiocidal killing, similar to the requirement of potassium channels for microbiocidal function in neutrophils.
Collapse
Affiliation(s)
- Dirk Wagner
- Division of Infectious Diseases, Department of Internal Medicine, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Wagner D, Maser J, Moric I, Boechat N, Vogt S, Gicquel B, Lai B, Reyrat JM, Bermudez L. Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp. MICROBIOLOGY-SGM 2005; 151:323-332. [PMID: 15632449 DOI: 10.1099/mic.0.27213-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pathogenic mycobacteria survive within phagosomes which are thought to represent a nutrient-restricted environment. Divalent cation transporters of the Nramp family in phagosomes and mycobacteria (Mramp) may compete for metals that are crucial for bacterial survival. The elemental concentrations in phagosomes of macrophages infected with wild-type Mycobacterium tuberculosis (M. tuberculosis strain H37Rv) and a M. tuberculosis Mramp knockout mutant (Mramp-KO), derived from a clinical isolate isogenic to the strain MT103, were compared. Time points of 1 and 24 h after infection of mouse peritoneal macrophages (bcg(S)) were compared in both cases. Increased concentrations of P, Ni and Zn and reduced Cl concentration in Mramp-KO after 1 h of infection were observed, compared to M. tuberculosis vacuoles. After 24 h of infection, significant differences in the P, Cl and Zn concentrations were still present. The Mramp-KO phagosome showed a significant increase of P, Ca, Mn, Fe and Zn concentrations between 1 and 24 h after infection, while the concentrations of K and Ni decreased. In the M. tuberculosis vacuole, the Fe concentration showed a similar increase, while the Cl concentration decreased. The fact that the concentration of several divalent cations increased in the Mramp-KO strain suggests that Mramp may have no impact on the import of these divalent cations into the mycobacterium, but may function as a cation efflux pump. The concordant increase of Fe concentrations within M. tuberculosis, as well as within the Mramp-KO vacuoles, implies that Mramp, in contrast to siderophores, might not be important for the attraction of Fe and its retention in phagosomes of unstimulated macrophages.
Collapse
Affiliation(s)
- Dirk Wagner
- Division of Infectious Diseases, Department of Internal Medicine, University of Freiburg, Hugstetter Str 55, 79106 Freiburg, Germany
| | - Jörg Maser
- Experimental Facilities, Argonne National Laboratory, Argonne, IL, USA
| | - Ivana Moric
- Experimental Facilities, Argonne National Laboratory, Argonne, IL, USA
| | - Neio Boechat
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
| | - Stefan Vogt
- Experimental Facilities, Argonne National Laboratory, Argonne, IL, USA
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
| | - Barry Lai
- Experimental Facilities, Argonne National Laboratory, Argonne, IL, USA
| | - Jean-Marc Reyrat
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
| | - Luiz Bermudez
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
19
|
Copenhaver RH, Sepulveda E, Armitige LY, Actor JK, Wanger A, Norris SJ, Hunter RL, Jagannath C. A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential. Infect Immun 2004; 72:7084-95. [PMID: 15557632 PMCID: PMC529100 DOI: 10.1128/iai.72.12.7084-7095.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fbpA and fbpB genes encoding the 85A and 85B proteins of Mycobacterium tuberculosis H37Rv, respectively, were disrupted, the mutants were examined for their ability to survive, and the strain lacking 85A (DeltafbpA) was tested for its ability to immunize mice. The DeltafbpA mutant was attenuated in mice after intravenous or aerosol infection, while replication of the DeltafbpB mutant was similar to that of the wild type. Complementation of the fbpA gene in DeltafbpA restored its ability to grow in the lungs of mice. The DeltafbpA mutant induced a stronger expression of pulmonary mRNA messages in mice for tumor necrosis factor alpha, interleukin-1 beta (IL-1beta), gamma interferon, IL-6, IL-2, and inducible nitric oxide (NO) synthase, which led to its decline, while H37Rv persisted despite strong immune responses. H37Rv and DeltafbpA both induced NO in macrophages and were equally susceptible to NO donors, although DeltafbpA was more susceptible in vitro to peroxynitrite and its growth was enhanced by NO inhibitors in mice and macrophages. Aerosol-infected mice, which cleared a low-dose DeltafbpA infection, resisted a challenge with virulent M. tuberculosis. Mice subcutaneously immunized with DeltafbpA or Mycobacterium bovis BCG and challenged with M. tuberculosis also showed similar levels of protection, marked by a reduction in the growth of challenged M. tuberculosis. The DeltafbpA mutant was thus attenuated, unlike DeltafbpB, but was also vaccinogenic against tuberculosis. Attenuation was incomplete, however, since DeltafbpA revived in normal mice after 370 days, suggesting that revival was due to immunosenescence but not compensation by the fbpB or fbpC gene. Antigen 85A thus affects susceptibility to peroxynitrite in M. tuberculosis and appears to be necessary for its optimal growth in mice.
Collapse
Affiliation(s)
- Robert H Copenhaver
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Olakanmi O, Schlesinger LS, Ahmed A, Britigan BE. The nature of extracellular iron influences iron acquisition by Mycobacterium tuberculosis residing within human macrophages. Infect Immun 2004; 72:2022-8. [PMID: 15039322 PMCID: PMC375202 DOI: 10.1128/iai.72.4.2022-2028.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have reported that Mycobacterium tuberculosis residing within the phagosomes of human monocyte-derived macrophages (MDM) can acquire Fe from extracellular transferrin (TF) and sources within the MDM. In the lung, Fe is also bound to lactoferrin (LF) and low-molecular-weight chelates. We therefore investigated the ability of intraphagosomal M. tuberculosis to acquire Fe from these sources. M. tuberculosis acquired 30-fold and 3-fold more Fe from LF and citrate, respectively, compared to TF, in spite of similar MDM-associated Fe. M. tuberculosis infection decreased MDM-associated Fe relative to uninfected MDM as follows: TF (38.7%), citrate (21.1%), and LF (15.3%). M. tuberculosis Fe acquisition from extracellular chelates (exogenous source) and from endogenous MDM Fe initially acquired from the three chelates (endogenous source) was compared. M. tuberculosis Fe acquisition was similar from exogenous and endogenous sources supplied as Fe-TF. In contrast, there was much greater intracellular M. tuberculosis Fe uptake from LF and citrate from the exogenous than endogenous source. Gamma interferon (IFN-gamma) reduced MDM Fe uptake from each chelate by approximately 50% and augmented the M. tuberculosis-induced decrease in MDM Fe uptake from exogenous TF, but not from LF or citrate. IFN-gamma minimally decreased intracellular M. tuberculosis Fe acquisition from exogenous Fe-TF but significantly increased Fe uptake from LF and citrate. Intraphagosomal M. tuberculosis Fe acquisition from both exogenous and endogenous MDM sources, and the effect of IFN-gamma on this process, is influenced by the nature of the extracellular Fe chelate. M. tuberculosis has developed efficient mechanisms of acquiring Fe from a variety of Fe chelates that it likely encounters within the human lung.
Collapse
Affiliation(s)
- Oyebode Olakanmi
- Department of Internal Medicine and Research Service, VA Medical Center-Iowa City and Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|
21
|
Bigi F, Gioffré A, Klepp L, Santangelo MDLP, Alito A, Caimi K, Meikle V, Zumárraga M, Taboga O, Romano MI, Cataldi A. The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect 2004; 6:182-7. [PMID: 14998516 DOI: 10.1016/j.micinf.2003.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 10/16/2003] [Indexed: 10/26/2022]
Abstract
P27 lipoprotein was previously described as an antigen in the Mycobacterium tuberculosis complex, encoded by the lprG gene, also named Rv1411 in the TubercuList (http://genolist.pasteur.fr/TubercuList) gene bank. It forms an operon with Rv1410 that encodes for an efflux pump, P55. A mutant of the H37Rv strain of M. tuberculosis not producing P27 (strain DeltaP27) was obtained by two-step mutagenesis using the counterselectable marker sacB and a thermosensitive origin of replication in the shuttle plasmid pPR27. By RT-PCR, we observed no lprG or Rv1410 mRNA in the DeltaP27 mutant strain compared with the wild type and complemented strains. Western blot experiments using anti-P27 polyclonal sera showed that the P27 protein was present both in the parental and in a complemented strain, in which the entire lprG-Rv1410 operon was reintroduced, but absent in the mutant strain. The three strains showed similar growth kinetics and characteristics in culture broth. To study the effect of the lprG mutation on M. tuberculosis virulence, BALB/c mice were inoculated to determine bacterial loads in spleens. At days 15 and 35 after infection, decreases of 1.5 and 2.5 logs in the bacterial load were found, respectively, in animals inoculated with the DeltaP27 mutant strain or with the wild type. This attenuation was reverted in the complemented strain. These results demonstrated that lprG gene is required for growth of M. tuberculosis in immunocompetent mice. The reversion of attenuation in the complemented strain indicates that the attenuated phenotype resulted from disruption of the lprG-Rv1410 operon.
Collapse
Affiliation(s)
- Fabiana Bigi
- Institute of Biotechnology, CICVyA-INTA, Los Reseros y Las Cabañas, 1712 Castelar, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|